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Abstract. The Sea Ice Evaluation Tool (SITool) described in
this paper is a performance metrics and diagnostics tool de-
veloped to evaluate the skill of Arctic and Antarctic model
reconstructions of sea ice concentration, extent, edge loca-
tion, drift, thickness, and snow depth. It is a Python-based
software and consists of well-documented functions used to
derive various sea ice metrics and diagnostics. Here, SITool
version 1.0 (v1.0) is introduced and documented, and is then
used to evaluate the performance of global sea ice reconstruc-
tions from nine models that provided sea ice output under
the experimental protocols of the Coupled Model Intercom-
parison Project phase 6 (CMIP6) Ocean Model Intercompar-
ison Project with two different atmospheric forcing datasets:
the Coordinated Ocean-ice Reference Experiments version
2 (CORE-II) and the updated Japanese 55-year atmospheric
reanalysis (JRA55-do). Two sets of observational references
for the sea ice concentration, thickness, snow depth, and ice
drift are systematically used to reflect the impact of observa-
tional uncertainty on model performance. Based on available
model outputs and observational references, the ice concen-
tration, extent, and edge location during 1980–2007, as well
as the ice thickness, snow depth, and ice drift during 2003–
2007 are evaluated. In general, model biases are larger than
observational uncertainties, and model performance is pri-
marily consistent compared to different observational refer-
ences. By changing the atmospheric forcing from CORE-II
to JRA55-do reanalysis data, the overall performance (mean
state, interannual variability, and trend) of the simulated sea
ice areal properties in both hemispheres, as well as the mean
ice thickness simulation in the Antarctic, the mean snow

depth, and ice drift simulations in both hemispheres are im-
proved. The simulated sea ice areal properties are also im-
proved in the model with higher spatial resolution. For the
cross-metric analysis, there is no link between the perfor-
mance in one variable and the performance in another. SITool
is an open-access version-controlled software that can run on
a wide range of CMIP6-compliant sea ice outputs. The cur-
rent version of SITool (v1.0) is primarily developed to evalu-
ate atmosphere-forced simulations and it could be eventually
extended to fully coupled models.

1 Introduction

Most regional and global climate models now include an in-
teractive sea ice model, reflecting the reality that sea ice plays
a fundamental role in the polar environment, by influencing
air–ice and ice–sea exchange, atmospheric and oceanic pro-
cesses, and climate change. Large inter-model spread exists
in the performance of sea ice simulations in the Coupled
Model Intercomparison Project phase 5 (CMIP5) for both
the Arctic and Antarctic (Massonnet et al., 2012; Stroeve
et al., 2012, 2014; Turner et al., 2013; Zunz et al., 2013;
Shu et al., 2015). Some improvements are identified in the
CMIP6 models: (1) a more realistic estimate of sea ice loss
for a given amount of CO2 emissions and global warming in
the Arctic (Notz et al., 2020), (2) reduced inter-model spread
in summer and winter ice area and improved ice concentra-
tion distribution in the Antarctic (Roach et al., 2020), and
(3) lower inter-model spread in the mean state and trend of
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both the Arctic and Antarctic ice extents (Shu et al., 2020).
However, sea ice projections and evaluations are still not sys-
tematic, and, to date, no tool allows precise tracking of sea
ice model performance through time from one version to the
next. The Earth System Model Evaluation Tool (ESMVal-
Tool) has been developed for routine evaluation of climate
model simulations in CMIP including many components of
the Earth system (Eyring et al., 2016, 2020). It is an efficient
tool to obtain a broad view on the overall performance of a
climate model, and it provides sea ice diagnostics on the ice
concentration and extent, as well as relationships between
sea ice variables. In addition to sea ice diagnostics, the Sea
Ice Evaluation Tool (SITool) introduced in this paper pro-
vides systematic sea ice metrics for assessing large-scale sea
ice simulations from various aspects.

SITool has been designed to describe inter-model differ-
ences quantitatively and to help teams managing various ver-
sions of a sea ice model, detecting bugs in newly developed
versions, or tracking the time evolution of model perfor-
mance. SITool quantifies the performance of sea ice model
simulations by providing systematic and meaningful sea ice
metrics and diagnostics on each sea ice variable with thor-
ough comparisons to a set of observational references. Arc-
tic and Antarctic performance metrics and diagnostics on ice
coverage, drift, thickness, and snow depth are provided from
seasonal to multi-decadal timescales whenever observational
references are available. These sea ice metrics give a detailed
view of sea ice state and highlight major deficiencies in the
sea ice simulation. SITool is written in the open-source lan-
guage Python and distributed under the Nucleus for Euro-
pean Modelling of the Ocean (NEMO) standard tools. SITool
is provided with the reference code and documentation to
make sure the final results are traceable and reproducible.

Here, SITool version 1.0 (v1.0) is applied to evaluate the
performance of Arctic and Antarctic historical sea ice simu-
lations under the experimental protocols of the CMIP6 Ocean
Model Intercomparison Project (OMIP, Griffies et al., 2016).
OMIP provides global ocean–sea ice model simulations with
a prescribed atmospheric forcing, which gives us the op-
portunity to intercompare sea ice model performance un-
der fully controlled conditions. In OMIP, two streams of
experiments were carried out: OMIP1, forced by the Co-
ordinated Ocean-ice Reference Experiments version 2 in-
terannual forcing (CORE-II, Large and Yeager, 2009), and
OMIP2, forced by the updated Japanese 55-year atmospheric
reanalysis (JRA55-do, Tsujino et al., 2018). The OMIP pro-
tocol ensures a close experimental setup among the differ-
ent models. Models were run with both atmospheric forc-
ings, when possible, to identify and attribute the influences
of changed atmospheric forcings on sea ice characteristics.
Tsujino et al. (2020) and Chassignet et al. (2020) evaluated
the impact of atmospheric forcing and horizontal resolution
on the global ocean–sea ice model simulations based on the
experimental protocols of OMIP provided by model groups
participated in this intercomparison project. Their studies fo-

cused on the evaluation of ocean components from sea sur-
face height, temperature, salinity, mixed layer depth, and ki-
netic energy to circulation changes. Some aspects of sea ice
simulations are assessed in both hemispheres relative to an
observational dataset. Tsujino et al. (2020) provide spatial
maps of the 1980–2009 mean ice concentration and time se-
ries of ice extent in summer and winter, and Taylor diagrams
of the interannual variations of ice extent under CORE-II
and JRA55-do forcings. Chassignet et al. (2020) show spa-
tial maps of the 1980–2018 mean ice concentration and ice
thickness in summer and winter, and time series of annual
mean ice extent and ice volume under different horizontal
resolutions. In this paper, we focus on the sea ice in OMIP
simulations available from the Earth System Grid Federation
in a more systematic manner, including more sea ice vari-
ables (e.g., ice-edge location, snow depth, and ice drift). The
performance metrics and diagnostics (spatial maps and/or
time series diagrams) for each ice variable are provided com-
pared to two sets of observational references when data are
available to appreciate the importance of observational un-
certainty in the assessment.

This paper is organized as follows. SITool (v1.0) with
the details of sea ice metrics and diagnostics is described in
Sect. 2. The CMIP6 OMIP models and observational refer-
ences are introduced in Sect. 3. In Sect. 4, the application of
SITool (v1.0) to CMIP6 OMIP and the results of the model
performance are presented and discussed. Finally, conclu-
sions and discussion are provided in Sect. 5. Appendix A
presents some additional sea ice diagnostics. The source code
of SITool (v1.0) used to assess the model skills is publicly
available in the repository as shown in the “Code and data
availability” section.

