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Abstract

Introduction Information technology (IT) plays an important role in the healthcare landscape via the increasing digitiza-
tion of medical data and the use of modern computational paradigms such as machine learning (ML) and knowledge graphs
(KGs). These ‘intelligent’ technical paradigms provide a new digital ‘toolkit’ supporting drug safety and healthcare processes,
including ‘active pharmacovigilance’. While these technical paradigms are promising, intelligent systems (ISs) are not yet
widely adopted by pharmacovigilance (PV) stakeholders, namely the pharma industry, academia/research community, drug
safety monitoring organizations, regulatory authorities, and healthcare institutions. The limitations obscuring the integration
of ISs into PV activities are multifaceted, involving technical, legal and medical hurdles, and thus require further elucidation.
Objective We dissect the abovementioned limitations by describing the lessons learned during the design and implementation
of the PVClinical platform, a web platform aiming to support the investigation of potential adverse drug reactions (ADRs),
emphasizing the use of knowledge engineering (KE) as its main technical paradigm.

Results To this end, we elaborate on the related ‘business processes’ (i.e. operational processes) and ‘user goals’ identified
as part of the PVClinical platform design process based on Design Thinking principles. We also elaborate on key challenges
restricting the adoption of such ISs and their integration in the clinical setting and beyond.

Conclusions We highlight the fact that beyond providing analytics and useful statistics to the end user, ‘actionability’ has
emerged as the operational priority identified through the whole process. Furthermore, we focus on the needs for valid,
reproducible, explainable and human-interpretable results, stressing the need to emphasize on usability.
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The development of a drug safety web tool was used as a
vehicle to investigate challenges regarding the adoption
of emerging “intelligent” technical paradigms in pharma-
covigilance (PV).

In user feedback, actionability, i.e. facilitating the PV
professional in decision-making processes, toppled other
factors such as usability or explainability of analytics in
user feedback as the cardinal challenge.

Heeding these findings, the PVClinical platform inte-
grates heterogeneous drug safety data (spontaneous
safety reports, observational studies, scientific publica-
tions, Twitter feeds) in a user-friendly interface.

Actionable systems such as the PVClinical platform

are expected to significantly expedite the detection and
prevention of adverse drug reactions (both in and out of
the clinical setting).

1 Introduction

Adverse drug reactions (ADRs) are one of the major causes
of morbidity and mortality, leading to severe hurdles in
the development and authorization of novel therapeutics
by industry and significant economic burdens to public
healthcare providers. Indicatively, in 2018, Formica et al.
estimated (1) the cost of ADRs to be between €2851 and
€9015 for the inpatient setting and between €174 and €8515
for the outpatient setting; and (2) the impact of ADRs on
the length of stay to be 9.2 + 0.2 days (outpatient setting)
and 6.1 + 2.3 days (inpatient setting) [1]. Furthermore, the
US Office of Disease Prevention and Health Promotion esti-
mated that adverse drug events (ADEs) account for one in
three of all hospital adverse events, relate to about 2 million
hospital stays each year, and prolong hospital stays by 1.7
to 4.6 days. Regarding outpatient settings, each year ADEs
account for over 3.5 million physician office visits, about
1 million emergency department visits, and approximately
125,000 hospital admissions [1-4]. Pharmacovigilance (PV)
focuses on the collection and analysis of data regarding drug
safety, and is formally defined as “the science and activities
related to the detection, assessment, understanding and pre-
vention of adverse effects or any other possible drug-related
problems” [5].

PV activities aspire to identify and elaborate on poten-
tial new or partially documented ADRs (i.e. PV ‘signals’)
and are currently driven by the investigation of individual
case safety reports (ICSRs), along with data that derive
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from clinical trials, postmarketing surveillance and litera-
ture reviews. ICSRs are typically submitted by healthcare
professionals (HCPs) or patients via spontaneous reporting
systems (SRSs). The overall signal evaluation process can
be further segmented into subprocesses (e.g. signal detec-
tion, triage, etc.). As part of this process, ICSRs are analyzed
using specialized statistical metrics, mostly based on ‘dis-
proportionality analysis’ (DA) approaches [6]. ICSRs play
a prominent role in the overall risk management (RM) pro-
cesses employed to validate that the risk—benefit relationship
regarding a specific drug is beneficiary in terms of public
health. This RM approach of combining and analysing data
from various data sources to identify and mitigate risks is
a laborious, mostly manually driven, process that requires
multifaceted interpretation of the relative data through the
scope of statistics, biological plausibility, disease pathobiol-
ogy, pharmacology and alternative aetiologies due to poten-
tial confounders.

