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A B S T R A C T

Recent studies have shown that it is possible to combine machine learning methods with data assimilation to
reconstruct a dynamical system using only sparse and noisy observations of that system. The same approach
can be used to correct the error of a knowledge-based model. The resulting surrogate model is hybrid, with a
statistical part supplementing a physical part. In practice, the correction can be added as an integrated term (i.e.
in the model resolvent) or directly inside the tendencies of the physical model. The resolvent correction is easy
to implement. The tendency correction is more technical, in particular it requires the adjoint of the physical
model, but also more flexible. We use the two-scale Lorenz model to compare the two methods. The accuracy
in long-range forecast experiments is somewhat similar between the surrogate models using the resolvent
correction and the tendency correction. By contrast, the surrogate models using the tendency correction
significantly outperform the surrogate models using the resolvent correction in data assimilation experiments.
Finally, we show that the tendency correction opens the possibility to make online model error correction,
i.e. improving the model progressively as new observations become available. The resulting algorithm can be
seen as a new formulation of weak-constraint 4D-Var. We compare online and offline learning using the same
framework with the two-scale Lorenz system, and show that with online learning, it is possible to extract all
the information from sparse and noisy observations.
1. Introduction: machine learning for model error correction

Over the past decade, data-driven methods, and in particular ma-
chine learning (ML), have shown remarkable success in reproducing
complex spatiotemporal processes, and have therefore been used in
an increasing number of applications [1–3]. In the geosciences only,
there is a fairly recent wealth of studies dealing with the problem of
inferring the dynamics of a system from observations. Typical examples
include the use of analogues, delay coordinates embedding, random
forests, echo state networks and other neural networks such as residual,
recurrent, or convolutional neural networks [4–12]. Most, if not all, of
these examples implement a type of supervised learning where the goal
is to minimise the loss function, a measure of the discrepancy between
the statistical model (also called surrogate model) predictions and the
observation dataset. The underlying assumption is that the system is
fully observed without or with very little noise. In order to handle
sparse and noisy observations, which is the case in most realistic sys-
tems in the geosciences, more and more studies consider the possibility
of hybridising ML and data assimilation (DA) techniques [13–17]. In
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practice, DA tools are used, with the surrogate model, to estimate the
state of the system from the observations while ML tools are used to
estimate the surrogate model from the analysis (estimated) state. This
method has been reformulated using a unifying Bayesian formalism
by Bocquet et al. [16].

In the geosciences, even though models are affected by errors (e.g.,
misrepresented physical phenomena, unresolved small-scale processes,
numerical integration errors, etc.), they benefit from a long history of
modelling and therefore they already provide a solid baseline. For this
reason, recent studies focus on using ML techniques for model error
correction instead of full model emulation [18–26]. The idea is to build
a hybrid model with a physical, knowledge-based part, and a statistical
part to supplement it. This means that the statistical model is trained to
learn the error of the physical model. The underlying rationale is that
model error correction should be an easier inference problem than full
model emulation [20,21,26].

From a technical perspective, the geoscientific models are based
on a set of physical laws, usually represented as ordinary or partial
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differential equations (ODEs or PDEs). These equations define the ten-
encies of the model. A numerical scheme is used to integrate them for
small time step, and several integration steps are composed to define

he resolvent between two forecast times. Following Farchi et al. [26],
wo strategies are possible for a correction term: (i) apply an integrated
orrection between two forecast times, i.e. in the resolvent, or (ii) apply
correction directly in the tendencies. The first method is by far the

implest to implement, which is why it is the most widely applied, but
t faces some limitations, in particular when using the hybrid model
or DA experiments. The first objective of the present paper is hence to
ake an exhaustive comparison of the two methods for both forecast

nd assimilation experiments in a simplified modelling framework.
Beyond the design of the model error correction – or more generally

f any surrogate model – the question of the use of observations arise.
n most cases, the statistical model is only trained once the entire
bservation dataset is available: this is called offline learning. The other
ption, online, or sequential learning, i.e. improving the surrogate model
s new observations become available, is also possible in ML, even if it
s less common because the methods usually require very large datasets
o achieve good performance. In a context where information is only
vailable through sparse and noisy observations, this means that we
ave to learn both the state of the system and the surrogate model
t the same time. This is the topic of several recent studies [27,28],
hich emphasise the connections between this problem and classical
arameter estimation in DA [29,30]. In the geosciences, online learning
s more natural because observations are acquired sequentially, and
mprovements can be expected before having a long series of obser-
ations since the training begins from the first observation. Therefore,
he second objective of the present paper is to explore the possibility
o use online learning for model error correction.

The paper is organised as follows. Section 2 introduces the main
ethodological aspects for offline learning. We start with a brief

verview of the Bayesian framework for combining DA and ML and
ow it can be used for model error correction. We then discuss the
dvantages and drawbacks of applying a correction term in the resol-
ent or in the tendencies, with an emphasis on the implications for
orecast and assimilation applications. The two methods are compared
n Section 3 using the two-scale Lorenz model [L05III, 31]. Section 4
urther develops the methodology to enable online learning for model
rror correction. Section 5 illustrates the use of online learning with
he same L05III model, and compares it to offline learning. Finally,
onclusions are drawn in Section 6.

. Offline learning of model error with resolvent or tendency
orrection

.1. A Bayesian framework for data assimilation and machine learning

The starting point of the present work is a series of observations
𝑘 ∈ R𝑁𝗒 of a system at discrete times 𝑡𝑘 for 𝑘 ∈ N. The state of
he system is represented by a vector 𝐱𝑘 ∈ R𝑁𝗑 . The observations are
elated to the state through the observation equation

𝑘 = 𝑘
(

𝐱𝑘
)

+ 𝐯𝑘, (1)

here 𝑘 ∶ R𝑁𝗑 → R𝑁𝗒 is the observation operator and 𝐯𝑘 ∈ R𝑁𝗒 the
observation error at time 𝑡𝑘. We assume that the time evolution of the
tate is governed by the state equation

𝑘+1 = 𝗍
𝑘
(

𝐱𝑘
)

+ 𝐰𝑘, (2)

where 𝗍
𝑘 ∶ R𝑁𝗑 → R𝑁𝗑 is the resolvent of the (unknown) true dynam-

ical model from 𝑡𝑘 to 𝑡𝑘+1, and 𝐰𝑘 ∈ R𝑁𝗑 is the corresponding model
error (e.g., related to sub-scale processes). To simplify the presentation,
we make the following assumptions:

• Observations are available at regular intervals 𝑡𝑘 = 𝑘𝛥𝑡;
2

• The observation operator is constant over time 𝑘 ≡ ;
• The observation error is uncorrelated in time and normally dis-
tributed 𝐯𝑘 ∼  (𝟎,𝐑), where 𝐑 is the observation error covari-
ance matrix;

• the model error 𝐰𝑘 is uncorrelated to the observation error 𝐯𝑘.

n particular, the third point implies that the observations are not
iased, which helps to attribute correctly the model errors. Further-
ore, we also make the assumption that the true dynamical model

s autonomous, in which case 𝗍
𝑘 ≡ 𝗍

𝛥𝑡 the resolvent of the sur-
ogate model for a 𝛥𝑡 integration. The extension of the present work
o non-autonomous dynamics is not trivial and briefly discussed in
ection 5.6.

Our goal is to derive a surrogate of the true model, which can be
sed to predict 𝐱𝑘+1 from 𝐱𝑘. Let 𝐩 be the set of parameters defining
he surrogate model. The discrepancy between the surrogate model
redictions and the observations is measured with a cost function. A
raditional ML approach to this problem is to use dense observations
i.e.,  = 𝐈 the identity operator) and to neglect the observation errors
i.e., assuming that 𝐑 = 𝟎), which yields the following cost function:

(𝐩) ≜  (𝐩) + 1
2

𝑁𝗍−1
∑

𝑘=0

‖

‖

‖

𝐲𝑘+1 −𝛥𝑡
(

𝐩, 𝐲𝑘
)

‖

‖

‖

2

𝐐−1
𝑘
, (3)

where  is a regularisation (prior) term on 𝐩, 𝑁𝗍 is the number of
bservation batches used to define  , and 𝐱 ↦ 𝛥𝑡 (𝐩, 𝐱) is the
esolvent of the surrogate model for a 𝛥𝑡 integration. The matrix norm
otation ‖𝐯‖2𝐀 stands for 𝐯⊤𝐀𝐯, and 𝐐𝑘 is the model error covariance
atrix at time 𝑡𝑘.