2 Overview of SITool (v1.0)

A schematic overview of SITool (v1.0) workflow and its ap-
plication in evaluating the CMIP6 OMIP model performance
is shown in Fig. 1. The input sea ice data from model outputs
and observations are detailed in Sect. 3. The methods of the
metrics calculation are discussed below in Sect. 2.1 followed
Massonnet et al. (2011) with some modifications. Namely,
(1) more observational references are used to calculate the
observational errors, and the incorporation of observational
errors is a prerequisite to do the comparisons here; (2) ice-
edge location and snow depth metrics are included; (3) the
method to calculate the vector correlation coefficient is up-
dated. SITool (v1.0) also produces additional sea ice diag-
nostics (spatial maps and time series diagrams) to help under-
stand why metrics vary from one dataset to the next. Table 1
provides an overview of the diagnostic fields along with in-
put variables, output results and corresponding figures in this
paper, Python scripts in the repository, and comments. All
the sea ice data from model outputs and observational ref-
erences are regridded to the polar stereographic 25 km res-
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Figure 1. Schematic overview of SITool (v1.0) and its application to the CMIP6 OMIP model evaluation.

olution grid using a kd-tree (k-dimensional, Bentley, 1975)
nearest-neighbor interpolation method provided by a Python
package (a component of the SITool workflow). The kd tree
is a binary search tree with a two-dimensional spatial index
structure for use in this study. The interpolation yields less
than 5 % error for each sea ice variable (not shown), which
indicates that the results are not sensitive to the interpolation
method used here. This interpolation allows point-by-point
comparison and avoids the systematic bias of sea ice extent
under different grids, due to differences in land–sea masks.

2.1 Sea ice metrics and diagnostics

The general approach to derive metrics is by computing
scaled absolute errors. We first compute the errors (in abso-
lute value) between some simulated characteristics (e.g., sea
ice extent) in individual models and the corresponding char-
acteristic in observational references, respectively. Then, we
scale these errors by a typical error to finally get the corre-
sponding metric. The typical error is defined as the absolute
difference of the relevant characteristic between two obser-
vational references when observations are available and is
therefore a proxy for observation uncertainty. Because our
metrics are defined as scaled absolute errors, they are ori-
ented positively meaning that lower values indicate better
skill, and a value of 1 means that model error is compara-
ble to observational uncertainty.

2.1.1 Sea ice concentration, extent, and edge location

The methods to calculate the metrics of ice concentration
on the mean state, interannual variability, and trend in both
hemispheres are introduced here. The consistent equations
used to calculate the differences of the mean state (Mean-
diff), interannual variability (SDdiff), and trend (Trenddiff)
between two datasets are shown below:
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∑n=12
n=1

[∑i=N
i=1 |C

n, i
0M −C

n, i
1M |×Ai∑i=N

i=1 Ai

]
×Dn∑n=12

n=1 Dn
(1)

SDdiff=

∑i=N
i=1 |SD

(
Ci0−C

i
0M
)
−SD

(
Ci1−C

i
1M
)
| ×Ai∑i=N

i=1 Ai
(2)

Trenddiff=

∑i=N
i=1 |trend

(
Ci0−C

i
0M
)

−trend
(
Ci1−C

i
1M
)
| ×Ai∑i=N

i=1 Ai
, (3)

where n= 1, . . . , 12 and i = 1, . . . ,N denotes the 12 months
and the grid cells, respectively, C0M and C1M are monthly
mean ice concentrations from two datasets used to do the
comparison, A and D are grid cell area and the days in each
month, respectively, C0 and C1 are monthly ice concentra-
tions from two datasets, and “SD” is the abbreviation of stan-
dard deviation. For the mean state evaluation, we compute
the monthly mean ice concentration over the study period
(1980–2007 for the CMIP6 OMIP model evaluation) and
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Table 1. Overview of the diagnostic fields along with input variables, output results and corresponding figures in this paper, Python scripts
in the repository, and comments.

Diagnostic fields Input variables Output results
(figure(s))

Python scripts Comments

Sea ice concentration Ice concentration (%),
grid cell area (m2)

Metrics (Fig. 2), spatial
maps (Figs. A1–A4)

siconc.py Metrics: 1980–2007 mean state,
interannual variability, and trend of
ice concentration simulation.
Spatial maps: 1980–2007 February
and September mean ice
concentration differences
in both hemispheres

Sea ice extent Ice concentration (%),
grid cell area (m2)

Metrics (Fig. 5a, b),
time series diagrams
(Figs. 3–4)

siext.py Metrics: similar to ice concentration
evaluation.
Time series diagrams: 1980–2007
mean seasonal cycle, monthly anoma-
lies and trends of ice extent in both
hemispheres

Sea ice edge Ice concentration (%),
grid cell area (m2)

Metrics (Fig. 5c), time
series diagrams (Fig. 6)

siedge.py Metrics: 1980–2007 mean state ice
edge location simulation.
Time series diagrams: 1980–2007
mean seasonal cycle of IIEE in both
hemispheres

Sea ice thickness Ice thickness (m) Metrics (Fig. 7a),
spatial maps
(Figs. A5–A6)

sithick.py Metrics: 2003–2007 mean state ice
thickness simulation.
Spatial maps: 1980–2007 February
(Arctic) and September (Antarctic)
mean ice thickness differences

Snow depth Snow depth (m) Metrics (Fig. 7b),
spatial maps
(Figs. A7–A8)

sndepth.py Metrics: 2003–2007 mean state snow
depth simulation.
Spatial maps: 1980–2007 February
(Arctic) and September (Antarctic)
mean snow depth differences

Sea ice drift (magnitude
and direction)

Ice velocity in
x direction (m s−1),
ice velocity in
y direction (m s−1)

Metrics (Fig. 10),
spatial maps
(Figs. 8–9, A9–A12)

sidrift.py Metrics: 2003–2007 mean kinetic
energy and vector correlations.
Spatial maps: 2003–2007 significant
ice-motion vector correlation
coefficients; 2003–2007 February and
September mean ice-motion mean ki-
netic energy differences in both hemi-
spheres

calculate the absolute difference between each model output
and the observational reference over 12 months at each grid
cell as shown in Eq. (1). For the interannual variability and
trend evaluation, we compute the standard deviation and lin-
ear regression on the monthly anomalies of ice concentration
over the study period and compute the absolute difference be-
tween each model output and the observational reference at
each grid cell as shown in Eqs. (2) and (3). Then we average
these errors spatially weighted by grid cell areas. The typi-
cal errors are the differences between two observational ref-
erences on the mean state, interannual variability, and trend

by applying the same method shown before. The differences
between each model output and the observational reference
are computed and scaled by corresponding typical errors to
get the metrics on ice concentration. The September (Febru-
ary) mean ice concentration differences between each model
output and the observational reference, and between two ob-
servational references in both hemispheres, are provided for
diagnosis. These representative months of the summer and
winter are selected because normally they, respectively, cor-
respond to the minimum and maximum seasonal values of
sea ice extent for both hemispheres in observations.
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The ice extent is calculated as the total area of grid cells
with the ice concentration above 15 %. The same procedure
is followed for ice extent metrics calculation as for ice con-
centration, except for the spatial averaging since ice extent
is already an integrated quantity. The mean seasonal cycle,
monthly anomalies, and trend of ice extent in both hemi-
spheres from different models and two observational refer-
ences are provided for diagnosis.

