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RESEARCH ARTICLE

The Pathophysiology of COVID-19 and SARS-CoV-2 Infection
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Abstract

Increased blood fibrocytes are associated with a poor prognosis in fibrotic lung diseases. We aimed to determine whether the per-
centage of circulating fibrocytes could be predictive of severity and prognosis during coronavirus disease 2019 (COVID-19) pneu-
monia. Blood fibrocytes were quantified by flow cytometry as CD45þ /CD15�/CD34þ /collagen-1þ cells in patients hospitalized for
COVID-19 pneumonia. In a subgroup of patients admitted in an intensive care unit (ICU), fibrocytes were quantified in blood and
bronchoalveolar lavage (BAL). Serum amyloid P (SAP), transforming growth factor-b1 (TGF-b1), CXCL12, CCL2, and FGF2 concentra-
tions were measured. We included 57 patients in the hospitalized group (median age = 59 yr [23–87]) and 16 individuals as healthy
controls. The median percentage of circulating fibrocytes was higher in the patients compared with the controls (3.6% [0.2–9.2] vs.
2.1% [0.9–5.1], P = 0.04). Blood fibrocyte count was lower in the six patients who died compared with the survivors (1.6% [0.2–4.4]
vs. 3.7% [0.6–9.2], P = 0.02). Initial fibrocyte count was higher in patients showing a complete lung computed tomography (CT) re-
solution at 3 mo. Circulating fibrocyte count was decreased in the ICU group (0.8% [0.1–2.0]), whereas BAL fibrocyte count was
6.7% (2.2–15.4). Serum SAP and TGF-b1 concentrations were increased in hospitalized patients. SAP was also increased in ICU
patients. CXCL12 and CCL2 were increased in ICU patients and negatively correlated with circulating fibrocyte count. We conclude
that circulating fibrocytes were increased in patients hospitalized for COVID-19 pneumonia, and a lower fibrocyte count was associ-
ated with an increased risk of death and a slower resolution of lung CT opacities.

COVID-19 pneumonia; fibrocyte; prognosis

INTRODUCTION

Coronavirus disease 2019 (COVID-19) pneumonia is caused
by a new b-coronavirus, the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). Severe cases are frequent
and concern 15%–20% of hospitalized patients, who present
with severe pneumonia or even acute respiratory distress syn-
drome (ARDS) (1). Respiratory failure is responsible for up to

70% of deaths due to COVID-19 (2). Histologically, data from
autopsies attest that COVID-19 severe pneumonia is charac-
terized by extensive diffuse alveolar damage, with organizing
pneumonia (3, 4). In more advanced disease, fibroblast prolif-
eration with thickened alveolar septa suggesting a fibrotic
process has been reported (2, 5–7).

To date, several clinical risk factors for an unfavorable out-
come have been reported, including genetic background;
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older age; male gender; individuals of black, Asian, and mi-
nority ethnicity; and comorbidities such as obesity, hyper-
tension, diabetes, or chronic respiratory diseases (8, 9).
Biological markers such as C-reactive protein (CRP), lactate
dehydrogenase (LDH), autoantibodies against interferon-a
and interferon-x, or lymphocyte subpopulations could also
be linked to prognosis (10). Proinflammatory monocyte-
derived macrophages have been described to be abundant in
the bronchoalveolar lavage fluid (BALF) from patients with
severe COVID-19, compared with moderate cases, who
mainly showed abundant CD8þ T cells (11). Moreover, a
recent study using single-cell RNA sequencing confirmed
that monocytes were increased in BALF of patients with
COVID-19 (12). This could suggest that the recruitment of cir-
culating cells into the alveoli may participate in lung injury.

Fibrocytes are circulating mesenchymal cell precursors
derived from the bone marrow, implicated in the repair pro-
cess after a tissue injury. They are derived from a common
monocyte lineage (13) and are suspected to be one of the cell
sources of myofibroblasts (14, 15). Fibrocytes express the
stem cell marker CD34, the pan-hematopoietic marker
CD45, and monocyte markers (CD12 and CD11) and produce
extracellular matrix components (collagen-I and collagen-
III, among others) (16). Fibrocytes are involved in acute and
chronic lung diseases (16, 17). Alveolar fibrocytes may origi-
nate from the recruitment of circulating fibrocytes to the
lung mainly through the CXCR4-CXCL12 axis and from local
differentiation ofmonocytes in alveolar spaces, which is pro-
moted by profibrotic cytokines [IL-4, IL-13, transforming
growth factor-b (TGF-b1)] and inhibited by serum amyloid P
(SAP) component, interferon-c, and IL-12 (18, 19). In ARDS,
increased blood fibrocyte counts are associated with
increased mortality (20, 21). Fibrocytes accumulate in the al-
veolar environment of patients with acute lung injury or
ARDS; a high fibrocyte count in BALF being a prognostic
marker of unfavorable ARDS course (22). Circulating fibro-
cyte counts are also increased in patients with idiopathic
pulmonary fibrosis (IPF), a prototypical fibrotic lung disor-
der. The percentage of circulating fibrocytes correlates with
IPF progression and independently predicts mortality (23).
Finally, fibrocytes are detected in the lung compartment of
patients with IPF, both in BALF and lung tissue (24, 25).

