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STRATIFIED RADIATIVE TRANSFER IN A FLUID AND
NUMERICAL APPLICATIONS TO EARTH SCIENCE\ast 

FRAN\c COIS GOLSE\dagger AND OLIVIER R. PIRONNEAU\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . New mathematical results are given for the radiative transfer equations alone and
coupled with the temperature equation of a fluid: existence, uniqueness, a maximum principle, and
a convergent monotone iterative scheme. Numerical tests for Earth's atmosphere and the heating of
a pool by the Sun are included.
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\bfD \bfO \bfI . 10.1137/21M1459009

1. Introduction. Radiative transfer (RT) is an important field of physics. It
appears in astronomy, nuclear physics, and heat transfer in fluid mechanics. It is also
a key ingredient of climate models.

Books on RT for the atmosphere are numerous, such as [22], [15], and [4], the
numerically oriented [28], and the two mathematically oriented [6] and [9].

When Planck's theory of black bodies is used, radiation involves a continuum of
frequencies governed by the temperature of the emitting bodies. Studies based on the
interactions of the photons with the atoms of the medium, such as [3], are currently
unusable numerically in large physical domains. A much simpler formulation was
proposed a hundred years ago, known as the RT equations, which is based on the
energy conservation principles of continuum mechanics.

Even when the interactions with the background fluid are neglected, the RT
equations involves five ``spatial"" variables (three coordinates for the position of each
photon, and the two components of its direction). Existence of solutions of the RT
equations can be proved by a Schauder-type compactness argument (see [1]), with
uniqueness under appropriate additional boundedness (see Proposition 2 in [23] and
[27]), or monotonicity assumptions (see Corollary 2 in [23], together with [12]).

Given the intricacy of the RT equations, several simplifying assumptions have
been studied in the literature. If the scattering and absorption coefficients do not
depend on the frequencies of the radiation source, the RT equations can be averaged
in the frequency variable, leading to a closed system of equations for the temperature
and frequency-averaged radiative intensity, known as the ``grey"" model. However,
the frequency dependence of the scattering and absorption coefficients is fundamental
to understanding several important effects in the Earth's atmosphere. For instance,
Rayleigh explained the blue color of the sky by the fact that the scattering coefficient
is proportional to the fourth power of the radiation frequency. Likewise, the fact
that some components of Earth's atmosphere are opaque to infrared radiations seems
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important to understanding the greenhouse effect. Another simplification, of a purely
geometric nature, consists of assuming that the temperature and radiative intensity
are uniform on a foliation of the space by parallel planes, and therefore depend on
a single position variable. As a result, the radiative intensity depends only on the
projection of the photon's direction on the orthogonal axis to these planes. This is
known as the ``slab symmetry"" assumption, which appears in the ``Milne problem""
for planetary or stellar atmospheres (see [6] for a detailed physical discussion of the
Milne problem, and [11] for the corresponding mathematical theory).

The term ``radiative transfer"" usually refers to the interaction of radiation with
a fixed background material. But, of course, radiation obviously deposits energy in
the background fluid, gas, or plasma, as well as momentum, through the radiation
pressure and, conversely, high speed fluid motion obviously modifies such processes
as Compton scattering (scattering of a photon by a free electron at rest) by Doppler
effect. Therefore, in full generality, the equation for the radiation intensity is coupled
with the fluid equations. This coupling is studied under the name of ``radiation
hydrodynamics"" (see [26] for the coupling with ideal fluids, and [24]).

The most general studies of radiation hydrodynamics mentioned above involve
high speed (possibly relativistic) fluid motion. In the present paper, we consider
radiation passing through an incompressible fluid, or a compressible fluid at low Mach
number. Thus our setting will be intermediate between radiation hydrodynamics as
in [26], [24], and as in [10]. This last reference considers the coupling of the grey
model of RT with a background material at rest. See also [27]1 for an existence result
for the general system in three dimensions (3D), yet without the monotone properties
used by the numerical algorithm, which is at the core of this study. The radiation
energy is deposited in the background medium in the form of heat, and appears
as a source term in the heat equation for the temperature, while the black body
radiation of the background medium appears as a source term in the RT equation
for the radiative intensity. Our model retains the fluid motion equation, as well as
the frequency dependence of the radiation field, which is essential for applications to
Earth's climate.

We shall, however, make another simplification, referred to as the ``stratification
or parallel plane assumption"": while the radiation intensity and temperature depend
on all three position coordinates, only one of these coordinates is retained in the
computation of the streaming operator acting on the radiative intensity, while the
two other coordinates appear only as parameters in the RT equation. The stratified
approximation is used when the radiation source is far---as in the case of the Sun---
and the radiative intensity deposited at the boundary of the computational domain
is uniform or at least slowly varying in the tangential directions to this surface.

In 2005 Evans and Marshak wrote in Chapter 4 of [22] a review of the numerical
methods available for radiative transfer alone. Today, judging from [5], the situa-
tion has not changed: SHDOM (Spherical Harmonic Discrete Ordinate Method) and
Monte-Carlo are the two most popular methods. While reviewing the current situa-
tion for the RT equations in [2] we implemented a finite element version of SHDOM
and found that the method was incapable, unless a huge number of degrees of free-
dom is used, of giving results with the accuracy needed to differentiate between small
variations on the absorption coefficient.