The integrated ice-edge error (IIEE) is the total area where
the models and observational references disagree on the ice
concentration being above or below 15 % including both
the ice extent error and a misplacement error (Goessling et
al., 2016). For the mean IIEE evaluation, we compute the
monthly mean IIEE between each model output and the ob-
servational reference over the study period. The typical error
is the mean IIEE between two observational references them-
selves. The differences between each model output and the
observational reference are computed and scaled by the typi-
cal error to get the metric on the ice-edge location. The mean
seasonal cycles of IIEE between each model output and the
observational reference, and between two observational ref-
erences in both hemispheres, are provided for diagnosis.

2.1.2 Sea ice thickness and snow depth

The same procedure is followed for ice thickness and snow
depth metrics calculation as for ice concentration, except
for the spatial averaging with equal weight. For the CMIP6
OMIP model evaluation before 2007, the ice thickness and
snow depth observations are limited to some months. Be-
cause the observational data are not complete to calculate
differences between two observational references, the typical
errors of ice thickness and snow depth are computed from
the ice thickness and snow depth uncertainties of specific
months from Envisat data. The mean winter (February for
the Arctic and September for the Antarctic) ice thickness and
snow depth from ESA’s Environmental Satellite (Envisat)
radar altimeter data and the differences between model out-
puts and Envisat data are provided for diagnosis in this study.
The mean ice thickness and snow depth differences of other
months in both hemispheres can be provided for diagnosis in
the future during other study periods when observational ref-
erences are available. This is not included in this study due
to the limited observations for the evaluation before 2007.

2.1.3 Sea ice drift

The ice drift metrics include the evaluation of both the mag-
nitude and direction of ice vectors by calculating the mean
kinetic energy (MKE) and vector correlation of the ice vec-
tors. The MKE is computed as

MKE=
1
2

(
u2
+ v2

)
, (4)

where u and v are zonal and meridional components of ice
drift, respectively. For the MKE evaluation, we compute the

monthly mean MKE over the study period and calculate the
absolute difference between individual models and observa-
tional references over the 12 months at each grid cell. Then
we average these errors spatially with equal weight. The typ-
ical error is the difference between two observational refer-
ences of the MKE by applying the same method discussed
before. The differences between each model output and the
observational reference are computed and scaled by the typ-
ical error to get the metric on the ice drift magnitude.

The monthly mean ice vectors during the study period
from individual models and observational references are cor-
related at each grid point by using a vector correlation mea-
sure, which is a generalization of the simple correlation co-
efficient between two scalar time series (Holland and Kwok,
2012). The vector correlation coefficient r2 is computed by
following the equations in Crosby et al. (1993), and the corre-
lation coefficient is scaled (by a value of 2) to keep it between
0 and 1 in our study. The nr2 follows the χ2 distribution
with 4 degrees of freedom, and the correlations are signifi-
cant at a level of 99 % when nr2>8 with samples less than
64 based on the cumulative frequency distributions in Crosby
et al. (1993). The significant correlation coefficients between
individual models and observational references, and between
two observational references are provided for diagnosis at
each grid cell. Then we average these significant correlation
coefficients spatially with equal weight. The typical correla-
tion coefficient is a spatially averaged correlation coefficient
between two observational references. As higher correlation
coefficients indicate better skill, the typical correlation co-
efficients are scaled by the correlation coefficients between
individual models and observational references to make it
consistent with other metrics (lower values indicate better
skill). The September (February) MKE differences and ice-
motion vector correlation coefficients between each model
output and the observational reference, and between two ob-
servational references in both hemispheres, are provided for
diagnosis.

2.2 Models and observational references

In this study, SITool (v1.0) is used to evaluate the CMIP6
OMIP model skills in simulating the historical sea ice prop-
erties for both hemispheres. The CMIP6 OMIP models and
a set of observational references providing ice concentration,
thickness, snow depth, and ice drift are introduced in this sec-
tion. Two sets of observational references for each sea ice
variable are used for comparison.

The CMIP6 OMIP models used are shown in Table 2 with
model details such as atmospheric forcing, ocean models,
sea ice models, spatial resolution, and related references. A
major improvement in JRA55-do atmospheric forcing rela-
tive to the CORE-II forcing is the increased temporal fre-
quency from 6 to 3 h and horizontal resolution from 1.875 to
0.5625◦. The surface fields of JRA55-do forcing have been
adjusted to match reference datasets based on high-quality
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satellite observations and several other atmospheric reanaly-
sis products, as detailed in Tsujino et al. (2018). Nine models
were run with either CORE-II or JRA55-do forcing; five of
them were forced by both CORE-II and JRA55-do reanal-
ysis; out of the four remaining models, one of them was
forced by JRA55-do reanalysis only, and the other three were
forced by CORE-II reanalysis only. The CMCC-CM2-HR4
(∼ 0.25◦) and CMCC-CM2-SR5 (∼ 1◦) models are differ-
ent in spatial resolution, which provides an opportunity to
identify the influence of model resolution on sea ice simula-
tion. The CORE-II forcing dataset has not been updated since
2009 and the two Geophysical Fluid Dynamics Laboratory
(GFDL) models only provide the model outputs until 2007.
This is why the evaluation period is chosen as 1980–2007
for ice concentration, extent, and edge location (the corre-
sponding observations are available from 1980). The evalua-
tion period is 2003–2007 for ice thickness, snow depth, and
ice drift because some observational references are limited
before 2003, and then the corresponding metrics are only on
the mean state. The evaluation period can be extended in the
future when different model and observational datasets are
considered.

The observational reference products for sea ice concen-
tration, thickness, snow depth, and ice drift used to com-
pare with model simulations are summarized in Table 3. The
first ice concentration product derives from the passive mi-
crowave data of the Scanning Multichannel Microwave Ra-
diometer (SMMR), the Special Sensor Microwave Imager
(SSM/I), and the Special Sensor Microwave Imager/Sounder
(SSMIS), which are processed by using the NASA Team
algorithm (NSIDC-0051, Cavalieri et al., 1996). The other
product is based on the same raw data but uses the EUMET-
SAT Ocean and Sea Ice Satellite Application Facility algo-
rithm (OSI-450, Lavergne et al., 2019).

Our first ice thickness product is derived from the mea-
surements of ESA’s Envisat radar altimeter and provided
by the Centre of Topography of Oceans and Hydrosphere
(CTOH, Guerreiro et al., 2017). The other ice thickness prod-
uct is from the measurements of the NASA’s Ice, Cloud, and
land Elevation Satellite (ICESat) Geoscience Laser Altime-
ter System (GLAS), and reprocessed separately for the Arc-
tic (NSIDC-0393, Yi and Zwally, 2009) and Antarctic (Kurtz
and Markus, 2012). The sea ice freeboard is less uncertain
in observations than thickness; however, only five CMIP6
OMIP models at present provide sea ice freeboard, and the
model’s seawater densities, sea ice densities, and snow den-
sities are not provided to calculate the freeboard. The En-
visat data include ice thickness and thickness uncertainties
from November to April for the Arctic with coverage up to
81.5◦ N and May to October for the Antarctic from 2003.
The ICESat data used here include 13 measurement cam-
paigns for the Arctic and 11 for the Antarctic during 2003–
2007, and these campaign periods are limited to the months
of February–March, March–April, May–June, and October–
November with each roughly 33 d. The comparisons between

individual models and the two observational references are
thus restricted to these months when data are available. The
months chosen for the comparison are different from two ice
thickness observational references, which can contribute to
the differences in ice thickness performance metrics.