Whether fibrocytes could be involved in COVID-19 pneu-
monia and predict severity and long-term resolution of acute
radiological abnormalities is unknown. We hypothesized
that circulating fibrocytes could be a valuable biomarker
during COVID-19 pneumonia. We aimed to determine the
involvement of fibrocytes during COVID-19 pneumonia
and to determine if fibrocytes could be associated with
prognosis.

METHODS

Patient Recruitment

All the adult patients admitted to the Pneumology
Department of Bichat University Hospital (Paris, France)
for a case of SARS-CoV-2 pneumonia between March 20
and April 21, 2020, who agreed to participate in the French
COVID cohort (clinicaltrials.gov NCT04262921; approval
of the ethics committee “CPP Ile-de-France VI,” No. 2020-

A00256-33) were included in the study and constituted the
hospitalized patients group. COVID-19 pneumonia was
confirmed by a positive SARS-CoV-2 RT-PCR performed on
a nasopharyngeal swab in all patients. A second group of
patients with severe SARS-CoV-2 pneumonia admitted to
the intensive care unit (ICU) due to mechanical ventilation
or high-flow oxygen therapy requirement was also
included (ICU patients group). Those ICU patients were
also part of the French COVID cohort.

All patients underwent a chest computed tomography
(CT) scan on admission to assess the pulmonary damages
related to SARS-CoV-2 infection, defined by bilateral ground
glass opacities or alveolar condensation. All CT scans were
reviewed by one expert radiologist blinded to patients’
course, who rated the extent of COVID-19 damages as repre-
senting<25%, 25%–50%, 50%–75%, or>75% of total lung pa-
renchyma (26). As part of the French COVID cohort,
survivors underwent a second chest CT scan 3 mo after
admission to assess the persistence of lung lesions.

A group of healthy volunteers (“controls”), who were age-
and sex-matched with patients from the hospitalized group
(±10 yr), were recruited as part of another study entitled
“Evaluation of CD16þ circulating monocyte differentiation
into fibrocytes during acute lung injury” (Institutional
Review Board Paris Nord Approval No. 11-023).

Written information was given, and informed consent was
obtained from controls and patients or next of kin.

Biological Samples

For patients and controls, 5-mL blood samples were col-
lected in Cyto-Chex blood collection tubes (Streck, Omaha,
NE) and stored at 4�C until FACS analysis. Serum samples
were taken on the same day and stored at �80�C until use.
All patients routinely underwent a blood test at the time of
sampling, including a hemogram and determination of se-
rum C-reactive protein, ferritin, lactate dehydrogenase, and
D-dimer.

BALF was obtained simultaneously with blood samples
from ventilated patients. Bronchoalveolar lavage (BAL) was
performed with 5� 20 mL of sterile 0.9% saline solution
under fiberoptic control, as previously described, to assess
the microbiological diagnosis of suspected ventilator-associ-
ated pneumonia (27). BALF samples were stored at 4�C in
Cyto-Chex tubes until FACS analysis. When possible, blood
samples were repeated on day 7 and 3mo after admission for
fibrocyte analysis.

Fibrocyte Count by Flow Cytometry

Fibrocytes (defined as CD45þ /CD15�/CD34þ /Coll-Iþ

cells) were analyzed in blood and BALF using flow cytome-
try as previously described (22, 27). Briefly, white cell pel-
let obtained after red blood cell lysis (for blood) and cell
pellet obtained after BALF centrifugation (for BAL) were
resuspended in 100 μL of PBS and incubated with CD45-
APC (BD Biosciences, Franklin Lakes, NJ), CD34-PE.Cy7
(BD Biosciences), and CD15-PE (BD Biosciences) antibod-
ies for 15 min at 4�C. Then, cells were fixed and permeabil-
ized with Cytofix/Cytoperm, washed with perm/wash
buffer (Cytofix/Cytoperm Kit, BD Biosciences), and stained
with collagen I-FITC conjugated antibody (Millipore,
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Burlington, MA) or IgG1k control isotype for 30 min at 4�C.
Stained cells were measured with a flow cytometer (BD
FACSCanto II, BD Biosciences), and data were analyzed
with FlowJo software version 10.6.2. Fibrocyte count was
expressed as a percentage of the whole population of living
mononuclear leukocytes. The gating strategy is described
in Fig. 1.

