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Abstract

New mathematical results are given for the Radiative Transfer equa-
tions alone and coupled with the temperature equation of a fluid: ex-
istence, uniqueness, a maximum principle and a convergent monotone
iterative scheme. Numerical tests for Earth’s atmosphere and the heating
of a pool by the Sun are included.

KeywordsRadiative transfer, Temperature equation, Integral equation, Nu-
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1 Introduction

Radiative transfer is an important field of physics including astronomy, nuclear
physics and heat transfer in fluid mechanics. It is also a key ingredient of climate
models.

Books on radiative transfer for the atmosphere are numerous, such as [14],
[4], the numerically oriented [27] and the two mathematically oriented [5] and
[9].

When Planck’s theory of black bodies is used, the radiation involves a contin-
uum of frequencies governed by the temperature of the emitting bodies. Studies
based on the interactions of the photons with the atoms of the medium, such
as [8], are currently unusable numerically in large physical domains. A much
simpler formulation has been proposed a hundred years ago, known as the ra-
diative transfer equations, which is based on the energy conservation principles
of continuum mechanics.

Even when the interactions with the background fluid are neglected, the ra-
diative transfer equations involves 5 “spatial” variables (3 coordinates for the
position of each photon, and the 2 components of its direction). Existence of

∗Submitted to the editors DATE.
†Ecole Polytechnique, Palaiseau 91128, France (francois.golse@polytechnique.edu).
‡Applied Mathematics, Jacques-Louis Lions Lab, Sorbonne Univer-
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solutions of the radiative transfer equations can be proved by a Schauder-type
compactness argument (see [1]), with uniqueness under appropriate additional
boundedness (see Proposition 2 in [20]), or monotonicity assumptions (see Corol-
lary 2 in [20], together with [12]).

Given the intricacy of the radiative transfer equations, several simplifying
assumptions have been studied in the literature. If the scattering and absorption
coefficients do not depend on the frequencies of the radiation source, the radia-
tive transfer equations can be averaged in the frequency variable, leading to a
closed system of equations for the temperature and frequency-averaged radiative
intensity, known as the “grey” model. However the frequency dependence of the
scattering and absorption coefficients is fundamental to understand several im-
portant effects in Earth’s atmosphere (for instance, Rayleigh explained the blue
color of the sky by the fact that the scattering coefficient is proportional to the
fourth power of the radiation frequency; likewise, the fact that some components
of Earth’s atmosphere are opaque to infrared radiations seems important to un-
derstand the greenhouse effect). Another simplification, of a purely geometric
nature, consists in assuming that the temperature and radiative intensity are
uniform on a foliation of the space by parallel planes, and therefore depend on
a single position variable. As a result, the radiative intensity depends only on
the projection of the photon’s direction on the orthogonal axis to these planes.
This is known as the “slab symmetry” assumption, which appears in the “Milne
problem” for planetary or stellar atmospheres (see [5] for a detailed physical
discussion of the Milne problem, and [11] for the corresponding mathematical
theory).

The term “radiative transfer” usually refers to the interaction of radiation
with a fixed background material. But of course, radiation obviously deposits
energy in the background fluid, gas or plasma, as well as momentum, through the
radiation pressure, and conversely, high speed fluid motion obviously modifies
such processes as Compton scattering (scattering of a photon by a free electron
at rest) by Doppler effect. Therefore, in full generality, the equation for the
radiation intensity are coupled with the fluid equations. This coupling is studied
under the name of “radiation hydrodynamics” (see [23] for the coupling with
ideal fluids, and [21]).

The most general studies of radiation hydrodynamics mentioned above in-
volve high speed (possibly relativistic) fluid motion. In the present paper, we
consider radiation passing through an incompressible fluid, or a compressible
fluid at low Mach number, whose velocity field is uniformly small. Thus our
setting will be intermediate between radiation hydrodynamics as [23],[21], and
[10]. This last reference considers the coupling of the grey model of radiative
transfer with a background material at rest. The radiation energy is deposited
in the background medium in the form of heat, and appears as a source term
in the heat equation for the temperature, while the black body radiation of the
background medium appears as a source term in the radiative transfer equation
for the radiative intensity. Our model is close to the one in [10], but retains
the fluid motion equation, as well as the frequency dependence of the radiation
field, which is essential for applications to Earth’s climate.
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We shall however make another simplification, referred to as the “stratifica-
tion assumption”: while the radiation intensity and temperature depend on all
3 position coordinates, only one of these coordinates is retained in the compu-
tation of the streaming operator acting on the radiative intensity, while the two
other coordinates appear only as parameters in the radiative transfer equation.
The stratified approximation is used when the radiation source is far — as in
the case of the Sun — and the radiative intensity deposited at the boundary of
the computational domain is uniform or at least slowly varying in the tangential
directions to this surface.

While reviewing the current situation for the radiative transfer equations
in [2] and updating the numerical possibilities on modern computers, it was
found that brute force discretization of the equations by finite difference or finite
element methods were incapable of giving results with the accuracy needed to
differentiate between small variations on the absorption coefficient.

On the other hand an integral formulation present in [5] turned out to be
much more precise and also computationally much cheaper. A fixed-point iter-
ation of this nonlinear integral formulation was shown to be monotone in [22].
Finally in [13] the method was extended to include the temperature equation of
the fluid and also to handle Rayleigh scattering while retaining monotonicity.
While [13] is more numerically oriented, the present article is more focussed on
the convergence proofs.

The radiative transfer equations are presented in Section 2. After this, a
cascade of simplifications are discussed: the stratified approximation, the de-
coupling from the fluid, and Milne problem techniques originating from [11] (see
also [20]).

In Section 3, the stratified radiative transfer decoupled from the fluid is
analyzed in the case of isotropic scattering. Existence of a solution is proved by
using the convergent monotone iterative scheme proposed in [2]. A maximum
principle in the line of [20, 11] is also presented.

Uniqueness issue are discussed in Section 4. The proof is far from straight-
forward, and heavily relies on ideas in [20]. It may be interesting to compare
Mercier’s monotonicity structure for the radiative transfer equation, which is
quite involved, with the general observation [6] on order preserving maps in L1

leaving the integral invariant.
In Section 5 the above results are extended to the non isotropic case of

scattering with the Rayleigh phase function.
Finally in Section 6 existence, uniqueness and monotone convergence of the

fixed-point iterations are proved for the radiative transfer equation coupled with
the temperature equation of a fluid whose velocity field is known

2 Fundamental equations and approximations

Finding the temperature T in a fluid heated by electromagnetic radiations is
a complex problem because interactions of photons with atoms of the medium
involve rather intricate quantum phenomena. A first simplifying assumption is
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that of local thermodynamic equilibrium (LTE): at each point in the fluid, there
is a well-defined electronic temperature. In that case, one can write a kinetic
equation for the radiative intensity Iν(x,ω, t) at time t, at position x and in
the direction ω for photons of frequency ν, in terms of the temperature field
T (x, t):

1

c
∂tIν + ω · ∇Iν + ρκ̄νaν

[
Iν − 1

4π

∫
S2
p(ω,ω′)Iν(ω′)dω′

]
= ρκ̄ν(1− aν)[Bν(T )− Iν ].

(1)

In this equation, ∇ designates the gradient with respect to the position x, while

Bν(T ) =
2~ν3

c2[e
~ν
kT − 1]

(2)

is the Planck function at temperature T , with ~ the Planck constant, c the speed
of light in the medium (assumed to be constant) and k the Boltzmann constant.
Notice that ∫ ∞

0

Bν(T )dν = σ̄T 4 , σ̄ =
2π4k4

15c2~3
, (3)

where πσ̄ is the Stefan-Boltzmann constant.
The intricacy of the interaction of photons with the atoms of the medium

is contained in the mass-absorption κ̄ν , the fraction of radiative intensity at
frequency ν that is absorbed by fluid per unit length.

The coefficient aν ∈ (0, 1) is the scattering albedo, and 1
4πp(ω,ω

′)dω is
the probability that an incident ray of light with direction ω′ scatters in the
infinitesimal element of solid angle dω centered at ω. This coefficient κν(1 −
aν), also referred to as the “opacity”, is obtained by rather complex quantum
mechanics computations [24].

The kinetic equation (1) is coupled to the fluid equations solely by the local
conservation of energy. The total energy density is the sum of the kinetic energy
density of the fluid, of the internal energy of the fluid, and of the radiative
energy:

∂t

(
ρ( 1

2u
2 + cV T ) +

1

c

∫ ∞
0

∫
S2
Iνdωdν

)
+∇ ·

(
uρ( 1

2u
2 + cV T ) + (p− g · x)u +

∫ ∞
0

∫
S2
ωIνdωdν

)
= ∇ · (ρcPκT∇T ) +∇ · (µF (∇u + (∇u)T )u) .

Here, ρ is the fluid density, u the velocity fluid, T the temperature, p the pressure
and g the gravity, while cV , cP are the specific heat capacity at constant volume
and constant pressure respectively, µF is the fluid viscosity and κT is the thermal
diffusivity. When the fluid is incompressible, density ρ, pressure p and velocity
fields u satisfy the Navier-Stokes equations

∂tρ+ u · ∇ρ = 0, ∇ · u = 0,

∂tu + u · ∇u− µF
ρ

∆u +
1

ρ
∇p = g ,

(4)
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where ∆ is the Laplacian in the x variable. Substracting the kinetic energy
balance equation from the local conservation of energy leads to

ρcV (∂tT + u · ∇T ) = ∇ · (ρcPκT∇T ) + 1
2µF (∇u + (∇u)T )2

+

∫ ∞
0

ρκ̄ν

(
1− aν 1

4π

∫
S2
p(ω,ω′)dω

)∫
S2
Iν(ω′)dω′dν

−4π

∫ ∞
0

ρκ̄ν(1− aν)Bν(T )dν .

Since ω 7→ 1
4πp(ω,ω

′) is a probability density on S2 for each ω′ ∈ S2, neglecting
the viscous heating term 1

2µF (∇u + (∇u)T )2 on the right hand side of the
equality above, which is legitimate under the assumption that the square fluid
velocity |u|2 is small, we arrive at the equation

ρcV (∂tT + u · ∇T ) =∇ · (ρcPκT∇T )

+

∫ ∞
0

ρκ̄ν(1− aν)

(∫
S2
Iν(ω)dω − 4πBν(T )

)
dν .

(5)

Summarizing, the kinetic equation (1) for the radiative intensity is coupled
to the incompressible Navier-Stokes equations (4) and to the energy balance
equation in the form of the drift diffusion equation (5) for the temperature.
The resulting system is

1

c
∂tIν + ω · ∇Iν + ρκ̄νaν

[
Iν −

1

4π

∫
S2
p(ω,ω′)Iν(ω′)dω′

]
= ρκ̄ν(1− aν)[Bν(T )− Iν ] ,

ρcV (∂tT + u · ∇T )−∇ · (ρcPκT∇T )

=

∫ ∞
0

ρκ̄ν(1− aν)

(∫
S2
Iν(ω)dω − 4πBν(T )

)
dν ,

∂tu + u · ∇u− µF
ρ

∆u +
1

ρ
∇p = g ,

∂tρ+ u · ∇ρ = 0, ∇ · u = 0 .

(6)

This system is supplemented with appropriate initial and boundary condi-
tions. Assuming for instance that the spatial domain is an open subset Ω of R3

with C1, or piecewise C1 boundary ∂Ω, and denoting by n the outward unit
normal field on ∂Ω, the following boundary conditions are natural:

Iν(x,ω, t) = Qν(x, ω, t) , x ∈ ∂Ω , ω · nx < 0 , ν > 0 ,

u|∂Ω = 0 ,
∂T

∂n

∣∣∣
∂Ω

= 0 .
(7)

The first boundary condition tells us that the radiative intensity of incoming
photons (ω · nx < 0) at the boundary of the spatial domain is known, which is
a typical admissible boundary condition for kinetic models; the second bound-
ary condition is the classical Dirichlet boundary condition for the velocity field,
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solution of the Navier-Stokes equations, while the last boundary condition, the
Neuman condition for the temperature, corresponds to the absence of heat flux
at the boundary of the spatial domain. (Of course, this is just one example of
boundary condition for the heat equation, other boundary conditions could also
be considered — for instance, one could have mixed Dirichlet-Neuman, or even
Robin conditions on the temperature.) Notice that there is no boundary condi-
tion for the density ρ, since the velocity field u is tangent (and even vanishes)
at the boundary ∂Ω.

Finally, one should specify initial conditions of the form

Iν(x,ω, 0) = Iinν (x, ω) , x ∈ Ω , ω ∈ S2 , ν > 0 ,

ρ|t=0 = ρin , u|t=0 = uin , T |t=0 = T in.
(8)

Neglecting the viscous heating term as explained above has an important
consequence on the structure of this system, which can be thought of as “block
triangular”.

In other words, one can first solve for ρ,u, p the Navier-Stokes equations (4),
then the last three equations in the system (6) above. The mathematical theory
of (4) has been discussed in great detail by P.-L. Lions in [19].

Once this is done, the density ρ and velocity field u are known, and appear
as coefficients in the coupled system of the radiative transfer equation (1) and of
the heat drift-diffusion equation (5). This coupling has to be studied in detail,
since there is no further triangular structure by which one can first solve for
one of the remaining unknowns (in this case the radiative intensity Iν and the
temperature T ).

The reader familiar with radiation hydrodynamics will observe another sim-
plifying assumption in (6) leading to the “block triangular” structure described
above. In general, the radiative intensity also appears in the momentum balance
equation, through the time derivative of the radiation flux and the divergence
of the radiation pressure tensor (see equations (1.16) and (1.19) in chapter I,
section 2 of [23] for a precise definition of these notions). The radiative pressure
tensor and the radiative flux are of order 1/c and 1/c2 respectively (see equation
(9.83) in chapter IX, section 3 of [23]). In the physical context considered here,
these terms are obviously negligible, and this is why the coupling between the
radiation field and the hydrodynamics appears only in the local conservation of
energy.