On the other hand an integral formulation present in [6] turned out to be much
more precise and also computationally much cheaper. A fixed-point iteration of this

1While this paper was being reviewed, [27] was brought to our attention.
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nonlinear integral formulation, known in the RT community as ``iterations on the
sources,"" was shown to be monotone in [25], a property which seems to have escaped
earlier studies. Finally, in [14] the method was extended to include the temperature
equation of the fluid and also to handle Rayleigh scattering while retaining monotonic-
ity. While [14] is more numerically oriented, the present article gives the convergence
proofs as well.

The RT equations are presented in section 2. After this, a cascade of simplifica-
tions are discussed: the stratified approximation, the decoupling from the fluid, and
Milne problem techniques originating from [11] (see also [23]).

In section 3, the stratified RT decoupled from the fluid is analyzed in the case
of isotropic scattering. Existence of a solution is proved by using the convergent
monotone iterative scheme proposed in [2]. A maximum principle in the line of [23],
[11] is also presented.

Uniqueness issues are discussed in section 4. The proofs are far from straightfor-
ward, and heavily rely on ideas in [23]. It may be interesting to compare Mercier's
monotonicity structure for the RT equation, which is quite involved, with the general
observation [7] on order preserving maps in L1 leaving the integral invariant.

In section 5, the above results are extended to the nonisotropic case of scattering
with the Rayleigh phase function.

Finally, in section 6 existence, uniqueness, and monotone convergence of the fixed-
point iterations are proved for the RT equation coupled with the temperature equation
of a fluid whose velocity field is known.

Three numerical applications are presented in section 7. The first one is a numeri-
cal simulation of the RT in the atmosphere with real data for the frequency dependent
absorption coefficient \kappa \nu . The numerical method is sufficiently accurate to study the
effect of variations of \kappa \nu in part of the spectrum, much like changing the composition
of the atmosphere by adding more CO2 or other greenhouse gases. The problem is
one-dimensional in space. The second example is the study of the temperature in
a pond heated by the Sun. For this problem RT is coupled with the Navier--Stokes
equations. The geometry is academic, in two dimensions (2D); its object is to show
the feasibility of the numerical method for such coupled problems. The third problem
is also a feasibility study which shows that it is possible to make a three-dimensional
computation of the wind in the atmosphere of a planet heated by the Sun and subject
to thermal diffusion. The computing times show that the method could be used in
real-life situations.

2. Fundamental equations and approximations. Finding the temperature
T in a fluid heated by electromagnetic radiations is a complex problem because in-
teractions of photons with atoms of the medium involve rather intricate quantum
phenomena. A first simplifying assumption is that of local thermodynamic equilib-
rium (LTE): at each point in the fluid, there is a well-defined electronic temperature.
In that case, one can write a kinetic equation for the radiative intensity I\nu (\bfitx ,\bfitomega , t) at
time t, at position \bfitx , and in the direction \omega for photons of frequency \nu , in terms of
the temperature field T (\bfitx , t):

(2.1)

1

c
\partial tI\nu + \bfitomega \cdot \nabla I\nu + \rho \=\kappa \nu a\nu 

\biggl[ 
I\nu  - 1

4\pi 

\int 
\BbbS 2
p\nu (\bfitomega ,\bfitomega 

\prime )I\nu (\bfitomega 
\prime )d\omega \prime 

\biggr] 
= \rho \=\kappa \nu (1 - a\nu )[B\nu (T ) - I\nu ].
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In this equation, \nabla designates the gradient with respect to the position \bfitx , while

(2.2) B\nu (T ) =
2h\nu 3

c2[e
h\nu 
kT  - 1]

is the Planck function at temperature T , with h the Planck constant, c the speed of
light in the medium (assumed to be constant), and k the Boltzmann constant. Notice
that

(2.3)

\int \infty 

0

B\nu (T )d\nu = \=\sigma T 4 , \=\sigma =
2\pi 4k4

15c2h3
,

where \pi \=\sigma is the Stefan--Boltzmann constant.
The intricacy of the interaction of photons with atoms of the medium is contained

in three quantities: (1) the mass-absorption \=\kappa \nu , which is the fraction of radiative in-
tensity at frequency \nu that is absorbed per unit length; (2) the scattering albedo a\nu ;
and (3) a probability of scattering from directions \bfitomega \prime to \bfitomega . Indeed, a photon of fre-
quency \nu travelling in a direction \bfitomega \prime may be deflected by the atoms of the medium in
a new direction \bfitomega . The proportion of deflected photons a\nu \in (0, 1) is called the scat-
tering albedo. Furthermore, if p\nu (\bfitomega ,\bfitomega 

\prime ) \geq 0 is the probability density of scattering
from \bfitomega \prime to \omega the scattered intensity is (see [9, p. 74]): a\nu \=\kappa \nu 

4\pi 

\int 
\BbbS 2 p\nu (\bfitomega ,\bfitomega 

\prime )I\nu (\bfitomega 
\prime )d\omega \prime .