Serum Amyloid P Component Quantification

Serum SAP concentrationwas determined with a commer-
cial human SAP ELISA kit as previously described (APCS
Human ELISA Kit; Abcam, Cambridge, UK) (27). Serum sam-
ples were 1/25,000 diluted before ELISA.

CXCL12, CCL2, FGF2, and TGF-b 1 Quantification

CXCL12, CCL2, and FGF2 concentration in serum was
determined by using the ProcartaPlex Human 10-plex Kit,
and TGF-b1 concentration in serum was determined by
using the ProcartaPlex Human TGF-b1 Simplex Kit
(Thermo Fisher Scientific, Waltham, MA). Before meas-
uring plasma TGF-b1, the bioactive form of TGF-b1 was
generated by incubating the plasma with 1 N HCl followed
by neutralization with 1.2 N NaOH according to the manu-
facturer’s instructions.

All cytokines were measured using the Luminex MAGPIX
instrument and quantified using the xPONENT analysis soft-
ware (Luminex Corporation, Austin, TX).

Multiplex Immunofluorescence Staining and Confocal
Imaging for Fibrocyte Detection in Lung Samples

Immunofluorescence staining was performed on human
lung paraffin sections obtained from two patients with
COVID-19. Human lung tissue sections were deparaffinized
and blocked for 1 h in 4% BSA-PBS and 2% horse serum after
10 min in peroxidase blocking solution (Dako, Santa Clara,
CA). Lung sections were first stained with CD45 antibody
(dilution 1:100) (ZRB1180, Sigma-Aldrich, St. Louis, MO)
overnight at 4�C followed by a poly-horseradish peroxidase
goat anti-rabbit secondary antibody (Tyramide SuperBoost
Kit, B40944, Invitrogen, Waltham, MA) amplified with Alexa
Fluor 488 TSA dye (Tyramide SuperBoost Kit, B40941,
Invitrogen). Sections were then incubated with citrate re-
trieval buffer. Sections were then stained with vimentin anti-
body (dilution 1:500) (ab92547, Abcam, Cambridge, UK)
overnight at 4�C and then followed by donkey anti-rabbit
polyclonal secondary antibody conjugated with Alexa Fluor
568 (dilution 1:800) (A10042, Life Technologies, Carlsbad,
CA). Quenching was performed to reduce autofluorescence
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Figure 1. Circulating fibrocytes in hospitalized patients. A: gating strategy for quantification of circulating fibrocytes in peripheral blood. Population was
initially gated on the basis of the side scatter characteristics (SSCs), and debris were eliminated. Then, lymphocytes and monocytes were selected with
gating of the CD45þ CD15� population (excluding granulocytes). Finally, fibrocytes were selected based on the expression of CD34 and collagen-I
(CD34þ Col-Iþ ). Collagen-I isotype (ISO-Col-I) was used as a fluorescence minus one (FMO) control for the gating of Col-Iþ population. B: blood circulat-
ing fibrocyte count was higher in patients hospitalized for COVID-19 pneumonia as compared with healthy controls. No significant difference was
detected in repeated blood samples. A second blood sample was obtained on day 7 after the first sample in 21 patients (sample 2). A third sample was
obtained on day 90 in 25 patients (sample 3). Dot box-and-whisker plots with median showing the percentage of circulating fibrocytes among live
mononuclear leukocytes in healthy controls (n = 16) and hospitalized patients with COVID-19 (n = 57). Kruskal–Wallis test, �P = 0.03. C: blood circulating
fibrocyte count was higher in samples collected>10 days after symptom onset. Dot box-and-whisker plots with median showing the percentage of circu-
lating fibrocytes among live mononuclear leukocytes in hospitalized patients with COVID-19 sampled >10 days (n = 33) and �10 days after symptom
onset (n = 24). Mann–Whitney U test, �� P� 0.01.
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(Vector TrueVIEW, SP-8400, Vector Laboratories Inc.). Lung
sections were stained with DAPI for nucleus visualization
(Vectashield Vibrance, H-1800, Vector Laboratories Inc.).
Images were obtained using a Leica SP8 confocal microscope
(original magnification = �63) (Leica Microsystems, Buffalo
Grove, IL).