Beyond PV activities conducted by regulatory organiza-
tions or the pharmaceutical industry, ADR detection is also
related to clinical practice. HCPs depend on clinical heuris-
tic judgement that is laborious, time-consuming, and error-
prone because it is heavily dependent on prior experience
and specific case information. The management of serious
ADR cases usually involves more than one clinical profes-
sional and iterative cycles of examining new findings, and
critical thinking that will eventually lead to a differential
diagnosis [7].

To this end, there is an obvious need for improvement in
ADR investigation processes, both in the clinical environ-
ment and beyond (for example ADR signal management),
in order to promptly consolidate information from multi-
ple voluminous data sources, in a user-friendly fashion. To
address this need, the prospect of engaging ‘intelligent’ tech-
nical approaches in the context of PV has previously been
identified [8-11].

Currently, modern information technology (IT)
approaches investigate new ways to support PV via data inte-
gration from medical and non-medical sources, such as sci-
entific literature, biochemical databases (e.g. platforms with
multiomics data, signalling pathway analysis and chemical
properties of drug molecules) [12], electronic health records
(EHRs), insurance claims or other observational databases,
search engine logs and social media [13, 14]. While these
data sources could provide a vast amount of data that could,
in principle, be used for PV purposes, they also come with
their own limitations and challenges regarding procedural,
regulatory and technical aspects. The exploitation of these
data sources has been an area of active research and the
focus of numerous research projects and initiatives [15].
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In this context, vast volumes of unstructured data (i.e. free
text) are elaborated via the use of natural language process-
ing (NLP) based on machine learning (ML) approaches, i.e.
non-symbolic artificial intelligence (Al), e.g. via deep neu-
ral networks (DNNs) and support vector machines (SVMs)
[16]. Furthermore, symbolic Al knowledge engineering
(KE)-oriented approaches, such as the use of linked data
and semantic web paradigms, are also actively investigated
in the context of drug safety [17]. However, while ‘intel-
ligent’ systems (ISs) seem promising, they are currently not
widely adopted for PV purposes due to significant hurdles,
which were recently analyzed by Bate and Hobbiger [18].
The importance and need to focus on these challenges in
order to increase the potential impact of ISs in the healthcare
domain as a whole has also been identified [19, 20].
PVClinical' is a research project focusing on the devel-
opment of a tool that could facilitate the investigation of
potential ADR signals via the integration of heterogeneous
data sources, i.e. SRS, EHR, social media and scientific lit-
erature. To this end, the PVClinical platform could be use-
ful in various dimensions of ADR signal management, i.e.
signal detection, strengthening and validation. Moreover,
the PVClinical platform could also be useful in the clini-
cal environment, as one of its main goals is to facilitate the
investigation of potential ADRs by HCPs. In technical terms,
PVClinical aims to build a web-based tool utilizing KE tech-
nologies, i.e. knowledge graphs built upon the Resource
Description Framework (RDF)? and ontologies built using
Web Ontology Language (OWL),* aiming to provide knowl-
edge-intensive analytics adapted on the special characteris-
tics of each data source using well-defined terminologies and
ontologies as reference concept hierarchies. While a detailed
presentation of the PVClinical platform is out of the scope of
this paper, a preliminary design of the PVClinical platform,
i.e. a first set of ‘user goals’/design objectives and its main
information workflow has previously been presented [21].
In this paper, we highlight the key challenges that impinge
on the wide adoption of IS approaches in the clinical setting and
beyond, based on the experience of the PVClinical design pro-
cess. To this end, we emphasize on the need to focus on action-
ability, which emerged as a top priority during this process.