Probabilities sum up to 1, so 1
4\pi 

\int 
\BbbS 2 p\nu (\bfitomega ,\bfitomega 

\prime )d\omega \prime = 1
4\pi 

\int 
\BbbS 2 p\nu (\bfitomega ,\bfitomega 

\prime )d\omega = 1.
The kinetic equation (2.1) is coupled to the fluid equations solely by the local

conservation of energy. When the fluid is incompressible, density \rho , pressure p, and
velocity fields \bfitu satisfy the Navier--Stokes equations

(2.4)

\left\{   
\partial t\rho + \bfitu \cdot \nabla \rho = 0, \nabla \cdot \bfitu = 0,

\partial t\bfitu + \bfitu \cdot \nabla \bfitu  - \mu F

\rho 
\Delta \bfitu +

1

\rho 
\nabla p = g ,

where \Delta is the Laplacian in the \bfitx variable. Here, g is the gravity, while \mu F is the fluid
viscosity. For the applications discussed in section 7, namely the Earth's atmosphere
below 12km and pools, air and water are incompressible to a very good precision (see
the low Mach number limit theorem in [18]).

The total energy density is the sum of the kinetic energy density of the fluid, of
the internal energy of the fluid, and of the radiative energy. Subtracting the kinetic
energy balance equation from the local conservation of energy, neglecting the viscous
heating term 1

2\mu F | \nabla \bfitu + (\nabla \bfitu )T | 2 on the right-hand side of the equality above, which
is legitimate assuming that the variations of | \bfitu | 2 times \mu F are small, we arrive at

(2.5)

\rho cV (\partial tT + \bfitu \cdot \nabla T ) =\nabla \cdot (\rho cP\kappa T\nabla T )

+

\int \infty 

0

\rho \=\kappa \nu (1 - a\nu )

\biggl( \int 
\BbbS 2
I\nu (\bfitomega )d\bfitomega  - 4\pi B\nu (T )

\biggr) 
d\nu ,

where T is the temperature, while cV , cP are the specific heat capacity at constant
volume and constant pressure, respectively, and \kappa T is the thermal diffusivity.

Summarizing, the kinetic equation (2.1) for the radiative intensity is coupled to
the incompressible Navier--Stokes equations (2.4) and to the drift diffusion equation
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(2.5) for the temperature. The resulting system is

(2.6)

\left\{                                 

1

c
\partial tI\nu + \bfitomega \cdot \nabla I\nu + \rho \=\kappa \nu a\nu 

\biggl[ 
I\nu  - 1

4\pi 

\int 
\BbbS 2
p\nu (\bfitomega ,\bfitomega 

\prime )I\nu (\bfitomega 
\prime )d\omega \prime 

\biggr] 
= \rho \=\kappa \nu (1 - a\nu )[B\nu (T ) - I\nu ] ,

\rho cV (\partial tT + \bfitu \cdot \nabla T ) - \nabla \cdot (\rho cP\kappa T\nabla T )

=

\int \infty 

0

\rho \=\kappa \nu (1 - a\nu )

\biggl( \int 
\BbbS 2
I\nu (\bfitomega )d\bfitomega  - 4\pi B\nu (T )

\biggr) 
d\nu ,

\partial t\bfitu + \bfitu \cdot \nabla \bfitu  - \mu F

\rho 
\Delta \bfitu +

1

\rho 
\nabla p = g ,

\partial t\rho + \bfitu \cdot \nabla \rho = 0, \nabla \cdot \bfitu = 0 .

This system is supplemented with appropriate initial and boundary conditions.
Assuming, for instance, that the spatial domain is an open subset \Omega of \BbbR 3 with C1,
or piecewise C1 boundary \partial \Omega , and denoting by \bfitn the outward unit normal field on
\partial \Omega , the following boundary conditions are natural:

(2.7)
I\nu (\bfitx ,\bfitomega , t) = Q\nu (x, \omega , t) , x \in \partial \Omega , \bfitomega \cdot \bfitn \bfitx < 0 , \nu > 0 ,

\bfitu | \partial \Omega = 0 ,
\partial T

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0 .

The first boundary condition tells us that the radiative intensity of incoming photons
(\bfitomega \cdot \bfitn x < 0) at the boundary of the spatial domain is known, which is a typical
admissible boundary condition for kinetic models; the second boundary condition is
the classical Dirichlet boundary condition for the velocity field, solution of the Navier--
Stokes equations, while the last boundary condition, the Neuman condition for the
temperature, corresponds to the absence of heat flux at the boundary of the spatial
domain. (Of course, this is just one example of a boundary condition for the heat
equation; other boundary conditions could also be considered---for instance, one could
have mixed Dirichlet--Neuman, or even Robin conditions on the temperature.) Notice
that there is no boundary condition for the density \rho , since the velocity field \bfitu is
tangent (and even vanishes) at the boundary \partial \Omega .

Finally, one should specify initial conditions of the form

(2.8)
I\nu (\bfitx ,\bfitomega , 0) = Iin\nu (x, \omega ) , x \in \Omega , \bfitomega \in \BbbS 2 , \nu > 0 ,

\rho | t=0 = \rho in , \bfitu | t=0 = \bfitu in , T | t=0 = T in.