In the next two sections, we discuss simplified model equations deduced from
(6).

2.1 Stratified radiative transfer

Let (x, y, z) be the cartesian coordinates of the point x ∈ R3, with z denoting
the altitude/depth.

Assume that the radiation source (henceforth referred to as “the Sun”) is
far away in the direction z > 0, and is independent of x and y. The radiation
spectrum of this source is that of a black body at temperature TS , that is,
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the Planck function Bν(TS). With such a radiation source, it is natural to
assume that the temperature field T is slowly varying with x and y, so that
|∂xT | + |∂yT | � |∂zT | and that Iν is also slowly varying in x and y so that
|∂xIν |+ |∂yIν | � |∂zIν |.

Similarly, we further assume that | 1c∂tIν | � |∂zIν |, and forget the initial con-
dition on Iν , so that the time dependence of the radiative intensity is governed
solely by the evolution of the temperature field through the radiative transfer
equation (1).

With this assumption, the streaming term 1
c∂tIν +ω ·∇Iν reduces to µ∂zIν ,

where µ is the cosine of the angle of ω with the z axis. Henceforth, the spatial
domain is Ω = O×(zm, zM ), where O is an open subset of R2 with C1 boundary.

Then (6) becomes (see [27]):

µ∂zIν + ρκ̄νIν = ρκ̄ν(1− aν)Bν(T ) + 1
2ρκ̄νaν

∫ 1

−1

p(µ, µ′)Iν(z, µ′)dµ′ ,

∂tT + u · ∇T − cP
cV
κT∆T = 4π

cV

∫ ∞
0

κ̄ν(1− aν)

(
1
2

∫ 1

−1

Iνdµ−Bν(T )

)
dν ,

Iν(x, y, zM , µ)|µ<0 = Q−(µ)Bν(TS) , Iν(x, y, zm, µ)|µ>0 = Q+
ν (µ) ,

∂T

∂n

∣∣∣
∂Ω

= 0 , T |t=0 = T in .

(9)
That Iν(zm, µ)|µ>0 = 0, i.e. Q+

ν (µ) = 0, is natural since no radiation comes from
the bottom of the spatial domain. Yet, by the law of black bodies, radiations
could also come from the bottom but more general boundary conditions could be
handled by the same analysis. In fact in [9] and others, it is assumed that most of
the energy from the Sun is in the form of visible light and is essentially unaffected
by crossing the atmosphere, so that it is equivalent to a source of energy located
at z = 0. Recall that it make physical sense to take Q−(µ) = µQ′ cos θ, where
θ is the latitude on Earth, while µ is the cosine of the observation angle. The
fluid velocity field u is given, assumed to be divergence free and regular enough
for (9) to make sense. Note that by rescaling the time variable, u and κT
appropriately, the factor 4π/ρcV can be replaced with 1.

2.2 Radiative transfer decoupled from hydrodynamics

When κT = 0, and the fluid is at rest, the left-hand side of temperature equa-
tion is zero, so that the fluid equations are decoupled from the radiative trans-
fer equation (1). Let us consider first the case of isotropic scattering, namely
p(µ, µ′) = 1. Then the system becomes (see [2])

(µ∂τ + κν)Iν(τ, µ) = κνaνJν(τ) + κν(1− aν)Bν(T (τ)) , (10)

Iν(0, µ) = Q+
ν (µ) , Iν(Z,−µ) = Q−ν (µ) , 0 < µ < 1 , (11)∫ ∞

0

κν(1− aν)Bν(T (τ))dν =

∫ ∞
0

κν(1− aν)Jν(τ)dν, (12)
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with the notation Q−ν (µ) = Q−(−µ)Bν(TS) and

Jν(τ) := 1
2

∫ 1

−1

Iν(τ, µ)dµ . (13)

In these equations, we have replaced the height z ∈ (zm, zM ) by τ , analogous
to the “optical depth” (see for instance [9], or formula (51) in chapter I of
[5]), defined as follows. Pick ρ0 > 0, some “reference” density of the fluid.
(For instance, ρ0 could be the average density in the fluid, or the density at
some reference altitude z. Indeed, the following expressions for the atmospheric
density ρ in terms of the altitude z are found in the literature: ρ(z) = ρ0e−z

or ρ(z) = ρ0 − ρ1z.) The new variable τ , and the absorption coefficient κν are
defined as follows:

τ :=

∫ z

zm

ρ(ζ)

ρ0
dζ , and κν := ρ0κ̄ν . (14)

Equations (10) and (12) imply that

∂τ

∫ ∞
0

∫ 1

−1

µIν(τ, µ)dµdν = 0. (15)

We have ignored the dependence in x, y of T and Iν , since x, y are mere param-
eters in these equations, which are anyway completely decoupled from the fluid
equations.

Assuming that 0 < κν ≤ κM and 0 ≤ aν < 1 for all ν > 0, we see that (12)
and (13) define T as a functional of I, henceforth denoted T [I]. Equivalently,
one can consider Jν as a radiative intensity independent of µ, and observe that
(12) and (13) imply that T [I] = T [J ]. Thus (10),(11),(12) can be recast as{

(µ∂τ + κν)Iν(τ, µ) = κνaνJν(τ) + κν(1− aν)Bν(T [J ](τ)) ,

Iν(0, µ) = Q+
ν (µ) , Iν(Z,−µ) = Q−ν (µ) , 0 < µ < 1 .

(16)

Throughout this article we use the exponential integrals

Ep(X) :=

∫ ∞
X

e−z

zp
dz =

∫ ∞
X

e−z

zn
dz =

∫ 1

0

e−X/µµp−2dµ , X > 0 . (17)

Lemma 1 The following inequality holds:

1
2 sup

0≤t≤Z

∫ Z

0

E1(κ|τ − t|)κdτ ≤ C1(κ) ,

where κ 7→ C1(κ) is monotone increasing from R+ to R+, and less than 1.
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Proof Observe that∫ Z

0

E1(κ|τ − t|)κdτ =

∫ κZ

0

E1(|σ − s|)dσ

=

∫
R

E1(|σ − s|)1[0,κZ](σ)dσ

=

∫
R

E1(|θ|)1[−s,κZ−s](θ)dθ

≤
∫
R

E1(|θ|)1[−κZ/2,κZ/2](θ)dθ

=2

∫ κZ/2

0

E1(θ)dθ ≤ 2

∫ ZκM/2

0

E1(θ)dθ =: 2C1(κ) .

(18)

The first inequality above is the elementary rearrangement inequality (Theorem
3.4 in [18]). Now C1 is obviously increasing since E1 > 0, and

C1(κ) =

∫ Zκ/2

0

E1(θ)dθ <

∫ ∞
0

E1(θ)dθ =

∫ ∞
0

(∫ ∞
1

e−θy

y
dy

)
dy =

∫ ∞
1

dy

y2
= 1 .

�

Lemma 2 Let

Sν(τ) = 1
2

∫ 1

0

(
e−

κντ
µ Q+

ν (µ) + e−
κν (Z−τ)

µ Q−ν (µ)
)

dµ . (19)

Problem (10),(11),(12),(13) is equivalent to (12), plus the integral equation

Jν(τ) =Sν(τ) + 1
2

∫ Z

0

E1(κν |τ − t|)κν(aνJν(t) + (1− aν)Bν(T (t)))dt . (20)

Proof Applying the method of characteristics shows that

Iν(τ, µ) =e−
κντ
µ Q+

ν (µ)1µ>0 + e−
κν (Z−τ)
|µ| Q−ν (|µ|)1µ<0

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ (aνJν(t) + (1− aν)Bν(T (t)))dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ| (aνJν(t) + (1− aν)Bν(T (t)))dt .

(21)

One integrates both sides of this identity in µ, exchange the order of integration
by Tonelli’s theorem, and change variables in the inner integral, observing that∫ 1

0

e−
X
µ

dµ

µ
=

∫ ∞
1

e−Xy

y
dy =

∫ ∞
X

e−z

z
dz = E1(X) .

9



Thus

Jν(τ) = 1
2

∫ 1

0

(
e−

κντ
µ Q+

ν (µ) + e−
κν (Z−τ)

µ Q−ν (µ)
)

dµ

+ 1
2

∫ Z

0

E1(κν |τ − t|)κν(aνJν(t) + (1− aν)Bν(T (t)))dt .

(22)

�

3 Analysis of problem (10)-(12)

In order to solve numerically (10)-(12), one uses the method of iteration on the
sources. Starting from some appropriate (I0

ν , T
0), one constructs a sequence

(Inν , T
n) by the following prescription{

(µ∂τ + κν)In+1
ν (τ, µ) = κνaνJ

n
ν (τ) + κν(1− aν)Bν(Tn(τ)) , Tn = T [Jnν ]

In+1
ν (0, µ) = Q+

ν (µ) , In+1
ν (Z,−µ) = Q−ν (µ) , 0 < µ < 1 ,

(23)
Note that aνJ

n
ν (t) + (1 − aν)Bν(Tn(t)) does not depend on µ. As in (21),

the method of characteristics shows that

In+1
ν (τ, µ) =e−

κντ
µ Q+

ν (µ)1µ>0 + e−
κν (Z−τ)
|µ| Q−ν (|µ|)1µ<0

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ (aνJ

n
ν (t) + (1− aν)Bν(Tn(t))) dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ| (aνJ
n
ν (t) + (1− aν)Bν(Tn(t))) dt .

(24)

Since Bν ≥ 0, this formula shows, by a straightforward induction argument,
that

I0
ν ≥ 0 , T 0 ≥ 0 , Q±ν ≥ 0 =⇒ Inν ≥ 0 .

Moreover

In+1
ν (τ, µ)− Inν (τ, µ) =

+1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ aν(Jnν (t)− Jn−1

ν (t))dt

+1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ (1− aν)(Bν(Tn(t))−Bν(Tn−1(t)))dt

+1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|aν(Jnν (t)− Jn−1
ν (t))dt

+1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ| (1− aν)(Bν(Tn(t))−Bν(Tn−1(t)))dt .

10



Since Bν is nondecreasing for each ν > 0, formula (12) shows that

Jnν ≥ Jn−1
ν =⇒ Tn ≥ Tn−1 ,

and we conclude from the equality above that

I0
ν = 0 , T 0 = 0 , Q±ν ≥ 0 =⇒

{
0 ≤ I1

ν ≤ I2
ν ≤ . . . ≤ Inν ≤ . . .

0 ≤ T 1 ≤ T 2 ≤ . . . ≤ Tn ≤ . . .

By Lemma 2

Jn+1
ν (τ) = Sν(τ) + 1

2

∫ Z

0

E1(κν |τ − t|)κν (aνJ
n
ν (t) + (1− aν)Bν(Tn(t))) dt .

Integrating over [0, Z] in τ implies that ∫ Z

0

Jn+1
ν (τ)dτ =

∫ Z

0

Sν(τ)dτ

+ 1
2

∫ Z

0

(∫ Z

0

E1(κν |τ − t|)κνdτ

)
(aνJ

n
ν (t) + (1− aν)Bν(Tn(t))) dt

≤
∫ Z

0

Sν(τ)dτ

+ 1
2

(
sup

0≤t≤Z

∫ Z

0

E1(κν |τ − t|)κνdτ

)∫ Z

0

(aνJ
n
ν (t) + (1− aν)Bν(Tn(t))) dt .

Thus by Lemma 1∫ Z

0

Jn+1
ν (τ)dτ ≤

∫ Z

0

Sν(τ)dτ + C1(κν)

∫ Z

0

(aνJ
n
ν (t) + (1− aν)Bν(Tn(t))) dt .

Multiply both sides of this inequality by κν and integrate in ν: one finds that∫ ∞
0

∫ Z

0

κνJ
n+1
ν (τ)dτdν ≤

∫ ∞
0

∫ Z

0

Sν(τ)dτdν

+C1(κM )

∫ ∞
0

∫ Z

0

κν (aνJ
n
ν (t) + (1− aν)Bν(Tn(t))) dtdν .

At this point, we recall that Tn = T [Jnν ], so that∫ ∞
0

κν(1− aν)Bν(Tn(t)))dν =

∫ ∞
0

κν(1− aν)Jnν (t)dν , (25)

and hence∫ ∞
0

∫ Z

0

κνJ
n+1
ν (τ)dτdν ≤ C1(κM )

∫ ∞
0

∫ Z

0

κνJ
n
ν (t)dtdν +

∫ ∞
0

∫ Z

0

Sν(τ)dτdν .

11



The expression of the source term can be slightly reduced, by integrating out
the τ variable:∫ Z

0

κνe
−κντµ dτ =

∫ Z

0

κνe
−κν (Z−τ)

µ dτ = µ
(

1− e−
κνZ
µ

)
,

so that

0 ≤ 1
2

∫ ∞
0

∫ Z

0

∫ 1

0

κν

(
e−

κντ
µ Q+

ν (µ) + e−
κν (Z−τ)

µ Q−ν (µ)
)

dµdτdν

≤ 1
2

∫ ∞
0

∫ 1

0

(Q+
ν (µ) +Q−ν (µ))µdµ =: Q .

Thus ∫ ∞
0

∫ Z

0

κνJ
n+1
ν (τ)dτdν ≤ C1(κM )

∫ ∞
0

∫ Z

0

κνJ
n
ν (t)dtdν +Q .

Initializing the sequence Inν with I0
ν = 0 and T 0 = T [J0

ν ] = 0, one finds that∫ ∞
0

∫ Z

0

κνJ
1
ν (τ)dτdν ≤ Q ,∫ ∞

0

∫ Z

0

κνJ
2
ν (τ)dτdν ≤ C1(κM )Q+Q∫ ∞

0

∫ Z

0

κνJ
3
ν (τ)dτdν ≤ C1(κM )2Q+ C1(κM )Q+Q

and by induction ∫ ∞
0

∫ Z

0

κνJ
n+1
ν (τ)dτdν ≤ Q

n∑
j=0

C1(κM )j .

Since C1(κM ) < 1, the series above converges and one has the uniform bound∫ ∞
0

∫ Z

0

bkappaνJ
n+1
ν (τ)dτdν ≤ Q

1− C1(κM )
.