Statistical Analysis

Statistical analysis was performed with GraphPad Prism 6
(GraphPad Software, San Diego, CA). Data are presented as
dot box-and-whisker plots and expressed as median [range].
Comparisons between two groups were assessed using the
nonparametric Mann–WhitneyU test. Comparisons between
multiple groups were assessed using the Kruskal–Wallis test,
followed by Dunn’s multiple-comparison test. When avail-
able, comparisons between changes in fibrocyte levels
between two timepoints for the same patients were
assessed using the Wilcoxon signed-rank test. Correlations
were performed using the Spearman rank-order correla-
tion coefficient. P value < 0.05 was considered as statisti-
cally significant.

RESULTS

Patient Demographics

A total of 57 patients (42 men and 15 women), with a me-
dian age of 59 [23–87] yr, were included in the hospitalized
patients group. Their main clinical, demographic, and bio-
logical characteristics are listed in Table 1. The delay
between the onset of symptoms and the first blood sample
was 11 (4–31) days, whereas the delay between hospital
admission and the first blood sample was 2 (0–11) days.
During the hospitalization, nine of 57 patients were

transferred to the ICU and four required invasivemechanical
ventilation. Six patients (11% of the hospitalized patients
group) died, 6.5 (5–18) days after admission. Death was
related to COVID-19 pneumonia progression in all six
patients.

Thirteen patients [11 men and 2 women; median age = 61
[50–73] yr] were included in the ICU patients group. The
delay between the onset of symptoms and the first blood
sample was 28 [6–41] days. Nine ICU patients (69%) died dur-
ing hospitalization.

Circulating Fibrocytes in Hospitalized Patients

Circulating fibrocyte count was increased in hospitalized
patients, compared with healthy sex- and age-matched

Table 1. Summary of demographic and clinical data of the study subjects

Hospitalized Patients ICU Patients

n 57 13
Age, yr 59 [23–87] 61 [50–73]
Sex, male 41 (72) 11 (85)
BMI, kg/m2 27 [18–44] 28 [20–39]
Smoking status
Current smokers 8 (14) 2 (15)
Former smokers 13 (23) 2 (15)

Comorbidities
Hypertension 27 (47) 3 (23)
Diabetes mellitus 19 (33) 5 (38)
Chronic respiratory disease 18 (31) 2 (15)

Chronic therapies
Oral corticosteroids 6 (11) 1 (8)

Daily dose of corticosteroids, mg 9 [5–22.5] 10
Immunosuppressant 5 (9) 2 (15)

Blood tests
Lymphocytes, G/L 1.2 [0.2–4.8] 0.8 [0.2–2.6]
Monocytes, G/L 0.6 [0.1–1.6] 0.5 [0.2–3.2]
C-reactive protein, mg/L 102.0 [12.0–395.0] 137.5 [24.0–239.0]
Ferritin, mg/L 856.0 [74.0–4592.0] 1,094.0 [319.0–3,120.0]
Lactate dehydrogenase, U/L 331.5 [179.0–599.0] 483.0 [379.0–650.0]
D-Dimer, ng/mL 1,040.5 [377.0–5661.0] 5,529.5 [275.0–17,434.0]

Evolution
ICU transfer 9 (16)

Death 6 (11) 11 (85)

Values are median [range] or n (%).
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Figure 2. Blood fibrocyte count was decreased in patients who died dur-
ing hospitalization as compared with survivors. Dot box-and-whisker plots
with median showing the percentage of circulating fibrocytes among live
mononuclear leukocytes in survivors (n = 51) and in patients who died (n =
6). Mann–Whitney U test, �P� 0.05.
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controls [3.6% (0.2–9.2) vs. 2.1% (0.9–5.1), P = 0.04] (Fig. 1B).
Repeated blood samples were obtained after 7 days for 22
patients and after 3 mo for 25 patients. Circulating fibrocytes
remained elevated at day 7 [3.7% (0.6–7.1)] and after 3mo [3.4%
(1.4–6.4)] with no significant difference as compared with the
first sample (Fig. 1B).

Fibrocyte count was higher in samples collected more
than 10 days after symptom onset compared with samples
collected before 10 days after symptom onset [4.1% (1.3–
9.2), n = 33 vs. 3.1% (0.2–8.0), n = 24, respectively; P =
0.008] (Fig. 1C).

