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Abstract. The Sea Ice Evaluation Tool (SITool) described in
this paper is a performance metrics and diagnostics tool de-
veloped to evaluate the skill of Arctic and Antarctic model
reconstructions of sea ice concentration, extent, edge loca-
tion, drift, thickness, and snow depth. It is a Python-based
software and consists of well-documented functions used to
derive various sea ice metrics and diagnostics. Here, SITool
version 1.0 (v1.0) is introduced and documented, and is then
used to evaluate the performance of global sea ice reconstruc-
tions from nine models that provided sea ice output under
the experimental protocols of the Coupled Model Intercom-
parison Project phase 6 (CMIP6) Ocean Model Intercompar-
ison Project with two different atmospheric forcing datasets:
the Coordinated Ocean-ice Reference Experiments version
2 (CORE-II) and the updated Japanese 55-year atmospheric
reanalysis (JRAS5-do). Two sets of observational references
for the sea ice concentration, thickness, snow depth, and ice
drift are systematically used to reflect the impact of observa-
tional uncertainty on model performance. Based on available
model outputs and observational references, the ice concen-
tration, extent, and edge location during 1980-2007, as well
as the ice thickness, snow depth, and ice drift during 2003—
2007 are evaluated. In general, model biases are larger than
observational uncertainties, and model performance is pri-
marily consistent compared to different observational refer-
ences. By changing the atmospheric forcing from CORE-II
to JRAS55-do reanalysis data, the overall performance (mean
state, interannual variability, and trend) of the simulated sea
ice areal properties in both hemispheres, as well as the mean
ice thickness simulation in the Antarctic, the mean snow

depth, and ice drift simulations in both hemispheres are im-
proved. The simulated sea ice areal properties are also im-
proved in the model with higher spatial resolution. For the
cross-metric analysis, there is no link between the perfor-
mance in one variable and the performance in another. SITool
is an open-access version-controlled software that can run on
a wide range of CMIP6-compliant sea ice outputs. The cur-
rent version of SITool (v1.0) is primarily developed to evalu-
ate atmosphere-forced simulations and it could be eventually
extended to fully coupled models.

1 Introduction

Most regional and global climate models now include an in-
teractive sea ice model, reflecting the reality that sea ice plays
a fundamental role in the polar environment, by influencing
air-ice and ice—sea exchange, atmospheric and oceanic pro-
cesses, and climate change. Large inter-model spread exists
in the performance of sea ice simulations in the Coupled
Model Intercomparison Project phase 5 (CMIPS) for both
the Arctic and Antarctic (Massonnet et al., 2012; Stroeve
et al., 2012, 2014; Turner et al., 2013; Zunz et al., 2013;
Shu et al., 2015). Some improvements are identified in the
CMIP6 models: (1) a more realistic estimate of sea ice loss
for a given amount of CO, emissions and global warming in
the Arctic (Notz et al., 2020), (2) reduced inter-model spread
in summer and winter ice area and improved ice concentra-
tion distribution in the Antarctic (Roach et al., 2020), and
(3) lower inter-model spread in the mean state and trend of
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both the Arctic and Antarctic ice extents (Shu et al., 2020).
However, sea ice projections and evaluations are still not sys-
tematic, and, to date, no tool allows precise tracking of sea
ice model performance through time from one version to the
next. The Earth System Model Evaluation Tool (ESMVal-
Tool) has been developed for routine evaluation of climate
model simulations in CMIP including many components of
the Earth system (Eyring et al., 2016, 2020). It is an efficient
tool to obtain a broad view on the overall performance of a
climate model, and it provides sea ice diagnostics on the ice
concentration and extent, as well as relationships between
sea ice variables. In addition to sea ice diagnostics, the Sea
Ice Evaluation Tool (SITool) introduced in this paper pro-
vides systematic sea ice metrics for assessing large-scale sea
ice simulations from various aspects.

SITool has been designed to describe inter-model differ-
ences quantitatively and to help teams managing various ver-
sions of a sea ice model, detecting bugs in newly developed
versions, or tracking the time evolution of model perfor-
mance. SITool quantifies the performance of sea ice model
simulations by providing systematic and meaningful sea ice
metrics and diagnostics on each sea ice variable with thor-
ough comparisons to a set of observational references. Arc-
tic and Antarctic performance metrics and diagnostics on ice
coverage, drift, thickness, and snow depth are provided from
seasonal to multi-decadal timescales whenever observational
references are available. These sea ice metrics give a detailed
view of sea ice state and highlight major deficiencies in the
sea ice simulation. SITool is written in the open-source lan-
guage Python and distributed under the Nucleus for Euro-
pean Modelling of the Ocean (NEMO) standard tools. SITool
is provided with the reference code and documentation to
make sure the final results are traceable and reproducible.