Neglecting the viscous heating term as explained above has an important conse-
quence on the structure of this system, which can be thought of as ``block triangular.""
In other words, one can first solve for \rho ,\bfitu , p the Navier--Stokes equations (2.4), then
the last three equations in the system (2.6) above. The mathematical theory of (2.4)
has been discussed in great detail by Lions in [21]. Then, the density \rho and velocity
field \bfitu are known and appear as coefficients in the coupled system of the RT equation
(2.1) and of the heat drift-diffusion equation (2.5). This coupling must be studied in
detail. In the next two sections, we discuss simplified model equations deduced from
(2.6).

2.1. Stratified RT. Let (x, y, z) be the Cartesian coordinates of the point \bfitx \in 
\BbbR 3, with z denoting the altitude/depth.

Assume that the radiation source (henceforth referred to as ``the Sun"") is far away
in the direction z > 0, and is independent of x and y. The radiation spectrum of this
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source is that of a black body at temperature TS , that is, the Planck function B\nu (TS).
With such a radiation source, it is natural to assume that the temperature field T is
slowly varying with x and y, so that | \partial xT | + | \partial yT | \ll | \partial zT | and that I\nu is also slowly
varying in x and y so that | \partial xI\nu | + | \partial yI\nu | \ll | \partial zI\nu | .

Similarly, we further assume that | 1c\partial tI\nu | \ll | \partial zI\nu | , and forget the initial condition
on I\nu , so that the time dependence of the radiative intensity is governed solely by the
evolution of the temperature field through the RT equation (2.1).

With this assumption, the streaming term 1
c\partial tI\nu +\bfitomega \cdot \nabla I\nu reduces to \mu \partial zI\nu , where

\mu is the cosine of the angle of \bfitomega with the z axis. Henceforth, the spatial domain is
\Omega = \BbbO \times (zm, zM ), where \BbbO is an open subset of \BbbR 2 with C1 boundary.

Then (2.6) becomes (see [28])

(2.9)

\left\{                       

\mu \partial zI\nu + \rho \=\kappa \nu I\nu = \rho \=\kappa \nu (1 - a\nu )B\nu (T ) +
1
2\rho \=\kappa \nu a\nu 

\int 1

 - 1

p\nu (\mu , \mu 
\prime )I\nu (z, \mu 

\prime , t)d\mu \prime ,

\partial tT + \bfitu \cdot \nabla T  - cP
cV
\kappa T\Delta T = 4\pi 

cV

\int \infty 

0

\=\kappa \nu (1 - a\nu )

\biggl( 
1
2

\int 1

 - 1

I\nu d\mu  - B\nu (T )

\biggr) 
d\nu ,

I\nu (x, y, zM , \mu , t)| \mu <0 = Q - (\mu )B\nu (TS) , I\nu (x, y, zm, \mu , t)| \mu >0 = Q+
\nu (\mu ) ,

\partial T

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0 , T | t=0 = T in .

That I\nu (zm, \mu , t)| \mu >0 = 0, i.e., Q+
\nu (\mu ) = 0, is natural since no radiation comes from

the bottom of the spatial domain. Yet, by the law of black bodies, radiation could
also come from the bottom, but more general boundary conditions could be handled
by the same analysis. In fact, in [9] and other references, it is assumed that most of
the energy from the Sun is in the form of visible light and is essentially unaffected
by crossing the atmosphere, so that it is equivalent to a source of energy located at
z = 0. Recall that it makes physical sense to take Q - (\mu ) = \mu Q\prime cos \theta , where \theta is the
latitude on Earth, while \mu is the cosine of the observation angle. The fluid velocity
field \bfitu is given, assumed to be divergence-free, and regular enough for (2.9) to make
sense. Note that by rescaling the time variable, \bfitu , and \kappa T appropriately, the factor
4\pi /\rho cV can be replaced with 1.

2.2. RT decoupled from hydrodynamics. When \kappa T = 0, and the fluid is at
rest, the left-hand side of temperature equation is zero, so that the fluid equations
are decoupled from the RT equation (2.1). Let us first consider the case of isotropic
scattering, namely p\nu (\mu , \mu 

\prime ) = 1 at all frequencies \nu . Then the system becomes (see
[2])

(\mu \partial \tau + \kappa \nu )I\nu (\tau , \mu ) = \kappa \nu a\nu J\nu (\tau ) + \kappa \nu (1 - a\nu )B\nu (T (\tau )) ,(2.10)

I\nu (0, \mu ) = Q+
\nu (\mu ) , I\nu (Z, - \mu ) = Q - 

\nu (\mu ) , 0 < \mu < 1 ,(2.11) \int \infty 

0

\kappa \nu (1 - a\nu )B\nu (T (\tau ))d\nu =

\int \infty 

0

\kappa \nu (1 - a\nu )J\nu (\tau )d\nu ,(2.12)

with the notation Q - 
\nu (\mu ) = Q - ( - \mu )B\nu (TS) and

(2.13) J\nu (\tau ) :=
1
2

\int 1

 - 1

I\nu (\tau , \mu )d\mu .