2 Methods

As the PVClinical platform aims to be used by both PV
professionals (pharmaceutical industry, regulatory organiza-
tions, etc.) and HCPs, it needs to be integrated into varying

! https:/pvclinical-project.eu/.
2 https://www.w3.0org/RDF/.
3 https://www.w3.0org/OWL/.

working environments, focusing on different types of end
users applying different information processing workflows,
with different kinds of goals/priorities. Thus, in order to
be able to successfully integrate the designed platform
into these heterogeneous contexts, a user-centred design
approach was applied based on the methodology described
by Natsiavas et al. [22], the main steps of which can be sum-
marized as follows:

1. Analysis of the currently applied Business Processes
(BPs) based on the respective user scenarios.

2. Definition of User Goals (UGs) upon the elaborated
BPs, based on end-user feedback and a state-of-the-art
analysis

As user input was identified as a first-class priority for
the system design, Design Thinking was adopted as the
overall methodological design paradigm across the above
steps. ‘Design Thinking’ is a user-centred design approach
that evolves through rapid, iterative cycles of ideation, pro-
totyping and testing that is not yet widely adopted across
healthcare software designs [23, 24]. This approach entails
the active engagement of end users in the overall system
design, potentially using several approaches (e.g. storytell-
ing, interviews, use of paper prototypes etc.). In the context
of the PVClinical project design process, several personal
interviews and discussions with end users (more than 25
clinicians and 5 PV professionals) were conducted. These
discussions/interviews also included the demonstration of
prototypes, originally in terms of static mock-ups and pro-
gressively in the form of real interactive application proto-
types. Furthermore, ‘think aloud’ sessions were conducted
where end users navigated through the provided system
functionality, expressing their thoughts (difficulties, chal-
lenges, etc.) while being recorded in order to further analyse
their responses (Fig. 1).

The need to elaborate on the respective BPs engaged with
the various PV activities was early identified. BPs, which
could also be referred to as ‘operational processes’, are
defined as a collection of relevant and ordered structured
activities/tasks aiming to produce a specific outcome [25].
For example, ADR evaluation can also be considered as a BP
conducted in the context of a hospital, in tandsem with other
BPs (e.g. patient treatment, administrative processes, etc.).
The use of ISs could reshape the current practices of ADR
assessment, which today are typically performed manually
and lack systematic support of specialized IT tools, and con-
sequently could have significant impact on the respective
BPs. To this end, workshops and interviews with various
stakeholders were conducted in order to identify and analyse
these BPs. Based on this input, integrating ‘intelligent tech-
nologies’ aimed at supporting PV activities in the context
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Analysis of
Business Processes

Business Processes (BPs)
related with PV were elaborated,
identifying the key user roles
and potential data engaged in
each of them..

“Design Thinking” approach

An iterative prototype-based
approach was applied to
increasingly improve system

design based on end-user input

User Goals definition

User Goals (UGs) were defined
based on the analysis of the
respective BPs, emphasizing both
on functional and non-functional
user reequirements.

Fig. 1 Methodology overview for the design of a PVClinical project. PV pharmacovigilance

Table 1 Business processes related to pharmacovigilance in the clinical environment

Name Actors Data

BP1: Visit to outpatient clinics Doctor
Nurse
Doctor

Pharmacologist
Nurse

BP2: Hospitalization

BP3: Quality of healthcare
services’ evaluation

Doctor
Pharmacologist
Nurse

IT scientist
Manager

sources

BP4: Clinical trials Doctor

PV professional  efficacy reports

Demographics, medical history, laboratory results, diagnosis, ePrescription

BP1 data and clinical notes, CPOE data, discharge notes

EHR statistics, prioritized lists of adverse events of interest, comparison with other data

Demographics, medical history, genetic profiling, laboratory results, clinical notes, safety and

BP business process, PV pharmacovigilance, CPOE computerized physician order entry, EHR electronic health record

of real-world healthcare activities was identified early on as
a major challenge.