Here, SITool version 1.0 (v1.0) is applied to evaluate the
performance of Arctic and Antarctic historical sea ice simu-
lations under the experimental protocols of the CMIP6 Ocean
Model Intercomparison Project (OMIP, Griffies et al., 2016).
OMIP provides global ocean—sea ice model simulations with
a prescribed atmospheric forcing, which gives us the op-
portunity to intercompare sea ice model performance un-
der fully controlled conditions. In OMIP, two streams of
experiments were carried out: OMIPI, forced by the Co-
ordinated Ocean-ice Reference Experiments version 2 in-
terannual forcing (CORE-II, Large and Yeager, 2009), and
OMIP2, forced by the updated Japanese 55-year atmospheric
reanalysis (JRAS5-do, Tsujino et al., 2018). The OMIP pro-
tocol ensures a close experimental setup among the differ-
ent models. Models were run with both atmospheric forc-
ings, when possible, to identify and attribute the influences
of changed atmospheric forcings on sea ice characteristics.
Tsujino et al. (2020) and Chassignet et al. (2020) evaluated
the impact of atmospheric forcing and horizontal resolution
on the global ocean—sea ice model simulations based on the
experimental protocols of OMIP provided by model groups
participated in this intercomparison project. Their studies fo-
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cused on the evaluation of ocean components from sea sur-
face height, temperature, salinity, mixed layer depth, and ki-
netic energy to circulation changes. Some aspects of sea ice
simulations are assessed in both hemispheres relative to an
observational dataset. Tsujino et al. (2020) provide spatial
maps of the 1980-2009 mean ice concentration and time se-
ries of ice extent in summer and winter, and Taylor diagrams
of the interannual variations of ice extent under CORE-II
and JRAS55-do forcings. Chassignet et al. (2020) show spa-
tial maps of the 1980-2018 mean ice concentration and ice
thickness in summer and winter, and time series of annual
mean ice extent and ice volume under different horizontal
resolutions. In this paper, we focus on the sea ice in OMIP
simulations available from the Earth System Grid Federation
in a more systematic manner, including more sea ice vari-
ables (e.g., ice-edge location, snow depth, and ice drift). The
performance metrics and diagnostics (spatial maps and/or
time series diagrams) for each ice variable are provided com-
pared to two sets of observational references when data are
available to appreciate the importance of observational un-
certainty in the assessment.

This paper is organized as follows. SITool (v1.0) with
the details of sea ice metrics and diagnostics is described in
Sect. 2. The CMIP6 OMIP models and observational refer-
ences are introduced in Sect. 3. In Sect. 4, the application of
SITool (v1.0) to CMIP6 OMIP and the results of the model
performance are presented and discussed. Finally, conclu-
sions and discussion are provided in Sect. 5. Appendix A
presents some additional sea ice diagnostics. The source code
of SITool (v1.0) used to assess the model skills is publicly
available in the repository as shown in the “Code and data
availability” section.

2  Overview of SITool (v1.0)

A schematic overview of SITool (v1.0) workflow and its ap-
plication in evaluating the CMIP6 OMIP model performance
is shown in Fig. 1. The input sea ice data from model outputs
and observations are detailed in Sect. 3. The methods of the
metrics calculation are discussed below in Sect. 2.1 followed
Massonnet et al. (2011) with some modifications. Namely,
(1) more observational references are used to calculate the
observational errors, and the incorporation of observational
errors is a prerequisite to do the comparisons here; (2) ice-
edge location and snow depth metrics are included; (3) the
method to calculate the vector correlation coefficient is up-
dated. SITool (v1.0) also produces additional sea ice diag-
nostics (spatial maps and time series diagrams) to help under-
stand why metrics vary from one dataset to the next. Table 1
provides an overview of the diagnostic fields along with in-
put variables, output results and corresponding figures in this
paper, Python scripts in the repository, and comments. All
the sea ice data from model outputs and observational ref-
erences are regridded to the polar stereographic 25 km res-
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Sea ice concentration: NSIDC-0051,0S1-450
Sea ice thickness: Envisat, Icesat
Snow depth: Envisat, SnowModel-L.G

Sea ice drift: ICDC-NSIDCv4.1, KIMURA

Ice extent & edge
(from ice concentration data)

Ice thickness & snow depth
Ice drift magnitude & vector correlation
Spatial maps

Time series diagrams
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Results: evaluate the model ability
to reproduce the sea ice properties

Figure 1. Schematic overview of SITool (v1.0) and its application to the CMIP6 OMIP model evaluation.

olution grid using a kd-tree (k-dimensional, Bentley, 1975)
nearest-neighbor interpolation method provided by a Python
package (a component of the SITool workflow). The kd tree
is a binary search tree with a two-dimensional spatial index
structure for use in this study. The interpolation yields less
than 5 % error for each sea ice variable (not shown), which
indicates that the results are not sensitive to the interpolation
method used here. This interpolation allows point-by-point
comparison and avoids the systematic bias of sea ice extent
under different grids, due to differences in land—sea masks.