In these equations, we have replaced \=\kappa \nu by \kappa \nu and the height z \in (zm, zM ) by \tau ,
analogous to the ``optical depth"" (see, for instance, [9], or formula (51) in Chapter I
of [6]), defined as follows.
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Pick \rho 0 > 0, some ``reference"" density of the fluid. For instance, \rho 0 could be
the average density in the fluid, or the density at some reference altitude z. Indeed,
the following expressions for the atmospheric density \rho in terms of the altitude z are
found in the literature: \rho (z) = \rho 0e

 - z or \rho (z) = \rho 0  - \rho 1z. The new variable \tau and the
absorption coefficient \kappa \nu are defined as follows:

(2.14) \tau :=

\int z

zm

\rho (\zeta )

\rho 0
d\zeta and \kappa \nu := \rho 0\=\kappa \nu .

Equations (2.10) and (2.12) imply that

(2.15) \partial \tau 

\int \infty 

0

\int 1

 - 1

\mu I\nu (\tau , \mu )d\mu d\nu = 0.

We have ignored the dependence in x, y of T and I\nu , since x, y are mere parameters
in these equations, which are anyway completely decoupled from the fluid equations.

Assuming that 0 < \kappa \nu \leq \kappa M and 0 \leq a\nu < 1 for all \nu > 0, we see that (2.12)
and (2.13) define T as a functional of I, henceforth denoted T [I]. Equivalently, one
can consider J\nu as a radiative intensity independent of \mu , and observe that (2.12) and
(2.13) imply that T [I] is also a T [J ]. Thus (2.10)--(2.12) can be recast as

(2.16)

\Biggl\{ 
(\mu \partial \tau + \kappa \nu )I\nu (\tau , \mu ) = \kappa \nu \scrS \nu [J ] := \kappa \nu (a\nu J\nu (\tau ) + \kappa \nu (1 - a\nu )B\nu (T [J ](\tau ))) ,

I\nu (0, \mu ) = Q+
\nu (\mu ) , I\nu (Z, - \mu ) = Q - 

\nu (\mu ) , 0 < \mu < 1 .

Throughout this article, we use the exponential integrals

(2.17) Ep(X) := X1 - p

\int \infty 

X

e - z

zp
dz =

\int 1

0

e - X/\mu \mu p - 2d\mu , X > 0 .

Lemma 2.1. The following inequality holds:

1
2 sup
0\leq t\leq Z

\int Z

0

E1(\kappa | \tau  - t| )\kappa d\tau \leq C1(\kappa ) ,

where \kappa \mapsto \rightarrow C1(\kappa ) is monotone increasing from \BbbR + to \BbbR +, and less than 1.

Proof. With s = \kappa t, observe that
(2.18)\int Z

0

E1(\kappa | \tau  - t| )\kappa d\tau =

\int \kappa Z

0

E1(| \sigma  - s| )d\sigma =

\int 
\bfR 

E1(| \sigma  - s| )1[0,\kappa Z](\sigma )d\sigma 

=

\int 
\bfR 

E1(| \theta | )1[ - s,\kappa Z - s](\theta )d\theta \leq 
\int 
\bfR 

E1(| \theta | )1[ - \kappa Z/2,\kappa Z/2](\theta )d\theta 

=2

\int \kappa Z/2

0

E1(\theta )d\theta \leq 2

\int Z\kappa M/2

0

E1(\theta )d\theta =: 2C1(\kappa ) .

The first inequality above is the elementary rearrangement inequality (Theorem 3.4
in [20]). Now C1 is obviously increasing since E1 > 0, and

C1(\kappa ) =

\int Z\kappa /2

0

E1(\theta )d\theta <

\int \infty 

0

E1(\theta )d\theta =

\int \infty 

0

\biggl( \int \infty 

1

e - \theta y

y
dy

\biggr) 
dy =

\int \infty 

1

dy

y2
= 1 .
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Lemma 2.2. Let

(2.19) S\nu (\tau ) =
1
2

\int 1

0

\Bigl( 
e - 

\kappa \nu \tau 
\mu Q+

\nu (\mu ) + e - 
\kappa \nu (Z - \tau )

\mu Q - 
\nu (\mu )

\Bigr) 
d\mu .

Problem (2.10)--(2.13) is equivalent to (2.12), plus the integral equation

(2.20) J\nu (\tau ) =S\nu (\tau ) +
1
2

\int Z

0

E1(\kappa \nu | \tau  - t| )\kappa \nu (a\nu J\nu (t) + (1 - a\nu )B\nu (T (t)))dt .

Proof. Applying the method of characteristics shows that
(2.21)

I\nu (\tau , \mu ) =e
 - \kappa \nu \tau 

\mu Q+
\nu (\mu )1\mu >0 + e - 

\kappa \nu (Z - \tau )
| \mu | Q - 

\nu (| \mu | )1\mu <0

+ 1\mu >0

\int \tau 

0

e - 
\kappa \nu (\tau  - t)

\mu \kappa \nu 

\mu \scrS \nu [J ](t)dt+ 1\mu <0

\int Z

\tau 

e - 
\kappa \nu (t - \tau )

| \mu | \kappa \nu 

\mu \scrS \nu [J ](t)dt .