Furthermore, as
0 ≤ I1

ν ≤ I2
ν ≤ . . . ≤ Inν ≤ In+1

ν ≤ . . .

the bound above and the Monotone Convergence Theorem implies that the
sequence In+1

ν (τ, µ) converges for a.e. (τ, µ, ν) ∈ (0, Z)× (−1, 1)× (0,+∞) to a
limit denoted Iν(τ, µ) as n→∞. Since

0 ≤ T 1 ≤ T 2 ≤ . . . ≤ Tn ≤ Tn+1 ≤ . . .

we conclude from (15) and the Monotone Convergence Theorem that Tn+1(τ)
converges for a.e. τ ∈ (0, Z) to a limit denoted T (τ) as n→∞.
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Then we can pass to the limit in (24) as n→∞ by monotone convergence,
so that

Iν(τ, µ) =e−
κντ
µ Q+

ν (µ)1µ>0 + e−
κν (Z−τ)
|µ| Q−ν (|µ|)1µ<0

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ (aνJν(t) + (1− aν)Bν(T (t)))dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ| (aνJν(t) + (1− aν)Bν(T (t)))dt

for a.e. (τ, µ, ν) ∈ (0, Z) × (−1, 1) × (0,+∞). One recognizes in this equality
the integral formulation of (10)-(12). Besides, we have seen that

0 = I0
ν ≤ I1

ν ≤ I2
ν ≤ . . . ≤ Inν ≤ In+1

ν ≤ . . . ≤ Iν ,
0 =T 0≤ T 1≤T 2≤ . . . ≤ Tn ≤ Tn+1 ≤ . . . ≤ T ,

so that

0 ≤
∫ Z

0

(Jn+1
ν − Jnν )(τ)dτ

= 1
2

∫ Z

0

(∫ Z

0

E1(κν |τ − t|)κνdτ

)
aν(Jnν − Jn−1

ν )(t)dt

+ 1
2

∫ Z

0

(∫ Z

0

E1(κν |τ − t|)κνdτ

)
(1− aν)(Bν(Tn(t))−Bν(Tn−1(t)))dt

≤ C1(κM )

∫ Z

0

(aν(Jnν − Jn−1
ν )(t) + (1− aν)(Bν(Tn(t))−Bν(Tn−1(t)))dt .

Using again the equality (25), we conclude that

0 ≤
∫ Z

0

∫ ∞
0

κν(Jn+1
ν − Jnν )(τ)dνdτ ≤ C1(κM )

∫ Z

0

∫ ∞
0

κν(Jnν − Jn−1
ν )(t)dt .

Hence

0 ≤
∫ Z

0

∫ ∞
0

κν(Jn+1
ν −Jnν )(τ)dνdτ ≤ C1(κM )n

∫ ∞
0

κνJ
1
ν (τ)dνdτ ≤ C1(κM )nQ ,

so that

0 ≤
∫ Z

0

∫ ∞
0

κν(Jν−Jnν )(τ)dνdτ ≤ C1(κM )n
∫ ∞

0

κνJ
1
ν (τ)dνdτ ≤ C1(κM )nQ

1− C1(κM )
.

Summarizing, we have proved the following result.

Theorem 1 Assume that 0 < κν ≤ κM , while 0 ≤ aν < 1 for all ν > 0. Let
Q±ν (µ) satisfy∫ ∞

0

∫ 1

0

µQ±ν (µ)dµdν ≤ Q := 1
2

∫ ∞
0

∫ 1

0

(Q+
ν (µ) +Q−ν (µ))µdµ .

13



Choose I0
ν = 0 and T 0 = 0, and let Inν and Tn = T [Jnν ] be the solution of (23).

Then
Inν (τ, µ)→ Iν(τ, µ) and Tn(τ)→ T (τ)

for (τ, µ, ν) ∈ (0, Z)× (−1, 1)× (0,+∞) as n→∞, where (Iν , T ) is a solution
of (10)-(12). This method converges exponentially fast, in the sense that

0 ≤
∫ Z

0

∫ ∞
0

κν(Jν − Jnν )(τ)dνdτ ≤ C1(κM )nQ
1− C1(κM )

,

and, if 0 ≤ aν ≤ aM < 1 while 0 < κm ≤ κν , one has

0 ≤
∫ Z

0

σ̄(T (t)4 − Tn(t)4)dt ≤ C1(κM )nQ
κm(1− aM )(1− C1(κM ))

.

The last bound comes from the defining equality for the temperature in
terms of the radiative intensity

κm(1− aM )σ̄(T 4 − (Tn)4) =κm(1− aM )

∫ ∞
0

(Bν(T )−Bν(Tn))dν

≤
∫ ∞

0

κν(1− aν)(Bν(T )−Bν(Tn))dν

=

∫ ∞
0

κν(1− aν)(Jν − Jnν )dν

≤
∫ ∞

0

κν(Jν − Jnν )dν .

4 Uniqueness, Maximum Principle for (10)-(12)

This section follows computations in [11] (in the case Z = +∞ and with aν = 0)
and in [20].

The rather subtle monotonicity structure of the radiative transfer equations
is a striking result, discovered by Mercier in [20]. In view of the complexity of
his computations, it may be useful to keep in mind the following simple remarks,
which should be viewed as a motivation.

Consider first the following steady radiative transfer equation (11) without
scattering (aν = 0) in the whole space with a source 0 ≤ Sν ∈ L1(R× (−1, 1)×
(0,∞)):

λIν(τ, µ)+µ∂τIν(τ, µ)+κνIν(τ, µ) = κνBν(T [I])+λSν(τ, µ) , τ ∈ R , |µ| < 1 ,

where λ > 0. (One should think of this equation as the Laplace transform in time
of the time-dependent radiative transfer equation, with initial data λSν , where
the parameter λ is the Laplace variable, or as the implicit time-discretization of
the same time-dependent radiative transfer equation, where λ = 1/c∆t and S
is the radiative intensity at the beginning of the time-step.)
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By definition of T [I], one easily checks that∫ ∞
−∞

∫ 1

−1

∫ ∞
0

Iν(τ, µ)dνdµdτ =

∫ ∞
−∞

∫ 1

−1

∫ ∞
0

Sν(τ, µ)dνdµdτ .

The radiative intensity is given in terms of the temperature T [I] and the source
Sν by the explicit formula

Iν(τ, µ) =1µ>0

∫ τ

−∞
e−

(λ+κν )(τ−t)
µ

κνBν(T [I](t)) + λSν(t, µ)

µ
dt

+ 1µ<0

∫ ∞
τ

e−
(λ+κν )(t−τ)

|µ|
κνBν(T [I](t)) + λSν(t, µ)

|µ|
dt .

Now, if one replaces the source of radiation Sν in the right hand side of this
equation with a larger source S′ν ≥ Sν , it is natural to expect that the resulting
radiation intensity I ′ν will be such that T [I ′] ≥ T [I]. Observe now that the
function T 7→ Bν(T ) is increasing on (0,+∞) for each ν > 0; the explicit
formula for Iν in terms of Sν and T [I] shows that I ′ν(τ, µ) ≥ Iν(τ, µ).

Of course, this argument is by no means rigorous, since it rests on the as-
sumption that S′ν ≥ Sν =⇒ T [I ′] ≥ T [I], which, although physically plausible,
has not been proved yet. Notice however that

I ′ν ≥ Iν =⇒ T [I ′] ≥ T [I]

by (15), since the Planck function Bν is increasing for each ν > 0. Thus, the map
Sν 7→ Iν preserves both the integral and the order between radiation intensities.
Now there is a clever characterization of order preserving maps on L1 leaving
the integral invariant, which is due to Crandall and Tartar. Roughly speaking,
a map from L1 to itself that preserves the integral is order preserving if and only
if it is nonexpansive in L1. This brings in the notion of L1-accretivity, which is
at the heart of Mercier’s remarkable discovery.

Indeed, the monotonicity argument above, together with Proposition 1 of [6]
(with C = L1(R× (−1, 1)× (0,∞))+, which is the set of a.e. positive elements
of L1(R× (−1, 1)× (0,∞))), strongly suggest that it might be a good idea1 to
study∫ ∞
−∞

∫ 1

−1

∫ ∞
0

(I2
ν − I1

ν )+dνdµdτ in terms of

∫ ∞
−∞

∫ 1

−1

∫ ∞
0

(S2
ν − S1

ν)+dνdµdτ ,

where S1
ν , S

2
ν ∈ C and I1

ν , I
2
ν are the solutions of the steady radiative transfer

equation above with source terms S1
ν and S2

ν respectively2.

1This may be a reconstruction of Mercier’s argument; he might have found the L1-
accretivity structure of the radiative transfer equations by some different argument.

2In fact, Mercier’s original argument is even more complex, because he assumes that the
opacity Kν := κν(1 − aν) depends on the temperature T , and is a nonincreasing function
of T for each ν > 0 while T 7→ Kν(T )Bν(T ) is nondecreasing; the reader can easily verify
that the intuitive argument above still applies, provided of course that our physically natural
assumption that S′

ν ≥ Sν =⇒ T [I′] ≥ T [I] remains valid in this case as well.
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After these preliminary remarks, we return to the problem (10)-(12). The
following theorem shows that two solutions of this problem are ordered exactly
as their boundary data. (This situation is analogous to the case of harmonic
functions, except that the radiative transfer equations (10)-(12) are nonlinear,
at variance with the Laplace equation.)

Theorem 2 Assume that 0 < κν ≤ κM , while 0 ≤ aν < 1 for all ν > 0. Let
Q±, Q′

± ∈ L1((0, 1)× (0,∞)) satisfy

0 ≤ Q±ν (µ) ≤ Q′±ν (µ) for a.e. (µ, ν) ∈ (0, 1)× (0,∞) .

Then, the solutions (Iν , T [I]) of (10)-(12), and (I ′ν , T [I ′]) of (10)-(12), with
boundary data Q±ν (µ) replaced with Q′

±
ν (µ) satisfy

Iν(τ, µ) ≤ I ′ν(τ, µ) and T [I](τ) ≤ T [I ′](τ) for a.e. (τ, µ) ∈ (−1, 1)× (0,∞) .

In particular,

Q±ν (µ) = Q′
±
ν (µ) a.e. µ, ν =⇒ Iν(τ, µ) = I ′ν(τ, µ) and T [I](τ) = T [I ′](τ)

for a.e. τ, µ ∈ (−1, 1)× (0,∞) .

Proof Define s+(z) = 1z≥0, and z+ = max(z, 0) while z− = max(−z, 0).
Thus

z = z+ − z− , |z| = z+ + z− , z+ = zs+(z) .

In accordance with the discussion above, as in [20], we multiply both sides of
the radiative transfer equation for two solutions Iν and I ′ν by s+(Iν − I ′ν) and
integrate in all variables.

Denote

〈Φ〉 :=

∫ ∞
0

∫ 1

−1

Φ(µ, ν)dµdν .

With T = T [I] and T ′ = T [I ′] defined by (16), let us compute

D := 〈κν((Iν − I ′ν)− aν(Jν − J ′ν)− (1− aν)(Bν(T )−Bν(T ′)))s+(Iν − I ′ν)〉
= 〈κν(1− aν)((Iν − I ′ν)− (Bν(T )−Bν(T ′)))s+(Iν − I ′ν)〉

+〈κνaν((Iν − I ′ν)− (Jν − J ′ν))s+(Iν − I ′ν)〉 =: D1 +D2 .

Observe that

(Jν − J ′ν)s+(Iν(µ)− I ′ν(µ)) = 1
2

∫ 1

−1

(Iν − I ′ν)(µ′)s+(Iν − I ′ν)(µ)dµ′

≤ 1
2

∫ 1

−1

(Iν − I ′ν)+(µ′)dµ′ ,

so that D2 ≥ 0. Next

D1 = 〈κν(1− aν)((Iν − I ′ν)− (Bν(T )−Bν(T ′)))(s+(Iν − I ′ν)− s+(T − T ′))〉
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because

T = T [I] and T ′ = T [I ′] =⇒ 〈κν(1− aν)((Iν − I ′ν)− (Bν(T )−Bν(T ′)))〉 = 0 .

Since Bν is increasing for each ν > 0, one has

s+(T − T ′) = s+(Bν(T )−Bν(T ′)) ,

so that

D1=〈κν(1−aν)((Iν−I ′ν)−(Bν(T )−Bν(T ′)))(s+(Iν−I ′ν)−s+(Bν(T )−Bν(T ′)))〉

and
s+ nondecreasing =⇒ D1 ≥ 0 .

Let Iν and I ′ν be two solutions of (11) with boundary data

Iν(0, µ) = Q+
ν (µ) , Iν(Z,−µ) = Q−ν (µ) , 0 < µ < 1 ,

I ′ν(0, µ) = Q′
+
ν (µ) , I ′ν(Z,−µ) = Q′

−
ν (µ) , 0 < µ < 1 .

Assume that

Q±ν (µ) ≤ Q′±ν (µ) for a.e. (µ, ν) ∈ (0, 1)× (0,∞) .

Then

∂τ 〈µ(Iν − I ′ν)+〉
≤ −〈κν(1− aν)((Iν − I ′ν)− (Bν(T [I])−Bν(T [J ])))s+(Iν − I ′ν)〉

−〈κνaν((Iν − I ′ν)− (I ′ν − Ĩ ′ν))s+(Iν − I ′ν)〉 ≤ 0 ,

so that τ 7→ 〈µ(Iν − I ′ν)+〉(τ) is nonincreasing. Since

Q−ν ≤ Q′
−
ν =⇒ 〈µ(Iν − I ′ν)+〉(Z) = 〈µ+(Iν − I ′ν)+〉(Z) ≥ 0 ,

Q+
ν ≤ Q′

+
ν =⇒ 〈µ(Iν − I ′ν)+〉(0) = −〈µ−(Iν − I ′ν)+〉(0) ≤ 0 ,

one has

for a.e. τ ∈ (0, Z) 0 = 〈µ(Iν − I ′ν)+〉
= 〈κνaν((Iν − I ′ν)− (I ′ν − Ĩ ′ν))s+(Iν − I ′ν)〉

= 〈κν(1− aν)((Iν − I ′ν)− (Bν(T [I])−Bν(T [J ])))s+(Iν − I ′ν)〉 ,

and

(Iν − I ′ν)+(0,−µ) = (Iν − I ′ν)+(Z, µ) = 0 for a.e. µ ∈ (0, 1) .