These challenges were also depicted in the so-called UG,
which outline the priorities raised by the end users. UGs are
defined as “abstract user requirements, not directly refer-
ring to specific technical solutions or components” [22],
directly attributed to specific user actors or ‘roles’. The defi-
nition of UGs facilitates the early identification and resolu-
tion of potential conflicts between actors. During the ‘user
requirement analysis’ and ‘design’ phases of the PVClinical
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platform, UGs have been analyzed based on feedback that
was given by clinicians and PV professionals.

3 Results

3.1 Business Processes

Tables 1 and 2 depict the relevant BPs on which an IS focus-

ing on potential signal investigation could be used, as a
result of workshops and interviews with clinicians and PV
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Table 2 Business processes
related to pharmacovigilance

out of the clinical environment

1169
Name Actors Data
BP5: Update of periodic safety Doctor Drug safety data, statistics, documentation /
update reports PV professional reports, prioritized lists of adverse events of
interest
BP6: Weekly literature review Doctor Documentation/reports

BP7: Risk management

PV professional

PV professional Drug safety data, statistics, documentation/reports

BP business process, PV pharmacovigilance

professionals. It should be noted that these BPs could be
elaborated in different levels of granularity, and could conse-
quently be analyzed in a more detailed level for each particu-
lar setting. While the presented BPs could be described with
lower-level details, such a description would not offer much
as these details are practically different in each organization
or department (even clinics in the same hospital apply dif-
ferent BPs due to variations in patients’ treatments and the
distinct structure of medical facilities). Therefore, describ-
ing these BPs in a lower level could not lead to generaliz-
able conclusions, clearly identifying the need for a balance
between the description of the distinct BPs and the need to
avoid details.

3.2 Business Processes Related to the Clinical
Environment

3.2.1 BP1:Visit to the Outpatient Clinics

BP1 refers to patients visiting outpatient clinics and entails
registration of the patient visit, their medical history stored
in the hospital EHR, and the patient’s clinical examination
and ePrescription.

3.2.2 BP2:Hospitalization

BP2 could be considered an extension of BP1 and refers
to hospitalization and other clinical procedures typically
conducted as part of the BP (e.g. surgery). As its final step,
BP2 includes computerized physician order entries (CPOE),
clinical notes maintenance, and patient discharge.

3.2.3 BP3:Quality of Healthcare Services Evaluation

BP3 relates to the evaluation of healthcare services in terms
of quality assurance, based on clinically relevant metrics
(ADRs, in-hospital infections, medical errors, etc.). These
processes are conducted regularly in order to evaluate poten-
tial improvements in the clinical procedures applied, and

they include the comparison of data produced by EHRs
using the statistics provided by external data sources in order
to identify critical differences.

3.2.4 BP4:Clinical Trials

BP4 relates to the design and execution of a clinical trial
study, the definition of patient cohorts, data collection and
curation, comparison with other clinical trials, and results
reporting.

3.3 Business Processes Out of the Clinical
Environment

3.3.1 BP5: Update of Periodic Safety Update Reports

BPS5 entails the update of periodic safety update reports
(PSURSs) and points towards the review and statistical analy-
sis of ICSREs, literature review, clinical trial data analysis and
reporting to regulatory authorities.

3.3.2 BP6: Weekly Literature Review

BP6 refers to the weekly literature review, including the
formation of queries containing keywords and synonyms
against various literature sources.

3.3.3 BP7:Risk Management

Finally, BP7 relates to RM, and includes literature review,
relevant clinical trial data review, and the calculation of risk
factors.

3.4 User Goals

The identified UGs and their links to the respective BPs,

based on end-user input and the respective workshops, are
summarized in Table 3.
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UG1—
UG2—
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UG4—
UG5— - 1
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UG7—
UG8—
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UG10—
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UG12—
UG13—
UG14— - 10
UG15—
UG16—
UG17—
UG18—

| | | | | |
BP1 BP2 BP3 BP4 BP5 BP6 BP7

Fig.2 Relationship between user goals and business processes (0
indicates no link/red; 1 indicates linked/green). UG user goals, BP
business processes

Figure 2 qualitatively depicts the relationship of the UGs
with the respective BPs. While it is clearly evident that
BPs not related to routine clinical practice (i.e. BP4, BPS5,
BP6, BP7) support the biggest portion of UGs, it is also
clear that a lot of UGs are related to clinically relevant BPs
(BP1-BP3). Given the current low adoption of PV processes
in the context of clinical treatment, this finding also implies
that the integration of such IT tools could provide value for
everyday clinical practice (Fig. 2).