One integrates both sides of this identity in \mu , exchanges the order of integration by
Tonelli's theorem, and changes variables in the inner integral, observing that\int 1

0

e - 
X
\mu 
d\mu 

\mu 
=

\int \infty 

1

e - Xy

y
dy =

\int \infty 

X

e - z

z
dz = E1(X) .

Thus (2.20) holds

3. Analysis of problem (2.10)--(2.12). In order to solve numerically (2.10)--
(2.12), one uses the method of iteration on the sources. Starting from some appropri-
ate (I0\nu , T

0), one constructs a sequence (In\nu , T
n) by the following prescription:

(3.1)

\Biggl\{ 
(\mu \partial \tau + \kappa \nu )I

n+1
\nu (\tau , \mu ) = \kappa \nu \scrS \nu [J

n],

In+1
\nu (0, \mu ) = Q+

\nu (\mu ) , In+1
\nu (Z, - \mu ) = Q - 

\nu (\mu ) , 0 < \mu < 1 .

Note that \scrS \nu [J
n] := a\nu J

n
\nu (t) + (1 - a\nu )B\nu (T

n(t)) does not depend on \mu . Hence, it is

(3.2)

Jn+1
\nu (\tau ) =S\nu (\tau ) +

1
2

\int Z

0

E1(\kappa \nu | \tau  - t| )\kappa \nu (a\nu Jn
\nu (t) + (1 - a\nu )B\nu (T

n(t)))dt ,\int \infty 

0

\kappa \nu (1 - a\nu )B\nu (T
n+1(\tau ))d\nu =

\int \infty 

0

\kappa \nu (1 - a\nu )J
n+1
\nu (\tau )d\nu .

As in (2.21), the method of characteristics shows that
(3.3)

In+1
\nu (\tau , \mu ) = e - 

\kappa \nu \tau 
\mu Q+

\nu (\mu )1\mu >0 + e - 
\kappa \nu (Z - \tau )

| \mu | Q - 
\nu (| \mu | )1\mu <0

+ 1\mu >0

\int \tau 

0

e - 
\kappa \nu (\tau  - t)

\mu \kappa \nu 

\mu \scrS \nu [J
n]dt+ 1\mu <0

\int Z

\tau 

e - 
\kappa \nu (t - \tau )

| \mu | \kappa \nu 

| \mu | \scrS \nu [J
n]dt .

Since B\nu \geq 0, this formula shows, by a straightforward induction argument, that

I0\nu \geq 0 , T 0 \geq 0 , Q\pm 
\nu \geq 0 =\Rightarrow In\nu \geq 0 .
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Moreover,

In+1
\nu (\tau , \mu ) - In\nu (\tau , \mu ) = 1\mu >0

\int \tau 

0

e - 
\kappa \nu (\tau  - t)

\mu \kappa \nu 

\mu a\nu (J
n
\nu (t) - Jn - 1

\nu (t))dt

+1\mu >0

\int \tau 

0

e - 
\kappa \nu (\tau  - t)

\mu \kappa \nu 

\mu (1 - a\nu )(B\nu (T
n(t)) - B\nu (T

n - 1(t)))dt

+1\mu <0

\int Z

\tau 

e - 
\kappa \nu (t - \tau )

| \mu | \kappa \nu 

| \mu | a\nu (J
n
\nu (t) - Jn - 1

\nu (t))dt

+1\mu <0

\int Z

\tau 

e - 
\kappa \nu (t - \tau )

| \mu | \kappa \nu 

| \mu | (1 - a\nu )(B\nu (T
n(t)) - B\nu (T

n - 1(t)))dt .

Since B\nu is nondecreasing for each \nu > 0, formula (2.12) shows that

Jn
\nu \geq Jn - 1

\nu =\Rightarrow Tn \geq Tn - 1 ,

and we conclude from the equality above that

I0\nu = 0 , T 0 = 0 , Q\pm 
\nu \geq 0 =\Rightarrow 

\Biggl\{ 
0 \leq I1\nu \leq I2\nu \leq \cdot \cdot \cdot \leq In\nu \leq \cdot \cdot \cdot ,
0 \leq T 1 \leq T 2 \leq \cdot \cdot \cdot \leq Tn \leq \cdot \cdot \cdot .

Integrating both sides of (3.2) over [0, Z] in \tau implies that\int Z

0

Jn+1
\nu (\tau )d\tau =

\int Z

0

S\nu (\tau )d\tau +
1
2

\int Z

0

\Biggl( \int Z

0

E1(\kappa \nu | \tau  - t| )\kappa \nu d\tau 

\Biggr) 
\scrS \nu [J

n]dt

\leq 
\int Z

0

S\nu (\tau )d\tau +
1
2 sup
0\leq t\leq Z

\int Z

0

E1(\kappa \nu | \tau  - t| )\kappa \nu d\tau 
\int Z

0

\scrS \nu [J
n]dt .

Thus by Lemma 2.1\int Z

0

Jn+1
\nu (\tau )d\tau \leq 

\int Z

0

S\nu (\tau )d\tau + C1(\kappa \nu )

\int Z

0

\scrS \nu [J
n]dt .