Among the hospitalized patients, the percentage of fibro-
cytes at admission was lower in the six patients who eventu-
ally died compared with survivors [1.6% (0.2–4.4) vs. 3.7%
(0.6–9.2), P = 0.02] (Fig. 2). We found no significant difference

in circulating fibrocyte count according to older or younger
age, increased or normal body mass index (BMI), and male or
female gender; all characteristics that have been reported as
clinical risk factors for an unfavorable outcome in patients
with COVID-19 pneumonia (Table 2). A significant positive
correlation existed between blood monocyte and blood
fibrocyte counts (r = 0.43, P = 0.001). Conversely, no corre-
lation existed between circulating fibrocyte count and bio-
logical markers associated with COVID-19 pneumonia
severity, such as blood lymphocyte counts and LDH, CRP,
D-dimer, or ferritin serum levels (Fig. 3).

Circulating fibrocyte count was lower in the 38 patients
receiving corticosteroids before blood sampling compared
with the 19 patients not receiving corticosteroids [3.2% (0.2–
8.6) vs. 4.5% (2.1–9.2), P = 0.002]. In the treated group, corti-
costeroids were started 3.5 (1–26) days before blood sampling
(Fig. 4A). These patients were more severe, as evidenced by
higher oxygen requirement (median oxygen flow of 6 L/min
compared with 2 L/min in patients who were not treated
with corticosteroids at the time of sampling). Among these
38 patients, the percentage of circulating fibrocytes was sig-
nificantly decreased in deceased patients [1.34% (0.2–3.2),
n = 5] as compared with survivors [3.44% (0.64–8.6), n = 33,
P = 0.04] (Fig. 4B). In addition, blood fibrocyte count was
negatively correlated with oxygen flow in hospitalized
patients (r = �0.34, P = 0.02) (Fig. 4C). A trend for a lower
fibrocyte count was observed when the extension of COVID-
19 pneumonia on CT scan was >75% [0.9% (0.2–3.4), n = 4]
compared with other groups [<25%: 3.7% (0.6–9.2), n = 23;
25%–50%: 4.1% (1.4–8.7), n = 22; and 50%–75%: 3.6% (1.4–
6.3), n = 8; p = 0.07] (Fig. 4D).

Table 2. Circulating fibrocyte count according to clinical
risk factors for an unfavorable outcome in patients with
COVID-19 pneumonia

Circulating Fibrocytes, % P Value

Sex
Male 3.5 [0.2–8.69] 0.7
Female 3.8 [0.5–9.2]

Age, yr
<60 3.6 [0.6–9.2] 0.8
�60 3.6 [0.2–8.0]

BMI, kg/m2

<25 4.2 [0.2–8.6] 0.4
25–30 3.5 [1.3–9.2]
>30 2.9 [0.6–5.0]

Values are median percentage [range].
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Figure 3. Circulating fibrocyte count was positively correlated with blood monocyte count but was not correlated to biological markers associated with
COVID-19 severity [lymphocyte count, lactate dehydrogenase (LDH), C-reactive protein (CRP), D-dimer, and ferritin]. Spearman rank-order correlation
coefficient.
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Blood and BAL Fibrocytes in ICU Patients

A bronchoalveolar lavage was performed for a clinical
suspicion of ventilator-associated pneumonia in seven
out of the 13 patients of the ICU group, allowing to ana-
lyze fibrocyte counts in BAL and blood on the same day.
Microbiological analysis was negative for all BAL sam-
ples. Circulating fibrocyte count was strongly decreased
in patients from the ICU group compared with healthy
controls and patients from the hospitalized group [0.8%
(0.1–2.0) vs. 2.1% (0.9–5.1) and 3.6% (0.2–9.2), respec-
tively, P < 0.001 for both comparisons). BAL fibrocyte
count was 6.7% (2.2–15.4) (Fig. 5).

Association between Initial Circulating Fibrocyte Count
and Patient Lung Course after 3 Mo of Follow-Up

Thirty-two patients were evaluated 3 mo after the initial
admission. A complete resolution of CT scan abnormalities
was observed in 13 patients (40%), in whom initial fibrocyte
count was higher than in patients who experienced an
incomplete lung damage resolution [4.5% (0.6–7.3) vs. 3.4%
(2.1–9.2), P = 0.04] (Fig. 6).