Table4 ‘Think aloud’ feedback

3.5 “I Don’t Care About Analytics, | Need a Rule ...”

Beyond the above analysis, the focus on the unstructured
input during the discussions and ‘think aloud’ sessions is
also very important. The general feeling gained from the
end users was that while almost everybody realized the
potential value of using such a system, they were also a lit-
tle bit hesitant in terms of how this would be integrated into
their practical work routine. To this end, a number of key
verbal phrases were identified and were further elaborated
(Table 4).

It should be noted that these phrases do not reflect the
overall end-user feedback but could be considered impor-
tant ‘outlier’ points. As such, we highlight them because
we argue that they provide useful insights. Interpreting
them, we argue that beyond usability and explainability, the
design of ‘intelligent’ IT systems should also be based on
actionability, i.e. provide clear advantages in terms of the
decision-making process instead of only providing figures
and analytics. Furthermore, the lack of trust is also emerging
as a key factor in terms of taking clinical decisions based on
data and the quality of the data. As a whole, while providing
numbers, figures and analytics might facilitate interpretation
of data, practically, the end users also need clear guidance
on whether they should trust these data (i.e. clarify if they
could consider the data clear evidence of a potential PV
signal) and how they should handle marginal situations in
terms of rules or decision trees (e.g. thresholds on statistical
measures).

Phrase

End user

“I don’t care about analytics, I need a rule ...”
“Why should I see all these concept hierarchies?”
“Why are these coding concepts important?”

“These are data, not evidence. I am not sure I can trust them to make a clinical decision ...”

“I am not a statistician, so I can’t evaluate some of the metrics for disproportionality analysis. Could you please provide me

with a rule of thumb that I could act upon?”

PV professional
Clinician
Clinician
Clinician

PV professional

PV pharmacovigilance
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O

ZZzo

SCENARIO DEFINITION

Scenario definition is
based on the use of
MedDRA and ATC
terminologies along
with the support of
synonym libraries

Define Drug-Event

Combination

WORKSPACES BROWSING

Analytics provide
insights to each data
source using
specialized Ul

Investigate

REPORT PRODUCTION

The end-user’s
findings are
consolidated in one
unified report
produced both in RDF
and a PDF format

Consolidate results

Fig.3 PVClinical platform design approach. UI user interface, RDF Resource Description Network, MedDRA Medical Dictionary for Regula-

tory Activities, ATC Anatomical Therapeutic Classification
3.6 Design Approach

One of the main goals of the PVClinical platform is to inte-
grate heterogeneous information via multiple data sources,
focusing on both established data sources such as SRSs and
emerging data sources such as social media. To this end,
while typically used statistical metrics (proportional report-
ing ratio [PRR], reporting odds ratio [ROR], etc.) can be
calculated on sources such as SRSs, they are not applicable
to other sources such as social media. Therefore, the need
to apply different metrics and specialized user interface (UI)
structures for each input data source was clearly identified.
Thus, the platform is designed as an integrated web applica-
tion, constituted of distinct workspaces, one for each data
source (Fig. 3).

3.6.1 Scenario Definition

Each potential ADR signal investigation corresponds to a
‘scenario’, typically related to a drug-event combination
(DEC). Users can select a drug by using either the active
ingredient or the trade name and the respective ADR via
specialized UI controls (trees and free-text boxes), enabling
multiple selections. The options provided are based on
well-defined and widely accepted terminologies (i.e. World
Health Organization Anatomical Therapeutic Classifica-
tion [WHO-ATC]* and Medical Dictionary for Regulatory
Activities [MedDRAJ’), providing hierarchically organized
concepts that are stored in the form of knowledge graphs.