2.1 Sea ice metrics and diagnostics

The general approach to derive metrics is by computing
scaled absolute errors. We first compute the errors (in abso-
lute value) between some simulated characteristics (e.g., sea
ice extent) in individual models and the corresponding char-
acteristic in observational references, respectively. Then, we
scale these errors by a typical error to finally get the corre-
sponding metric. The typical error is defined as the absolute
difference of the relevant characteristic between two obser-
vational references when observations are available and is
therefore a proxy for observation uncertainty. Because our
metrics are defined as scaled absolute errors, they are ori-
ented positively meaning that lower values indicate better
skill, and a value of 1 means that model error is compara-
ble to observational uncertainty.

https://doi.org/10.5194/gmd-14-6331-2021

2.1.1 Sea ice concentration, extent, and edge location

The methods to calculate the metrics of ice concentration
on the mean state, interannual variability, and trend in both
hemispheres are introduced here. The consistent equations
used to calculate the differences of the mean state (Mean-
diff), interannual variability (SDdiff), and trend (Trenddiff)
between two datasets are shown below:

N
yn=12 [251 ICng_CIIMIXAii| x D,

=l =V
Meandiff = nzfllz W
Y1 Dn
i=N i : . .
i=N\sp (Ci — i ) —SD(Ci — C! A
SDdiff = 2i=11SD (G OM?:N (Cl=Ciy) | x A )
il A
LI lrend (Cp —~ Ciy)
—trend (C! — C! X A;
Trenddiff = (C1—Ciw| i 3

SisVA;

wheren =1,...,12andi =1, ..., N denotes the 12 months
and the grid cells, respectively, Com and Cyy are monthly
mean ice concentrations from two datasets used to do the
comparison, A and D are grid cell area and the days in each
month, respectively, Co and C; are monthly ice concentra-
tions from two datasets, and “SD” is the abbreviation of stan-
dard deviation. For the mean state evaluation, we compute
the monthly mean ice concentration over the study period
(1980-2007 for the CMIP6 OMIP model evaluation) and
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Table 1. Overview of the diagnostic fields along with input variables, output results and corresponding figures in this paper, Python scripts
in the repository, and comments.

Diagnostic fields

Input variables

Output results
(figure(s))

Python scripts

Comments

Sea ice concentration Ice concentration (%), Metrics (Fig. 2), spatial ~ siconc.py Metrics: 1980-2007 mean state,
grid cell area (m2) maps (Figs. A1-A4) interannual variability, and trend of
ice concentration simulation.
Spatial maps: 1980-2007 February
and September mean ice
concentration differences
in both hemispheres
Sea ice extent Ice concentration (%), Metrics (Fig. Sa, b), siext.py Metrics: similar to ice concentration
grid cell area (m2) time series diagrams evaluation.

(Figs. 3-4) Time series diagrams: 1980-2007
mean seasonal cycle, monthly anoma-
lies and trends of ice extent in both
hemispheres

Sea ice edge Ice concentration (%), Metrics (Fig. Sc), time siedge.py Metrics: 1980-2007 mean state ice
grid cell area (m?) series diagrams (Fig. 6) edge location simulation.
Time series diagrams: 1980-2007
mean seasonal cycle of IIEE in both
hemispheres
Sea ice thickness Ice thickness (m) Metrics (Fig. 7a), sithick.py Metrics: 2003-2007 mean state ice
spatial maps thickness simulation.

(Figs. A5-A6) Spatial maps: 1980-2007 February
(Arctic) and September (Antarctic)
mean ice thickness differences

Snow depth Snow depth (m) Metrics (Fig. 7b), sndepth.py Metrics: 2003-2007 mean state snow
spatial maps depth simulation.

(Figs. A7-A8) Spatial maps: 1980-2007 February
(Arctic) and September (Antarctic)
mean snow depth differences

Seaice drift (magnitude Ice velocity in Metrics (Fig. 10), sidrift.py Metrics: 2003-2007 mean kinetic

and direction)

x direction (m s_l),
ice velocity in
y direction (m s_l)

spatial maps
(Figs. 8-9, A9-A12)

energy and vector correlations.
Spatial maps: 2003-2007 significant
ice-motion vector correlation
coefficients; 2003-2007 February and
September mean ice-motion mean ki-
netic energy differences in both hemi-
spheres

calculate the absolute difference between each model output
and the observational reference over 12 months at each grid
cell as shown in Eq. (1). For the interannual variability and
trend evaluation, we compute the standard deviation and lin-
ear regression on the monthly anomalies of ice concentration
over the study period and compute the absolute difference be-
tween each model output and the observational reference at
each grid cell as shown in Eqgs. (2) and (3). Then we average
these errors spatially weighted by grid cell areas. The typi-
cal errors are the differences between two observational ref-
erences on the mean state, interannual variability, and trend

