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The spread of AI-embedded systems involved in human decision making makes it critical to build these systems according to
trustworthiness standards. To understand whether this goal was achieved, users’ trust in these systems must be studied. However,
empirically investigating trust is challenging. One reason is the lack of standard protocols to design trust experiments. To get an
overview of the current practices in the experimental protocols for studying trust in the context of AI-assisted decision making, we
conducted a systematic review of such papers. We annotated, categorized, and analyzed them along the constitutive elements of an
experimental protocol (i.e., participants, task). Drawing from empirical practices in social and cognitive studies on human-human trust,
we provide practical guidelines and research opportunities to improve the methodology of studying Human-AI trust in decision-making
contexts. In this workshop, we would like to start the discussion about how these guidelines and research questions can be used in the
laboratory and in the wild.
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1 INTRODUCTION

Artificial Intelligence (AI) has acquired a critical role in assisting humans in making sensitive decisions such as hiring
[9], treatment assignment [8], or criminal investigation processes [22], to name a few. In such situations, humans make
decisions based on their own expertise and on recommendations provided by an AI-based algorithm (e.g. data-driven
models, knowledge-based models, etc.), which we call AI-assisted decision-making. On the one hand, AI-assisted
decision making has been shown to improve medical assistance [15, 21], reduce costs of public and business services, and
enhance security. On the other hand, it may also lead to compromising safety and health of individuals, discrimination,
and harming human dignity [5, 17]. Building a collaborative partnership between human deciders and AI-embedded
system is therefore a challenge and most critically relies on trust from the users towards the systems [10].

Designing trustworthy AI has been reported by international institutions (European Commission [5], G20 [7]) and
governments (USA [3, 16], Estonia [23], or France [24]) have highlighted the need for considering trust in the design of
∗Both authors contributed equally to this research.
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AI. In the private sectors, companies such as AXA [6], Accenture [20], or KPMG [12] are also taking this path of research
in order to foster trust by going beyond system’s accuracy, promoting privacy, security, algorithm accountability and
transparency. To evaluate whether one succeeded in building a trustworthy system, one has to measure study users’
trust in it. Thus, designing and ensuring trustworthy AI has raised interest in HCI. For instance, previous work has
looked at what factors influence users’ trust and how [4, 19, 26], how trust is established and developed [2, 18, 25],
and how it can be modeled [1, 11]. However, trust remains a highly challenging theoretical concept to study due to its
multidisciplinary and multifacet nature [13, 14]. To address this, the literature does not yet provide guidelines that
support the empirical study of human trust in AI-based decision support systems.

2 SYSTEMATIC REVIEW AND FINDINGS

In this article, we focused on how to appropriately assess trust between human-users and AI-embedded systems in
decision making. Therefore, we investigated questions such as: Which measures to use to study trust? What kind of
task to give to users to correctly measure trust? How to include the key elements of trust in an experimental protocol?

To tackle them, we present a comprehensive survey of the experimental methodologies set to investigate trust in
AI-assisted decision making. In ACM Digital Library, we searched full papers that had empirical studies of trust with
human participants who made final decisions based on the recommendations of AI-based systems. We found 83 papers
(mostly published in the past 15 years), and annotated, categorized, and summarized their definitions and methods
(both quantitative and qualitative) of trust. Through this literature review, we identified good practices in the current
theoretical and experimental approaches, as well as potential caveats, allowing us to draw guidelines and research
opportunities in the experimental study of trust in AI-assisted decision making.

Our three main findings are: 1) the three theoretical elements of trust, vulnerability, positive expectations, and
attitude are not fully integrated in the reviewed papers’ experimental protocols and qualitative measurements. There is
therefore a risk that some empirical studies capture constructs other than trust (confidence, distrust, and reliance); 2) a
large variability among the designs and measurements used to assess trust which can impair validity and replicability;
and 3) the challenge of investigating the dynamics of trusts considering the constraints of laboratory experiments and
the applicability of existing methods.

Based on these findings, we proposed a set of 16 guidelines (G) to help researchers in the design of experimental
protocols that would prevent the identified caveats in the study of trust in the specific context of AI-assisted decision
making. In complement to guidelines, we identify 9 research opportunities (RO) regarding the elaboration of practical
methods to studying trust and its dynamics in laboratory experiments or the investigation of relevant factors (e.g.
individual differences, task outcomes) on Human-AI trust (see Table 1 for the full list).