The Envisat thickness data also include snow depth and
associated uncertainty. The other snow depth product derives
from a Lagrangian snow-evolution model (SnowModel-LG)
forced by the European Centre for Medium-Range Weather
Forecasts (ECMWF) fifth-generation (ERA5) atmospheric
reanalysis, and NSIDC sea ice concentration and trajec-
tory datasets (Liston et al., 2020; Stroeve et al., 2020). The
SnowModel-LG data are only provided for the Arctic Ocean.
The SnowModel-LG data used to do the comparison are for
the same months as the Envisat data from 2003–2007.

The first ice drift product is processed by NSIDC and
enhanced by the Integrated Climate Data Center (ICDC-
NSIDCv4.1). This product derives from SMMR, SSM/I, SS-
MIS, and the Advanced Very High Resolution Radiometer
(AVHRR) for the Antarctic. In addition to the above data,
data of the Advanced Multichannel Scanning Radiometer-
Earth Observing System (AMSR-E), observations of the In-
ternational Arctic Buoy Program (IABP), and ice drift de-
rived from NCEP/NCAR surface winds are used for the
Arctic Ocean. The second ice drift dataset is processed by
Kimura et al. (2013) and derived from the AMSR-E data for
both hemispheres from 2003.

The ice vectors are reprocessed before calculating the ice
drift metrics. The ice vectors from observational references
and models are rotated and interpolated to the polar stere-
ographic grid. The monthly mean ice vectors of the obser-
vational references are computed when there are more than
10 d with valid daily drift data. The ICDC-NSIDCv4.1 ice
drift data were shown to be biased low (i.e., too slow) rel-
ative to buoy data (Schwegmann et al. 2011; Barthélemy et
al., 2018) and is therefore corrected by multiplying the drift
components with a correction factor of 1.357 (Haumann et
al., 2016). The ice vectors from observational references and
models are removed when ice concentrations are below 50 %,
or the data are closer than 75 km to the coast, or with a spu-
rious value, to reduce the spatial and temporal noise by fol-
lowing Haumann et al. (2016).

3 SITool application and results

SITool (v1.0) described in Sect. 2 is applied in this sec-
tion to assess the performance of the sea ice simulations
for both hemispheres carried out under the CMIP6 OMIP1
and OMIP2 protocols. Models forced by CORE-II atmo-
spheric reanalysis data (OMIP1) or JRA55-do reanalysis data
(OMIP2) are marked as <model name+ /C or /J>, respec-
tively. The OMIP1 and OMIP2 model means shown below
are from the five models of CMCC-CM2-SR5, EC-Earth3,
MIROC6, MRI-ESM2-0, and NorESM2-LM, providing both
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Table 2. The details of nine CMIP6-OMIP models evaluated in the study.

Model Institution Atmospheric forcing Ocean model Sea ice model Spatial resolution References

CMCC-CM2-HR4 CMCC JRA55-do NEMO3.6 CICE4 ORCA-0.25◦ Cherchi et al. (2019)
CMCC-CM2-SR5 CMCC CORE-II/JRA55-do NEMO3.6 CICE4 ORCA-1◦

EC-Earth3 EC-Earth CORE-II/JRA55-do NEMO3.6 LIM3 ORCA-1◦ EC-Earth consortium (2019)

GFDL-CM4 NOAA GFDL CORE-II OM4 SIS2 Tripolar, ∼ 0.25◦ Held et al. (2019)

GFDL-OM4p5B NOAA GFDL CORE-II OM4 SIS2 Tripolar,
∼ 0.5◦

Zadeh et al. (2018)

IPSL-CM6A-LR IPSL CORE-II NEMO-OPA LIM3 eORCA-1◦ Boucher et al. (2020)

MIROC6 JAMSTEC-
AORI-NIES-
RCCS

CORE-II/JRA55-do COCO 4.9 COCO 4.9 Tripolar,
∼ 1◦× (0.5–1)◦

Tatebe et al. (2019)

MRI-ESM2-0 MRI CORE-II/JRA55-do MRI. COM4.4 MRI. COM4.4 Tripolar,
∼ 1◦× (0.3–0.5)◦

Yukimoto et al. (2019)

NorESM2-LM NorESM CORE-II/JRA55-do BLOM CICE 5.1.2 Tripolar,
∼ 1◦× (0.25–1)◦

Seland et al. (2020)

Table 3. Observational references used to compare with model simulations.

Variable
(period)

Dataset name References Available online at (last access: 11 October 2021)

Sea ice
concentration
(1980–2007)

NSIDC-0051 Cavalieri et al. (1996) https://nsidc.org/data/nsidc-0051

OSI-450 Lavergne et al. (2019) https://osi-saf.eumetsat.int/products/sea-ice-products

Sea ice
thickness
(2003–2007)

Envisat Guerreiro et al. (2017) http://ctoh.legos.obs-mip.fr/data/sea-ice-products/
sea-ice-thickness

ICESat NH: Yi and Zwally (2009)
SH: Kurtz and Markus (2012)

NH: https://nsidc.org/data/nsidc-0393
SH: https://earth.gsfc.nasa.gov/index.php/

Snow depth
(2003–2007)

Envisat Guerreiro et al. (2017) http://ctoh.legos.obs-mip.fr/data/sea-ice-products/
sea-ice-thickness

SnowModel-LG Liston et al. (2020) and
Stroeve et al. (2020)

https://doi.org/10.5067/27A0P5M6LZBI

Sea ice drift
(2003–2007)

ICDC-NSIDCv4.1 Tschudi et al. (2019) https://www.cen.uni-hamburg.de/en/icdc/data/
cryosphere/seaicedrift-satobs-global.html

KIMURA Kimura et al. (2013) https://ads.nipr.ac.jp/vishop/

OMIP1 and OMIP2 model outputs. All the sea ice data from
models and observational references are interpolated to the
NSIDC-0051 polar stereographic 25 km resolution grid for
comparison. The typical errors are the differences between
two observational references for the ice concentration, ex-
tent, edge location, and ice drift, while typical errors of ice
thickness and snow depth are calculated from the thickness
and snow depth uncertainties of specific months from Envisat
data.

3.1 Sea ice concentration, extent, and edge location

Figure 2 shows that model errors on ice concentration sim-
ulations are around 2–5 times the observational uncertainty
and the ice concentration simulations are much closer to the
NSIDC-0051 data (Fig. 2a) compared to the OSI-450 data
(Fig. 2b). In general, the overall ice concentration simula-
tions (mean state, interannual variability, and trend) in both
hemispheres are improved under OMIP2 protocol, forced
by JRA55-do reanalysis. This is identified in Fig. 2a and
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b by comparing the five OMIP1 and OMIP2 model mean
values (last two rows) and also by comparing five models’
values separately under either OMIP protocol. The overall
ice concentration simulations in both hemispheres are also
improved in CMCC-CM2-HR4/J, with higher spatial reso-
lution of ocean–sea ice model compared to CMCC-CM2-
SR5/J (first and third rows). The improvements on the overall
ice concentration simulations are not sensitive to the chosen
observational reference and then robust. The improved ice
concentration simulations are found compared to different
observational references except for the interannual variability
of the Antarctic ice concentration compared to the OSI-450
data as shown in the fifth column of Fig. 2b.