Geosci. Model Dev., 14, 6331-6354, 2021

by applying the same method shown before. The differences
between each model output and the observational reference
are computed and scaled by corresponding typical errors to
get the metrics on ice concentration. The September (Febru-
ary) mean ice concentration differences between each model
output and the observational reference, and between two ob-
servational references in both hemispheres, are provided for
diagnosis. These representative months of the summer and
winter are selected because normally they, respectively, cor-
respond to the minimum and maximum seasonal values of
sea ice extent for both hemispheres in observations.

https://doi.org/10.5194/gmd-14-6331-2021
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The ice extent is calculated as the total area of grid cells
with the ice concentration above 15 %. The same procedure
is followed for ice extent metrics calculation as for ice con-
centration, except for the spatial averaging since ice extent
is already an integrated quantity. The mean seasonal cycle,
monthly anomalies, and trend of ice extent in both hemi-
spheres from different models and two observational refer-
ences are provided for diagnosis.

The integrated ice-edge error (IIEE) is the total area where
the models and observational references disagree on the ice
concentration being above or below 15 % including both
the ice extent error and a misplacement error (Goessling et
al., 2016). For the mean IIEE evaluation, we compute the
monthly mean IIEE between each model output and the ob-
servational reference over the study period. The typical error
is the mean IIEE between two observational references them-
selves. The differences between each model output and the
observational reference are computed and scaled by the typi-
cal error to get the metric on the ice-edge location. The mean
seasonal cycles of IIEE between each model output and the
observational reference, and between two observational ref-
erences in both hemispheres, are provided for diagnosis.

2.1.2 Sea ice thickness and snow depth

The same procedure is followed for ice thickness and snow
depth metrics calculation as for ice concentration, except
for the spatial averaging with equal weight. For the CMIP6
OMIP model evaluation before 2007, the ice thickness and
snow depth observations are limited to some months. Be-
cause the observational data are not complete to calculate
differences between two observational references, the typical
errors of ice thickness and snow depth are computed from
the ice thickness and snow depth uncertainties of specific
months from Envisat data. The mean winter (February for
the Arctic and September for the Antarctic) ice thickness and
snow depth from ESA’s Environmental Satellite (Envisat)
radar altimeter data and the differences between model out-
puts and Envisat data are provided for diagnosis in this study.
The mean ice thickness and snow depth differences of other
months in both hemispheres can be provided for diagnosis in
the future during other study periods when observational ref-
erences are available. This is not included in this study due
to the limited observations for the evaluation before 2007.

2.1.3 Seaice drift

The ice drift metrics include the evaluation of both the mag-
nitude and direction of ice vectors by calculating the mean
kinetic energy (MKE) and vector correlation of the ice vec-
tors. The MKE is computed as

1 2 2
MKE:E(u +v), 4)

where u and v are zonal and meridional components of ice
drift, respectively. For the MKE evaluation, we compute the

https://doi.org/10.5194/gmd-14-6331-2021
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monthly mean MKE over the study period and calculate the
absolute difference between individual models and observa-
tional references over the 12 months at each grid cell. Then
we average these errors spatially with equal weight. The typ-
ical error is the difference between two observational refer-
ences of the MKE by applying the same method discussed
before. The differences between each model output and the
observational reference are computed and scaled by the typ-
ical error to get the metric on the ice drift magnitude.

The monthly mean ice vectors during the study period
from individual models and observational references are cor-
related at each grid point by using a vector correlation mea-
sure, which is a generalization of the simple correlation co-
efficient between two scalar time series (Holland and Kwok,
2012). The vector correlation coefficient 72 is computed by
following the equations in Crosby et al. (1993), and the corre-
lation coefficient is scaled (by a value of 2) to keep it between
0 and 1 in our study. The nr? follows the x2 distribution
with 4 degrees of freedom, and the correlations are signifi-
cant at a level of 99 % when nr?>8 with samples less than
64 based on the cumulative frequency distributions in Crosby
et al. (1993). The significant correlation coefficients between
individual models and observational references, and between
two observational references are provided for diagnosis at
each grid cell. Then we average these significant correlation
coefficients spatially with equal weight. The typical correla-
tion coefficient is a spatially averaged correlation coefficient
between two observational references. As higher correlation
coefficients indicate better skill, the typical correlation co-
efficients are scaled by the correlation coefficients between
individual models and observational references to make it
consistent with other metrics (lower values indicate better
skill). The September (February) MKE differences and ice-
motion vector correlation coefficients between each model
output and the observational reference, and between two ob-
servational references in both hemispheres, are provided for
diagnosis.

2.2 Models and observational references

In this study, SITool (v1.0) is used to evaluate the CMIP6
OMIP model skills in simulating the historical sea ice prop-
erties for both hemispheres. The CMIP6 OMIP models and
a set of observational references providing ice concentration,
thickness, snow depth, and ice drift are introduced in this sec-
tion. Two sets of observational references for each sea ice
variable are used for comparison.