By multiplying both sides of this inequality by \kappa \nu and integrating into \nu , one finds
that \int \infty 

0

\int Z

0

\kappa \nu J
n+1
\nu (\tau )d\tau d\nu \leq 

\int \infty 

0

\int Z

0

(\kappa \nu S\nu (\tau ) + C1(\kappa M )\kappa \nu \scrS \nu [J
n]) dtd\nu .

At this point, we recall that Tn = T [Jn
\nu ], so that

(3.4)

\int \infty 

0

\kappa \nu (1 - a\nu )B\nu (T
n(t))d\nu =

\int \infty 

0

\kappa \nu (1 - a\nu )J
n
\nu (t)d\nu ,

and hence\int \infty 

0

\int Z

0

\kappa \nu J
n+1
\nu (\tau )d\tau d\nu \leq C1(\kappa M )

\int \infty 

0

\int Z

0

\kappa \nu J
n
\nu (t)dtd\nu +

\int \infty 

0

\int Z

0

\kappa \nu S\nu (\tau )d\tau d\nu .

The expression of the source term can be slightly reduced, by integrating out the \tau 
variable: \int Z

0

\kappa \nu e
 - \kappa \nu \tau 

\mu d\tau =

\int Z

0

\kappa \nu e
 - \kappa \nu (Z - \tau )

\mu d\tau = \mu 
\Bigl( 
1 - e - 

\kappa \nu Z
\mu 

\Bigr) 
,
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so that

0 \leq 
\int \infty 

0

\kappa \nu 

\int Z

0

S\nu (\tau )d\tau d\nu \leq 1
2

\int \infty 

0

\kappa \nu 

\int 1

0

(Q+
\nu (\mu ) +Q - 

\nu (\mu ))\mu d\mu d\nu =: \scrQ .

=\Rightarrow 
\int \infty 

0

\int Z

0

\kappa \nu J
n+1
\nu (\tau )d\tau d\nu \leq C1(\kappa M )

\int \infty 

0

\int Z

0

\kappa \nu J
n
\nu (t)dtd\nu +\scrQ .

Initializing the sequence In\nu with I0\nu = 0 and T 0 = T [J0
\nu ] = 0, one finds that\int \infty 

0

\int Z

0

\kappa \nu J
1
\nu (\tau )d\tau d\nu \leq \scrQ ,

\int \infty 

0

\int Z

0

\kappa \nu J
2
\nu (\tau )d\tau d\nu \leq C1(\kappa M )\scrQ +\scrQ ,

and by induction \int \infty 

0

\int Z

0

\kappa \nu J
n+1
\nu (\tau )d\tau d\nu \leq \scrQ 

n\sum 
j=0

C1(\kappa M )j .

Since C1(\kappa M ) < 1, the series above converges and one has the uniform bound\int \infty 

0

\int Z

0

\kappa \nu J
n+1
\nu (\tau )d\tau d\nu \leq \scrQ 

1 - C1(\kappa M )
.

Furthermore, as
0 \leq I1\nu \leq I2\nu \leq \cdot \cdot \cdot \leq In\nu \leq In+1

\nu \leq \cdot \cdot \cdot ,
the bound above and the monotone convergence theorem imply that the sequence
In+1
\nu (\tau , \mu ) converges for a.e. (\tau , \mu , \nu ) \in (0, Z)\times ( - 1, 1)\times (0,+\infty ) to a limit denoted
I\nu (\tau , \mu ) as n\rightarrow \infty . Since

0 \leq T 1 \leq T 2 \leq \cdot \cdot \cdot \leq Tn \leq Tn+1 \leq \cdot \cdot \cdot ,

we conclude from (2.15) and the monotone convergence theorem that Tn+1(\tau ) con-
verges for a.e. \tau \in (0, Z) to a limit denoted T (\tau ) as n\rightarrow \infty .

Then we can pass to the limit in (3.3) as n \rightarrow \infty by monotone convergence, so
that (2.21) holds for a.e. (\tau , \mu , \nu ) \in (0, Z)\times ( - 1, 1)\times (0,+\infty ). One recognizes in this
equality the integral formulation of (2.10)--(2.12). Besides, we have seen that

0 = I0\nu \leq I1\nu \leq I2\nu \leq \cdot \cdot \cdot \leq In\nu \leq In+1
\nu \leq \cdot \cdot \cdot \leq I\nu ,

0 =T 0\leq T 1\leq T 2\leq \cdot \cdot \cdot \leq Tn \leq Tn+1 \leq \cdot \cdot \cdot \leq T ,

so that

0 \leq 
\int Z

0

(Jn+1
\nu  - Jn

\nu )(\tau )d\tau = 1
2

\int Z

0

\Biggl( \int Z

0

E1(\kappa \nu | \tau  - t| )\kappa \nu d\tau 

\Biggr) 
a\nu (J

n
\nu  - Jn - 1

\nu )(t)dt

+ 1
2

\int Z

0

\Biggl( \int Z

0

E1(\kappa \nu | \tau  - t| )\kappa \nu d\tau 

\Biggr) 
(1 - a\nu )(B\nu (T

n(t)) - B\nu (T
n - 1(t)))dt

\leq C1(\kappa M )

\int Z

0

(a\nu (J
n
\nu  - Jn - 1

\nu )(t) + (1 - a\nu )(B\nu (T
n(t)) - B\nu (T

n - 1(t))))dt .