With sparse observations, the problem is more complex because
n order to derive the surrogate model, we need to estimate the true
tate. A rigorous Bayesian approach to this problem consists in extend-
ng Eq. (3) to include the system trajectory 𝐱0,… , 𝐱𝑁𝗍

in the control
ariables [13,14,16,32]. The joint cost function reads
(

𝐩, 𝐱0,… , 𝐱𝑁𝗍

)

≜ 
(

𝐩, 𝐱0
)

+ 1
2

𝑁𝗍−1
∑

𝑘=0

‖

‖

‖

𝐱𝑘+1 −𝛥𝑡
(

𝐩, 𝐱𝑘
)

‖

‖

‖

2

𝐐−1
𝑘

+ 1
2

𝑁𝗍
∑

𝑘=0

‖

‖

‖

𝐲𝑘 −
(

𝐱𝑘
)

‖

‖

‖

2

𝐑−1 , (4)

where  is a regularisation term on both 𝐩 and 𝐱0. The second term
in Eq. (4) corresponds to the second term in Eq. (3), in which the
observations have been replaced with the state, and the third term is
the observation error term. Eq. (4) is overall very similar to a typical
weak-constraint (WC) 4D-Var cost function [33].

Because the size of the trajectory control vector 𝑁𝗍×𝑁𝗑 is likely to be
arge, an efficient minimisation method relies on a coordinate descent
echnique, alternating DA steps to estimate the state with ML steps to
stimate the surrogate model [15,16]. This combined DA–ML method,
llustrated in Fig. 1, explicitly exploits the different nature between the
rguments of  (state of the system and surrogate model parameters)

and is highly flexible since the DA and ML steps are independent. A
comprehensive description of the DA–ML method is given by Bocquet
et al. [16].

The DA–ML method has first been used for full model emulation, e.g.
y Brajard et al. [15]. In their example, the surrogate model is a neural
etwork (NN) which represents the model tendencies. It is combined
ith an integration scheme to define the resolvent between two time

teps. In this case, 𝐩 corresponds to the set of weights and biases of the
N. The method has then been used to correct an imperfect physical
odel by Brajard et al. [23]; Farchi et al. [26]. For this problem, the

ormalism is simply obtained by replacing the resolvent of the surrogate
odel 𝛥𝑡 with the resolvent of the corrected model, in particular in
q. (4). In general, model error correction should be an easier inference
roblem than full model emulation, which means that smaller surrogate
odels (smaller in number of parameters) and less training data are
ecessary. Moreover, using a physical model is likely to be beneficial
o the method, in particular during the DA steps. It also solves the
ssue of the initialisation: the first step of the method is to perform DA
ith the (non-corrected) physical model. The advantages of model error

orrection over full model emulation are further investigated in [26].
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.2. A typical geophysical model architecture

In the present work, we investigate model error correction with
he DA–ML method. Before we introduce any model error correction,
e need to discuss the characteristics of the model to correct. The
eophysical models rely on physical laws, which most of the time take
he form of ODEs or PDEs.

The core of a model is a numerical code computing the model ten-
encies 𝜙, which are defined as a discretised version of the differential
quations in R𝑁𝗑 :

(𝐱) ≜ d𝐱
d𝑡

. (5)

The model tendencies are integrated over time step 𝛿𝑡 using a dedicated
integration scheme, for example the explicit Euler scheme:

 (𝐱) ≜ 𝐱 + 𝛿𝑡 ⋅ 𝜙 (𝐱) , (6)

or more elaborate schemes such as Runge–Kutta methods. Finally,
several integration steps are composed to define the resolvent,1 from
one time step to the next:

𝛥𝑡 (𝐱) ≜ ◦… ◦ (𝐱) . (7)

Two strategies can be used to correct such physical model. The first
one is to include a correction in the resolvent, Eq. (7). This is called
resolvent correction (RC). The other strategy is to include the correction
directly in the differential equations, in other words in the model ten-
dencies, Eq. (5) [14]. This is called tendency correction (TC). According
to Farchi et al. [26], both strategies have advantages and drawbacks.
Let us illustrate the difference using a simple univariate example.

2.3. Resolvent or tendency correction in a simple univariate example

Suppose that we follow the evolution of a process 𝑥 ∈ R over two
𝛿𝑡-integration steps with the explicit Euler scheme. The true two-step
resolvent is given by

𝗍
2 (𝑥) = 𝑥 + 𝛿𝑡 ⋅ 𝑓 (𝑥) + 𝛿𝑡 ⋅ 𝑓 {𝑥 + 𝛿𝑡 ⋅ 𝑓 (𝑥)} , (8)

where 𝑓 represents the true model tendencies. Our imperfect physical
model has tendencies 𝑔 and a two-step resolvent given by

𝗉
2 (𝑥) = 𝑥 + 𝛿𝑡 ⋅ 𝑔 (𝑥) + 𝛿𝑡 ⋅ 𝑔 {𝑥 + 𝛿𝑡 ⋅ 𝑔 (𝑥)} . (9)

To simplify the expressions, in the following we take 𝛿𝑡 = 1.
When using a TC, we assume that the corrected model has ten-

dencies 𝑔 + 𝛼, whereas when using RC, we assume that the two-step
resolvent of the corrected model is 𝗉

2 + 𝛽. The optimal 𝛼 and 𝛽
corrections are given by

𝛼⋆ (𝑥) = 𝑓 (𝑥) − 𝑔 (𝑥) , (10)

1 The term resolvent is usual in the context of integral or differential
quations. The same operator is often called flow or flow map in dynamical
ystems and propagator in theoretical physics.
3

𝛽⋆ (𝑥) = 𝗍
2 (𝑥) −𝗉

2 (𝑥) (11)

= 𝑓 (𝑥) − 𝑔 (𝑥) + 𝑓 {𝑥 + 𝑓 (𝑥)} − 𝑔 {𝑥 + 𝑔 (𝑥)}, (12)

here the difference is highlighted in red. Obviously, the optimal 𝛽 is
ikely to be more complex than the optimal 𝛼. The expression suggests
hat it will also be more nonlinear if 𝑓 or 𝑔 (or both) are nonlinear.

To further understand the difference, we derive the two-step resol-
ent with RC and TC, respectively written 𝛽

2 and 𝛼
2 :

𝛽
2 (𝑥) = 𝑥 + 𝑔 (𝑥) + 𝑔 {𝑥 + 𝑔 (𝑥)} + 𝛽 (𝑥) (13)

𝛼
2 (𝑥) = 𝑥 + 𝑔 (𝑥) + 𝑔 {𝑥 + 𝑔 (𝑥) + 𝛼 (𝑥)} + 𝛼 (𝑥) + 𝛼 {𝑥 + 𝑔 (𝑥) + 𝛼 (𝑥)},

(14)

here the difference is highlighted in red. From this perspective, it is
lear that with TC, 𝛼

2 (𝑥) is marked by the interaction between the
hysical model and the correction term 𝛼. While this interaction is
eneficial because it enhances 𝛼

2 (𝑥), the downside is that inferring
from data is technically more difficult than inferring 𝛽. Let us see
hy.

Suppose that both 𝛼 and 𝛽 depend on a coefficient 𝑝 ∈ R. Observa-
ion data usually come in the form of pairs

(

𝑥0, 𝑥2
)

with 𝑥2 = 𝗍
2
(

𝑥0
)

,
ossibly with some observation noise. Therefore, a learning step based
n some kind of gradient descent would required the gradient of the
orrected two-step resolvent with respect to p, which is given by

𝜕𝛽
2

𝜕𝑝
(𝑥) =

𝜕𝛽
𝜕𝑝

(𝑥) , (15)

𝜕𝛼
2

𝜕𝑝
(𝑥) = 𝜕𝛼

𝜕𝑝
(𝑥) ⋅

[

1 + 𝑔′ {𝑥 + 𝑔 (𝑥) + 𝛼 (𝑥)} + 𝜕𝛼
𝜕𝑝

{𝑥 + 𝑔 (𝑥) + 𝛼 (𝑥)}
]

,

(16)

here the difference is once again highlighted in red. In particular, it
epends on 𝑔′, the derivative of 𝑔. The equivalent for a geophysical
umerical model would be the tangent linear (TL) operator, which may
e difficult to compute.

To summarise, compared to RC, TC is more difficult to program
ecause the correction term (𝛼 in the present example) is intrusive,
eaning that it requires to modify deeply the code of the physical
odel. It is also more difficult to train, as illustrated by the difference

etween Eqs. (15) and (16). On the other hand, once it is implemented,
he TC has the potential to yield richer dynamics through the inter-
ction with the physical model. Furthermore, by construction the RC
an only correct the two-step resolvent, while the TC can also correct
he one-step resolvent. This would make a difference when using the
orrected model in a DA experiment with observations at every step,
ecause then the one-step resolvent is explicitly needed. The simplest
orkaround is to assume a linear growth of errors in time [23,26]. In

his case, the one-step resolvent with RC would be given by

𝛽 (𝑥) = 𝑥 + 𝑔 (𝑥) + 1 𝛽 (𝑥) , (17)
1 2
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since 𝛽 is the correction term for the two-step resolvent 𝛽
2 (𝑥). How-

ever, even with the optimal 𝛽 correction from Eq. (12), this one-step
esolvent would still differ from the true one-step resolvent, given by

𝗍
1 (𝑥) = 𝑥 + 𝑓 (𝑥) . (18)

n their experiments, Farchi et al. [26] found that this hypothesis was
he main limitation for improving the accuracy of DA experiments with
he corrected model. They concluded that the best strategy to correct
model to be used in DA experiments would probably be the TC.