The CMIP6 OMIP models used are shown in Table 2 with
model details such as atmospheric forcing, ocean models,
sea ice models, spatial resolution, and related references. A
major improvement in JRAS55-do atmospheric forcing rela-
tive to the CORE-II forcing is the increased temporal fre-
quency from 6 to 3 h and horizontal resolution from 1.875 to
0.5625°. The surface fields of JRA55-do forcing have been
adjusted to match reference datasets based on high-quality
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satellite observations and several other atmospheric reanaly-
sis products, as detailed in Tsujino et al. (2018). Nine models
were run with either CORE-II or JRA55-do forcing; five of
them were forced by both CORE-II and JRAS55-do reanal-
ysis; out of the four remaining models, one of them was
forced by JRAS55-do reanalysis only, and the other three were
forced by CORE-II reanalysis only. The CMCC-CM2-HR4
(~0.25°) and CMCC-CM2-SR5 (~ 1°) models are differ-
ent in spatial resolution, which provides an opportunity to
identify the influence of model resolution on sea ice simula-
tion. The CORE-II forcing dataset has not been updated since
2009 and the two Geophysical Fluid Dynamics Laboratory
(GFDL) models only provide the model outputs until 2007.
This is why the evaluation period is chosen as 1980-2007
for ice concentration, extent, and edge location (the corre-
sponding observations are available from 1980). The evalua-
tion period is 2003-2007 for ice thickness, snow depth, and
ice drift because some observational references are limited
before 2003, and then the corresponding metrics are only on
the mean state. The evaluation period can be extended in the
future when different model and observational datasets are
considered.

The observational reference products for sea ice concen-
tration, thickness, snow depth, and ice drift used to com-
pare with model simulations are summarized in Table 3. The
first ice concentration product derives from the passive mi-
crowave data of the Scanning Multichannel Microwave Ra-
diometer (SMMR), the Special Sensor Microwave Imager
(SSM/T), and the Special Sensor Microwave Imager/Sounder
(SSMIS), which are processed by using the NASA Team
algorithm (NSIDC-0051, Cavalieri et al., 1996). The other
product is based on the same raw data but uses the EUMET-
SAT Ocean and Sea Ice Satellite Application Facility algo-
rithm (OSI-450, Lavergne et al., 2019).

Our first ice thickness product is derived from the mea-
surements of ESA’s Envisat radar altimeter and provided
by the Centre of Topography of Oceans and Hydrosphere
(CTOH, Guerreiro et al., 2017). The other ice thickness prod-
uct is from the measurements of the NASA’s Ice, Cloud, and
land Elevation Satellite (ICESat) Geoscience Laser Altime-
ter System (GLAS), and reprocessed separately for the Arc-
tic (NSIDC-0393, Yi and Zwally, 2009) and Antarctic (Kurtz
and Markus, 2012). The sea ice freeboard is less uncertain
in observations than thickness; however, only five CMIP6
OMIP models at present provide sea ice freeboard, and the
model’s seawater densities, sea ice densities, and snow den-
sities are not provided to calculate the freeboard. The En-
visat data include ice thickness and thickness uncertainties
from November to April for the Arctic with coverage up to
81.5°N and May to October for the Antarctic from 2003.
The ICESat data used here include 13 measurement cam-
paigns for the Arctic and 11 for the Antarctic during 2003—
2007, and these campaign periods are limited to the months
of February—March, March—April, May—June, and October—
November with each roughly 33 d. The comparisons between
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individual models and the two observational references are
thus restricted to these months when data are available. The
months chosen for the comparison are different from two ice
thickness observational references, which can contribute to
the differences in ice thickness performance metrics.

The Envisat thickness data also include snow depth and
associated uncertainty. The other snow depth product derives
from a Lagrangian snow-evolution model (SnowModel-LG)
forced by the European Centre for Medium-Range Weather
Forecasts (ECMWF) fifth-generation (ERAS) atmospheric
reanalysis, and NSIDC sea ice concentration and trajec-
tory datasets (Liston et al., 2020; Stroeve et al., 2020). The
SnowModel-LG data are only provided for the Arctic Ocean.
The SnowModel-LG data used to do the comparison are for
the same months as the Envisat data from 2003-2007.

The first ice drift product is processed by NSIDC and
enhanced by the Integrated Climate Data Center (ICDC-
NSIDCv4.1). This product derives from SMMR, SSM/I, SS-
MIS, and the Advanced Very High Resolution Radiometer
(AVHRR) for the Antarctic. In addition to the above data,
data of the Advanced Multichannel Scanning Radiometer-
Earth Observing System (AMSR-E), observations of the In-
ternational Arctic Buoy Program (IABP), and ice drift de-
rived from NCEP/NCAR surface winds are used for the
Arctic Ocean. The second ice drift dataset is processed by
Kimura et al. (2013) and derived from the AMSR-E data for
both hemispheres from 2003.