Serum Concentration of Modulators of Fibrocyte
Recruitment and Differentiation

CXCL12 is the main chemokine involved in the recruit-
ment of fibrocytes to circulation and to the site of injury (28,
29). CCL2 and FGF2 have also been described to enhance the
recruitment of fibrocytes after an injury (30, 31). We meas-
ured CXCL12, CCL2, and FGF2 concentrations in serum of
patients with COVID-19 from the hospitalized and ICU
groups (n = 54/57 and 7/13, respectively) and in serum of
healthy controls (n = 12/16). Serum FGF2 concentration was
below the detection level in all samples. Concentration of
CXCL12 was increased in ICU patients [389.1 pg/mL (228.1–
1053.0)] as compared with the hospitalized group [242.4 pg/
mL (137.6–1056)] and healthy controls [210.5 pg/mL (138.7–
280.1); P = 0.0006], whereas no difference was found
between the hospitalized group and controls (Fig. 7A).
Similar results were observed for CCL2 levels, with a higher
concentration observed in ICU patients [228.8 pg/mL (55.8–
485.2)] compared with the hospitalized group [51.6 pg/mL
(3.4–2388.0)] and healthy controls [40.6 pg/mL (15.3–158.6);
P = 0.005], whereas no difference was found between the
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hospitalized group and controls (Fig. 7C). Circulating fibro-
cyte count was negatively correlated with serum CXCL12 and
CCL2 concentrations in hospitalized and ICU patients
(respectively, r = �0.2364, P = 0.046, and r = �0.3704, P =
0.003) (Fig. 7, B and C).

SAP is the most potent inhibitor of fibrocyte differentia-
tion (32, 33). In patients with ARDS, SAP has been demon-
strated to inhibit monocyte-to-fibrocyte differentiation in
BALF (27), whereas TGF-b1 has been shown to induce mono-
cyte-to-fibrocyte differentiation (18, 19, 34). To better under-
stand the mechanisms involved in fibrocyte differentiation
during COVID-19 pneumonia, we measured serum SAP and
TGF-b1 levels in patients from the hospitalized and ICU
groups and in healthy controls. Serum TGF-b1 concentration
was higher in the hospitalized group [333.3 pg/mL (3.4–
1869.0)] as compared with healthy controls [16.3 pg/mL
(2.52–142.6); P = 0.0005] (Fig. 7E). Serum SAP concentration
was higher in patients from the hospitalized group [96.6 mg/
mL (31.2–211.5), n = 54] and the ICU group [119.7 mg/mL (15.9–
153.2), n = 7] compared with healthy controls [65.0 mg/mL
(40.4–118.1), n = 16; P = 0.0046]. Serum SAP concentration
was not statistically different between the ICU group and the
hospitalized group (Fig. 7G). There was no correlation
between serum TGF-b1 or SAP concentrations and circulat-
ing fibrocyte count (Fig. 7, F andH).

Evidence for Fibrocyte Accumulation in the Lung during
COVID-19 Pneumonia

Immunofluorescence staining was performed on human
lung sections obtained from two patients with COVID-19.
Patient 1 developed symptomatic COVID-19 pneumonia 2
days after bullous emphysema surgery; RT-PCR was positive
for SARS-Cov-2 on the lung sample obtained during surgery.
Patient 2 underwent lung cancer surgery 4 wk after first
symptoms of COVID-19 pneumonia. We used lung samples
obtained during surgery to detect fibrocytes, defined as
CD45 and vimentin double-positive spindle-shaped cells, by
immunofluorescence, according to Kasam et al. (35). We
were able to identify fibrocytes in both samples (Fig. 8), sug-
gesting that fibrocytes are present in the lung tissue in the

early phase (patient 1) and the late phase (patient 2) of
COVID-19 pneumonia.

DISCUSSION

To our knowledge, this is the first study reporting circulat-
ing and alveolar fibrocyte counts during moderate-to-severe
COVID-19 pneumonia. Our data indicate that 1) in patients
hospitalized in a conventional ward for COVID-19 pneumo-
nia, circulating fibrocyte counts were increased compared
with healthy controls; 2) circulating fibrocyte counts were
higher in surviving patients and in patients with better lung
repair at 3 mo as assessed by CT scan; 3) circulating fibrocyte
counts were markedly decreased in ICU patients compared
with healthy controls and patients hospitalized for a less
severe COVID-19 pneumonia; and 4) fibrocytes were detected
in BALF in ICU patients and in lung samples obtained from
patients with COVID-19.