Finally, let us mention that the model error correction considered
n this section is autonomous and additive. The autonomous hypothesis
an be relaxed, for example by including time in the set of predictors.
owever, one must keep in mind that in this case, the training dataset

hould capture the time evolution of the model error. The additive
ypothesis can also be relaxed. Without prior knowledge on the model
rror form, using an additive correction is the simpler option but other
hoices are possible, e.g. a multiplicative correction. Also note that if
he physical model explicitly depends a set of parameters, the same
ramework can be used to calibrate these parameters.

.4. Comparing resolvent and tendency correction

Farchi et al. [26] chose to focus on the RC because it is easier
o implement. In the following section, we illustrate the difference
etween RC and TC. First hints in favour of the TC approach were
ained from the comparison of the results of Bocquet et al. [14] and
f Brajard et al. [15] on the Lorenz 40-variable model. To address the
nference problem, we use the combined DA–ML method described in
ection 2.1. We start by a DA step with an imperfect physical model
o assimilate the observations. We then use a ML step to train a model
rror correction from the analysis of the DA step. Pushing the DA–ML
ethod further, we could iterate in place: use the corrected model to

et a more accurate analysis in further DA steps and learn from this
ore accurate analysis to get an improved model error correction in

urther ML steps, as illustrated by Fig. 1.
However, we choose to stop after the first DA–ML cycle for two

easons. First, DA experiments with realistic models are numerically
xpensive, and it may not be realistic to perform more than one DA
tep if the size of the trajectory 𝑁𝗍 is large. It is also worth noting that
perational centres usually compute reanalyses, which means that the
irst DA step is a product which is likely to be already available [34].
econd, if the physical model (without correction) is reasonably accu-
ate, the analysis of the first DA step should be reasonably accurate and
ence the improvement of the first ML step should be much larger than
he improvement of further ML steps. However, even though we stop
fter the first DA–ML cycle, we perform a second DA step, but only for
valuation purposes.

Finally, we emphasise again the offline nature of the DA–ML method
reviously discussed. As is, the ML step starts only when the DA analysis
s available, i.e. once the entire observation dataset has been assimilated
n the DA step. An alternative, online approach is proposed in Section 4.

. Numerical illustration with the two-scale Lorenz model (part I)

.1. Models description

In our experiments, the true model is the L05III model, which
escribes the evolution of two sets of variables: the slow variables 𝑥𝑛
or 𝑛 ∈

{

1,… , 𝑁𝗑

}

and the fast variables 𝑢𝑚 for 𝑚 ∈
{

1,… , 𝑁𝗑 ×𝑁𝗎

}

.
hese two-scale dynamics are given by

d𝑥𝑛
d𝑡

= 𝑥𝑛−1
(

𝑥𝑛+1 − 𝑥𝑛−2
)

− 𝑥𝑛 + 𝐹 − ℎ𝑐
𝑏

𝑁𝗎
∑

𝑚=1
𝑢𝑚+(𝑛−1)𝑁𝗎

, (19a)

d𝑢𝑚
d𝑡

= 𝑐
𝑏
{

𝑏2𝑢𝑚+1
(

𝑢𝑚−1 − 𝑢𝑚+2
)

− 𝑏𝑢𝑚
}

+ ℎ𝑐
𝑏
𝑥1+(𝑚−1)∕∕𝑁𝗎

, (19b)
4

a

Table 1
Parametrisation for the true (L05III) and physical (L96) models.
Parameter Symbol L05III L96

Number of slow variables 𝑁𝗑 36 36
Number of fast variables per slow variable 𝑁𝗎 10
Forcing 𝐹 10 8
Coupling ℎ 1
Time-scale ratio 𝑐 10
Space-scale ratio 𝑏 10
Integration time step 𝛿𝑡 0.005 0.05

where ∕∕ is the integer division and where the indices are applied
periodically: 𝑥𝑁𝗑+𝑛 = 𝑥𝑛 and 𝑢𝑁𝗑×𝑁𝗎+𝑚 = 𝑢𝑚. The idea is that each
slow variable 𝑥𝑛 is coupled to the 𝑁𝗎 fast variables 𝑢𝑚 for 𝑚 ∈
{

1 + (𝑛 − 1)𝑁𝗎,… , 𝑛𝑁𝗎

}

.
A first order approximation of the L05III model is the one-scale

Lorenz model [L96, 35], which only describes the evolution of the slow
variables 𝑥𝑛. The model is defined by
d𝑥𝑛
d𝑡

= 𝑥𝑛−1
(

𝑥𝑛+1 − 𝑥𝑛−2
)

− 𝑥𝑛 + 𝐹 , (20)

where the indices once again apply periodically: 𝑥𝑁𝗑+𝑛 = 𝑥𝑛. This model
is used in our experiments as the (imperfect) physical model to correct.

Both L05III and L96 models are integrated using a fourth-order
Runge–Kutta scheme, and the parameter values are reported in Table 1.
With this setup, the true model dynamics is chaotic, with a leading
Lyapunov exponent of 1.3775 [36] and the model variability, defined
as the standard deviation of the climatological distribution of the state,
averaged over the slow variables, is 3.5372. When using the L96 model
in place of the L05III model, two sources of model error are introduced:

1. The fast variables 𝑢𝑚 generate unresolved processes;
2. The integration time step 𝛿𝑡 is 0.05 instead of 0.005.

Moreover, even though the forcing coefficient 𝐹 differs in both models,
this cannot strictly be considered as a third source of model error as
𝐹 = 10 is chosen for the L05III model to better match the dynamics of
the L96 model with 𝐹 = 8.

The accuracy of the physical (L96) model in reproducing the dynam-
ics of the true (L05III) model is measured using the forecast skill (FS)
defined as the average root-mean-squared error (RMSE) of the forecast
after a given lead time:

FS (𝑘𝛿𝑡) ≜ 1
𝑁𝖾

𝑁𝖾
∑

𝑖=1
RMSE

[

𝜫◦𝗍
𝑘𝛿𝑡

(

𝐱𝑖,𝐮𝑖
)

,𝗉
𝑘𝛿𝑡

(

𝐱𝑖
)]

. (21)

In this equation, 𝗍
𝑘𝛿𝑡 and 𝗉

𝑘𝛿𝑡 are the resolvents of the true and
physical models for a 𝑘𝛿𝑡 integration, respectively, 𝜫 is the projection
operator onto the set of slow variables 𝜫 (𝐱,𝐮) = 𝐱, and

(

𝐱𝑖,𝐮𝑖
)

for
∈

{

1,… , 𝑁𝖾

}

is a set of 𝑁𝖾 initial conditions representative of the
rue model climatology. The FS, normalised by the model variability,
s shown in Fig. 2a and illustrates the poor accuracy of the physical
odel. In the following sections, we will see how model error cor-

ections can be used to improve the FS, but one must keep in mind
hat there is an intrinsic limit to potential improvements, because it is
resumably impossible to exactly reproduce the dynamics of the true
odel with only 𝑁𝗑 = 36 variables.