The metrics on the interannual variability of ice concen-
tration (second and fifth columns) are the highest among all
metrics, which indicates relatively lower skill on the simu-
lation of ice concentration variability in both hemispheres
compared to the mean state and trend. The overall best
performance on ice concentration simulations including the
mean state, interannual variability, and trend is in NorESM2-
LM forced by JRA55-do reanalysis for both hemispheres.
To help understand the differences in the ice concentration
metrics, the 1980–2007 September and February mean ice
concentration differences between the OSI-450 and NSIDC-
0051 data, and between model outputs and the NSIDC-
0051 data are produced for both hemispheres in Appendix A
(Figs. A1–A4).

Figure 3a and b reveal that the monthly ice extent differ-
ences between two observational references (observational
uncertainty, black× vs. cyan+) are much smaller compared
to the model bias (red lines vs. black/cyan marks) in both
hemispheres. The negative ice extent biases under OMIP1
protocol in the summer of both hemispheres are reduced un-
der OMIP2 protocol (Fig. 3a and b, solid red vs. dash-dotted
red) by changing the atmospheric forcing to JRA55-do re-
analysis. The reduced mean ice extent biases in the sum-
mer under OMIP2 protocol are also identified in Tsujino et
al. (2020) (see their Fig. 22 and Table D7). In the boreal
winter, the five-model mean ice extents under OMIP1 and
OMIP2 protocols show no obvious difference (Fig. 3a, solid
red vs. dash-dotted red), and the ice extents among most
models are close to the observational references (Fig. 3c)
except for the MIROC6 (orange) and MRI-ESM2-0 (gray).
In the austral winter, a large spread exists for the ice extent
simulation (Fig. 3d), and the positive ice extent bias under
OMIP1 protocol (Fig. 3b, solid red) becomes a negative one
under OMIP2 protocol (dash-dotted red). The absolute value
of ice extent bias in the austral winter under OMIP2 proto-
col is not reduced compared to that under OMIP1 protocol
(Fig. 3b, dash-dotted red vs. solid red).

The biases of five-model mean ice extent monthly anoma-
lies under OMIP1 protocol compared to the observational
mean (solid green vs. solid black) are reduced under OMIP2
protocol (solid orange vs. solid black) in both hemispheres
as shown in Fig. 4. The standard deviations of the monthly

anomalies of ice extent in both hemispheres are smaller un-
der OMIP2 protocol than that under OMIP1 protocol. In
the Arctic (Fig. 4a and b), the negative biases of ice ex-
tent monthly anomalies during 1980–1982 and after 1998,
as well as positive bias during 1986–1990, are reduced in the
OMIP2 model mean (solid orange vs. solid green). However,
the declining trend of ice extent from the observational mean
(dashed black) is close to the OMIP1 model mean (dashed
green) but not the OMIP2 model mean (dashed orange). This
can be caused by the error compensation of the negative
ice extent biases to observational mean during 1980–1982
and after 1998 in the OMIP1 model mean. In the Antarc-
tic (Fig. 4c and d), the reduced bias is obvious after 1988
in the OMIP2 model mean (solid orange vs. solid green).
The increasing trend of the Antarctic ice extent in the ob-
servational mean (dashed black) is not shown in the OMIP1
and OMIP2 mean (dashed green and dashed orange). The ice
extent monthly anomalies in each model under OMIP1 and
OMIP2 protocols are compared separately, and the improve-
ments on the simulations of ice extent interannual variability
are found in the OMIP2 model outputs of individual models
(not shown). The improved interannual variability of ice ex-
tent in the OMIP2 simulations is also identified in Tsujino et
al. (2020) (see their Figs. 22 and 23).

Figure 5a and b show that the model errors on ice extent
simulation are much larger than the observational uncertainty
in most cases, and the large values in the fifth columns are
due to the very low typical error (0.0009× 106 km2) of the
Antarctic interannual ice extent variability. In general, the ice
extent simulations on the mean state and interannual variabil-
ity for the Arctic, as well as the interannual variability and
trend for the Antarctic, are improved under OMIP2 protocol,
forced by JRA55-do reanalysis. This is identified in Fig. 5a
and b by comparing the five OMIP1 and OMIP2 model mean
values (last two rows), though there are several exceptions
for the simulation of individual models under either OMIP
protocol. The improved ice extent simulations are identified
compared to different observational references.

The simulation of Arctic ice extent trend under OMIP2
protocol is not better than that under OMIP1 protocol (the
third columns in Fig. 5a and b), which is due to the error com-
pensation of the monthly anomalies biases of the ice extent
during different periods under OMIP1 protocol as explained
in Fig. 4a and b. This error compensation can change the
trend and make it close to the observational references even
though the monthly anomalies are not well presented in the
OMIP1 models. The unimproved Antarctic mean ice extent
under OMIP2 protocol can also be found in Fig. 3b, where
the ice extent bias in the austral winter is not reduced under
OMIP2 protocol. This is not consistent with what we found
for the improvement in the ice concentration simulation un-
der OMIP2 protocol, which is possibly because ice extent
cancels out regional concentration differences. The overall
best performance on ice extent simulation including the mean
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Figure 2. The ice concentration metrics of 14 model outputs under OMIP1 (/C) and OMIP2 (/J) protocols, 14-model mean (model mean),
five-OMIP1-model mean (model mean/C), and five-OMIP2-model mean (model mean/J) from CMCC-CM2-SR5, EC-Earth3, MIROC6,
MRI-ESM2-0, and NorESM2-LM compared to (a) NSIDC-0051 and (b) OSI-450 data. The six columns correspond to model performance
metrics on the mean state, standard deviation (SD Ano), and trend (Trend Ano) of monthly anomalies of the Arctic and Antarctic ice
concentration during 1980–2007. Lower values indicate better skill.

state, interannual variability, and trend is in EC-Earth3/C for
the Arctic and in MRI-ESM2-0/J for the Antarctic.

To gain insights in the spatial distribution of errors, we
then apply the IIEE (Goessling et al., 2016) as introduced
in Sect. 2. In both hemispheres, the IIEEs between mod-
els and NSIDC-0051 are obviously much larger than that
between two observational references as shown in Fig. 6.
The largest model errors and model spread are in the sum-
mer of both hemispheres. The IIEE under OMIP1 protocol is
much reduced under OMIP2 protocol especially in the sum-
mer of both hemispheres (Fig. 6a and b, solid red vs. dash-
dotted red) by changing the atmospheric forcing to JRA55-
do reanalysis. In both hemispheres, the large IIEE in CMCC-
CM2-SR5/J (dashed light purple) is reduced in CMCC-CM2-
HR4/J (solid dark purple) with higher spatial resolution of
ocean–sea ice model during all the seasons (Fig. 6c and d).
To identify the ice-edge location errors of various models,
the contours of 15 % concentration derived from the 1980–
2007 September and February mean ice concentration are
also shown for both hemispheres in Appendix A (Figs. A1–
A4).

The mean state ice-edge location metrics in Fig. 5c show
that model errors on ice-edge location simulations are around
2–6 times the observational uncertainty, and the ice-edge lo-
cation simulations in the Arctic are much better than that
in the Antarctic. Zampieri et al. (2019) also show that the
prediction skill of sea-ice-edge location is 30 % lower in the
Antarctic than in the Arctic from coupled subseasonal fore-
cast systems. The lower prediction skill in the Antarctic can
be related to more complicated ocean dynamic processes
there, which decrease the persistence of ice areal changes
(Ordoñez et al., 2018). The mean state ice-edge location sim-
ulations in both hemispheres are improved under OMIP2
protocol, which is identified in Fig. 5c by comparing the
five-model mean values (last two rows) and also by compar-
ing five models’ values separately under either OMIP pro-
tocol. The mean state ice-edge location simulations in both
hemispheres are also improved in CMCC-CM2-HR4/J with
higher ocean–sea ice model resolution compared to CMCC-
CM2-SR5/J (first and third rows). The improved ice-edge lo-
cation simulations are identified compared to different obser-
vational references. The best performance on the mean state
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Figure 3. The 1980–2007 mean seasonal cycle of ice extent (106 km2) from 14-model mean (solid brick red), five-model mean under OMIP1
and OMIP2 protocols (solid red and dash-dotted red), NSIDC-0051 (black ×), and OSI-450 (cyan +) in the (a) Arctic and (b) Antarctic.
The five-model mean is from CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM. The mean seasonal cycle from 14
model outputs under OMIP1 (/C) and OMIP2 (/J) protocols are shown in panels (c) and (d), and the model outputs under OMIP2 protocol
from the five models are in dash-dotted lines.