The ice vectors are reprocessed before calculating the ice
drift metrics. The ice vectors from observational references
and models are rotated and interpolated to the polar stere-
ographic grid. The monthly mean ice vectors of the obser-
vational references are computed when there are more than
10d with valid daily drift data. The ICDC-NSIDCv4.1 ice
drift data were shown to be biased low (i.e., too slow) rel-
ative to buoy data (Schwegmann et al. 2011; Barthélemy et
al., 2018) and is therefore corrected by multiplying the drift
components with a correction factor of 1.357 (Haumann et
al., 2016). The ice vectors from observational references and
models are removed when ice concentrations are below 50 %,
or the data are closer than 75 km to the coast, or with a spu-
rious value, to reduce the spatial and temporal noise by fol-
lowing Haumann et al. (2016).

3 SITool application and results

SITool (v1.0) described in Sect. 2 is applied in this sec-
tion to assess the performance of the sea ice simulations
for both hemispheres carried out under the CMIP6 OMIP1
and OMIP2 protocols. Models forced by CORE-II atmo-
spheric reanalysis data (OMIP1) or JRAS55-do reanalysis data
(OMIP2) are marked as < model name + /C or /J >, respec-
tively. The OMIP1 and OMIP2 model means shown below
are from the five models of CMCC-CM2-SR5, EC-Earth3,
MIROC6, MRI-ESM2-0, and NorESM2-LM, providing both
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Table 2. The details of nine CMIP6-OMIP models evaluated in the study.

Model Institution Atmospheric forcing  Ocean model Seaice model  Spatial resolution References
CMCC-CM2-HR4 CMCC JRAS5-do NEMO3.6 CICE4 ORCA-0.25° Cherchi et al. (2019)
CMCC-CM2-SRS CMCC CORE-II/JRA55-do  NEMO3.6 CICE4 ORCA-1°
EC-Earth3 EC-Earth CORE-II/JRAS55-do  NEMO3.6 LIM3 ORCA-1° EC-Earth consortium (2019)
GFDL-CM4 NOAA GFDL CORE-II OoM4 SIS2 Tripolar, ~ 0.25° Held et al. (2019)
GFDL-OM4p5B NOAA GFDL CORE-IL OM4 SIS2 Tripolar, Zadeh et al. (2018)
~0.5°
IPSL-CM6A-LR IPSL CORE-IL NEMO-OPA LIM3 eORCA-1° Boucher et al. (2020)
MIROC6 JAMSTEC- CORE-1I/JRAS55-do  COCO 4.9 COCO 4.9 Tripolar, Tatebe et al. (2019)
AORI-NIES- ~1° % (0.5-1)°
RCCS
MRI-ESM2-0 MRI CORE-II/JRAS5-do  MRI.COM4.4 MRI. COM4.4 Tripolar, Yukimoto et al. (2019)
~1° % (0.3-0.5)°
NorESM2-LM NorESM CORE-II/JRA55-do BLOM CICE 5.1.2  Tripolar, Seland et al. (2020)

~1° x (0.25-1)°

Table 3. Observational references used to compare with model simulations.

Variable Dataset name References Available online at (last access: 11 October 2021)
(period)
Sea ice NSIDC-0051 Cavalieri et al. (1996) https://nsidc.org/data/nsidc-0051
concentration
(1980-2007)

OSI-450 Lavergne et al. (2019) https://osi-saf.eumetsat.int/products/sea-ice-products
Sea ice Envisat Guerreiro et al. (2017) http://ctoh.legos.obs-mip.fr/data/sea-ice-products/
thickness sea-ice-thickness
(2003-2007)

ICESat NH: Yi and Zwally (2009) NH: https://nsidc.org/data/nsidc-0393

SH: Kurtz and Markus (2012) SH: https://earth.gsfc.nasa.gov/index.php/

Snow depth Envisat Guerreiro et al. (2017) http://ctoh.legos.obs-mip.fr/data/sea-ice-products/

(2003-2007)

sea-ice-thickness

SnowModel-LG
Stroeve et al. (2020)

Liston et al. (2020) and

https://doi.org/10.5067/27A0PSM6LZBI

Sea ice drift ICDC-NSIDCv4.1  Tschudi et al. (2019)

(2003-2007)

https://www.cen.uni-hamburg.de/en/icdc/data/
cryosphere/seaicedrift-satobs-global.html

KIMURA Kimura et al. (2013)

https://ads.nipr.ac.jp/vishop/

OMIP1 and OMIP2 model outputs. All the sea ice data from
models and observational references are interpolated to the
NSIDC-0051 polar stereographic 25 km resolution grid for
comparison. The typical errors are the differences between
two observational references for the ice concentration, ex-
tent, edge location, and ice drift, while typical errors of ice
thickness and snow depth are calculated from the thickness
and snow depth uncertainties of specific months from Envisat
data.