.2. Data assimilation with the physical model

The first step of the DA–ML method is to perform DA with the
hysical model. The truth

(

𝐱𝗍𝑘,𝐮
𝗍
𝑘
)

is generated using the true model.
bservations are taken every 𝛥𝑡 = 0.05 from the slow variables only,
sing

𝑘 = 𝐱𝗍𝑘 + 𝐯𝑘, 𝐯𝑘 ∼  (𝟎, 𝐈) . (22)

n other words, the observation operator is  = 𝐈, the observations

re not biased, and the observation error covariance matrix is 𝐑 = 𝐈.
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Fig. 2. Left panel (a): forecast skill of the physical model (in units of the model variability) as a function of the lead time (in units of the Lyapunov time). The thick line shows
the average over the 𝑁𝖾 = 1024 initial conditions and the thin lines indicate plus or minus one standard deviation. Right panel (b): accuracy of the DA step as a function of the
length of the DAW 𝐿 with the physical model (in blue) and with the true model (in black). The sRMSE is averaged over at least 8192∕∕𝐿 cycles after a spin-up period of at least
024∕∕𝐿 cycles, and over 16 repetitions of each experiment. For each value of 𝐿, 𝑏 is optimally tuned to yield the lowest sRMSE. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)
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umerical illustrations with sparse observation operators are provided,
.g., by Brajard et al. [15]; Bocquet et al. [16]; Brajard et al. [23]; Farchi
t al. [26]. Except in the case of very sparse observations, the results are
ualitatively similar over a wide range of observation density, which is
hy, for the present study, we have chosen to use dense observations

or simplicity.
As explained in Section 2.1, the goal of the DA step is to minimise

q. (4) with respect to the state trajectory 𝐱0,… , 𝐱𝑁𝗍
, which is a WC

D-Var problem. However, solving a WC minimisation is probably
naffordable for large trajectories, as discussed by Bocquet et al. [16].
o overcome this issue, we choose to assimilate the observations using
he cycled strong-constraint (SC) 4D-Var algorithm, with consecutive
A windows (DAWs) of 𝐿 batches of observations. This will provide
n approximate solution to the WC 4D-Var problem. More specifically,
ach 4D-Var problem consists in minimising the cost function

(

𝐱𝑘
)

= 1
2
‖

‖

‖

𝐱𝑘 − 𝐱𝖻𝑘
‖

‖

‖

2

𝐁−𝟏 +
1
2

𝐿−1
∑

𝑙=0

‖

‖

‖

𝐲𝑘+𝑙 −𝗉
𝑙𝛥𝑡

(

𝐱𝑘
)

‖

‖

‖

2

𝐑−𝟏 , (23)

where 𝐱𝖻𝑘 is the background, 𝐁 is the background error covariance
matrix,

{

𝐲𝑘,… , 𝐲𝑘+𝐿−1
}

is the set of assimilated observations, and
𝗉

𝑙𝛥𝑡 is the resolvent of the physical model for an integration of 𝑙𝛥𝑡.
The analysis is performed at time 𝑡𝑘 (the time of the first batch of
ssimilated observations) and, in this cycled context, it is used to obtain
he background for the next analysis which is performed at time 𝑡𝑘+𝐿,
sing
𝖻
𝑘+𝐿 = 𝗉

𝐿𝛥𝑡
(

𝐱𝖺𝑘
)

. (24)

or the first cycle, the background state is obtained by perturbing the
ruth:
𝖻
0 = 𝐱𝗍0 + 𝐰, 𝐰 ∼  (𝟎, 𝐈) . (25)

inally, the background error covariance matrix 𝐁 is set to 𝑏2𝐈, where
is an algorithmic parameter to specify.

At each cycle, the cost function  , Eq. (23), is minimised using
he L-BFGS algorithm [37], a quasi-Newton minimisation algorithm.
he gradient of  is computed exactly using automatic differentiation,
nd the starting point of the minimisation is 𝐱𝖻𝑘. The accuracy of the
A step is measured using the RMSE of the analysis (analysis minus

ruth) at the start of the DAW, hereafter called the smoothing RMSE
sRMSE), averaged over a sufficiently large number of cycles to ensure
he convergence of the statistical indicators.

In order to choose an appropriate value for the length of the DAW 𝐿,
5

e first study the evolution of the sRMSE as a function of 𝐿. The results d
re shown in Fig. 2b. As expected, the sRMSE starts by decreasing with
. It reaches an optimum for 𝐿 = 6, and then increases with 𝐿 as

he impact of model error grows. For comparison, Fig. 2 also shows
he results when using the true model in place of the physical model.
ote that in this case the 4D-Var cost function  , Eq. (23), depends
n both the slow and the fast variables 𝐱𝑘 and 𝐮𝑘. The evolution of the
RMSE as a function of 𝐿 is very similar, with the exception that the
cores are overall much lower, and that the sRMSE increase for large
alues of 𝐿 does not come from model error but from optimisation
ssues. Indeed, for long DAWs, the cost function  is likely to have
everal local minima, which would make the L-BFGS algorithm not
uited for the minimisation. Using a quasi-static formulation of 4D-Var
ould mitigate this issue [38,39].

.3. Model error correction with a univariate polynomial regression

The present model error setup, as described in Section 3.1, has
lready been addressed outside the scope of ML, for example by Wilks
40]. The idea is to replace the physical model tendencies, Eq. (20), by

d𝑥𝑛
d𝑡

= 𝑥𝑛−1
(

𝑥𝑛+1 − 𝑥𝑛−2
)

− 𝑥𝑛 + 𝐹 + 𝑔
(

𝑥𝑛
)

, (26)

where 𝑔 is a univariate fourth-order polynomial correction, shared
between all 𝑁𝗑 = 36 slow variables. The five coefficients of 𝑔 are
computed using a least-square regression of the difference between
Eq. (20) and the empirical tendencies

𝑥𝗍𝑛 (𝑡 + 𝛿𝑡) − 𝑥𝗍𝑛 (𝑡)
𝛿𝑡

(27)

computed from a trajectory 𝐱𝗍 (𝑡) of the true model.
Offering a baseline score for later comparison, Fig. 3 shows the FS

and the DA score for the model with the polynomial regression 𝑔. For
this illustration, following the approach of Wilks [40], the coefficients
of 𝑔 are computed using 2000 pairs of snapshots

(

𝐱𝗍 (𝑡) , 𝐱𝗍 (𝑡 + 𝛿𝑡)
)

with
𝑡 = 0.005, the integration time step of the true model. The time interval
etween two consecutive pairs of snapshots is set to 1000 integration
teps. The results show that this simple correction is effective, both in
orecast and DA experiments. In particular, the DA score is very close
o the one obtained with the true model. It is even better for 𝐿 ≥ 10.
his probably comes from the fact that a small amount of model error
egularises the cost function Eq. (23) and mitigates the numerical issues
iscussed at the end of Section 3.2.
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Fig. 3. Same as Fig. 2 for the physical model (in blue), the model with polynomial regression (in orange) and the true model (in black). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Of course, this method cannot be applied to realistic models because
the regression requires the truth, at a very high frequency (𝛿𝑡 = 0.005).

e have checked that using 𝛿𝑡 = 0.05 (the integration time step of
he physical model) yields an ineffective correction. Nevertheless, it
hows that the model error structure in this setup can be effectively
epresented with a small number of parameters. The TC framework
resented in Section 2 can be seen as a generalisation of the method
f Wilks [40] to (i) any kind of correction 𝑔, in particular multivariate
nes, and (ii) sparse and noisy observations for the training. A more
omplex but less scalable model error correction scheme has also been
roposed for the same model by Pulido et al. [30].

.4. Resolvent and tendency correction with the DA–ML method

.4.1. The data assimilation step
Given the results of Section 3.2, we start the DA–ML method by

long DA experiment with the physical model and with 𝐿 = 6. At
each cycle, we only keep the analysis at the start of the DAW. The
result is a time series of analysis snapshots 𝐱𝖺𝑘𝐿, where the time interval
between two snapshots is 𝐿𝛥𝑡 = 0.3. This trajectory is used to build the
training dataset for the ML step. In other words, the surrogate models
are trained to reproduce the map

𝐱𝖺𝑘𝐿 ↦ 𝐱𝖺(𝑘+1)𝐿. (28)

Another trajectory, resulting from a distinct long DA experiment, is
used to build the validation dataset. Finally, since the ultimate goal
is to predict the true dynamics and not the dynamics of the analysis
snapshots, we compute an additional trajectory, this time with the true
model. This third trajectory 𝐱𝗍𝑘𝐿 is used to build the test dataset, and
ence to evaluate the ability of the surrogate models to reproduce the
ap
𝗍
𝑘𝐿 ↦ 𝐱𝗍(𝑘+1)𝐿. (29)

.4.2. Designing the surrogate models
The second step of the DA–ML consists in defining and training a

urrogate model with the analysis of the first DA step. In this section,
hree different surrogate models are tested to correct the physical
odel. All three of them are autonomous and use NNs. For the first

urrogate, the correction is computed using a NN called CNN-a and then
dded to the resolvent of the physical model, following the RC approach,
hich yields
𝖺
𝐿𝛥𝑡 (𝐩, 𝐱) ≜ 𝗉

𝐿𝛥𝑡 (𝐱) +  𝖺 (𝐩, 𝐱) . (30)

n this equation, 𝗉
𝐿𝛥𝑡 is the resolvent of the physical model for an

𝖺

6

ntegration of 𝐿𝛥𝑡 (one DAW),  is the map encoding CNN-a, 𝐩 is the g
et of parameters of CNN-a (the weights and biases of the NN), and
𝖺
𝐿𝛥𝑡 is the resolvent of the resulting surrogate model, called RC-CNN-

. For the second surrogate, the correction is computed using a NN
alled CNN-b and then added to the tendencies of the physical model,
ollowing the TC approach:
𝖻 (𝐩, 𝐱) ≜ 𝜙𝗉 (𝐱) + 𝖻 (𝐩, 𝐱) . (31)

n this equation, 𝜙𝗉 represents the physical model tendencies, given by
q. (20), 𝖻 is the function encoding CNN-b, 𝐩 is the set of parameters
f CNN-b, and 𝜙𝖻 represents the tendencies of the resulting surrogate
odel, called TC-CNN-b. To compute the resolvent of this model, 𝖻

𝐿𝛥𝑡,
e keep the integration scheme and time step of the physical model.
inally, the third surrogate model, called TC-CNN-c, is similar to TC-
NN-b with CNN-b replaced with another NN called CNN-c, which uses
different activation function.