Besides, since κν(1− aν) > 0 for all ν > 0

0 = 〈κν(1− aν)((Iν − I ′ν)− (Bν(T [I])−Bν(T [J ])))s+(Iν − I ′ν)〉
= 〈κν(1− aν)((Iν − I ′ν)− (Bν(T [I])−Bν(T [J ])))

(s+(Iν − I ′ν)− s+(T [I]− T [I ′]))〉
=⇒ s+(Iν(τ, µ)− I ′ν(τ, µ)) = s+(T [I]− T [I ′]) for a.e. (τ, µ, ν) .
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At this point, we must resort to an additional idea, which is not present in
[20]. Since we are dealing with solutions of the radiative transfer equation having
the slab symmetry, it is natural to use the K-invariant (in the terminology of
section 10 in chapter I of Chandrasekhar [5]). This idea3 is at the heart of the
exponential decay estimate for the Milne problem obtained in [11], and will be
used here for a different purpose.

We compute

∂τ

〈
µ2

κν
(Iν − I ′ν)+

〉
= −〈aνµ((Iν − I ′ν)− (I ′ν − Ĩ ′ν))s+(T [I]− T [I ′])〉

−〈(1− aν)µ((Iν − I ′ν)− (Bν(T [I])−Bν(T [I ′]))s+(T [I]− T [I ′])〉
= −〈aνµ(Iν − I ′ν)s+(T [I]− T [I ′])〉 − 〈(1− aν)µ(Iν − I ′ν)s+(T [I]− T [I ′])〉

= −〈µ(Iν − I ′ν)s+(T [I]− T [I ′])〉 = −〈µ(Iν − I ′ν)+〉 = 0 ,

since ∫ 1

−1

µ(I ′ν(τ)− Ĩ ′ν(τ))dµ =

∫ 1

−1

µ(Bν(T [I])−Bν(T [I ′]))dµ = 0 .

Next we integrate in τ ∈ (0, Z), and observe that

(Iν − I ′ν)+(0,−µ) = 0 and Q+
ν (µ) ≤ Q′+ν (µ) for a.e. µ ∈ (0, 1)

=⇒
〈
µ2

κν
(Iν − I ′ν)+

〉
(τ) =

〈
µ2

κν
(Iν − I ′ν)+

〉
(0) = 0 .

Thus, we have proved that

Iν(τ, µ) ≤ I ′ν(τ, µ) for a.e. (τ, µ, ν) ∈ (0, Z)× (−1, 1)× (0,∞) ,

so that
T [I](τ) ≤ T [I ′](τ) for a.e. τ ∈ (0, Z) ,

under the assumption that

Q±ν (µ) ≤ Q′ν
±

(µ) for a.e. (µ, ν) ∈ (0, 1)× (0,∞) .

Exchanging Q±ν (µ) and Q′ν
±

(µ) in the above argument shows that

Iν(τ, µ) = I ′ν(τ, µ) for a.e. (τ, µ, ν) ∈ (0, Z)× (−1, 1)× (0,∞) ,

so that
T [I](τ) = T [I ′](τ) for a.e. τ ∈ (0, Z) ,

under the assumption that

Q±ν (µ) = Q′ν
±

(µ) for a.e. (µ, ν) ∈ (0, 1)× (0,∞) ,

3A somewhat similar idea, unfortunately unpublished, had been used by R. Sentis to
simplify the uniqueness proof for the linear Milne problem studied in [3].
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which is precisely the announced uniqueness argument. �

One has also the following form of Maximum Principle for the radiative
transfer equation. (If one keeps in mind the analogy with harmonic functions
recalled before (2), the Maximum Principle below is a consequence of the mono-
tonicity of the dependence of the solution of (10)-(12) in terms of its boundary
data, whereas the analogous monotonicity in the case of harmonic functions is
deduced from the Maximum Principle for the Laplace equation.)

Corollary 1 Assume that 0 < κν ≤ κM , while 0 ≤ aν < 1 for all ν > 0. Let
Q±ν (µ) ≤ Bν(TM ) (resp. Q±ν (µ) ≥ Bν(Tm)) for a.e. (µ, ν) ∈ (0, 1) × (0,∞).
Then

Iν(τ, µ) ≤ Bν(TM ) and T [I](τ) ≤ TM
(resp. Iν(τ, µ) ≥ Bν(Tm) and T [I](τ) ≥ Tm )

for a.e. (τ, µ) ∈ (−1, 1)× (0,∞) .

Proof Indeed, I ′ν = Bν(TM ) and T [I ′] = TM (resp. I ′ν = Bν(Tm) and
T [I ′] = Tm) is the solution of (11) with boundary data Q′

±
ν (µ) = Bν(TM ) (resp.

Q′
±
ν (µ) = Bν(Tm)). The announced inequalities follow from the comparison of

solutions obtained in Theorem 2. �

Remark 1 In (1), if one has the stronger condition

0 ≤ Q±ν (µ) ≤ Bν(TM ) for a.e. (µ, ν) ∈ (0, 1)× (0,∞) ,

one obtains the following bound for the numerical and theoretical solutions

0 ≤ I1
ν ≤ . . . ≤ Inν ≤ . . . Iν ≤ Bν(TM ) , and 0 ≤ T 1 ≤ . . . ≤ Tn ≤ . . . ≤ T ≤ TM .

5 Radiative Transfer with Rayleigh Phase Func-
tion

In this section, we discuss the same problem as in the previous section, with the
isotropic scattering kernel replaced by the Rayleigh phase function. In the case
of slab symmetry, the Rayleigh phase function is

p(µ, µ′) = 3
16 (3− µ2) + 3

16 (3µ2 − 1)µ′2

(see section 11.2 in chapter I of [5]). Observe that

p(µ, µ′) = 3
16 (3 + 3µ2µ′2 − µ2 − µ′2) ≥ 3

16 > 0 , (26)

while

1
2

∫ 1

−1

p(µ, µ′)dµ = 3
16 (6 + 3 · 2

3µ
′2 − 2

3 − 2µ′2) = 1 . (27)
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Keeping (12) as the defining equation for T [I], the problem becomes
(µ∂τ + κν)Iν(τ, µ) = 3

8κνaν((3− µ2)Jν(τ) + (3µ2 − 1)Kν(τ))

+ κν(1− aν)Bν(T [J ](τ)) ,

Iν(0, µ) = Q+
ν (µ) , Iν(Z,−µ) = Q−ν (µ) , 0 < µ < 1 ,

(28)

with

Jν := 1
2

∫ 1

−1

µIνdµ , Kν = 1
2

∫ 1

−1

µ2Iνdµ (29)

and (12). Starting from I0
ν (τ, µ) = 0 and T 0(τ) = 0, one solves for In+1

(µ∂τ + κν)In+1
ν (τ, µ) = 3

8κνaν((3− µ2)Jnν (τ) + (3µ2 − 1)Kn
ν (τ))

+ κν(1− aν)Bν(Tn(τ)) , Tn := T [In]

In+1
ν (0, µ) = Q+

ν (µ) , In+1
ν (Z,−µ) = Q−ν (µ) , 0 < µ < 1 .

(30)

Since Bν is nondecreasing for each ν > 0, one easily checks with (26) that

0 = I0
ν ≤ I1

ν ≤ I2
ν ≤ . . . ≤ Inν ≤ In+1

ν ≤ . . .
0 =T 0≤ T 1≤T 2≤ . . . ≤ Tn ≤ Tn+1 ≤ . . .

The construction of these sequences is referred to as (1).
Notice that the radiative intensity is eliminated from (1), but can be recov-

ered by the explicit formula

In+1
ν (τ, µ) =e−

κντ
µ Q+

ν (µ)1µ>0 + e−
κν (Z−τ)
|µ| Q−ν (|µ|)1µ<0

+

∫ Z

0

e−
κν |t−τ|
|µ| κν

|µ|
3
8aν((3− µ2)Jnν (t) + (3µ2 − 1)Kn

ν (t))dt

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ (1− aν)Bν(Tn(t))dt

+

∫ Z

0

e−
κν |t−τ|
|µ| κν

|µ|
3
8aν((3− µ2)Jnν (t) + (3µ2 − 1)Kn

ν (t))dt

+

∫ Z

0

e−
κν |t−τ|
|µ| κν

|µ| (1− aν)Bν(Tn(t))dt .

(34)

Returning to (34), assume that

0 ≤ Q±ν ≤ Bν(TM ) , 0 ≤ Inν ≤ Bν(TM ) and 0 ≤ Tn ≤ TM .
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Algorithm 1 to solve (28),(15).

1: Data: Q±ν , Sν(τ) by ((19), κν and aν .
2: For all τ ∈ (0, Z) and all ν ∈ (0,∞), choose J0

ν (τ) and K0
ν (τ).

3: for n = 0, 1, . . . , N − 1 do
4: For all ν ∈ (0,∞) and all τ ∈ (0, Z), compute Jn+1

ν (τ) by

Jn+1
ν (τ) =Sν(τ) + 3

16

∫ Z

0

E1(κν |τ − t|)κνaν(3Jnν (t)−Kn
ν (t))dt

+ 3
16

∫ Z

0

E3(κν |τ − t|)κνaν(3Kn
ν (t)− Jnν (t))dt

+ 1
2

∫ Z

0

E1(κν |τ − t|)κν(1− aν)Bν(Tn(t))dt ,

(31)

5: For all ν ∈ (0,∞) and all τ ∈ (0, Z), compute Kn+1
ν (τ) by

Kn+1
ν (τ) = 1

2

∫ 1

0

(
e−

κντ
µ Q+

ν (µ)1µ>0 + e−
κν (Z−τ)
|µ| Q−ν (|µ|)1µ<0

)
µ2dµ

+ 3
16

∫ Z

0

E3(κν |τ − t|)κνaν(3Jnν (t)−Kn
ν (t))dt

+ 3
16

∫ Z

0

E5(κν |τ − t|)κνaν(3Kn
ν (t)− Jnν (t))dt

+ 1
2

∫ Z

0

E3(κν |τ − t|)κν(1− aν)Bν(Tn(t))dt ,

(32)
6: For each τ ∈ (0, Z), find Tn+1(z) by solving with a Newton algorithm∫ ∞

0

κν(1− aν)Bν(Tn+1)dν =

∫ ∞
0

κν(1− aν)Jn+1
ν dν . (33)

7: end for
8: return {z 7→ TN (z)}

21



Then

In+1
ν (τ, µ) ≤

(
e−

κντ
µ 1µ>0 + e−

κν (Z−τ)
|µ| 1µ<0

)
Bν(TM )

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ

3
8aν((3− µ2)Bν(TM ) + (µ2 − 1

3 )Bν(TM ))dt

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ (1− aν)Bν(TM )dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|
3
8aν((3− µ2)Bν(TM ) + (µ2 − 1

3 )Bν(TM ))dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ| (1− aν)Bν(TM )dt

=
(
e−

κντ
µ 1µ>0 + e−

κν (Z−τ)
|µ| 1µ<0

)
Bν(TM )

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ ( 3

8aν(3− 1
3 ) + (1− aν))Bν(TM ))dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ| (
3
8aν(3− 1

3 ) + (1− aν))Bν(TM ))dt

=
(
e−

κντ
µ 1µ>0 + e−

κν (Z−τ)
|µ| 1µ<0

)
Bν(TM )

+Bν(TM )

(
1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ dt+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|dt

)
=
(
e−

κντ
µ 1µ>0 + e−

κν (Z−τ)
|µ| 1µ<0

)
Bν(TM )

+Bν(TM )
(
1µ>0

(
1− e−

κντ
µ

)
+ 1µ<0

(
1− e−

κν (Z−τ)
|µ|

))
= Bν(TM ) .

Besides, using again that T 7→ Bν(T ) is increasing for each ν > 0 while κν(1−
aν) > 0 for all ν > 0,

Tn+1 = T [In+1] ≤ T [Bν(TM )] = TM .

Summarizing, we have proved the following result.

Theorem 3 Assume that κν > 0 while 0 ≤ aν < 1 for all ν > 0. Let the
boundary data Q±ν satisfy

0 ≤ Q±ν (µ) ≤ Bν(TM ) for all µ ∈ (−1, 1) and ν > 0 .

(1) defines an increasing sequence of radiative intensities Inν and temperatures
Tn converging pointwise to Iν and T = T [I] respectively, which is a solution of
(28).

The argument above is based on the monotonicity of the sequences Inν and
Tn, and does not give any information on the convergence rate.
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Finally, (2) holds verbatim for the problem (28). Here are the (slight) mod-
ifications to the proof of the comparison argument due to the Rayleigh phase
function. As in Theorem 2, consider two boundary data Q±ν and Q′

±
ν such that

Q±ν (µ) ≤ Q′
±
ν (µ) for a.e. (µ, ν) ∈ (0, 1) × (0,∞). Let (Iν , T [I]) and (I ′ν , T [I ′])

the solutions of (28) corresponding to the boundary data Q±ν and Q′
±
ν respec-

tively.
First, we slightly modify the argument concerning the term D2 as follows.

In the case of the Rayleigh phase function

D2 = 1
2

∫ ∞
0

κνaν

∫ 1

−1

(Iν − I ′ν)+(µ)dµdν

− 1
2

∫ ∞
0

κνaν

∫ 1

−1

∫ 1

−1

p(µ, µ′)(Iν − I ′ν)(µ′)s+(Iν − I ′ν)(µ)dµ′dµdν .