4 https://www.whocc.no/atc_ddd_index/.
5 https://www.meddra.org/.

3.6.2 OpenFDA Workspace

The OpenFDA workspace provides an analytics gateway to
the ICSRs referring to the respective investigation scenario,
provided via the OpenFDA Application Programming Inter-
face (API).® The provided analytics include various frequen-
tist DA metrics such as PRR, LRT and ROR, and also more
advanced statistical metrics that address the temporal com-
ponent of signal detection (e.g. dynamic PRR, change-point
analysis, change variance analysis, Bayesian change-point
analysis) and could be extremely useful in premarketing PV
processes (e.g. randomized control trials) that necessitate
highly sensitive algorithms [26-29]. Furthermore, a ‘quick’
view is provided, emphasizing the need to provide infor-
mation to HCPs in an ‘as simple as possible’ fashion and
therefore facilitate decision making.

3.6.3 Observational Data Workspace

The observational data workspace enables the statistical
analysis (e.g. based on pharmacoepidemiological metrics
such as ‘incidence rate’) and visual representation of obser-
vational data (which could come from various sources, e.g.
corporate data, data from the EHRs, claim databases and
other SRS sources). Technically, the clinical data workspace
is based on the Observational Medical Outcomes Partner-
ship Common Data Model (OMOP-CDM) and the overall
software stack provided by the Observational Health Data
Sciences and Informatics (OHDSI) initiative.

5 https://open.fda.gov/.
7 https://www.ohdsi.org/.
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3.6.4 Twitter Workspace

The Twitter workspace provides a visual overview of discus-
sion trends on Twitter, as social media have been identified
as a data source that might complementarily enhance the
overall PV signal analysis process, and is actively investi-
gated as an emerging data source for PV [30].

3.6.5 Literature Investigation Workspace

The scientific literature investigation workspace enables
the quick identification of relative scientific publications
via public and proprietary APIs, using PubMed as its origi-
nal data source. In terms of functionality, the end user can
annotate papers as being relevant or not and also keep notes
for these papers.

3.6.6 Consolidating Report Workspace

The data presented in the various analysis workspaces are
consolidated into one unified report, providing an overview
of the collected data and also the remarks provided by the
end user. The report produced can be extracted in a standard-
ized FAIR principles-compatible format [31] based on RDF
and can also be extracted in PDF format.

4 Discussion

PV activities are shifting from a traditional, passive para-
digm of the SRSs to the paradigm of ‘active pharmacovigi-
lance’, leveraging information from various available data
sources. This significant overhaul in PV is expected to be
driven by IT tools that utilize ‘intelligent’ technologies, also
as part of everyday clinical practice in order to investigate or
prevent potential ADRs.

However, these ‘intelligent’ technical paradigms come
with limitations of various kinds [9, 18], the most important
of which can be summarized as follows.

e Various kinds of biases interfere with pre-existing knowl-
edge and data typically used for training the respective
algorithms.

e The provided algorithms/tools face difficulty to perform
well in real-world conditions where data are missing or
are not perfect.

e Many AI/ML models lack in terms of explainability,
meaning they cannot be interpreted or explained in terms
of human reasoning, significantly hindering the thorough
validation of their outcomes, a process crucial for opera-
tions that are related to healthcare decisions.

A\ Adis

Until now, the adoption of these digital approaches by PV
stakeholders has been hampered due to significant limita-
tions not only related to the technical challenges of AI/ML
algorithms but also regarding the integration of these tech-
nologies as part of everyday workflow [32]. In this work, we
provide insights gained via the design process of the PVClin-
ical platform, building a KE-based platform for ADR assess-
ment. The hurdles in adopting ISs in PV activities focusing
on the clinical context are elucidated (at least partly) by the
identified UGs of the PVClinical platform. They intersect
with practically all the BPs elaborated on, however they can
be generalized when referring to the adoption of ISs in the
healthcare domain as a whole, beyond PV.