As explained in Section 3.3, the model error structure is not overly
omplex. For this reason, we want to keep the NNs as simple as
ossible. We have experimented with several NNs configurations and
ave selected the following sequential (or feed-forward) architecture
ith:

1. The input layer;
2. A sequence of convolutional layers;
3. A final convolutional layer as output layer (without activation).

ll intermediate convolutional layers share the same number of filters,
he same convolutional window, and the same activation function.
hey also use periodic padding to preserve the input and output shape
f the layers. The last convolutional layer uses only one filter, a
onvolution window of only one variable, and no activation function.
he purpose of this layer is not to actually perform a convolution, but
o project the output of the previous layer to the output variables.
he settings of the intermediate convolutional layers are reported in
able 2 for CNN-a, CNN-b, and CNN-c, alongside the total number of
arameters.

.4.3. Neural networks initialisation
When working with NNs, the parameter initialisation step is im-

ortant. A common method is to use random values for the initial
eights and to set the initial biases to zero. The underlying idea is

hat there is no reason for the optimal weights to display any specific
ymmetry. Because such symmetries are preserved during the training,
ven with stochastic gradient descent, they need to be broken during
he initialisation, hence the use of random initial values [2].

In our case however, the situation is different because the surro-

ate models are hybrid. Since the corrections are additive, all three
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Table 2
Settings of the convolutional layers of the NNs used in the DA–ML
method. The absence of an activation function is tantamount to a linear
activation function.
Setting CNN-a CNN-b CNN-c

Number of layers 4 1 1
Number of filters per layer 16 16 16
Size of the convolutional window 5 5 5
Activation function tanh tanh

Total number of parameters 4001 113 113

surrogate models are equivalent to the physical model when 𝐩 = 𝟎,
nd it is highly probable that a random 𝐩 would make the model
redictions worse. Initialising the NNs with 𝐩 = 𝟎 would hence make
ense, but for the reasons aforementioned, this could yield suboptimal
urrogate models after the training. Therefore, we initialise the NNs
sing the following approach, which we found to be a good compro-
ise. The intermediate convolutional layers are initialised using the

lassical method in ML (random weights and zero biases) and the last
onvolutional layer is initialised to zero (both zero weights and zero
iases). This approach is very similar to the ReZero method developed
y Bachlechner et al. [41].

.4.4. Training the surrogate models
We now start the ML step. The surrogate model parameters 𝐩 are op-

imised using the Adam algorithm, a variant of the stochastic gradient
escent [42]. The loss function is the mean-squared error (MSE) over
he training dataset, made of analysis snapshots. The training consists of
024 epochs with a learning rate of 1 × 10−3 and a batch size of 32. After
he entire training step, we keep the model which yields the lowest
SE over the validation dataset, also made of analysis snapshots. This

s necessary since the cost functions of the NNs do not include any
nternal mechanism to mitigate overfitting (e.g. regularisation). Finally,
e evaluate the trained model by computing the MSE over the test
ataset, made of truth snapshots, hereafter called test MSE (tMSE). For
omparison, we also train and evaluate the surrogate models using the
xact same method but with snapshots from the truth (instead of the
nalysis) in the training and validation datasets. This is equivalent to
sing dense and noiseless observations.

Fig. 4 shows the training results for datasets of increasing size. Note
hat, in order to build a dataset of size 𝑁𝗍, the total number of cycles
or DAWs) required in the preliminary DA step is 2 ×

(

𝑁𝗍 + 1
)

:

• 𝑁𝗍 + 1 cycles to produce the 𝑁𝗍 pairs of analysis snapshots
(

𝐱𝖺𝑘𝐿, 𝐱
𝖺
(𝑘+1)𝐿

)

for the training dataset;

• and the same for the validation dataset.

et us first discuss the training with the truth, because it shows the
ull potential of each model. First, all three models do improve over
he physical model and yield very low tMSEs, but the scores with
C are significantly better than with RC. As explained in Section 2.3,
he models with TC benefit from the interaction between the physical
odel and the correction term (the NN). This is even more important
ere than in the univariate example of Section 2.3, because here
he number of interactions for a prediction is 24: 4 interactions per
ntegration step (through the fourth-order Runge–Kutta scheme) times 6
ntegration steps between two DAWs. Furthermore, the training dataset
eeds to be much larger to get an accurate model with RC than with TC.
his is consistent with the total number of trainable parameters for each
odel, reported in Table 1: 4001 for RC-CNN-a and only 113 for TC-
NN-b and TC-CNN-c. It is remarkable that with a training dataset of
nly one pair of truth snapshots (the smallest possible training dataset),
he models with TC are already very accurate, more than RC-CNN-a
rained with the largest dataset considered in the present study! Obvi-
usly, this is only possible because the correction is autonomous. The
7

verall accuracy of TC-CNN-b is also remarkable, given the fact that the
orrection provided by CNN-b is linear. The only difference between
NN-b and CNN-c is their activation function for the intermediate

ayers. This means that the difference between TC-CNN-b and TC-CNN-
illustrates the nonlinearity of the error in the model tendencies: weak
ut non-negligible. For comparison, we have checked that with RC,
he accuracy of the surrogate models built using linear NNs is not
atisfactory. This shows that the nonlinearity of the dynamics over one
AW, Eq. (29), is significant and that estimating and correcting model
rror as a tendency forcing is a good first-order strategy to mitigate
he effects of nonlinearities. For completeness, we mention that better
cores could have been obtained with RC, for example with larger or
eeper NNs. However, this would increase the number of trainable
arameter, which means that the training dataset should be even larger.

When training with the analysis, the accuracy of the surrogate
odels is much lower, which was expected, but all three models are

till able to improve over the physical model. Most of the conclusions
old: the scores with TC are better than with RC and require much
maller datasets. However this time, the linear TC-CNN-b outperforms
he nonlinear TC-CNN-c. This is probably a sign that nonlinear NNs are
arder to train.

.4.5. Forecast skill of the surrogate models
The tMSE is a measure of the accuracy of a model for an integration

f one DAW of 𝐿𝛥𝑡 = 0.3. In this section, we measure the accuracy
f the surrogate models for longer forecast, by computing the FS as
efined in Section 3.1. In order not to penalise RC-CNN-a over TC-CNN-
and TC-CNN-c, we evaluate the surrogate models which have been

rained with the largest dataset.
The results are shown in Fig. 5 and demonstrate that the models,

rained for an integration of one DAW, remain effective for much longer
ntegrations. When training with the truth, the ranking of the three
urrogate models is clear and consistent with the tMSE results: TC-CNN-
is the most accurate, followed by TC-CNN-b, and the least accurate is
C-CNN-a. When training with the analysis, the ranking of the models

or long integrations (e.g. longer that 6 DAWs) is the opposite of the
anking for the tMSE results: RC-CNN-a is the most accurate, very
losely followed by TC-CNN-c, and the least accurate is TC-CNN-b, the
nly model built using a linear NN. There is a crossover in the forecast
rror curves after 2 or 3 DAWs, with the errors of the linear NN (TC-
NN-b) becoming larger than those of the nonlinear NNs (RC-CNN-a
nd TC-CNN-c). This issue is not specific to the L05III model nor to
he use of nonlinear NNs since Farchi et al. [26] also faced the same
ind of issues with a quasi-geostrophic model and with linear NNs. We
o not have yet a convincing explanation for this behaviour, which is
pecific to the use of the analysis for the training, and understanding it
etter will require further work. In any case, we conclude that, when
he surrogate models are trained with the analysis, the accuracy for
ong forecasts is somewhat similar with RC and with TC and requires
onlinear corrections.