Figure 4. The 1980–2007 monthly anomalies of ice extent (106 km2) from the observational mean of NSIDC-0051 and OSI-450 (solid
black), five-model mean under OMIP1 or OMIP2 protocol (solid green vs. solid orange) in the Arctic (a, b) and Antarctic (c, d). The five-
model mean is from CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM. The dashed lines are the trends computed
from linear regression over 1980–2007. The standard deviation (SD, 106 km2) and trend (106 km2 decade−1) of the monthly anomalies of
ice extent are computed and displayed.
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Figure 5. The ice extent metrics of 14 model outputs under OMIP1 (/C) and OMIP2 (/J) protocols, 14-model mean (model mean), five-
OMIP1-model mean (model mean/C) and five-OMIP2-model mean (model mean/J) from CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-
ESM2-0, and NorESM2-LM compared to (a) NSIDC-0051 and (b) OSI-450 data. The six columns correspond to model performance metrics
on the mean state, standard deviation (SD Ano), and trend (Trend Ano) of monthly anomalies of the Arctic and Antarctic ice extent during
1980–2007. (c) The mean state ice-edge location metrics during 1980–2007 in both hemispheres compared to the NSIDC-0051 (first two
columns) and OSI-450 data (last two columns). Lower values indicate better skill.

ice-edge location simulations is in CMCC-CM2-HR4/J for
both hemispheres.

3.2 Sea ice thickness and snow depth

Figure 7 shows the mean state ice thickness and snow depth
metrics, and the interannual variability and trend metrics
are not included here because the observational record is
too short to make such an assessment (Tilling et al., 2015).
The model errors on the mean ice thickness and snow depth
simulations are not obviously larger (even smaller in some
models) than the observational uncertainty. The mean ice
thickness simulation during 2003–2007 is improved in the
Antarctic under OMIP2 protocol, forced by JRA55-do re-
analysis. This is identified in Fig. 7a by comparing the five-
model mean values (last two rows) and also by comparing
the five models’ values separately under either OMIP pro-
tocol (an exception in NorESM2-LM compared to the ICE-
Sat data). The improved Antarctic mean ice thickness sim-
ulations are identified compared to different observational
references. The best performance on the mean ice thickness
simulation is in IPSL-CM6A-LR/C for the Arctic, while for

the Antarctic the best performance is in CMCC-CM2-HR4/J
compared to the Envisat data and in GFDL-OM4p5B/C com-
pared to the ICESat data. The different model performance
on the mean ice thickness simulations by comparing to two
observational references is due to the different months cho-
sen for the ice thickness comparison.

The mean snow depth simulation during 2003–2007 in
both hemispheres improved a bit under OMIP2 protocol,
which can be found by comparing five-model mean values
under either OMIP protocol (last two rows) in Fig. 7b. The
improvement on the mean snow depth simulation is rela-
tively small compared to other ice metrics. The best per-
formance on the mean snow depth simulation for the Arc-
tic is in MIROC6/C compared to the Envisat data and in
GFDL-CM4/C compared to the SnowModel-LG data, and
for the Antarctic, the best performance is in NorESM2-LM/J
(Fig. 7b). To help understand the differences in the ice thick-
ness and snow depth metrics, the 2003–2007 winter-mean ice
thickness and snow depth from Envisat data, and the differ-
ences between model outputs and Envisat data, are produced
for both hemispheres in Appendix A (Figs. A5–A8).
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Figure 6. The 1980–2007 mean seasonal cycle of the integrated ice-edge error (IIEE; vs. NSIDC-0051, 106 km2) from 14-model mean (solid
brick red), five-model mean under OMIP1 and OMIP2 protocols (red solid and dash-dotted red), and OSI-450 (cyan +) in the (a) Arctic
and (b) Antarctic. The five-model mean is from CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM. The mean
seasonal cycle from 14 model outputs under OMIP1 (/C) and OMIP2 (/J) protocols are shown in panels (c) and (d), and the model outputs
under OMIP2 protocol from the five models are in dash-dotted lines.

3.3 Sea ice drift

The magnitude and direction of simulated ice drifts are eval-
uated by calculating the MKE and the vector correlation from
monthly mean ice-vector data during 2003–2007. The vector
correlation coefficients are measured by using a generaliza-
tion of the simple correlation coefficient between two scalar
time series as introduced in Sect. 2. The significant correla-
tion coefficient at a level of 99 % between ICDC-NSIDCv4.1
and KIMURA data, and between 14 model outputs and
KIMURA data in the Arctic (Fig. 8) and Antarctic (Fig. 9)
are displayed. The correlation coefficients are much lower
between model outputs and the KIMURA data than that be-
tween two observational references. This is obvious for the
coastal regions of Greenland and Canadian archipelago in
the Arctic and the Weddell Sea and the Ross Sea in the
Antarctic, as well as the ice-edge location of the Weddell
Sea among some models. This implies that model errors
on the ice-vector direction simulations are much larger than
the observational uncertainty. The correlation coefficients are
higher under OMIP2 protocol than that under OMIP1 proto-
col (third vs. second column in Figs. 8 and 9), which indi-
cate the improvement on the ice-vector direction simulation
when forced by JRA55-do atmospheric forcing in both hemi-
spheres.

Figure 10 shows that model errors on the mean ice drift
simulations are larger than the observational uncertainty. In
general, the ice drift simulations on the magnitude (Fig. 10a)
and direction (Fig. 10b) in both hemispheres are improved
under OMIP2 protocol, forced by JRA55-do reanalysis. This
is identified from the five OMIP1 and OMIP2 model mean
values (last two rows) and also by comparing five models’
values separately under either OMIP protocol (an exception
in CMCC-CM2-SR5 of the Arctic ice-vector magnitude in
Fig. 10a). The improved mean ice drift simulations under
OMIP2 protocol are found compared to not only the ICDC-
NSIDCv4.1 data but also the KIMURA data. The overall best
performance on sea ice drift simulations including the mag-
nitude and direction is in MIROC6/J for both hemispheres.
To help understand the differences in the ice-motion magni-
tude metrics, the 2003–2007 September and February mean
ice-motion MKE differences between the ICDC-NSIDCv4.1
and KIMURA data, and between model outputs and the
KIMURA data are produced for both hemispheres in Ap-
pendix A (Figs. A9–A12).