Since p ≥ 0, one has

p(µ, µ′)(Iν − I ′ν)(µ′)s+(Iν − I ′ν)(µ) ≤ p(µ, µ′)(Iν − I ′ν)+(µ′) ,

so that

D2 ≥ 1
2

∫ ∞
0

κνaν

∫ 1

−1

(Iν − I ′ν)+(µ)dµdν

− 1
2

∫ ∞
0

κνaν

∫ 1

−1

∫ 1

−1

p(µ, µ′)(Iν − I ′ν)+(µ′)dµ′dµdν = 0 ,

since

1
2

∫ 1

−1

p(µ, µ′)dµ = 1 .

Therefore, following the proof of (2), in the same manner, we obtain the follow-
ing conclusions

〈µ(Iν − I ′ν)+〉(τ) = 0 for a.e. τ ∈ (0, Z) ,

and
s+(Iν(τ, µ)− I ′ν(τ, µ)) = s+(T [I](τ)− T [I ′](τ))

for a.e. (τ, µ, ν) ∈ (0, Z)× (−1, 1)× (0,∞) ,

while

(Iν − I ′ν)+(0,−µ) = (Iν − I ′ν)+(Z, µ) = 0 for a.e. µ ∈ (0, 1) .

Next we compute

∂τ

〈
µ2

κν
(Iν − I ′ν)+

〉
= − 1

2

∫ ∞
0

aν

∫ 1

−1

µ(Iν − I ′ν)+(τ, µ)dµdν

+ 1
2

∫ ∞
0

aν

∫ 1

−1

µ

∫ 1

−1

p(µ, µ′)(Iν − I ′ν)+(τ, µ′)dµ′dµdν s+(T [I](τ)− T [I ′](τ))

−〈(1− aν)µ((Iν − I ′ν)− (Bν(T [I])−Bν(T [I ′]))s+(T [I]− T [I ′])〉
= −〈aνµ(Iν − I ′ν)s+(T [I]− T [I ′])〉 − 〈(1− aν)µ(Iν − I ′ν)s+(T [I]− T [I ′])〉

= −〈µ(Iν − I ′ν)s+(T [I]− T [I ′])〉 = −〈µ(Iν − I ′ν)+〉 = 0 ,
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since ∫ 1

−1

µp(µ, µ′)dµ =

∫ 1

−1

µ(Bν(T [I])−Bν(T [I ′]))dµ = 0 .

Finally we integrate in τ ∈ (0, Z), and conclude as in the previous section that

(Iν − I ′ν)+(0,−µ) = 0 and Q+
ν (µ) ≤ Q′+ν (µ) for a.e. µ ∈ (0, 1)

=⇒
〈
µ2

κν
(Iν − I ′ν)+

〉
(τ) =

〈
µ2

κν
(Iν − I ′ν)+

〉
(0) = 0 .

Hence Q±ν (µ) ≤ Q′
±
ν (µ) for a.e. (µ, ν) ∈ (0, 1) × (0,∞) implies that Iν(τ, µ) ≤

I ′ν(τ, µ) for a.e. (τ, µ, ν) ∈ (0, Z) × (−1, 1) × (0,∞), and T [I](τ) ≤ T [I ′](τ) for
a.e. τ ∈ (0, Z). This comparison result implies the uniqueness of the solution
as explained in the proof of Theorem 2.

6 Radiative transfer in a fluid with thermal dif-
fusion

For clarity we consider the case of a lake; we neglect the wind above the lake
and we assume that the sunlight hits the surface of the lake with a given energy.
The depth of the lake should vary slowly with x, y, but for the sake of simplicity,
it is assumed to be uniform: Ω = O× (0, Z), for some open set O ⊂ R2 with C1

boundary, or piecewise C1 boundary.
With u ∈ H1(Ω) satisfying ∇ · u = 0 and u · n|∂Ω = 0, consider again the

system (9). Throughout this section, we assume isotropic scattering, with

0 ≤ aν ≤ aM < 1 , 0 < κm ≤ κν ≤ κM , ν > 0 . (35)

Here, ρ is assumed to be a constant, and we choose ρ0 = ρ in (14), so that
κν = ρκ̄ν , and τ = z.

We further assume that the fluid flow is steady, and consider the system

µ∂zIν + κνIν = κν(1− aν)Bν(T ) + κνaνJν , Jν := 1
2

∫ 1

−1

Iνdµ, (36)

u · ∇T − cP
cV
κT∆T = 4π

ρcV

∫ ∞
0

κν(1− aν)(Jν −Bν(T ))dν, (37)

Iν |z=Z,µ<0 = Q−ν (x, y,−µ), Iν |z=0,µ>0 = Q+
ν (x, y, µ),

∂T

∂n

∣∣∣
∂Ω

= 0. (38)

The boundary sources Q±ν (x, y, µ) are bounded, measurable, nonnegative func-
tions defined a.e. on O× (−1, 1)× (0,∞).

As a first reduction, we solve (36) for the radiative intensity Iν in terms
of the angle-averaged intensity Jν and of the temperature T , and average the
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resulting expression in µ: proceeding as in (2), we arrive at the system

Jν(x, y, z) = Sν(x, y, z)

+ 1
2

∫ Z

0

κνE1(κν |z − ζ|) (aνJν(x, y, ζ) + (1− aν)Bν(T (x, y, ζ))) dζ,

u(x) · ∇T (x)− cP
cV
κT∆T (x) = 4π

ρcV

∫ ∞
0

κν(1− aν)(Jν(x)−Bν(T (x)))dν,

∂T

∂n

∣∣∣
∂Ω

= 0 ,

(39)
where

Sν(x, y, z) := 1
2

∫ 1

0

(
e−

κνz
µ Q+

ν (x, y, µ) + e−
κν (Z−z)

µ Q−ν (x, y, µ)
)

dµ (40)

Once the angle-averaged radiative intensity is known Jν , the radiative in-
tensity Iν itself is easily obtained by solving the transfer equation (36) by the
method of characteristics: see (21).

Starting from T 0 = 0 and J0
ν = Sν , consider the following iterative algo-

rithm. In the present section, we shall study the convergence of (2).

Algorithm 2 to solve (36),(37),(38)

1: Data: Q±ν , Sν(x, y, z) by (40), κν , aν , κT , u.
2: Choose T 0(x), ∀x ∈ Ω.
3: for all (x, y) ∈ O, do
4: For all ν ∈ (0,∞) and all z ∈ (0, Z) compute Jn+1

ν (z) by

Jn+1
ν (x, y, z) = Sν(x, y, z)+

1
2

∫ Z

0

κνE1(κν |z − ζ|) (aνJ
n
ν (x, y, ζ) + (1− aν)Bν(Tn(x, y, ζ))) dζ.

(41)
5: Compute Tn+1 by solving

u · ∇Tn+1− cP
cV
κT∆Tn+1 + 4π

ρcV

∫ ∞
0

κν(1− aν)Bν(Tn+1
+ )dν

= 4π
ρcV

∫ ∞
0

κν(1− aν)Jn+1
ν dν,

∂T

∂n

∣∣∣
∂Ω

= 0 .

(42)

6: end for
7: return T

Theorem 4 Assume that the absorption coefficient κν and the scattering albedo
aν satisfy (35). Let the boundary source terms Q±ν satisfy the bound: for some
TM ,

0 ≤ Q±ν (µ) ≤ Bν(TM ) , 0 < µ < 1 , ν > 0 .
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Then the sequence {Jnν , Tn}n≥0 generated by (2) satisfies

Sν(x) = J0
ν (x) ≤ J1

ν (x) ≤ . . . ≤ Jnν (x) ≤ Jn+1
ν (x) ≤ . . . ≤ Bν(TM ) , ν > 0 ,

0 = T 0 ≤ T 1(x) ≤ . . . ≤ Tn(x) ≤ Tn+1(x) ≤ . . . ≤ TM , x∈ Ω ,

and converges to a solution (J, T ) of the system (39).

Define

B(T ) :=

∫ ∞
0

κν(1− aν)Bν(T+)dν .

Observe that
κm(1− aM )σ̄T 4

+ ≤ B(T ) ≤ κM σ̄T 4
+ ,

where πσ̄ is the Stefan-Boltzmann constant (see (3)). Observe also that the
function B : R → R is increasing by construction, since Bν is increasing on
[0,+∞) for each ν > 0.

For the sake of notational simplicity, in order to keep the number of physical
constants to a strict minimum, we assume henceforth that ρcPκT /4π = 1, and
replace u with ρcV u/4π.

The key argument in the proof of this theorem is the following lemma.

Lemma 3 Let R ∈ L6/5(Ω). There exists at least one weak solution of

−∆T + u · ∇T + B(T ) = R ,
∂T

∂n

∣∣∣
∂Ω

= 0 .

If R ≥ 0 a.e. and |{x ∈ Ω s.t. R(x) > 0}| > 0, the weak solution of the
problem above is unique and satisfies T ≥ 0 a.e. on Ω.

Moreover, if R′ ∈ L6/5(Ω) and R′ ≥ R a.e. on Ω, the weak solution T ′ of
the problem above with right hand side R′ satisfies T ≤ T ′ a.e. on Ω.

Proof [Proof of (3)] For each 0 < ε < 1, the problem

εTε −∆Tε + u · ∇Tε + B(Tε) = R ,
∂T

∂n

∣∣∣
∂Ω

= 0

has a weak solution in H1(Ω).
To see this, apply Theorem 1 of [17] with V = H1(Ω) to the nonlinear

operator Aε : V 7→ V ′ defined by

〈AεT, φ〉V ′,V =

∫
Ω

(εTφ+∇T · ∇φ+ φu · ∇T + B(T )φ)dx .

That Aε is continuous from V to V ′ easily follows from the Sobolev embedding
H1(Ω) ⊂ L6(Ω), which implies the continuous inclusion L6/5(Ω) ⊂ V ′. Since
u ∈ H1(Ω) ⊂ L6(Ω), one has

u ·∇T ∈ L3/2(Ω) ⊂ L6/5(Ω) ⊂ V ′ with ‖u ·∇T‖L3/2(Ω) ≤ ‖u‖L6(Ω)‖T‖H1(Ω) ,
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and

B(T ) ∈ L3/2(Ω) ⊂ L6/5(Ω) ⊂ V ′ with ‖B(T )‖L3/2(Ω) ≤ κM σ̄‖T+‖4L6(Ω) .

Since u is a divergence free vector in H1(Ω) satisfying u · n = 0 on ∂Ω, the
bilinear functional

H1(Ω)×H1(Ω) 3 (T, φ) 7→
∫

Ω

φu · ∇Tdx ∈ R

is skew-symmetric, and B(T (x)) = 0 if T (x) ≤ 0 by definition, so that

〈AεT, T 〉V ′,V = ε‖T‖2L2(Ω) + ‖∇T‖2L2(Ω) +

∫
Ω

B(T )Tdx ≥ ε‖T‖2H1(Ω) .

Hence A is coercive on V . Besides, for all T1, T2 ∈ H1(Ω)

〈AεT1 −AT2, T1 − T2〉V ′,V =ε‖T1 − T2‖2L2(Ω) + ‖∇(T1 − T2)‖2L2(Ω)

+

∫
Ω

(T1 − T2)(B(T1)− B(T2))dx ≥ 0 .

Theorem 1 in [17], implies the desired existence result for each ε ∈ (0, 1).
Then, since R ≥ 0 a.e. on Ω, one has RTε ≤ RTε+ a.e. on Ω, and therefore

ε‖Tε‖2L2(Ω) + ‖∇Tε‖2L2(Ω) + σ̄κm(1− aM )

∫
Ω

Tε(x)5
+dx ≤ 〈AεT, T 〉V ′,V

≤
∫

Ω

R(x)Tε(x)+dx ≤ ‖R‖L6/5(Ω)‖Tε+‖L6(Ω) ≤ CS‖R‖L6/5(Ω)‖Tε+‖H1(Ω) .

By Hölder’s inequality ∫
Ω

Tε(x)5
+dx ≥ 1

|Ω|3 ‖Tε+‖
5
L2(Ω) ,

and since ‖∇Tε+‖L2(Ω) ≤ ‖∇Tε‖L2(Ω), we see that

‖∇Tε‖2L2(Ω)+
σ̄κm(1−aM )
|Ω|3 ‖Tε+‖5L2(Ω) ≤ CS‖R‖L6/5(Ω)

(
‖Tε+‖2L2(Ω) + ‖∇Tε‖2L2(Ω)

) 1
2

so that
sup

0<ε<1

(
‖∇Tε‖L2(Ω) + ‖Tε+‖L2(Ω)

)
<∞ .

By the Banach-Alaoglu and the Rellich theorems, there exists a subsequence of
Tε (still denoted Tε for simplicity) such that

Tε+ → T+ in Lp(Ω) and ∇Tε → ∇T weakly in L2(Ω)

for all p ∈ [1, 6) while ε1/2Tε is bounded in L2(Ω). Hence, for each φ ∈ H1(Ω),
one has

0 =

∫
Ω

(εTεφ+∇Tε · ∇φ+ φu · ∇Tε + B(Tε)φ)dx

→
∫

Ω

(∇T · ∇φ+ φu · ∇T + B(T )φ)dx =: 〈AT, φ〉V ′,V
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in the limit as ε→ 0, so that T is a weak solution of

−∆T + u · ∇T + B(T ) = R ,
∂T

∂n

∣∣∣
∂Ω

= 0 .

Observe that

〈AT−AT ′, (T−T ′)+〉V ′,V =‖∇(T−T ′)+‖2L2(Ω)+

∫
Ω

(B(T )−B(T ′))(T−T ′)+dx ≥ 0 ,

since∫
Ω

(T−T ′)+u·∇(T−T ′)dx =

∫
Ω

u·∇ 1
2 (T−T ′)2

+dx =

∫
∂Ω

1
2 (T−T ′)2

+u·ndσ(x) = 0 ,

denoting by dσ(x) the surface element on ∂Ω. Hence

R ≤ R′ a.e. on Ω =⇒ 〈(R−R′), (T − T ′)+〉V ′,V = ‖∇(T − T ′)+‖L2(Ω) = 0 .