.4.6. Data assimilation experiments with the surrogate models
In this section, the goal is to measure the accuracy of the surrogate

odels in DA experiments. To do that, we reimplement the 4D-Var
etup described in Section 3.2 replacing the physical model by one of
he surrogate models. In particular, in the cost function Eq. (23), 𝗉

𝑙𝛥𝑡,
the resolvent of the physical model for an integration of 𝑙𝛥𝑡, is replaced
with 𝖺

𝑙𝛥𝑡, 
𝖻
𝑙𝛥𝑡, or 𝖼

𝑙𝛥𝑡, the resolvents of RC-CNN-a, TC-CNN-b, or
TC-CNN-c for an integration of 𝑙𝛥𝑡. While the construction of 𝖻

𝑙𝛥𝑡 and
𝖼

𝑙𝛥𝑡 is similar to that of 𝗉
𝑙𝛥𝑡 because TC-CNN-b and TC-CNN-c use the

TC method, the construction of 𝖺
𝑙𝛥𝑡 requires an additional assumption

because RC-CNN-a uses the RC method. As discussed in Section 2.3, the
simplest assumption is the linear growth of errors in time, for which

𝖺 ≜ 𝗉 + 1  𝖺, (32)
𝛥𝑡 𝛥𝑡 𝐿



Journal of Computational Science 55 (2021) 101468A. Farchi et al.

T
t
t
p

s
p

w
T
t
e
t

t

Fig. 4. Evolution of the tMSE of the trained surrogate model as a function of the size of the training and validation datasets for RC-CNN-a (in green), TC-CNN-b (in red), and
C-CNN-c (in cyan). The tMSE is computed using a test dataset of size 𝑁𝗍 = 8192 and then normalised by the tMSE of the physical model (0.277 85). Each experiment (initialisation,
raining and evaluation) is repeated 16 times with different training, validation, and test datasets and the final score is averaged over the 16 repetitions. The surrogate models are
rained either with the analysis (continuous lines) or with the truth (dashed lines). For comparison, the horizontal dashed orange line indicates the score for the model with the
olynomial regression of Wilks [40]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Same as Fig. 2, left panel, for the physical model (in blue) and the trained surrogate models: RC-CNN-a (in green), TC-CNN-b (in red), and TC-CNN-c (in cyan). The
urrogate models are trained either with the analysis (left panel) or with the truth (right panel). For comparison, the thin orange line indicates the scores for the model with the
olynomial regression of Wilks [40]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
here  𝖺 is defined in Section 3.4.2 as the function encoding CNN-a.
his assumption is the standard assumption in the current implementa-
ion of WC 4D-Var [43,44] and it is the assumption we make for our DA
xperiments. Furthermore, for the same reason as above, we evaluate
he models which have been trained with the largest dataset.

Following the approach of Section 3.2, we study the evolution of
he sRMSE as a function of the length of the DAW 𝐿. The results are

shown in Fig. 6 and demonstrate that the improved accuracy of the
models also yields more accurate analyses. From these results, two
elements could be highlighted. First, the sRMSE is much lower with
TC-CNN-b and TC-CNN-c, which both use the TC method, than with
RC-CNN-a, which uses the RC method. Additionally, the sRMSE is lower
when RC-CNN-a is trained with the analysis than with the truth, even
8

though the model error predictions are more accurate, as indicated by
the lower tMSE. These results confirm the hypothesis of Farchi et al.
[26] that the main obstacle to more accurate analyses with the RC
method is the assumption of linear growth of errors in time and that
the TC method is more appropriate for DA experiments where the
impact of nonlinearities is significant. Second, when trained with the
truth, the sRMSE obtained with the TC method is of the same order
as that obtained with the true model, it is even better for TC-CNN-
c! For large windows, typically 𝐿 ≥ 8, a fraction of the improvement
comes from the numerical issues with the true model discussed at the
end of Section 3.2. For smaller windows however, we believe that
the remaining improvement shows that TC-CNN-c may capture other

deficiencies than model error.
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Fig. 6. Same as Fig. 2, right panel, for the physical model (in blue), the true model (in black), and the trained surrogate models: RC-CNN-a (in green), TC-CNN-b (in red), and
TC-CNN-c (in cyan). The surrogate models are trained either with the analysis (left panel) or with the truth (right panel). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
3.4.7. Learning from less frequent snapshots
Because the true model is chaotic, forecasts are highly sensitive to

the initial condition. In addition, the accuracy of forecasts at longer
lead times is generally more sensitive to incorrect model parameters,
while the accuracy of the training dataset is unchanged. This is ben-
eficial when training the surrogate model with the analysis since it
reduces the impact of the analysis error in the training dataset. On the
other hand, longer forecast are inherently harder to predict. Therefore,
we expect to see a trade-off between both effects when increasing the
length of the forecasts.

By construction, the surrogate models are trained to emulate the
dynamics over one DAW, Eq. (28). Changing the DAW length 𝐿 is not
optimal, because 𝐿 = 6 minimises the sRMSE and hence it ensures the
most accurate analysis on average. Another possibility is to keep 𝐿 = 6
and train the surrogate models to emulate the dynamics over multiple
DAWs, i.e. to reproduce the map

𝐱𝖺𝑘𝐿 ↦ 𝐱𝖺(𝑘+𝑁)𝐿, (33)

where 𝑁 is the number of DAWs over which the models should emulate
the dynamics. This technique has been used by Farchi et al. [26] in
the context of the RC method, with only partial success. Indeed, using
𝑁 > 1 systematically worsen the DA scores, which is not a surprise
because the assumption of linear growth of errors in time is less and
less valid for longer forecasts. In this section, we evaluate this technique
with the TC method, which does not suffer from the same limitations as
the RC method (in particular it does not require additional assumption
for DA experiments).

Fig. 7 shows the forecast skill and the DA score for TC-CNN-c trained
with the analysis using 𝑁 = 2. For comparison, the scores for TC-
CNN-c trained with the analysis and with the truth, both using 𝑁 =
1, are taken from Figs. 5 and 6 and reproduced here. These results
confirm that increasing the length of the forecasts to predict yields
more accurate surrogate models, both for forecast and DA experiments.
Moreover, we have checked that the scores get worse when further
increasing the length of the forecasts to 𝑁 = 4 (not shown here).
This indicates that the trade-off aforementioned reaches an optimum
for 𝑁 = 2 or 𝑁 = 3.

.4.8. Iterating the DA–ML method
Throughout the previous experiments, we have seen different per-

ormances depending on whether the surrogate models are trained
ith the analysis or with the truth, the latter case being equivalent to
sing dense and noiseless observations. Iterating the DA–ML method,
9

s originally proposed by Brajard et al. [15] and formalised by Bocquet
et al. [16] as a coordinate descent optimisation, is a way to bring the
performances of the surrogate models trained with the analysis closer
to that of the surrogate models trained with the truth.

Given the results of the DA experiment with the RC method in
Section 3.4.6, it is possible that an additional iteration of the DA–
ML method will not improve the DA score by much. This is not the
case with the TC method because in this case, the analysis with the
surrogate model is much more accurate than that of the physical (non-
corrected) model. However, for the TC method we would like to show
an alternative approach in the next section.

4. Online learning of model error with tendency correction

4.1. From offline to online learning

As already mentioned, the DA–ML method presented in Section 2
and illustrated in Section 3 is an offline learning method, meaning that
the training starts only once all observations have been assimilated.
This makes the method simple and flexible because the ML and DA
steps are independent from each other. As a consequence, it is probably
easier to extract all the information from the analysis during the ML
step.

On the other hand, using an offline approach also has drawbacks. As
suggested in Section 3.4.8, the DA–ML method needs to be iterated to
give the best performance. At each iteration, the entire set of observa-
tions has to be re-assimilated, which can be problematic when the DA
step is numerically expensive (for example with a realistic model). This
is particularly concerning in the case of an operational model for which
a new correction must be trained each time the model gets updated.
Such issues does not affect online approaches, since the training could
start as soon as the first observation arrives.

In our context, online learning means that, each time a new batch
of observation becomes available, we have to estimate both the state
of the system and the surrogate model at the same time. To address
this problem, the most natural approach is to use the formalism of DA
with an augmented state containing the current state of the system 𝐱
and the parameters of the surrogate model 𝐩, following the principle
formulated by Jazwinski [45]. The resulting inference problem shares
many aspects with classical parameter estimation in DA [29].

4.2. A new formulation of weak-constraint 4D-Var

Following the approach described in Section 3.2, the observations

are assimilated using the 4D-Var algorithm, with consecutive windows
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Fig. 7. Same as Fig. 2 for the physical model (in blue), the true model (in black), and the trained surrogate model TC-CNN-c (in cyan). The surrogate model is trained either
with the analysis over one DAW (𝑁 = 1), over two DAWs (𝑁 = 2), or with the truth over one DAW (𝑁 = 1). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
of 𝐿 batches of observations. Since the algorithm now has to estimate
the model parameters in addition to the model state, each 4D-Var
problem consists in minimising the cost function
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𝐑−1 , (34)

where 𝐩𝖻𝑘 and 𝐁𝗉 are the background and background error covariance
matrix for model parameters, respectively. Comparing Eq. (34) to the
4D-Var cost function without model parameters, Eq. (23), two differ-
ences can be highlighted. First, the resolvent of the physical model
𝗉

𝑙𝛥𝑡 is replaced with the resolvent of the surrogate model 𝑙𝛥𝑡, which
now depends on the model parameters. Second, a background (or prior)
term on model parameters has been added. This background term
is very important because, in this cycled context, it carries out the
information on model parameters from one DAW to the next. Indeed,
the background on model parameters for the next DAW is equal to the
analysis on model parameters of the current DAW:

𝐩𝖻𝑘+𝐿 = 𝐩𝖺𝑘. (35)

In other words, the forecast model for model parameters is the persis-
tence, which is consistent with the fact that the model is autonomous.