e Fragmented Medical Datasets: Typically, the avail-
able datasets in a hospital refer to mostly unstructured,
incomplete, semantically unaligned, and ‘siloed’ data
among the various departments of a healthcare facility,
e.g. hospital [33]. Moreover, when external datasets are
available, they most frequently lack formal and compu-
tationally exploitable semantics. This special and seman-
tic fragmentation of the available datasets prevents them
from being aggregated and their integration could, in
principle, be significantly facilitated by KE approaches
(e.g. via the Linked Data paradigm and the use of Seman-
tic Web technologies).

e [Inherent Technical Pitfalls of Intelligent Systems:

— Versatility is a huge issue because, in the case of
ML, most algorithms operate within very specific
scenarios, albeit the real-life demands of clinical
operations entail managing a multitude of heteroge-
neous sources, including ‘dirty’ or incomplete data.
The increasing versatility of ‘intelligent’ algorithms
is not a trivial matter but could be facilitated by
research networks where ‘real-world’ data would be
used to validate algorithms under development (e.g.
following the OHDSI initiative model®).

— Validity is also another major concern that must be
addressed, as, typically, in the healthcare context,
tools/methods, etc. are systematically validated and
regulated (e.g. via processes including clinical trials
and well-defined RM approaches). Hence, the open
availability of these IT tools (e.g. ‘intelligent’ algo-
rithms) could facilitate their wide validation [34].

— Interpretability is a very important issue in relation
to the application of ISs in the healthcare setting,
as, many times, ML algorithms in particular are
viewed as a ‘black box’, which hides the reasoning
process producing the outcomes/results. While this

8 https://www.ohdsi.org.
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Symbolic Al

Knowledge-Engineering

Resource Description Framework (RDF)
Web Ontology Language (OWL)

Non-Symbolic Al

Machine Learning

Emerging data sources

Search engine logs, social
media, lifestyle information
from various data sources

Deep Neural Networks (DNNs
Support Vector Machines (SVMs)

Integration of ISs to
facilitate the analysis of
potential Adverse Drug

Reactions (ADRs)

Actionability

® Inherent challenges of Al @ Data
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validity, interpretability, (spacial and
usability) semantic)

@ Legal / ethics /
regulatory
issues

@ Information
Security

Fig.4 Combination of symbolic and non-symbolic Al technical paradigms, along with the use of emerging data sources to tackle pharmacovigi-

lance goals and challenges. A/ artificial intelligence

might be considered as a benefit for other purposes
or domains, in the healthcare setting it is not accept-
able, as providing a clear explanation on why an IS
provides an outcome is essential in the healthcare
setting.

e Usability: User friendliness significantly affects the adop-
tion of ISs, both in and out of the clinical setting. The
pace in which doctors interact with patients and other
clinical scientists is gruelling, therefore any ISs should
generate outputs rapidly and with precision, in a con-
cise, reproducible, and validated manner [35]. To this
end, a key issue identified is the need to minimize nec-
essary user interactions, which might be disrupting, as
even in critical systems, alert fatigue can significantly
reduce acceptance. Furthermore, focusing on the use of
ISs, a major ergonomics issue is raised: How should an
end user interact with (semi)automatic ‘intelligent’ soft-
ware processes (e.g. an ML algorithm or formally stated
knowledge structures)?

e Legal Issues: Legal, ethics and regulation issues should
also be identified as an important factor regarding the
acceptance of ISs in the healthcare setting. For instance,
the liability of clinical scientists in cases of malpractice
are vague and therefore the legal framework should be
elucidated, and potentially regulated, as it could disrupt
the diagnosis, patient stratification, and therapy pro-

cesses, and beyond [34]. Obviously, these considerations
overlap with ethics issues. For example, the concept of
consent, one of the main legal and ethical cornerstones,
needs to be adapted, as getting the concept of a patient
to process his/her data using ML or KE methods when
he/she does not really understand how these algorithms
work is pointless and ethically questionable.

e Information Security: IS outcomes depend heavily on data-
sets, either in order to train ML algorithms or to construct
computationally exploitable knowledge structures (e.g.
ontologies). Thus, major issues are raised regarding data-
based biases and potentially malicious data management.