3 USE OF THE TRUST EVALUATION GUIDELINES IN CONTROLLED SETTINGS

While we derived the guidelines, they are only as useful as much they are employed. We illustrate a case example to show
how to apply our guidelines (and more generally this review) in practice. Consider designers who have been working on
an AI-embedded system for college recruitment following principles of trustworthy AI and would like to evaluate users’
trust in it. First, they are familiarized with what trust is (G1). They can avoid confusing terminology in their literature
review search and write-up (G2). Reminded that individual differences such as age, gender, cultural background can
contribute to trust variance (G3, G4), designers make sure to explore this in their analysis (RO1). Additionally, we
can bring attention of the system’s developers to the fact that college decisions might be made in group, rather than
individually, (RO2) and to the fact that university using AI for candidates selection can affect indirect stakeholders -
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Sections Guidelines Research Opportunities
Definition (G1) Provide a clear definition of trust

(G2) Prevent any confusion between trust and related con-
structs

Participants (G3) Assess the expertise and prior experience of users (RO1) Investigate individual differences
(G4) Consider users’ self-confidence (RO2) Investigate how groups of users trust an AI-

embedded system
(G5) Favour a higher number of participants (RO3) Investigate how AI-embedded systems are perceived

by indirectly impacted stakeholders
Task (G6) Consider alternative interaction flows (RO4) Investigate the impact of the interaction flows, as

factors, on trust
(G7) Ensure to involve vulnerability (RO5) Investigate the impact of delayed feedback on the

dynamics of trust
(G8) Assess participants’ likeliness to exhibit realistic be-
haviors

(RO6) Investigate to what extent virtual outcomes might
replace real ones

Procedure and Design (G9) Ensure to control initial participants’ expectations (RO7) Investigate new methodologies to assess dynamic
trust in practice

(G10) Favour interactions over a long period of time
Quantitative measures (G11) Favour the use of well-established questionnaires

that comprise the key elements of trust
(RO8) Investigate whether single-item questionnaires cap-
ture trust as well as other measures

(G12) Report psychometric statistics (RO9) Explore more fundamental correlates between phys-
iological sensing and trust

(G13) Use the term “trust-related behavioral measure” to
avoid theoretical confusion
(G14) Favour measures relative to the system’s precision

Qualitative measures (G15) Increase empirical rigor when reporting on qualita-
tive methods
(G16) Adopt under-used qualitative methods for study-
ing trust (Critical Incident Technique, Repertory Grid,
Hermeneutics)

Table 1. Summary of the main guidelines and research opportunities organized according to the constructive elements of an
experimental protocol.

students (RO3). While developing an experimental protocol, designers are reminded that their participants have to have
something at stake while doing the task (G7, G8), so introducing real or virtual consequences immersive enough is
important. Designers also learn about the importance of the first impressions for participants’ trust formation (G9),
which can be facilitated with describing how the system was trained, announcing system’s accuracy or making the
first recommendations always correct. Because of the dynamic, that is changing, nature of trust, they can understand
that their study should allow for an interaction long enough to record multiple stages of trust development (G10). This
would also encourage them to explore which trust measures are more suitable for this (RO7, RO8, RO9). Lastly, this
paper will help developers select an appropriate trust questionnaire (G11) and remind them what questionnaire-related
statistics should be reported (G12), and will familiarize them with other trust-related measures, which do not measure
trust directly (G13). If developers decide to conduct qualitative studies with their participants, we provide them with
some examples of appropriate tools (Critical Incident Technique, Repertory Grid, Hermeneutics) to run, analyze and
report one (G15, G16).

4 USE OF THE TRUST EVALUATION GUIDELINES IN REAL-WORLD SETTINGS

Our guidelines have been predominantly based on the studies done in the laboratory settings, whereas little is known
about how trust is evaluated with the real AI-embedded systems for decision making in the field. How often do
practitioners evaluate these systems with potential users, and is trust one of the aspects discussed? When talking
about "trustworthy", do practitioners consider what users feel while using the system or is "trustworthiness" just
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one of the metrics for the systems’ technical performance? If the latter is the case, one should not assume that if a
system is considered trustworthy based on technical criteria, users will automatically trust it. Therefore, we believe
that practitioners in the field would benefit from these guidelines, too, and are looking forward the discussion on how
to adapt them in the real life context.
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