Since Ω is connected, (T − T ′)+ = c a.e. on Ω for some constant c ≥ 0.
A first consequence of this remark is that, if R′ ≥ 0 a.e. on Ω, weak solutions

of

−∆T ′ + u · ∇T ′ + B(T ′) = R′ ,
∂T ′

∂n

∣∣∣
∂Ω

= 0

satisfy

T ′ ≥ 0 a.e. on Ω, unless R′ = 0 a.e. on Ω , in which case T ′ = Const. ≤ 0 .

A second consequence is that, if R′ ≥ R ≥ 0, with |{x ∈ Ω s.t. R ≥ 0}| > 0,
the solutions T and T ′ of

−∆T + u · ∇T + B(T ) = R ,
∂T

∂n

∣∣∣
∂Ω

= 0 ,

−∆T ′ + u · ∇T ′ + B(T ′) = R′ ,
∂T ′

∂n

∣∣∣
∂Ω

= 0 ,

satisfy, for some constant c ≥ 0,

T ≥ 0 and T ′ ≥ 0 a.e. on Ω , and (T − T ′)+ = c a.e. on Ω .

Besides

0 = 〈R−R′, (T − T ′)+〉V ′,V = 〈AT −AT ′, (T − T ′)+〉V ′,V

= ‖∇(T − T ′)+‖2L2(Ω) +

∫
Ω

(B(T )− B(T ′))(T − T ′)+dx

= c

∫
Ω

(B(T ′ + c)− B(T ′))dx .

Since T ′ ≥ 0 a.e. on Ω, and since B is increasing, this implies that c = 0.
Therefore

R′ ≥ R ≥ 0 with |{x ∈ Ω s.t. R ≥ 0}| > 0 =⇒ (T − T ′)+ = 0 .
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Hence T ≤ T ′ a.e. on Ω. �

Proof [Proof of (4)] For the sake of clarity, we systematically omit the tangen-
tial variables x, y in the integral equations for the averaged radiative intensity
Jnν (as well as for the radiative intensity Iν itself), since these variables are only
parameters in all these formulas. Start from

T 0 ≡ 0 , J0
ν (z) = Sν(z) > 0 .

Construct iteratively (Tn, Jnν )n≥0 by the following recursion formula: first, com-
pute

Jn+1
ν (z) = Sν(z) + 1

2

∫ Z

0

κνE(κν |z − t|)(aνJnν (t) + (1− aν)Bν(Tn(t)))dt ;

and then let Tn+1 be the solution of

−∆Tn+1 +u ·∇Tn+1 +B(Tn+1) =

∫ ∞
0

κν(1−aν)Jn+1
ν dν ,

∂Tn+1

∂n

∣∣∣
∂Ω

= 0 .

(43)
Obviously J1

ν ≥ J0
ν > 0, and applying Lemma 3 implies that T 1 ≥ T 0 a.e. on

Ω. Moreover

Tn ≥ Tn−1 and Jnν ≥ Jn−1
ν > 0 =⇒ Jn+1

ν ≥ Jnν > 0 ,

and applying the Lemma 3 shows that

Tn+1 ≥ Tn a.e. on Ω .

Assume that Q±ν (µ) ≤ Bν(TM ). It will be more convenient to deal with
radiative intensities Iν instead of their angle-averaged variants Jν . Therefore,
we define Inν to be the solution of

(µ∂z + κν)In+1
ν = κν(1− aν)Bν(Tn) + κνaνJ

n
ν , Jnν = Ĩnν ,

In+1
ν (Z,−µ) = Q−ν (−µ) , In+1

ν (0,+µ) = Q+
ν (+µ), 0 < µ < 1 .

Let us prove by induction that

Inν ≤ Bν(TM ) a.e. on Ω× (−1, 1)× (0,+∞) ,

Jnν ≤ Bν(TM ) a.e. on Ω× (0,+∞) ,

Tn ≤ TM a.e. on Ω .

This is true for n = 0 since T 0 ≡ 0, while

I0
ν (z, µ) =10<µ<1e

−κνz/µQ+
ν (µ) + 10<−µ<1e

−κν(Z−z)/|µ|Q−ν (−µ)

≤(10<µ<1 + 10<−µ<1)Bν(TM ) , so that 0 ≤ J0
ν ≤ Bν(TM ) .
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If this is true for some n ≥ 0, then

(µ∂z + κν)In+1
ν = κνΣnν , 0 ≤ Σnν ≤ Bν(TM ) ,

In+1
ν (Z,−µ)

∣∣∣
0<µ<1

= Q−ν (−µ) , In+1
ν (0,+µ)

∣∣∣
0<µ<1

= Q+
ν (+µ) .

Thus

In+1
ν (z) =10<µ<1e

−κνz/µQ+
ν (µ) + 10<µ<1

∫ z

0

κν
µ
e−

κν (z−t)
µ Σnν (t)dt

+ 10<−µ<1e
−κν(Z−z)/|µ|Q−ν (−µ) + 10<−µ<1

∫ Z

z

κν
|µ|
e−

κν (t−z)
|µ| Σnν (t)dt

≤
(
10<µ<1e

−κνz/µ + 10<µ<1

∫ z

0

κν
µ
e−

κν (z−t)
µ dt

)
Bν(TM )

+

(
10<−µ<1e

−κν(Z−z)/|µ| + 10<−µ<1

∫ Z

z

κν
|µ|
e−

κν (t−z)
|µ| dt

)
Bν(TM )

≤
(
10<µ<1(e−κνz/µ + 1− e−κνz/µ)

)
Bν(TM )

+
(
10<−µ<1(e−κν(Z−z)/|µ| + 1− e−κν(Z−z)/|µ|)

)
Bν(TM ) ≤ Bν(TM ) .

Hence Jn+1
ν ≤ Bν(TM ), and one solves (43) for Tn+1. Since Jnν ≥ Sν > 0 and∫ ∞

0

κν(1− aν)Jn+1
ν dν ≤

∫ ∞
0

κν(1− aν)Bν(TM )dν = B(TM ) ,

we conclude from Lemma 3 that Tn+1 is a.e. less than or equal to the solution
of the problem

−∆T + u · ∇T + B(T ) = B(TM ) ,
∂T

∂n

∣∣∣
∂Ω

= 0 ,

which is obviously the constant TM . Hence Tn+1 ≤ TM a.e. on Ω, so that we
have proved by induction the desired chain of inequalities.

From these inequalities, we conclude that the sequences Jnν and Tn converge
a.e. pointwise on Ω × (0,∞) and on Ω respectively to limits denoted Jν and
T , and that this convergence also holds in Lp(Ω × (0,∞)) and Lp(Ω) for all
p ∈ [1,∞) by dominated convergence.

Passing to the limit in (41) immediately shows that Jν , T satisfy the first
equation in (39). As for the second equation, one can pass to the limit in the
right hand side and in the nonlinear term on the left hand side of (42). Since
Tn+1 is a weak solution of (42), one has Tn+1 ∈ H1(Ω) and∫

Ω

∇Tn+1(x) · ∇φ(x)dx−
∫

Ω

Tn+1(x)u(x) · ∇φ(x)dx =

∫
Ω

hn+1(x)φ(x)dx

(44)
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for all φ ∈ H1(Ω), with

hn+1 :=

∫ ∞
0

κν(1− aν)(Jn+1
ν −Bν(Tn+1))dν

so that hn+1 is bounded in Lp(Ω) for all p ∈ [1,∞). Taking φ = Tn+1, and
observing that∫

Ω

Tn+1(x)u(x) · ∇Tn+1(x)dx =

∫
∂Ω

1
2T

n+1(x)2u(x) · nxdσ(x) = 0

since u ·n|∂Ω = 0 shows that Tn+1 is bounded, and therefore weakly relatively
compact in H1(Ω). Since we already know that Tn+1 → T in Lp(Ω) for all
p ∈ [1,∞) as n → ∞, we conclude that Tn+1 → T weakly in H1(Ω). At this
point, we can pass to the limit in the weak formulation of (44), and this shows
that T satisfies the second equation in (39). �

Next we discuss the convergence rate of (2). We shall use the monotonic
structure of the radiative transfer equations. Consider the upper approximating
sequence

µ∂zH
n
ν = κν(aνK

n−1
ν + (1− aν)Bν(Θn−1)−Hn

ν ) , Kν = 1
2

∫ 1

−1

Hνdµ ,

u · ∇Θn −∆Θn =

∫ ∞
0

κν(1− aν)(Kn
ν −Bν(Θn))dν ,

Hn
ν (0, µ) = Q+

ν (µ) , Hn
ν (Z,−µ) = Q−ν (µ) , 0 < µ < 1 ,

∂Θn

∂n

∣∣∣
∂Ω

= 0 ,

for all n ≥ 1, initialized with Θ0 = TM and H0
ν = K0

ν = Bν(Θ0).

Theorem 5 Assume that the absorption coefficient κν and the scattering albedo
aν satisfy (35). Assume moreover that the constant C1 defined in (18) satisfies

0 ≤ γ :=

(
sup
ν>0

(1− aν)C1(κν) + sup
ν>0

aνC1(κν)

)
< 1 .

Let the boundary source terms Q±ν satisfy the bound

0 ≤ Q±ν (µ) ≤ Bν(TM ) , 0 < µ < 1 , ν > 0 .

Then

(1) one has

0 ≤ T 0 ≤ . . . ≤ Tn−1 ≤ Θn ≤ . . .Θ1 ≤ TM ,

0 ≤ J0
ν . . . ≤ Jn−1

ν ≤ Kn
ν ≤ . . . ≤ K1

ν ≤ Bν(TM ) ;
(45)

(2) one has

‖B(Tn+1)− B(Tn)‖L1(Ω) ≤ ‖B(Θn+1)− B(Tn)‖L1(Ω) ≤ γn|Ω|B(TM ) ,
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and

‖Jn+1
ν − Jnν ‖L1(Ω×(0,+∞)) ≤ ‖Kn+1

ν − Jnν ‖L1(Ω×(0,+∞)) ≤
γn|Ω|B(TM )

κm(1− aM )
;

(3) finally

‖B(T )− B(Tn)‖L1(Ω) ≤
γn

1− γ
|Ω|B(TM ) ,

and

‖Jν − Jnν ‖L1(Ω×(0,+∞)) ≤
γn|Ω|B(TM )

κm(1− aM )(1− γ)
.

Proof First, one has

µ∂zH
1
ν + κνH

1
ν = κνBν(TM ) ≥ 0 , 0 < z < Z ,

0 ≤ H1
ν (0,+µ) = Q+

ν (µ) ≤ Bν(TM ) , 0 < µ < 1 ,

0 ≤ H1
ν (Z,−µ)= Q−ν (µ) ≤ Bν(TM ) , 0 < µ < 1 ,

so that

H1
ν (z, µ) =10<µ<1

(
e−κνz/µQ+

ν (µ) + (1− e−κνz/µ)Bν(TM )
)

+ 10<−µ<1

(
e−κν(Z−z)/|µ|Q−ν (−µ) + (1− e−κν(Z−z)/µ)Bν(TM )

)
0 ≤ I0

ν ≤ H1
ν ≤ Bν(TM ) , 0 ≤ J0

ν ≤ K1
ν ≤ Bν(TM ) .

Hence

B(Θ1) + u · ∇Θ1 −∆Θ1 =

∫ ∞
0

κν(1− aν)K1
νdν ≤ B(TM ) ,

so that
0 ≤ T 0 ≤ Θ1 ≤ TM

by (3). The same induction argument as in the proof of (4) shows that

0 ≤ . . . ≤ Θn ≤ Θn−1 ≤ TM ,

0 ≤ . . . ≤ Hn
ν ≤ Hn−1

ν ≤ Bν(TM ) ,

0 ≤ . . . ≤ Kn
ν ≤ Kn−1

ν ≤ Bν(TM ) .

Moreover, assume that we have proved that

0 ≤ T 0 ≤ . . . ≤ Tn−1 ≤ Θn ≤ . . .Θ1 ≤ TM ,

0 ≤ I0
ν ≤ . . . ≤ In−1

ν ≤ Hn
ν ≤ . . . H1

ν ≤ Bν(TM ) ,

0 ≤ J0
ν . . . ≤ Jn−1

ν ≤ Kn
ν ≤ . . . ≤ K0

ν ≤ Bν(TM ) .
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Then

µ∂z(H
n+1
ν − Inν )+κν(Hn+1

ν − Inν ) =κνaν(Kn
ν − Jn−1

ν )

+ κν(1− aν)(Bν(Θn)−Bν(Tn−1)) ≥ 0 ,

(Hn+1
ν − Inν )(0,+µ) = (Hn+1

ν − Inν )(Z,−µ) = 0 , 0 < µ < 1 ,

so that
Inν ≤ Hn+1

ν , and Jnν ≤ Kn+1
ν .

Then

B(Θn+1) + u · ∇Θn+1 −∆Θn+1 =

∫ ∞
0

κν(1− aν)Kn+1
ν dν ,

B(Tn) + u · ∇Tn −∆Tn =

∫ ∞
0

κν(1− aν)Jnν dν ,

∂Θn+1

∂n

∣∣∣
∂Ω

=
∂Tn

∂n

∣∣∣
∂Ω

=0 ,

and (3) implies that Tn ≤ Θn+1 . Hence we have proved by induction that, for
all n ≥ 1,

0 ≤ T 0 ≤ . . . ≤ Tn−1 ≤ Θn ≤ . . .Θ1 ≤ TM ,

0 ≤ I0
ν ≤ . . . ≤ In−1

ν ≤ Hn
ν ≤ . . . H1

ν ≤ Bν(TM ) ,

0 ≤ J0
ν . . . ≤ Jn−1

ν ≤ Kn
ν ≤ . . . ≤ K1

ν ≤ Bν(TM ) ,

which implies (45).
Then

B(Θn+1)− B(Tn) + u · ∇(Θn+1 − Tn)−∆(Θn+1 − Tn)

=

∫ ∞
0

κν(1− aν)(Kn+1
ν − Jnν )dν ,

∂(Θn+1 − Tn)

∂n

∣∣∣
∂Ω

= 0 ,

so that∫
Ω

(B(Θn+1)− B(Tn))dx =

∫
Ω

∫ ∞
0

κν(1− aν)(Kn+1
ν − Jnν )dνdx ,

since ∫
∂Ω

(
(Θn+1 − Tn)u · nx −

∂(Θn+1 − Tn)

∂n

)
dσ(x) = 0 .