https://doi.org/10.5194/gmd-14-6331-2021

3.1 Sea ice concentration, extent, and edge location

Figure 2 shows that model errors on ice concentration sim-
ulations are around 2-5 times the observational uncertainty
and the ice concentration simulations are much closer to the
NSIDC-0051 data (Fig. 2a) compared to the OSI-450 data
(Fig. 2b). In general, the overall ice concentration simula-
tions (mean state, interannual variability, and trend) in both
hemispheres are improved under OMIP2 protocol, forced
by JRAS5-do reanalysis. This is identified in Fig. 2a and
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b by comparing the five OMIP1 and OMIP2 model mean
values (last two rows) and also by comparing five models’
values separately under either OMIP protocol. The overall
ice concentration simulations in both hemispheres are also
improved in CMCC-CM2-HR4/J, with higher spatial reso-
lution of ocean—sea ice model compared to CMCC-CM2-
SR5/J (first and third rows). The improvements on the overall
ice concentration simulations are not sensitive to the chosen
observational reference and then robust. The improved ice
concentration simulations are found compared to different
observational references except for the interannual variability
of the Antarctic ice concentration compared to the OSI-450
data as shown in the fifth column of Fig. 2b.

The metrics on the interannual variability of ice concen-
tration (second and fifth columns) are the highest among all
metrics, which indicates relatively lower skill on the simu-
lation of ice concentration variability in both hemispheres
compared to the mean state and trend. The overall best
performance on ice concentration simulations including the
mean state, interannual variability, and trend is in NorESM2-
LM forced by JRA55-do reanalysis for both hemispheres.
To help understand the differences in the ice concentration
metrics, the 1980-2007 September and February mean ice
concentration differences between the OSI-450 and NSIDC-
0051 data, and between model outputs and the NSIDC-
0051 data are produced for both hemispheres in Appendix A
(Figs. A1-A4).

Figure 3a and b reveal that the monthly ice extent differ-
ences between two observational references (observational
uncertainty, black x vs. cyan +) are much smaller compared
to the model bias (red lines vs. black/cyan marks) in both
hemispheres. The negative ice extent biases under OMIP1
protocol in the summer of both hemispheres are reduced un-
der OMIP2 protocol (Fig. 3a and b, solid red vs. dash-dotted
red) by changing the atmospheric forcing to JRAS55-do re-
analysis. The reduced mean ice extent biases in the sum-
mer under OMIP2 protocol are also identified in Tsujino et
al. (2020) (see their Fig. 22 and Table D7). In the boreal
winter, the five-model mean ice extents under OMIP1 and
OMIP?2 protocols show no obvious difference (Fig. 3a, solid
red vs. dash-dotted red), and the ice extents among most
models are close to the observational references (Fig. 3c)
except for the MIROC6 (orange) and MRI-ESM2-0 (gray).
In the austral winter, a large spread exists for the ice extent
simulation (Fig. 3d), and the positive ice extent bias under
OMIP1 protocol (Fig. 3b, solid red) becomes a negative one
under OMIP2 protocol (dash-dotted red). The absolute value
of ice extent bias in the austral winter under OMIP2 proto-
col is not reduced compared to that under OMIP1 protocol
(Fig. 3b, dash-dotted red vs. solid red).

The biases of five-model mean ice extent monthly anoma-
lies under OMIP1 protocol compared to the observational
mean (solid green vs. solid black) are reduced under OMIP2
protocol (solid orange vs. solid black) in both hemispheres
as shown in Fig. 4. The standard deviations of the monthly
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anomalies of ice extent in both hemispheres are smaller un-
der OMIP2 protocol than that under OMIP1 protocol. In
the Arctic (Fig. 4a and b), the negative biases of ice ex-
tent monthly anomalies during 1980-1982 and after 1998,
as well as positive bias during 1986-1990, are reduced in the
OMIP2 model mean (solid orange vs. solid green). However,
the declining trend of ice extent from the observational mean
(dashed black) is close to the OMIP1 model mean (dashed
green) but not the OMIP2 model mean (dashed orange). This
can be caused by the error compensation of the negative
ice extent biases to observational mean during 1980-1982
and after 1998 in the OMIP1 model mean. In the Antarc-
tic (Fig. 4c and d), the reduced bias is obvious after 1988
in the OMIP2 model mean (solid orange vs. solid green).
The increasing trend of the Antarctic ice extent in the ob-
servational mean (dashed black) is not shown in the OMIP1
and OMIP2 mean (dashed green and dashed orange). The ice
extent monthly anomalies in each model under OMIP1 and
OMIP2 protocols are compared separately, and the improve-
ments on the simulations of ice extent interannual variability
are found in the OMIP2 model outputs of individual models
(not shown). The improved interannual variability of ice ex-
tent in the OMIP2 simulations is also identified in Tsujino et
al. (2020) (see their Figs. 22 and 23).