Like WC 4D-Var, Eq. (34) can be inferred from Bayes’ rule, but
Eq. (34) additionally neglects the cross-covariances between the back-
ground errors for model state and for model parameters. Including
cross-covariances between model state and model parameters is pos-
sible but requires either a prior knowledge or the use of an ensemble
to estimate them, which is beyond the scope of the present work.

Our assimilation method is summarised in Algorithm 1 in a cycled
context. Rigorously speaking, this could be seen as a SC method because
it includes only one state vector in the control variables. However with
our method, by contrast with SC 4D-Var, the model can be updated
during the analysis (when the model parameters change). Therefore,
considering a broader definition of WC methods, Algorithm 1 can be
seen as a specific formulation of WC 4D-Var.

Optionally, the model parameters can be pre-trained. For complete-
ness, we would like to mention the similarities with the algorithms
developed by Bocquet et al. [27]; Malartic et al. [46] which solve the
same kind of problems but in a filtering context (i.e. with 𝐿 = 1) with
several variants of the ensemble Kalman filter. Finally note that, just as
the DA–ML method of Section 2 can be used for model error correction
instead of full model emulation, the present formulation of WC 4D-Var
can be used for model error correction as well.
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5. Numerical illustration with the two-scale Lorenz model (part II)

In this section, we illustrate the online learning method developed
in Section 4 using the same model error setup as in Section 3. The true
model is the L05III model and the physical model is the L96 model.
However, because the online learning approach is based on the sole
formalism of DA, we only use the surrogate models TC-CNN-b and TC-
CNN-c, built with the TC method, since we have shown in Section 3.4.6
that it is the most consistent and the most efficient for DA experiments.

5.1. Data assimilation setup

For this illustration, we take the same DA problem as in Section 3.2.
The truth is generated using the true model, and observations are taken
every 𝛥𝑡 = 0.05 from the slow variables only, using Eq. (22).

We start the experiments by assimilating the observations using the
SC 4D-Var algorithm with the exact same setup as in Section 3.2. In
particular, we use the physical model, and we choose 𝐿 = 6 as it yields
the best results with this model. After a total of 1024 DA cycles, which
is enough to ensure the convergence of the analysis error statistics,
we shift to the NN formulation of WC 4D-Var (Algorithm 1). In other
words, we switch on model error correction. For the following cycles,
we keep 𝐿 = 6 and 𝐁𝗑 = 𝑏2𝗑𝐈, although 𝑏𝗑 can be different than in
the 1024 preliminary cycles. In addition, we set 𝐁𝗉 = 𝑏2𝗉𝐈, where 𝑏𝗉 is
another algorithmic parameter to specify. Finally for consistency, the
initial background for model parameters 𝐩𝖻0 is constructed using the NN
initialisation method described in Section 3.4.3.

With WC 4D-Var, at each cycle the cost function  , Eq. (34), is
minimised using the same L-BFGS algorithm as for the SC 4D-Var. The
gradient of  , with respect to both model state and model parameters,
is computed exactly using automatic differentiation, and the starting
point of the minimisation is

(

𝐩𝖻𝑘, 𝐱
𝖻
𝑘
)

. The accuracy of the analysis is
measured using the RMSE on model state (analysis minus truth) at
the start of the DAW, which corresponds to the sRMSE defined in
Section 3.2. In this cycled context, the sRMSE only improves if the
model is getting more accurate. Nevertheless, we also measure the
accuracy of the model by computing the tMSE defined in Section 3.4.4.

Finally note that the 1024 preliminary cycles with the physical
model are not mandatory. We have checked that the results are qual-
itatively similar without them. In fact, adding these preliminary cycle
is a way to get in real condition, where we need to correct a physical
model which is already running since a while. In the following section,
we do not discuss the preliminary cycles.
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Algorithm 1 NN formulation of WC 4D-Var in a cycled context
Parameters: Observation operator , surrogate model  with NN, background error covariance matrices for model state and model parameters

𝐁𝗑 and 𝐁𝗉, observation error covariance matrix 𝐑, DAW length 𝐿

Input: Initial background for model state and model parameters 𝐱𝖻0 and 𝐩𝖻0, observations
{

𝐲0,… , 𝐲(𝑁𝗍+1)𝐿
}

1: for 𝑘 = 0 to 𝑁𝗍 do
2: Compute the analysis 𝐩𝖺𝑘𝐿 and 𝐱𝖺𝑘𝐿 by minimising 

(

𝐩𝑘𝐿, 𝐱𝑘𝐿
)

, Eq. (34) ⊳ analysis at time 𝑡𝑘𝐿
3: Forecast the model parameters 𝐩𝖻(𝑘+1)𝐿 = 𝐩𝖺𝑘𝐿 ⊳ using persistence
4: Forecast the model state 𝐱𝖻(𝑘+1)𝐿 = 𝐿𝛥𝑡

(

𝐩𝖺𝑘𝐿, 𝐱
𝖺
𝑘𝐿

)

⊳ using the surrogate model
5: end for
6: return

(

𝐱𝖺𝑘𝐿,𝐩
𝖺
𝑘𝐿

)

for 𝑘 ∈
{

0,… , 𝑁𝗍

}

⊳ analysis trajectory
5.2. Results with TC-CNN-b as surrogate model

Let us start by applying the method to TC-CNN-b. In other words,
in this case 𝑙𝛥𝑡 in Eq. (34) is the resolvent of TC-CNN-b for an
ntegration of 𝑙𝛥𝑡. For this experiment, we use the following algo-
ithmic parameters, which we have empirically found to yield good
erformances:

𝑏𝗑 = 0.28 + 0.15 × exp (−𝑡∕256) , (36a)

𝑏𝗉 = 0.001 + 0.1 × exp (−𝑡∕1024) , (36b)

𝑏𝗉 = min
[

0.05, 𝑏𝗉
]

, (36c)

where 𝑡 is the time measured in number of DAWs after the 1024
preliminary cycles. The rationale behind this choice is that the optimal
values of 𝑏𝗑 and 𝑏𝗉 should be larger at the start of the experiment
than at the end (when the model is more accurate). To come up with
Eq. (36), we first chose the shape of 𝑏𝗑 and 𝑏𝗉 (exponential decay) and
we then tuned the coefficients until we got satisfying results. Also note
that we have checked that the results are qualitatively similar when
replacing the exponential decay of 𝑏𝗑 and 𝑏𝗉 with a linear decay.

Fig. 8 shows the time series of sRMSE and tMSE throughout the
experiment, after the 1024 preliminary cycles. For comparison, the
scores obtained when TC-CNN-b is trained using the offline DA–ML
approach, both with the analysis and with the truth, are taken from
Figs. 4 and 6 and reproduced here. First of all, the experiment is a
success: the algorithm is working as expected and steadily improves
the model, which can be seen both in the sRMSE (DA score) and in
the tMSE (forecast score). After 128 to 256 cycles the model becomes
more accurate than if trained offline with the analysis. Finally, the
accuracy converges after 2048 to 4096 cycles. In the end, the model is
almost as accurate as if trained offline with the truth! This is a strong
result because, as mentioned in Section 3.4.4, training with the truth
illustrates the full potential of a surrogate model. This shows that our
online learning method has been able to extract all the information
from the observations, and that we cannot expect better results with
this surrogate model.

5.3. Results with TC-CNN-c as surrogate model

We now apply the method to TC-CNN-c. For this experiment, the
algorithmic parameters, once again chosen on empirical grounds, are
slightly different:

𝑏𝗑 = 0.26 + 0.20 × exp (−𝑡∕256) , (37a)

𝑏𝗉 = 0.01 + 0.05 × exp (−𝑡∕3072) , (37b)

𝑏𝗉 = min
[

0.05, 𝑏𝗉
]

, (37c)

with 𝑡 being once again the time measured in number of DAWs after
the 1024 preliminary cycles.