Then

Kn+1
ν (x)− Jnν (x)

= 1
2

∫ Z

0

κνE1(κν |z − ζ|)(1− aν)(Bν(Θn)−Bν(Tn−1))(x, y, ζ)dζ

+ 1
2

∫ Z

0

κνE1(κν |z − ζ|)aν(Kn
ν − Jn−1

ν )(x, y, ζ)dζ .
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Thus

εn :=

∫
Ω

∫ ∞
0

κν(1− aν)(Kn+1
ν − Jnν )dνdx

= 1
2

∫
O

dxdy

∫ ∞
0

dν

∫ Z

0

dz

∫ Z

0

κ2
νE1(κν |z − ζ|)

×(1− aν)2(Bν(Θn)−Bν(Tn−1))(x, y, ζ)dζ

+ 1
2

∫
O

dxdy

∫ ∞
0

dν

∫ Z

0

dz

∫ Z

0

κ2
νE1(κν |z − ζ|)

×(1− aν)aν(Kn
ν − Jn−1

ν )(x, y, ζ)dζ .

At this point, we integrate first in z and use (18), to obtain

εn =

∫
Ω

∫ ∞
0

κν(1− aν)(Kn+1
ν − Jnν )dνdx

≤
∫
O

dxdy

∫ ∞
0

dν

∫ Z

0

C1(κν)κν(1− aν)2(Bν(Θn)−Bν(Tn−1))(x, y, ζ)dζ

+

∫
O

dxdy

∫ ∞
0

dν

∫ Z

0

C1(κν)κν(1− aν)aν(Kn
ν − Jn−1

ν )(x, y, ζ)dζ

≤ sup
ν>0

(1− aν)C1(κν)

∫
Ω

∫ ∞
0

κν(1− aν)(Bν(Θn)−Bν(Tn−1))(x)dνdx

+ sup
ν>0

aνC1(κν)

∫
Ω

∫ ∞
0

κν(1− aν)(Kn
ν − Jn−1

ν )(x)dνdx

≤ sup
ν>0

(1− aν)C1(κν)

∫
Ω

(B(Θn)− B(Tn−1))(x)dx

+ sup
ν>0

aνC1(κν)

∫
Ω

∫ ∞
0

κν(1− aν)(Kn
ν − Jn−1

ν )(x)dνdx

= εn−1

(
sup
ν>0

(1− aν)C1(κν) + sup
ν>0

aνC1(κν)

)
.

Hence εn ≤ ε0γn with

γ :=

(
sup
ν>0

(1− aν)C1(κν) + sup
ν>0

aνC1(κν)

)
∈ [0, 1) ,

while ε0 ≤ |Ω|B(TM ) <∞ . Hence the sequence (Kn
ν ,Θ

n)n≥1 of upper approxi-
mations and the sequence (Jnν , T

n) of lower approximations provided by (2) are
adjacent. In particular

‖B(Tn+1)− B(Tn)‖L1(Ω) =

∫
Ω

(B(Tn+1)− B(Tn))dx

≤
∫

Ω

(B(Θn+1)− B(Tn))dx ≤ ε0γn

for all n ≥ 1, so that

‖B(T )− B(Tn)‖L1(Ω) ≤
ε0γ

n

1− γ
.
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Similarly ∫
Ω

∫ ∞
0

κν(1− aν)(Jn+1
ν − Jnν )dνdx

≤
∫

Ω

∫ ∞
0

κν(1− aν)(Kn+1
ν − Jnν )dνdx ≤ ε0γn ,

and
κm(1− aM )‖Jν − Jnν ‖L1(Ω×(0,∞))

≤
∑
m≥n

∫
Ω

∫ ∞
0

κν(1− aν)(Jm+1
ν − Jmν )dνdx

≤
∑
m≥n

∫
Ω

∫ ∞
0

κν(1− aν)(Km+1
ν − Jmν )dνdx ≤ ε0γ

n

1− γ
.

This concludes the proof of statements (2) and (3). �

With the monotonic structure of the radiative transfer equations, our argu-
ment will also provide the uniqueness of the solution of the system (36)-(37)-
(38).

Theorem 6 Under the same assumptions as in (5), there exists at most one
solution (Iν , T ) of the problem (36)-(37)-(38) such that

T ∈ L∞(Ω) , and T ≥ 0 a.e. on Ω ,

and
Iν ≥ 0 a.e. on Ω× (−1, 1)× (0,∞) .

Proof Let (Iν , T ) be a solution of (36)-(37)-(38), and assume that the upper
approximating sequence (Hn

ν ,Θ
n)n≥1 satisfies

Iν ≤ Hn
ν , Jν ≤ Kn

ν , and T ≤ Θn .

Then, one has

µ∂z(H
n+1
ν − Iν) + κν(Hn+1

ν − Iν) =κνaν(Kn
ν − Jν) ,

+ κν(1− aν)(Bν(Θn)−Bν(T )) ≥ 0

(Hn+1
ν − Iν)(0,+µ) =(Hn+1

ν − Iν)(Z,−µ) = 0 , 0 < µ < 1 .

Solving this equation for (Hn+1
ν − Iν) by the method of characteristics shows

that
Iν ≤ Hn+1

ν , and therefore Jν ≤ Kn+1
ν .

Next, one has

B(Θn+1)− B(T ) + u · ∇(Θn+1 − T )−∆(Θn+1 − T )

=

∫ ∞
0

κν(1− aν)(Kn+1
ν − Jν)dν ≥ 0 ,

∂(Θn+1 − T )

∂n

∣∣∣
∂Ω

= 0 ,
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so that, according to (3), T ≤ Θn+1 .
It remains to check the initial step of this induction argument. Since T ∈

L∞(Ω), we pick

Θ0 = max(TM , ‖T‖L∞(Ω)) , and H0
ν = K0

ν = Bν(Θ0) .

Hence T ≤ Θ0 by construction. Next we prove that Iν ≤ Bν(Θ0). Multiplying
both sides of (36) by s+(Iν −Bν(Θ0)), we repeat the argument of the proof of
(2):

∂z〈µ(Iν −Bν(Θ0))+〉
= −〈κν(1− aν)(Iν −Bν(Θ0))− (Bν(T )−Bν(Θ0)))s+(Iν −Bν(Θ0))〉

−〈κνaν(Iν −Bν(Θ0))− (Jν −Bν(Θ0)))s+(Iν −Bν(Θ0))〉
= −D1 −D2 .

We have seen in the proof of (2) that

D2 = 〈κνaν(Iν −Bν(Θ0))− (Jν −Bν(Θ0)))s+(Iν −Bν(Θ0))〉
= 〈κνaν(Iν −Bν(Θ0))− (Jν −Bν(Θ0))(s+(Iν −Bν(Θ0)− s+(Jν −Bν(Θ0))〉 ≥ 0 .

As for D1, observe that

D1 =〈κν(1−aν)((Iν−Bν(Θ0))−(Bν(T )−Bν(Θ0)))(s+(Iν−Bν(Θ0))−s+(T−Θ0)))〉
≥ 0

since our assumption on T implies that s+(T − Θ0) = 0. Integrating on Ω, we
conclude that∫
O
〈µ+(Iν −Bν(Θ0))+〉(x, y, Z)dxdy =

∫
O
〈µ−(Iν −Bν(Θ0))+〉(x, y, 0)dxdy = 0

and that
D1 = D2 = 0 a.e. on Ω .

Since κν(1− aν) ≥ κm(1− aM ) > 0, the condition D1 = 0 implies that

((Iν−Bν(Θ0))−(Bν(T )−Bν(Θ0)))(s+(Iν−Bν(Θ0))−s+(T−Θ0))) = 0

which implies in turn that s+(Iν−Bν(Θ0))=s+(T−Θ0) = 0

Hence Iν ≤ Bν(Θ0), which completes the proof of the initialization of our in-
duction argument.

Summarizing, we have proved that, if one chooses Θ0 = max(TM , ‖T‖L∞(Ω)),
the solution (Iν , T ) of (36)-(37)-(38) considered satisfies

Iν ≤ Hn
ν ≤ Hn−1

ν ≤ . . . ≤ H0
ν = Bν(Θ0) ,

while
T ≤ Θn ≤ Θn−1 ≤ . . . ≤ Θ0 ,
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where (Hn
ν ,Θ

n) is the upper approximating sequence. A similar argument (with
a slightly simpler initialization) shows that

Iν ≥ Inν ≥ In−1
ν ≥ . . . ≥ I0

ν = 0 ,

while
T ≥ Tn ≥ Tn−1 ≥ . . . ≥ T 0 = 0 .

With this, we easily prove the uniqueness of the solution of (36)-(37)-(38).
If (Iν , T ) and (I ′ν , T

′) are two solutions satisfying the assumptions of Theorem
6, we initialize the upper approximating sequence with

Θ0 = max(TM , ‖T‖L∞(Ω), ‖T ′‖L∞(Ω)) .

The argument above shows that

Inν ≤ Iν , I ′ν ≤ Hn+1
ν , Tn ≤ T , T ′ ≤ Θn+1 .

Hence

‖Jν − J ′ν‖L1(Ω×(0,∞)) ≤ ‖Kn+1
ν − Jnν ‖L1(Ω×(0,∞)) ≤

|Ω|γn

κm(1− aM )
B(Θ0) ,

and
‖B(T )− B(T ′)‖L1(Ω) ≤ ‖Θn+1 − Tn‖L1(Ω) ≤ γn|Ω|B(Θ0) .

Passing to the limit as n→∞ shows that

T = T ′ a.e. on Ω , and Jν = J ′ν a.e. on Ω× (0,∞) .

Once it is known that Jν = J ′ν a.e. on Ω× (0,∞), solving (36) for Iν and I ′ν by
the method of characteristics shows that Iν = I ′ν a.e. on Ω × (−1, 1) × (0,∞).
�

Several remarks regarding Theorems (4), (5) and (6) are in order.

Remarks.
(1) One can treat slightly more general situations with the same techniques. For
instance, one could assume that the scattering rate aν depends on z, and is a
slowly varying function of x, y. This may be useful to include a layer of clouds
in our problem. Similarly, one can treat the case where ρ is not a constant, but
for instance a function of z, by introducing an optical length defined as in (14).
Typically, one could assume that 0 < ρm ≤ ρ(z) ≤ ρM < ∞, and recast the
radiative transfer equation in terms of the variable τ instead of z. Of course,
this will modify the drift-diffusion operator in the left hand side of (37), but in
a way that should be tractable by the same methods.
(2) One could enrich the class of boundary conditions considered here by taking
into account the albedo coefficients of the boundary at z = 0 and z = Z. This
should lead to more serious modifications of the strategy discussed above, but
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we expect that some of our results can be modified to handle these more general
boundary conditions.
(3) Until now, we have treated the case of an incompressible fluid with constant
density. This is the reason for the factor cP /cV multiplying the heat diffusivity.
One can treat in the same manner the case of low Mach number flows of a
compressible fluid, typically a gas, such as Earth’s atmosphere, in which case
the prefactor cP /cV multiplying the heat diffusivity should be replaced with 1.
The reason for this difference is due to the work of the pressure in the case of a
compressible fluid at low Mach number, which is not identically zero, at variance
with the case of an incompressible fluid with constant density: see footnotes 46
and 47 on p. 107 of [26], or footnote 6 on p. 93 in [25] for a detailed explanation.
(In the case of water at 20◦C, one finds that cP /cV = 1.007, so that this ratio
is very close to 1 for all practical purposes.)
(4) Including Boussinesq’s approximation in our model in order to take into
account the buoyancy created by the temperature dependence of the density is
a more difficult problem — in the first place because the motion equation of
the fluid becomes coupled to the simple system considered here. We keep this
problem for future work.

7 Numerical Simulations

This section is meant to show that (1) and (2), proposed in the previous sec-
tions, is implementable, robust and computationally fairly fast. Here, robustness
means that there are no singular integrals and convergence is not subject to the
adjustment of sensitive parameters; in other words, the mathematical properties
derived above are observed numerically.

Two computer programs have been written: one in C++ for the case κT = 0
and the other in the FreeFEM language[16] for the general case, either in cartesian
coordinates or in spherical ones.

The programming is straightforward except at two places:

1. Writing a function to compute the exponential integrals is simple due to
two formulas

E1 (x) = −γ − lnx+
∞∑
k=1

(−1)k+1xk

k k!
, γ = 0.577215664901533,

En+1(x) =
e−x

n
− x

n
En(x), (46)

but the series is destroyed by machine precision if x > 18. From practical
purpose keeping 9 + (x− 1) ∗ 5 terms in the series is more than enough.

2. When thermal diffusion is neglected, one must solve for T , with given Jν∫ ∞
0

κν(1− aν)Bν(T )dν =

∫ ∞
0

κν(1− aν)Jνdν.

Newton iterations are used combined with dichotomy.
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3. When thermal diffusion is not neglected, the temperature equation has a
similar nonlinearity which requires iterations. We use the time dependent
problem, discretized by a method of characteristics, as follows, which is
unconditionally stable:

1
δt (T

m+1(x)− Tm(x− δtu(x)) −κT∆Tm+1 +

∫ ∞
0

κν(1− aν)Bν(Tm+1)dν

=

∫ ∞
0

κν(1− aν)Jνdν, (47)

with Dirichlet or Neumann conditions on the boundaries. Then a standard
P 1 Finite Element approximation of the temperature equation is applied
for the discretization in a finite dimensional space Vh. Here Jν and Tm are
known. Then the numerical approximation of Tm+1 is also the solution of
the minimization problem below, which can be solved by a BFGS method:

minT∈Vh
∫

Ω

[
T 2

2δt+
κT
2
|∇T |2 +

∫ ∞
0

(
κν(1− aν)

∫ T

Bν(T ′)dT ′

)
dν

]
dx

−
∫

Ω

T

(
1

δT
Tm(x− δtu(x)) +

∫ ∞
0

κν(1− aν)Jνdν

)
dx.(48)

The first test is for the radiative transfer system decoupled from the temperature
equation. The second test involves the complete system in 2D and the third is
also with radiative transfer coupled with the temperature equation but in 3D.