3.4 Cross-metric analysis

From previous analyses, it seems that there is no best sea ice
model simulation, but rather that each model has strengths
and weaknesses. To further illustrate this aspect, the met-
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Table 4. The best- (in bold) and worst-performing models for the six evaluated sea ice variables, among the models forced by the JRA55-do
reanalysis (CMCC-CM2-HR4, CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM). The numbers are derived from
the performance metrics in Figs. 2, 5, 7, and 10 (marked as () and []). The values given average the three metrics (mean state, interannual
variability, and trend) for ice concentration and ice extent from Figs. 2, 5a and b; the two metrics for the magnitude and vector correlations
for ice drift from Fig. 10. The values for the ice-edge location, thickness, and snow depth are the metric of mean state from Figs. 5c and
7. In some cases, such as for the ice thickness evaluation, the best- and worst-performing models are different compared to different sets of
observations.

Arctic Antarctic

Ice concentration
(vs. NSIDC-0051) [vs. OSI-450]

NorESM2-LM/J (2.3) [2.7]
CMCC-CM2-SR5/J (2.8) [3.5]

NorESM2-LM/J (2.3) [2.9]
EC-Earth3/J (3.0) MRI-ESM2-0/J [3.7]

Ice extent
(vs. NSIDC-0051) [vs. OSI-450]

EC-Earth3/J (6.6) [6.2]
MIROC6/J (13.5) [13]

MRI-ESM2-0/J (7.9) [8.1]
NorESM2-LM/J (33.8) [34.2]

Ice-edge location
(vs. NSIDC-0051) [vs. OSI-450]

CMCC-CM2-HR4/J (1.5) [1.7]
MRI-ESM2-0/J (2.7) [2.7]

CMCC-CM2-HR4/J (3.8) [4.2]
MRI-ESM2-0/J (5.4) [5.7]

Ice thickness
(vs. Envisat) [vs. ICESat]

CMCC-CM2-SR5/J (1.1)
MRI-ESM2-0/J [1.6]
MIROC6/J (1.8) [2.5]

CMCC-CM2-HR4/J (1.4)
MRI-ESM2-0/J [0.7]
MRI-ESM2-0/J (1.9)
CMCC-CM2-HR4/J [1.7]

Snow depth
(vs. Envisat) [vs. SnowModel-LG]

NorESM2-LM/J (1.0) [0.7]
CMCC-CM2-SR5/J (1.1) [0.9]

NorESM2-LM/J (0.6)
CMCC-CM2-HR4/J (1.1)

Ice drift
(vs. ICDC-NSIDCv4.1) [vs. KIMURA]

MIROC6/J (1.2) [1.2]
CMCC-CM2-HR4/J (2.0) [2.0]

MIROC6/J (1.2) [1.2]
NorESM2-LM/J (2.1) [1.9]

rics of each sea ice variable are ranked in a cross-metric
analysis, where the link between the model performance in
one variable and the performance in another is clearly high-
lighted. By changing the atmospheric forcing from CORE-
II to JRA55-do reanalysis data, the sea ice model simula-
tions are improved in general. In order to make the compar-
ison simple, six models (CMCC-CM2-HR4, CMCC-CM2-
SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-
LM) forced by the JRA55-do reanalysis were retained for
this analysis. The best- and worst-performing models for six
ice variables are listed in Table 4. It is found that no sin-
gle model performs best in all ice metrics, as there is no
link between performance in one variable and performance
in another. For example, the NorESM2-LM/J is the best re-
garding the ice concentration and snow depth simulation, but
the worst for the ice drift simulation in the Antarctic, and
MIROC6/J is the best regarding the ice drift simulation but
the worst for the ice extent and thickness simulation in the
Arctic.

4 Conclusions and discussion

SITool (v1.0), a performance metrics and diagnostics tool for
CMIP6-compliant sea ice outputs, is introduced in this pa-
per. The evaluation includes ice concentration, extent, edge
location, thickness, snow depth, and ice drift. SITool (v1.0)
provides rating scores for each sea ice variable in both hemi-
spheres by comparing them to a set of observational refer-

ences, using two observational references to account for the
role of observational uncertainty in the evaluation process. In
this paper, we evaluate the CMIP6 OMIP sea ice simulations
with SITool (v1.0) to demonstrate the proof of concept and
potentialities behind it. Specifically, we evaluate the perfor-
mance of OMIP historical sea ice simulations (1980–2007
for sea ice areal properties, 2003–2007 for ice drift, thick-
ness, and snow depth).

Our main findings on CMIP6 OMIP simulations are sum-
marized below. By changing the atmospheric forcing from
CORE-II to JRA55-do reanalysis data, improvements are
identified in (1) the ice concentration simulations including
the mean, interannual variability, and trend in both hemi-
spheres, (2) the ice extent simulations including the mean
and interannual variability in the Arctic, as well as the in-
terannual variability and trend in the Antarctic, (3) the mean
ice-edge location simulations in both hemispheres, (4) the
mean ice thickness simulations in the Antarctic and the mean
snow depth simulations in both hemispheres, and (5) the ice
drift simulations including the magnitude and direction in
both hemispheres. By increasing the horizontal resolution
of the CMCC-CM2 ocean–sea ice model, the improvements
are identified in the sea ice concentration (mean, interannual
variability, and trend) and the mean ice-edge location simu-
lations in both hemispheres.

In general, model errors are larger than observational un-
certainty, and model performance on the ice concentration,
extent, edge location, and ice drift simulations is consistent
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Figure 7. The mean state (a) ice thickness and (b) snow depth
metrics during 2003–2007 of 14 model outputs under OMIP1 (/C)
and OMIP2 (/J) protocols, 14-model mean (model mean), five-
OMIP1-model mean (model mean/C) and five-OMIP2-model mean
(model mean/J) from CMCC-CM2-SR5, EC-Earth3, MIROC6,
MRI-ESM2-0, and NorESM2-LM. The four columns in (a) corre-
spond to ice thickness metrics in both hemispheres compared to the
Envisat (first two) and ICESat data (last two), and the three columns
in (b) correspond to snow depth metrics compared to the Envisat
data in both hemispheres (first two) and the SnowModel-LG data in
the Arctic (last one). Lower values indicate better skill.

when comparing to different observational references. For
the ice thickness and snow depth evaluation, the rating scores
are not consistent compared to different observational refer-
ences, which is due to the limited observations and to the
fact that different months were chosen for comparison dur-
ing 2003–2007. This finding shows that sea ice thickness and
snow depth estimates are still at an earlier stage of maturity
compared to datasets of sea ice concentration or drift.

The improvements of mean ice concentration simulations
in the summer for both hemispheres by changing the at-
mospheric forcing and increasing the horizontal resolution
are also identified in Tsujino et al. (2020) and Chassignet
et al. (2020). The reduced mean ice extent bias in boreal
summer and much improved interannual variability of ice
extent in OMIP2 simulations are also proved in Tsujino et
al. (2020). For the mean ice thickness simulation, Chassignet
et al. (2020) also shows that the improvement is not obvious
by increasing the horizontal resolution of ocean–sea ice mod-

Figure 8. The significant Arctic ice-motion vector correlation co-
efficients from monthly mean data during 2003–2007 at a level of
99 % between ICDC-NSIDCv4.1/model outputs and the KIMURA
data. The second and third columns are from the five OMIP1 and
OMIP2 model outputs of CMCC-CM2-SR5, EC-Earth3, MIROC6,
MRI-ESM2-0, and NorESM2-LM, respectively.

els. To understand the processes leading to the improvement
of model simulations under different atmospheric forcings
and ocean–sea ice models, we will discuss the sensitivity of
sea ice simulation to CMIP6 OMIP model physics in an up-
coming companion paper.