Fig. 9 shows the time series of sRMSE and tMSE throughout the
experiment, after the 1024 preliminary cycles. The success of the ex-
periment is as clear as with TC-CNN-b: the algorithm steadily improves
11

the model, which can be seen both in the sRMSE and in the tMSE. After c
128 to 256 cycles the model becomes more accurate than if trained
offline with the analysis. However, even though the total number of
DA cycles increases, the accuracy has not yet converged at the end of
the experiment. One must keep in mind that the correction provided by
CNN-c is here nonlinear, contrary to the previous experiment with TC-
CNN-b where the correction provided by CNN-b is linear. Therefore, we
think that the present experiment is a good illustration of the increased
complexity of training nonlinear NNs. Nevertheless, the accuracy of the
model after 8192 is remarkable and in particular the sRMSE is lower
than when using the true model! We also think that, if we were to
extend the experiment with an appropriate tuning for 𝑏𝗉, the model
would in the end be almost as accurate as if trained offline with the
truth, just as in the previous experiment with TC-CNN-b.

5.4. Additional remarks on the online experiments

While preparing the online experiments, we have found that tuning
the algorithmic parameter 𝑏𝗉 is very important. If 𝑏𝗉 is too small,
the algorithm gives too much weight to the background on model
parameters 𝐩𝖻𝑘. Even if this does not stop the learning process, it tapers
the model parameter update, which makes the convergence slower2.
On the other hand if 𝑏𝗉 is too large, the algorithm overfits the model
parameters to the observation window, which can yield divergence. As
mentioned in Section 5.2, what makes the tuning of 𝑏𝗉 really complex
here is that, as the model steadily improves, the optimal value of 𝑏𝗉
decrease. The values selected for the experiments, Eqs. (36) and (37),
have been chosen by trial and error. Even though they yield good
performances, they have not been optimally tuned. This means that a
faster convergence could have been most likely obtained with other
values. Finally, note that the algorithmic parameter 𝑏𝗉 here is very
similar to the tapering parameter introduced by Bocquet et al. [27];
Malartic et al. [46] in their variants of the ensemble Kalman filter.

The online experiments use the zero/random NN initialisation
method described in Section 3.4.3. Therefore, at the start of the WC
4D-Var cycles the surrogate model is equivalent to the physical model.
Other initialisation methods are possible. For example, one can use
the set of parameters obtained after the offline learning method of
Section 3.4. We have implemented this method (note illustrated here)
and checked that, with an appropriate tuning of 𝑏𝗉, the final scores are
the same than with the zero/random initialisation but the convergence
is somewhat faster.

Finally, the online experiments use the same DAW length as with
the physical model, 𝐿 = 6. However, since the accuracy of the model
increases during the experiment, increasing 𝐿 is a reasonable option.
We have performed the online experiments with 𝐿 = 10 (not illustrated
here). The evolution of the tMSE (forecast score) is very similar to that
with 𝐿 = 6, but, as expected from Fig. 6, the sRMSE (DA score) is close
to 0.2, significantly lower than with 𝐿 = 6.

2 The convergence speed is measured here in number of DA cycles before
onvergence and not in wall-clock execution time.
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Fig. 8. Time series of sRMSE (top panel) and tMSE (bottom panel) for the online experiment with TC-CNN-b (in blue). The tMSE is computed using a test dataset of size 𝑁𝗍 = 1024
and then normalised by the tMSE of the physical model. Both sRMSE and tMSE are averaged over 512 repetitions of the experiment. In addition, the yellow line shows the

oving-average of the sRMSE over 128 DAWs. For comparison, the horizontal lines show the scores for the physical model (in cyan), the true model (in black), TC-CNN-b trained
ffline with the analysis (in green) and trained offline with the truth (in red). (For interpretation of the references to colour in this figure legend, the reader is referred to the
eb version of this article.)
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.5. Tendency correction in a realistic model

Both the offline and online learning experiments illustrate the effi-
iency of the TC method. Including a TC into a complex realistic model
s not immediate, depending on the structure of the code, because the
orrection term must be added to the code computing the tendencies.
n order to use the variational methods illustrated in the present work
o train a TC, both offline and online, we must be able to compute the
radient of the resolvent of the total model (physical model with correc-
ion) with respect to the model state and to the model parameters. As
e have shown in Section 2.3, these gradients depend on the gradients
f the correction term, which can be easily obtained with a ML library,
ut also on the TL operator of the physical model. The present work,
ith a simple model, has been largely facilitated by the fact that the

ode of the physical model has been written entirely with a ML library,
hich implies that we have benefited from automatic differentiation.
or realistic models, which are inherently more complex, it is essential
o have efficient differentiation methods.

Beyond these technical aspects, the number of trainable model pa-
ameters is a potential source of concern. In the present work, we have
ried to keep it as small as possible, and ended up with 113 parameters
for both CNN-b and CNN-c). In preliminary experiments, a much larger
12
N (a fully-connected NN with a total of 36 × 64 + 64 + 64 × 36 + 36 =
708 parameters) has been tested and we found similar performances,
lthough with more training data. Even though 113 parameters (or even

4708) will most likely not be enough to correct a complex, realistic
model, we have the hope that with smart ML models, we will be able
to keep the number of trainable parameters under control [22].

5.6. Generalisation to non-autonomous dynamics

We conclude this test series by briefly discussing the possibility to
extend the present work to non-autonomous dynamics. With an offline
learning method, a non-autonomous dynamics can only be learnt if (i)
the time-dependency of the model is parametrised (which implies that
time should be among the set of predictors) and (ii) the training dataset
is large enough to infer the parametrisation. With an online learning
method, parametrising the time-dependency is also an option, but such
parametrisation is not mandatory if the time evolution of the dynamics
is slow. For example, the online experiments of Sections 5.2 and 5.3
would probably also work if the dynamics evolution is no faster than a
few hundred DA cycles.
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Fig. 9. Same as Fig. 8 for the online experiment with TC-CNN-c.
6. Conclusions

Combining DA and ML to emulate a dynamical model has been
originally proposed by Brajard et al. [15]. The use of DA is essential
here to assimilate sparse and noisy observations, which cannot be
rigorously treated with ML methods alone. The same strategy can be
used for model error correction instead of full model emulation. This
has many advantages as it makes the inference problem easier [20,21].
In practice, a correction term can be included either in the model
resolvent (i.e. as an integrated term between two forecast times) or
directly in the model tendencies [14,26].

In the present article, we have compared the two methods. The
first method, which we have called RC (resolvent correction), is easy
to implement and has already been illustrated using low-order models
by Brajard et al. [23]; Farchi et al. [26]. The second method, which we
have called TC (tendency correction), is more technical to implement,
in particular because it requires the adjoint of the physical model to
correct, but it has the advantage of being more flexible, in particular
for short-term forecasts. Both methods have been tested using the
two-scale Lorenz system. In this case, model error primarily comes
from unresolved small-scales processes (the fast variables). We have
used noisy observations of the slow variables to build three different
surrogate models. All three surrogate models are hybrid, with a physical
part, the non-corrected model, and a statistical part, the correction
term, built using simple NNs. The first surrogate model uses the RC
13
method, while the other two use the TC method. The surrogate models
are trained using the offline DA–ML method of Brajard et al. [15] and
then evaluated in forecast and DA experiments. The results show that
with the TC method, the surrogate models benefit from the interaction
between the physical model and the NN, in such a way that it is
possible to use much smaller NNs and much fewer training data to
get similar results. The accuracy in forecast experiments is somewhat
similar between the models using the RC and the TC method. By
contrast, the models using the TC method significantly outperform the
models using the RC method in DA experiments. This can be explained
by the violation of the assumption of linear error growth in time,
necessary with the RC method for the short-term forecasts within each
DA experiment.

In the second part of this paper, we explored the possibility to
train the surrogate models in an online fashion. With sparse and noisy
observations, this means that we would have to learn both model state
and model parameters at the same time. To address this problem, we
introduce a new DA algorithm, which can be seen as a new formulation
of WC 4D-Var. The algorithm has been implemented and tested using
the same model error setup with the two-scale Lorenz system. The re-
sults show that online learning works as expected: the surrogate model
is steadily improved, which can be seen both in the DA score and the
forecast score; it quickly becomes more accurate than if trained offline
with the analysis. At the end of the experiment, the model is almost
as accurate as if trained offline with the truth. These results show that



Journal of Computational Science 55 (2021) 101468A. Farchi et al.
with online learning, it is possible to extract all the information from
sparse and noisy observations.

Even though the results of the online experiments are promising,
the NN formulation of WC 4D-Var derived in the present work could
still benefit from methodological developments. In our experiments, we
have found that tuning the algorithmic parameter 𝑏𝗉 is a difficult but
critical task. Ideally, the tuning method should be adaptive, with the
objective of making the convergence faster and more accurate [27].
Furthermore, the method implicitly assumes that background errors for
model state and model parameters are uncorrelated. Including cross-
correlations between model state and model parameters is possible; it
would be interesting to check whether this could make a difference
in the accuracy of the analysis. More generally, the conclusions of the
present work, and in particular the advantages of the TC method over
the RC method, must be confirmed using higher-dimensional models.
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