7.1 Radiative Transfer in the Troposphere without Ther-
mal Diffusion

The troposphere is roughly 12km thick. When air density is ρ(z) = ρ0e
−z, with

ρ0 = 1.225 ·10−3, a change of vertical coordinate is made, τ = 1−e−z to remove
the exponential from the equations; thus τ ∈ (0, Z), Z = 1− e−12.

If κ̄ν is the mass-extinction coefficient, κν = ρ0κ̄ν , is the absorption coeffi-
cient, for which one may forget its atomic origin and define it as a dimensionless
parameter between 0 and 1 which measures the output to input ratio of ν-light
crossing an horizontal kilometer of air layer.

The problem is: find Iν(τ, µ) and T (τ) such that

µ∂τIν + κνIν =
κνaν

2

∫ 1

−1

p(µ, µ′)Iν(τ, µ′)dµ′ + κν(1− aν)Bν(T ) ∀µ ∈ (−1, 1),∫ ∞
0

κν(1− aν)

(
Bν(T )− 1

2

∫ 1

−1

Iνdµ

)
dν = 0, ∀τ, ν ∈ (0, Z)× R+.

(49)
The boundary conditions used by [9] are considered:

I(0, µ)|µ>0 = Qνµ, I(Z, µ)|µ<0 = 0. (50)
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They imply that Earth’s surface receives sunlight energy ν 7→ Qν = QSunBν(TSun),
TSun = 5800K, and no light rays come back (µ < 0) from the top of the tropo-
sphere. Due to Planck’s law for black bodies, Earth radiates (infrared) light up
(µ > 0) which escapes at τ = Z without back-scattering.

The frequency spectrum of interest is ν ∈ (0, 20 · 1014). It is convenient to
rescale some variables:

ν′ = 10−14ν, T ′ = 10−14 k

~
T = 10−14 1.381 · 10−23

6.626 · 10−34
T =

T

4798
,

so as to write

Bν(T ) = B0
ν′3

e
ν′
T ′ − 1

, with B0 =
2~
c2

1042 =
2× 6.626 · 10−34

2.9982 · 1016
1042 = 1.4744·10−8.

We may work with Bν/B0 and Iν/B0 so that, forgetting the primes, we have
(49) and (50) with

Bν(T ) =
ν3

e
ν
T − 1

, Qν = Q0Bν(1.209), Q0 = 2.03 · 10−5, (51)

because TSun is now 5800/4798 = 1.209; Q0 is derived from the knowledge of
the energy sent by the Sun to the troposphere, QSun = 1370Watt/m2, while
from (51) it is∫ 1

0

µ

∫ ∞
0

Q0B0Bν(1.209)1014dν =
1

2
Q01.4744 · 106 (1.209π)4

15
= 1.023 · 107Q0.

This leads to Q0 = 9.03 · 10−5; but this value is too high as it gives an Earth
temperature around 430K. So it is corrected by the latitude, 1√

2
at 45o, and by

the Earth albedo: 36% of the Sun energy is reflected, i.e. not absorbed, by the
Earth surface. Furthermore due to the alternation of days and nights only half
the final value is retained [9]. With such a value, i.e. Q0 = 2.03 · 10−5, and a
constant κ = 0.5, the temperature near the ground is found to be around 24oC;
note that it cannot be taken for its face value because rains, clouds etc, are not
taken into account.

Scattering is the sum of an isotropic part and a Rayleigh part; both have
their own aν , function of altitude (i.e. on τ) and ν.

To simulate clouds, isotropic scattering is activated between altitude Z1 and
Z2 > Z1 and

aν(z) = αmax(z − Z1, 0) max(Z2 − z, 0.) ∗ 4/(Z2 − Z1)2.

It is known that Rayleigh is function of ν4 in the ultraviolet range at high
altitude, so this scattering is switched on beyond altitude Z2 and is O(ν4) for
ν ∈ (0.8, 1.2):

aν(z) = α(max(ν − 0.8, 0)2 max(1.2− ν, 0)2 max(z − Z2, 0)/(Z − Z2) · 40

. The values of the physical and numerical parameters are
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• α = 1
2 or zero; , Z1 = 6km, Z2 = 9km

• Absorption coefficient κν digitalized from Gemini measurements.

• Discretization: 60 altitude stations, 485 frequencies corresponding to a
uniform grid in wavelength in (1,20)µm.

• Number of iterations 20.

The Gemini measurements of the absorption are posted on wikipedia in
https://www.gemini.edu/observing/telescopes-and-sites/sites#Transmission

Figure 1 shows κ0
ν versus wavelength c/ν. Recall that visible light is in the

range 0.4−0.7µm (i.e. 450-750 THz) and relevant infrared radiations are in the
range 0.8− 20µm (i.e. 0.03 - 0.4 THz).

To assess the sensitivity of the temperature to opaque gas like carbon dioxide
and methane we constructed κ1

ν by increasing κ0
ν by a 1.5 factor in the infrared

range 2 − 3µm. Similarly we construct κ2
ν by increasing κ0

ν by a 1.5 factor in
the range 8− 14µm. These are displayed in Figure 1.
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Figure 1: Absorption κ0
ν read from Gemini measurements; κ1

ν , is κ0
ν increased

in the infrared range 2 − 3µm and κ2
ν is κ0

ν increased in the range 8 − 14µm.
The × marks show the 487 grid points for the integrals in ν. Enhanced high
values are truncated at κ = 1.5.

Convergence of the lower increasing and upper decreasing sequences is stud-
ied with and without Rayleigh scattering.

The convergence of the lower sequences is faster and it is slightly slower in
the presence of scattering. Yet for both 20 iterations seem appropriate for a 3
digits precision.
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Figure 2: Temperatures scaled by 4798 without (left) and with (right) scattering:
convergence history. The dashed curves are computed with an initial T 0 =
TSun/10 and the solid curves with T 0 = 0. Notice the monotonic convergence
towards a solution after 20 iterations. The iterations shown for the upper and
lower solutions are (5,7,9,11,20). This computation has used Q0 = 3.03 · 10−5.

Next, results are shown with κ0
ν , κ1

ν and κ2
ν , with and without scattering.

Figures 3 and 4 shows the mean radiation intensity Jν versus wavelength at
altitude 0 and 12km. Notice the dramatic changes when going from κ0

ν to κ1
ν

and the smaller changes in the opposite direction when going from κ0
ν to κ2

ν .
Note too that scattering increases only slightly Jν .

Figure 5 shows the scaled temperatures versus altitude for κ0
ν , κ1

ν and κ2
ν

with and without scattering. Note that going from κ0
ν to κ1

ν decreases the
temperatures by 5%. On the other hand going from κ0

ν to κ2
ν increases the

temperatures by 2%.

Comments

• CPU time is 20” on an Macbook air M1, but with a smoother κν , 50
ν-integration points are sufficient, cutting the CPU time by 10 to 2”.

• We observed that a highly oscillating κν did not cause any programming
or convergence problems. The total light intensities J plotted on Figures
3 and 4 show clearly that the method tracts the small or wide changes on
κν .

• Figure 2: Monotone convergence from below and from above is observed.
The convergence from below, i.e. starting with T 0 = 0, is faster than the
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Figure 3: Computed mean radiation intensities Jν(0) at the ground level for κ0
ν ,

κ1
ν , κ2

ν without scattering and for κ0
ν with scattering.
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Figure 4: Computed mean radiation intensities Jν(Z) at the top of the tropo-
sphere for κ0

ν , κ1
ν , κ2

ν without scattering and for κ0
ν without and with scattering.
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Figure 5: Temperatures in Kelvin divided by 4798 z → T (z) computed with κ0
ν ,

κ1
ν and κ2

ν without scattering (α = 0) and with a scattering α = 1
2 .

one from above, starting from T = Tsun/10, and it is slightly slower in the
presence of scattering.

• . Figure 5: Increasing κν in the Earth infrared range can cause either an
increase or a decrease of temperature, depending on the position of the
change in the infrared spectrum.

• Isotropic and Rayleigh scattering did not change the above conclusion (see
Figure 5).

Finally, note that the Earth albedo seems to play an important role on the
effect of the green house gases on the temperature of the atmosphere [7]. If it
is modeled by a Lambert condition of the type

Iν(0, µ)− βIν(0,−µ) = µQ0Bν(TSun), ∀µ > 0,

then the present numerical method can handle it and our preliminary test show
an increase of temperature when β increases; while this is another story, it is yet
another proof of the versatility of the present numerical formulation for climate
modeling.

7.2 Radiative Transfer with Thermal Diffusion in a Pool

The liquid water absorption spectrum can be found in
https://en.wikipedia.org/wiki/Electromagnetic absorption by water
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Consider a pool, heated by the Sun and subject to wind on its surface.
The maximum length and height are 3 and 1. The numerical viscosity is 0.05.
Rescaled to be in (0,1) it is approximately

κν = min{1, 0.6 ·
(

(
3.2

ν
− 0.4)+

) 1
4

}.

The solution of the time dependent Navier-Stokes equations in a vertical cut of
the pool is shown on Figure 6 after 100 time steps of size 0.02; stationarity is
reached. Dirichlet conditions are applied due to the wind velocity, (10, 0)T on
the horizontal boundary and (0, 0)T elsewhere. The Hood-Taylor finite element
method is used with Galerkin-characteristics discretization in time.

For the temperature equation, κT = 0.5, κν = 1 and Q0 = 2 · 10−5, with
vertical radiative transfer in the fluid, from its surface and Dirichlet conditions
on the bottom boundary T = 0.0572 which is the temperature given by the
radiative transfer equations without thermal diffusion.

The time dependent temperature equation is solved until convergence to a
stationary state with 50 time steps of size 0.1.The convection terms are treated
explicitly so as to use (48). Note that with a Neumann condition on the bottom
the temperature would keep rising with time and even with a Dirichlet condi-
tion on the bottom boundary there is a critical value for κT below which the
temperature rises with time.

The solution is shown on Figure 6. One sees the effect of the current in the
fluid on the temperature distribution which has shifted to the right. There are

Figure 6: Velocity vectors and Temperature in a pool subject to wind on its top
boundary and given temperature on the bottom.

1157 vertices in the triangulation; the computation of the flow takes 12”. The
computation of the temperature takes 126”.
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7.3 Radiative Transfer with Thermal Diffusion in the At-
mosphere of a planet

Consider the atmosphere of a spherical planet with a known ground temperature
Te, heated by the Sun. The computational domain is the space between a sphere
of radius R2 and a sphere of radius R1 < R2.

As before the sunrays travel unaffected and hit the ground; so the radiative
part is governed by the first equation in (49) and (50). The second equation in
(49) is replaced by (47), solved with spherical coordinates. The density of the
atmosphere is constant and the absorption parameter is constant κ = 1. The
wind velocity is a rotating Poiseuille flow around an axis (sin ψ̄, 0, cos ψ̄)T which
is not aligned with the direction of the Sun. In spherical coordinates it is

u = r(H − r)[cosψ, sinψ, 0]T , r is the distance to the ground

In spherical coordinates the domain becomes a solid rectange with periodic
conditions; it is discretized with a uniform distribution of vertices 24× 12× 12
in the domain (0, 2π)× (0, π)× (0, Z).

The time dependent temperature equation, are solved in spherical coor-
dinates (see [15]-appendix A), discretized in time and space by a Galerkin-
Characteristic method and piecewise linear conforming finite elements on tetrae-
dras. The time step is δt = 0.1, the thermal diffusion is κT = 0.01. The stratified
approximation requires R1 to be large and R2 − R1 small. But for the visual-
izations we map the solid rectangle onto the spherical domain with R1 = 1 and
R2 = 2.

As before κ = 1, TSun = 1.209 and Q0 = 2 · 10−5. Initially Tt=0 is the
temperature when κT = 0. Figure 7 shows the temperatures after 15 iterations
without wind. The computing time was 108”. The Sun is on the right. Blue
means cold on the left side because it does not receive the light. Yet with more
time iterations we would see this zone heated by thermal diffusion due to the
fixed temperature of the planet.

Figure 8 compares the temperatures with and without wind. The planar
views correspond to cross sections of the domain by the plane z = 0. Here the
Sun in the horizontal direction on the right but the wind transports its heat
counterclockwise.

7.4 Conclusion

In this article a special case of radiative and heat transport has been studied,
the so called stratified approximation. Existence and uniqueness has been estab-
lished with almost no restriction on the absorption and scattering parameters.
Furthermore the proofs are based on a formulation of the problem which gives
rise to an efficient numerical algorithm for radiative transfer coupled with the
heat equation for a fluid. Upper and lower positive solutions can be computed
and the convergence to the unique solution is polynomial.
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Figure 7: Temperature in the atmosphere of a planet heated by a Sun, when
thermal diffusion propagates heat in unlit regions and also in the presence of a
counter clockwise rotating wind.

Figure 8: Temperature in the atmosphere of a planet heated by a Sun on the
right with (right) and without (left) almost counterclockwise rotating wind (the
axis of rotation is not perpendicular to the figure). Thermal diffusion propagates
heat in unlit regions and the wind transports the heat counterclockwise.
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The method has been implemented numerically and indeed arbitrary pre-
cision can be obtained, even with highly oscillating absorption or scattering
coefficients. Furthermore it is computationally very fast when the thermal dif-
fusion is neglected and reasonably fast otherwise.

It has been applied to the computation of the temperature in the Earth
atmosphere, to that of a pool heated by the Sun and to a the atmosphere of a
planet with a large thermal diffusion. However these are test cases rather than
full solution of physical problems.

There are many other applications, especially for climate modelling and in
nuclear engineering for which these new mathematical and numerical results
should be useful.
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