In this study, we found a significantly higher circulating
fibrocyte count in patients suffering from moderate-to-
severe COVID-19 pneumonia requiring hospitalization in
conventional wards compared with healthy controls. Blood
fibrocytes have been shown to increase in many different
pathological conditions with tissue injury (36). Changes in
circulating fibrocyte counts during infectious pneumonia
are poorly described. In one study, patients admitted to the
ICU with severe infectious pneumonia but without ARDS
showed higher circulating fibrocyte counts than controls
(21). In a murine model of Klebsiella pneumoniae-induced
lung infection, fibrocyte count increased in the bone mar-
row, the blood, and the lung compartments (21). Fibrocytes
are recruited to the lung in a model of c-herpes virus infec-
tion in mice, and this recruitment depended in part on the
activation of the CCR2 receptor by CCL2 and CCL12 (37).

Fibrocytes are recruited from the bone marrow through
the bloodstream to the target tissues, mainly by the CXCR4-
CXCL12 axis (28, 29). Other chemokine ligand-receptor axes
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are involved in fibrocyte recruitment, including CCR2-CCL2,
CCR2-CCL12, and CCR7-CCL21 (31). We observed that serum
CXCL12 and CCL2 concentrations were increased in patients
with COVID-19. An increased expression of CXCL12 in the

lung during COVID-19 pneumonia has been reported (38,
39). Similarly, an overexpression of CCL2 in BALF (40), in
macrophages of the upper and lower respiratory tracts of
patients with severe COVID-19 (41), and in BAL monocyte-
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the concentration of CXCL12 in healthy con-
trols (n = 12), hospitalized patients (n = 54),
and ICU patients (n = 7). Kruskal–Wallis test,
P = 0.0006. B: CXCL12 concentration was
negatively correlated with circulating fibro-
cytes count in hospitalized and ICU patients.
CXCL12 concentration and percentage of
circulating fibrocytes were measured in
blood of hospitalized (n = 54) and ICU
patients (n = 7). Spearman rank-order corre-
lation coefficient. C: CCL2 concentration
was increased in ICU patients as compared
with hospitalized patients and healthy con-
trols. Dot box-and-whisker plots with me-
dian range showing the concentration of
CCL2 in healthy controls (n = 12), hospital-
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7). Kruskal–Wallis test, P = 0.0053. D: CCL2
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with circulating fibrocyte count in hospital-
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E: TGF-b1 concentration was increased in
hospitalized patients with COVID-19 as com-
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trols (n = 12), hospitalized patients (n = 54),
and ICU patients (n = 7). Kruskal–Wallis test,
P = 0.0005. F: no correlation was found
between TGF-b1 concentration in serum
and circulating fibrocyte count in hospital-
ized and ICU patients. TGF-b1 concentration
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were measured in blood of hospitalized (n =
54) and ICU patients (n = 7). Spearman rank-
order correlation coefficient. G: serum
amyloid protein (SAP) concentration was
increased in hospitalized patients with
COVID-19 as compared with healthy con-
trols. Dot box-and-whisker plots with me-
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SAP in healthy controls (n = 12), hospitalized
patients (n = 54), and ICU patients (n = 7).
Kruskal–Wallis test, P = 0.046. H: no correla-
tion was found between SAP concentration
and circulating fibrocyte count in hospital-
ized and ICU patients. SAP concentration
and percentage of circulating fibrocytes were
measured in blood of hospitalized (n = 54)
and ICUpatients (n = 7). Spearman rank-order
correlation coefficient. �P < 0.05; ��P <
0.01; ���P< 0.001.
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derived macrophages of patients with severe COVID-19
(12) has been described. Surprisingly, serum CXCL12 and
CCL2 concentrations negatively correlated with blood
fibrocyte count, with lower concentrations being associ-
ated with a higher circulating fibrocyte count. However,
the lung is the main source of CXCL12 and CCL2 during
acute lung injury (42, 43), and we suspect that lung con-
centrations of CXCL12 and CCL2 were much higher,
thereby promoting the recruitment of fibrocyte from the
circulation to the lung. Unfortunately, BAL supernatant
was not available to compare CXCL12 and CCL2 concentra-
tions in those patients.

More surprisingly, circulating fibrocyte count was hugely
decreased in ICU patients critically affected by COVID-19 as
well as in deceased hospitalized patients.