The metrics make a summary of the model performance
on different aspects of the sea ice system to help detect
the inter-model differences or track the time evolution of
model performance efficiently. However, the usage of met-
rics comes at the risk of over-interpretation by summarizing
all the complex behavior of models to one number. In fact,
a good metric can be obtained for many wrong reasons, so
we do not recommend relying exclusively on these metrics
to orient strategic choices regarding, e.g., sea ice model de-
velopment. While it is running, SITool (v1.0) produces spa-
tial maps (Figs. 8, 9 and Figs. A1–A12 in Appendix A) and
time series diagrams (Figs. 3, 4, 6) that can be consulted by
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Figure 9. The significant Antarctic ice-motion vector correlation
coefficients from monthly mean data during 2003–2007 at a level of
99 % between ICDC-NSIDCv4.1/model outputs and the KIMURA
data. The second and third columns are from the five OMIP1 and
OMIP2 model outputs of CMCC-CM2-SR5, EC-Earth3, MIROC6,
MRI-ESM2-0, and NorESM2-LM, respectively.

the expert to understand the origin of one particular metric
value.

While SITool (v1.0) is primarily designed to assess ocean–
sea ice simulations forced by atmospheric reanalysis, it can
also be used to evaluate coupled model simulations (e.g.,
CMIP6 historical runs). We draw the reader’s attention to the
fact that, in that case, several metrics may become less rele-
vant and less easy to interpret. Indeed, a coupled model is not
supposed to produce sea ice output that is in phase with real
observations due to the presence of irreducible climate in-
ternal variability. This is particularly true for the evaluation
of sea ice thickness and snow depth, for which the limited
time span (2003–2007) is likely not enough to draw robust
conclusions regarding model performance.

Figure 10. The ice drift metrics of 14 model outputs under OMIP1
(/C) and OMIP2 (/J) protocols, 14-model mean (model mean), five-
OMIP1-model mean (model mean/C) and five-OMIP2-model mean
(model mean/J) from CMCC-CM2-SR5, EC-Earth3, MIROC6,
MRI-ESM2-0, and NorESM2-LM. The four columns correspond to
model performance metrics on the (a) MKE and (b) the vector cor-
relations during 2003–2007 of the Arctic and Antarctic compared
to the ICDC-NSIDCv4.1 (first two) and KIMURA data (last two).
Lower values indicate better skill.

Appendix A: Sea ice diagnostics

In this appendix, additional sea ice diagnostics are given
to help understand why metrics vary from one dataset to
the next. The spatial distribution of the differences between
model simulations and the observational reference is pre-
sented in Figs. A1–A12 and the model simulations under
OMIP1 and OMIP2 protocols are listed in the second and
third columns, respectively. This includes the 1980–2007
September and February mean ice concentration differences
(Figs. A1–A4), the 2003–2007 winter-mean ice thickness
(Figs. A5–A6) and snow depth differences (Figs. A7–A8)
(February for the Arctic and September for the Antarc-
tic), and the 2003–2007 September and February mean ice-
motion MKE differences (Figs. A9–A12).
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Figure A1. The 1980–2007 September mean Arctic ice concentra-
tion differences between OSI-450/model outputs and the NSIDC-
0051 data (colors), and contours of 15 % concentration of the
NSIDC-0051 data (green lines) and OSI-450/model outputs (ma-
genta lines). The second and third columns are from the five
OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-
Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM, respectively.

Figure A2. The 1980–2007 February mean Arctic ice concentration
differences between OSI-450/model outputs and the NSIDC-0051
data (colors), and contours of 15 % concentration of the NSIDC-
0051 data (green lines) and OSI-450/model outputs (magenta lines).
The second and third columns are from the five OMIP1 and OMIP2
model outputs of CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-
ESM2-0, and NorESM2-LM, respectively.
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Figure A3. The 1980–2007 February mean Antarctic ice con-
centration differences between OSI-450/model outputs and the
NSIDC-0051 data (colors), and contours of 15 % concentration
of the NSIDC-0051 data (green lines) and OSI-450/model out-
puts (magenta lines). The second and third columns are from the
five OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-
Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM, respectively.

Figure A4. The 1980–2007 September mean Antarctic ice con-
centration differences between OSI-450/model outputs and the
NSIDC-0051 data (colors), and contours of 15 % concentration
of the NSIDC-0051 data (green lines) and OSI-450/model out-
puts (magenta lines). The second and third columns are from the
five OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-
Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM, respectively.
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Figure A5. The 2003–2007 February mean Arctic ice thickness
from Envisat data (first picture, m) and ice thickness differences
between model outputs and Envisat data (m). The second and
third columns are from the five OMIP1 and OMIP2 model out-
puts of CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0,
and NorESM2-LM, respectively.

Figure A6. The 2003–2007 September mean Antarctic ice thick-
ness from Envisat data (first picture, m) and ice thickness differ-
ences between model outputs and Envisat data (m). The second
and third columns are from the five OMIP1 and OMIP2 model
outputs of CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0,
and NorESM2-LM, respectively.
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Figure A7. The 2003–2007 February mean Arctic snow depth from
Envisat data (first picture, m) and snow depth differences between
model outputs and Envisat data (m). The second and third columns
are from the five OMIP1 and OMIP2 model outputs of CMCC-
CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-
LM, respectively.

Figure A8. The 2003–2007 September mean Antarctic snow depth
from Envisat data (first picture, m) and snow depth differences
between model outputs and Envisat data (m). The second and
third columns are from the five OMIP1 and OMIP2 model out-
puts of CMCC-CM2-SR5, EC-Earth3, MIROC6, MRI-ESM2-0,
and NorESM2-LM, respectively.
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Figure A9. The 2003–2007 September mean Arctic ice-motion
MKE differences between ICDC-NSIDCv4.1/model outputs and
the KIMURA data (m2 s−2). The second and third columns are
from the five OMIP1 and OMIP2 model outputs of CMCC-CM2-
SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM, re-
spectively.

Figure A10. The 2003–2007 February mean Arctic ice-motion
MKE differences between ICDC-NSIDCv4.1/model outputs and
the KIMURA data (m2 s−2). The second and third columns are
from the five OMIP1 and OMIP2 model outputs of CMCC-CM2-
SR5, EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM, re-
spectively.
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Figure A11. The 2003–2007 February mean Antarctic MKE differ-
ences between ICDC-NSIDCv4.1/model outputs and the KIMURA
data (m2 s−2). The second and third columns are from the five
OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5, EC-
Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM, respectively.

Figure A12. The 2003–2007 September mean Antarctic MKE
differences between ICDC-NSIDCv4.1/model outputs and the
KIMURA data (m2 s−2). The second and third columns are from
the five OMIP1 and OMIP2 model outputs of CMCC-CM2-SR5,
EC-Earth3, MIROC6, MRI-ESM2-0, and NorESM2-LM, respec-
tively.

https://doi.org/10.5194/gmd-14-6331-2021 Geosci. Model Dev., 14, 6331–6354, 2021



6352 X. Lin et al.: SITool (v1.0)

Code and data availability. The latest release of
SITool (v1.0) is publicly available on Zenodo at
https://doi.org/10.5281/zenodo.5561722 (Lin et al., 2021).
The source code of SITool (v1.0) is developed fully
based on freely available Python packages and libraries,
and is released on a GitHub repository available at
https://github.com/XiaLinUCL/Sea-Ice-Evaluation-Tool (last
access: 11 October 2021). CMIP6 OMIP data are freely available
from the Earth System Grid Federation. Observational references
used in this paper are detailed in Sect. 3 and listed in Table 3, and
they are not distributed with SITool (v1.0) because SITool (v1.0) is
restricted to the code as open-source software.
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