Figure 5a and b show that the model errors on ice extent
simulation are much larger than the observational uncertainty
in most cases, and the large values in the fifth columns are
due to the very low typical error (0.0009 x 10° km?) of the
Antarctic interannual ice extent variability. In general, the ice
extent simulations on the mean state and interannual variabil-
ity for the Arctic, as well as the interannual variability and
trend for the Antarctic, are improved under OMIP2 protocol,
forced by JRA55-do reanalysis. This is identified in Fig. Sa
and b by comparing the five OMIP1 and OMIP2 model mean
values (last two rows), though there are several exceptions
for the simulation of individual models under either OMIP
protocol. The improved ice extent simulations are identified
compared to different observational references.

The simulation of Arctic ice extent trend under OMIP2
protocol is not better than that under OMIP1 protocol (the
third columns in Fig. 5a and b), which is due to the error com-
pensation of the monthly anomalies biases of the ice extent
during different periods under OMIP1 protocol as explained
in Fig. 4a and b. This error compensation can change the
trend and make it close to the observational references even
though the monthly anomalies are not well presented in the
OMIPI models. The unimproved Antarctic mean ice extent
under OMIP2 protocol can also be found in Fig. 3b, where
the ice extent bias in the austral winter is not reduced under
OMIP2 protocol. This is not consistent with what we found
for the improvement in the ice concentration simulation un-
der OMIP2 protocol, which is possibly because ice extent
cancels out regional concentration differences. The overall
best performance on ice extent simulation including the mean
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(b) Concentration: models vs. OSI-450
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Figure 2. The ice concentration metrics of 14 model outputs under OMIP1 (/C) and OMIP2 (/J) protocols, 14-model mean (model mean),
five-OMIP1-model mean (model mean/C), and five-OMIP2-model mean (model mean/J) from CMCC-CM2-SR5, EC-Earth3, MIROCS6,
MRI-ESM2-0, and NorESM2-LM compared to (a) NSIDC-0051 and (b) OSI-450 data. The six columns correspond to model performance
metrics on the mean state, standard deviation (SD Ano), and trend (Trend Ano) of monthly anomalies of the Arctic and Antarctic ice

concentration during 1980-2007. Lower values indicate better skill.

state, interannual variability, and trend is in EC-Earth3/C for
the Arctic and in MRI-ESM2-0/J for the Antarctic.

To gain insights in the spatial distribution of errors, we
then apply the IIEE (Goessling et al., 2016) as introduced
in Sect. 2. In both hemispheres, the IIEEs between mod-
els and NSIDC-0051 are obviously much larger than that
between two observational references as shown in Fig. 6.
The largest model errors and model spread are in the sum-
mer of both hemispheres. The IIEE under OMIP1 protocol is
much reduced under OMIP2 protocol especially in the sum-
mer of both hemispheres (Fig. 6a and b, solid red vs. dash-
dotted red) by changing the atmospheric forcing to JRAS5-
do reanalysis. In both hemispheres, the large IIEE in CMCC-
CM2-SR5/J (dashed light purple) is reduced in CMCC-CM2-
HR4/J (solid dark purple) with higher spatial resolution of
ocean—sea ice model during all the seasons (Fig. 6¢ and d).
To identify the ice-edge location errors of various models,
the contours of 15 % concentration derived from the 1980—
2007 September and February mean ice concentration are
also shown for both hemispheres in Appendix A (Figs. Al-
Ad).

https://doi.org/10.5194/gmd-14-6331-2021

The mean state ice-edge location metrics in Fig. Sc show
that model errors on ice-edge location simulations are around
2-6 times the observational uncertainty, and the ice-edge lo-
cation simulations in the Arctic are much better than that
in the Antarctic. Zampieri et al. (2019) also show that the
prediction skill of sea-ice-edge location is 30 % lower in the
Antarctic than in the Arctic from coupled subseasonal fore-
cast systems. The lower prediction skill in the Antarctic can
be related to more complicated ocean dynamic processes
there, which decrease the persistence of ice areal changes
(Ordofiez et al., 2018). The mean state ice-edge location sim-
ulations in both hemispheres are improved under OMIP2
protocol, which is identified in Fig. 5S¢ by comparing the
five-model mean values (last two rows) and also by compar-
ing five models’ values separately under either OMIP pro-
tocol. The mean state ice-edge location simulations in both
hemispheres are also improved in CMCC-CM2-HR4/J with
higher ocean—sea ice model resolution compared to CMCC-
CM2-SR5/J (first and third rows). The improved ice-edge lo-
cation simulations are identified compared to different obser-
vational references. The best performance on the mean state
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Figure 3. The 1980-2007 mean seasonal cycle of ice extent (106 km2) from 14-model me