The above challenges have already been elaborated, to
some extent, in various articles [18-20, 36]. In this paper,
we describe the user-centred design approach applied in the
PVClinical platform design, based on a ‘design thinking’
approach and ‘think aloud’ sessions. Typically, usability
studies based on ‘think aloud’- or ‘design thinking’- based
approaches engage a small number of end users. Therefore,
the data supporting the respective conclusions are insuffi-
cient and subjectively interpreted. As such, these data could
be considered (at least to some extent) biased and this could
be considered a limitation of the present study too.

Based on this work, we argue that beyond these chal-
lenges, actionability should be defined as one of the top
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priorities for the design of ISs. In using the term action-
ability, we refer to the ability of exploiting the system func-
tionality provided, not only in terms of better understanding
or explaining the data but also in terms of decision making
regarding healthcare, regulatory or administrative issues.
Based on the BPs elaborated on and the insights provided
by end users, actionability would be the term used to sum-
marize the need to proceed further rather than just navi-
gating among the data, towards using the BPs as part of a
concrete decision-making process. For example, identify-
ing specific metrics and thresholds for each data source (or
combination of data sources) could significantly facilitate
the overall interpretation, and therefore the benefit, of adopt-
ing such tools. Especially in the context of clinical practice,
where HCPs are not very familiar with PV metrics and their
priority is not to elaborate on the respective statistics but
rather make a clinical decision, it is crucial to provide them
with not only data but also specific actionable guidelines,
e.g. well-defined and clear-cut statistical value thresholds,
facilitating their decisions. To this end, while the guidelines
regarding the adoption (testing, etc.) of ‘intelligent’ applica-
tions in the context of Drug Safety is actively evolving (e.g.,
the US FDA has recently published an action plan on the
use and regulation of ‘Artificial Intelligence/Machine Learn-
ing (AI/ML)-Based Software as a Medical Device (SaMD)
Action Plan’ [37]), the discussion is still not yet sufficiently
focused on the decision-making process (Fig. 4).

Based on a white paper produced by Oracle emphasizing
the data challenges in PV [38], over 60% of PV stakehold-
ers deploy or plan to deploy ISs. In order to overcome the
above challenges, both technical and procedural advances
are required. In terms of technical approaches, many of the
above challenges are imposed by the hype of using ‘black-
box’-based ML algorithms (non-symbolic Al), which pro-
vide no clear explanation of the reasoning process producing
the respective outcome. We argue that KE-based approaches
(symbolic AI) should be more heavily employed and alter-
native schemes such as hybrid intelligence [39] should also
be investigated. Regarding the procedural issues, the need
to move beyond data science to clinically related validation
schemes is emphasized [40]. Furthermore, it is also evident
that organizations need to prepare before adopting ISs in
everyday practice [41]. Particularly regarding the informa-
tion security challenges, a threat analysis or gap analysis
[42] should be conducted prior to the deployment of ISs
in order to mitigate potential risks. Furthermore, the barri-
ers and facilitators regarding the adoption of IT systems in
healthcare should also be taken into account [43].

° https://www.gartner.com/en/documents/3887767/understanding-
gartner-s-hype-cycles.
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5 Conclusion

Conclusively, we argue that the use of ISs in healthcare is
moving towards the ‘trough of disillusionment’ in terms of
the Gartner hype cycle,” with some prominent examples
showing great promise without yet confirming them in real-
world healthcare practice [44]. However, given the advance-
ment pace of ISs, their wide adoption in other domains and
their huge potential benefits, their future use in the health-
care setting, including for PV purposes, seems certain, in
spite of the lack of their current adoption. The develop-
ment of ISs and their potential benefits and risks could be
considered in analogy with the challenges imposed by the
development of drugs in the 20th century. In terms of drug
safety per se, beyond the ongoing ‘disillusionment’ phase,
the integration of ISs should take into account user-centric
design approaches to identify operational and usability
gaps in order to facilitate the adoption of ISs and maximize
their potential impact, further elaborating on ‘actionability’
aspects.
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