We and others have described an increase of blood and
BAL fibrocytes during ARDS (21, 22). This increase was asso-
ciated with poorer outcomes and higher mortality (21, 22).
Blood fibrocytes result from a complex balance between the
differentiation of monocyte to fibrocyte, the transition of
fibrocytes from bone marrow to circulation, and the recruit-
ment of fibrocytes from circulation to the site of injury (36).
We observed that serum concentration of TGF-b1, an
enhancer of monocyte-to-fibrocyte differentiation, was
increased in hospitalized patients but not in ICU patients,

whereas levels of SAP, a potent inhibitor of monocyte-to-
fibrocyte differentiation, were increased in the two groups
of patients (hospitalized and ICU). These data support an
imbalance toward an inhibition of monocyte-to-fibrocyte
differentiation in ICU patients, which could contribute to
the very low level of blood fibrocytes observed in ICU
patients. Interestingly, Schulte-Schrepping et al. (44)
showed that a defective monocyte activation was a charac-
teristic of patients with severe COVID-19, whereas an early
activation of monocytes with a strong antiviral IFN signa-
ture was a hallmark of mild COVID-19. Finally, these
mechanisms are being influenced by therapeutics, since
corticosteroids have been shown to inhibit monocyte-to-
fibrocyte differentiation (27).

The measurement of circulating fibrocytes was repeated
in a subgroup of patients and we observed a persistent eleva-
tion of fibrocyte counts over those measured in healthy sub-
jects. Lin et al. (21) previously reported that circulating
fibrocytes displayed intermittent episodes of marked eleva-
tion in patients with ARDS evaluated serially over their ICU
stay. However, this is the first report of a sustained increase
of circulating fibrocytes several months after the initial lung
injury. Further studies are needed to determine if this is spe-
cific of COVID-19 and which mechanisms are at the origin of
such a prolonged increase.

Figure 8. Detection of fibrocytes in COVID-19 lung samples using hematopoietic (CD45) and mesenchymal markers (vimentin) by fluorescence micros-
copy. Frozen lung sections from patients with COVID-19 were co-immunostained using CD45 and vimentin. DAPI was used for nuclei staining. Arrows
indicate CD45 and vimentin double-positive cells. Scale bar: 50 mm. Patient 1 developed symptomatic COVID-19 pneumonia 2 days after bullous emphy-
sema surgery, with RT-PCR positive for COVID-19 on the lung sample. Patient 2 underwent lung cancer surgery 4 wk after first symptoms of COVID-19
pneumonia.

BLOOD FIBROCYTES AND COVID-19 PNEUMONIA

AJP-Lung Cell Mol Physiol � doi:10.1152/ajplung.00105.2021 � www.ajplung.org L855

http://www.ajplung.org


Long-term persistence of post-COVID-19 pulmonary lung
damages, including fibrosis, is being increasingly recog-
nized. In a recent study, fibrotic-like changes (including
bronchiectasis, parenchymal bands, and/or honeycombing)
were observed in 35% patients (40/114) 6 mo after their
COVID-19 pneumonia (45). Multivariate analysis identified
age >50 yr, heart rate >100 beats/min, hospital length of
stay �17 days, noninvasive mechanical ventilation, and a
large extent of the opacities on the initial CT scan as inde-
pendent predictors of fibrotic-like changes at 6 mo. Our
results suggest that the initial circulating fibrocyte count
could be predictive of the evolution of CT scan abnormalities
after a 3-mo follow-up. Indeed, patients in whom a complete
resolution of parenchymal opacities was observed had
higher initial count of circulating fibrocytes. Further investi-
gations are required to determine the underlying mecha-
nisms. However, the recruitment of fibrocytes to the blood
and then to the injured tissue is part of the normal wound-
healing process (16, 46–49). This may contribute to explain,
at least in part, the relation between higher fibrocyte counts
and better outcomes, both in terms of survival and effective
lung repair.

Our study has some limitations. First, this is a single-cen-
ter study that included a relatively small number of patients.
Our results deserve to be confirmed in larger studies.
Second, we had access to a limited number of BALF samples,
only from ICU patients, since bronchoscopy was not rou-
tinely performed in patients with COVID-19 to limit the risk
of transmission to healthcare workers and was reserved for
intubated patients in the ICUwith a clinical suspicion of hos-
pital-acquired pneumonia. Thus, determining the potential
relation between blood and alveolar fibrocyte counts at the
individual level will require complementary studies.

In conclusion, our results provide new data contributing
to a better understanding of the role of fibrocytes during
COVID-19 pneumonia. Additional studies are needed to con-
firm the prognostic value of circulating fibrocytes during
COVID-19 and to understand their role in lung repair after
COVID-19 pneumonia.
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