Using again (3.4), we conclude that

0 \leq 
\int Z

0

\int \infty 

0

\kappa \nu (J
n+1
\nu  - Jn

\nu )(\tau )d\nu d\tau \leq C1(\kappa M )

\int Z

0

\int \infty 

0

\kappa \nu (J
n
\nu  - Jn - 1

\nu )(t)dt .
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Hence

0 \leq 
\int Z

0

\int \infty 

0

\kappa \nu (J
n+1
\nu  - Jn

\nu )(\tau )d\nu d\tau \leq C1(\kappa M )n
\int \infty 

0

\kappa \nu J
1
\nu (\tau )d\nu d\tau \leq C1(\kappa M )n\scrQ ,

so that

0 \leq 
\int Z

0

\int \infty 

0

\kappa \nu (J\nu  - Jn
\nu )(\tau )d\nu d\tau \leq C1(\kappa M )n

\int \infty 

0

\kappa \nu J
1
\nu (\tau )d\nu d\tau \leq C1(\kappa M )n\scrQ 

1 - C1(\kappa M )
.

Summarizing, we have proved the following result.

Theorem 3.1. Assume that 0 < \kappa \nu \leq \kappa M , while 0 \leq a\nu < 1 for all \nu > 0. Let
Q\pm 

\nu (\mu ) satisfy

\scrQ := 1
2

\int \infty 

0

\kappa \nu 

\int 1

0

(Q+
\nu (\mu ) +Q - 

\nu (\mu ))\mu d\mu <\infty .

Choose I0\nu = 0 and T 0 = 0, and let In\nu and Tn = T [Jn
\nu ] be the solution of (3.1). Then

In\nu (\tau , \mu ) \rightarrow I\nu (\tau , \mu ) and Tn(\tau ) \rightarrow T (\tau )

for (\tau , \mu , \nu ) \in (0, Z) \times ( - 1, 1) \times (0,+\infty ) as n \rightarrow \infty , where (I\nu , T ) is a solution of
(2.10)--(2.12). This method converges exponentially fast, in the sense that

0 \leq 
\int Z

0

\int \infty 

0

\kappa \nu (J\nu  - Jn
\nu )(\tau )d\nu d\tau \leq C1(\kappa M )n\scrQ 

1 - C1(\kappa M )
,

and, if 0 \leq a\nu \leq aM < 1 while 0 < \kappa m \leq \kappa \nu , one has

0 \leq 
\int Z

0

\=\sigma (T (t)4  - Tn(t)4)dt \leq C1(\kappa M )n\scrQ 
\kappa m(1 - aM )(1 - C1(\kappa M ))

.

The last bound comes from the defining equality for the temperature in terms of
the radiative intensity

\kappa m(1 - aM )\=\sigma (T 4  - (Tn)4) = \kappa m(1 - aM )

\int \infty 

0

(B\nu (T ) - B\nu (T
n))d\nu 

\leq 
\int \infty 

0

\kappa \nu (1 - a\nu )(B\nu (T ) - B\nu (T
n))d\nu =

\int \infty 

0

\kappa \nu (1 - a\nu )(J\nu  - Jn
\nu )d\nu 

\leq 
\int \infty 

0

\kappa \nu (J\nu  - Jn
\nu )d\nu .

4. Uniqueness, maximum principle for (2.10)--(2.12). This section follows
computations in [11] (in the case Z = +\infty and with a\nu = 0) and the rather subtle
monotonicity structure of the RT equations, a striking result2 found by Mercier in
[23]. The following theorem shows that two solutions of the problem (2.10)--(2.12)
are ordered exactly as their boundary data. (This situation is analogous to the case
of harmonic functions, except that the RT equations (2.10)--(2.12) are nonlinear, at
variance with the Laplace equation.)

2In fact, Mercier's original argument is even more complex, because he assumes that the opacity
K\nu := \kappa \nu (1 - a\nu ) depends on the temperature T , and is a nonincreasing function of T for each \nu > 0
while T \mapsto \rightarrow K\nu (T )B\nu (T ) is nondecreasing.
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Theorem 4.1. Assume that 0 < \kappa \nu \leq \kappa M , while 0 \leq a\nu < 1 for all \nu > 0. Let
Q\pm , Q\prime \pm \in L1((0, 1)\times (0,\infty )) satisfy

0 \leq Q\pm 
\nu (\mu ) \leq Q\prime \pm 

\nu (\mu ) for a.e. (\mu , \nu ) \in (0, 1)\times (0,\infty ) .

Then, the solutions (I\nu , T [I]) of (2.10)--(2.12), and (I \prime \nu , T [I
\prime ]) of (2.10)--(2.12),

with boundary data Q\pm 
\nu (\mu ) replaced with Q\prime \pm 

\nu (\mu ) satisfy

I\nu (\tau , \mu ) \leq I \prime \nu (\tau , \mu ) and T [I](\tau ) \leq T [I \prime ](\tau ) for a.e. (\tau , \mu ) \in ( - 1, 1)\times (0,\infty ) .

In particular,

Q\pm 
\nu (\mu ) = Q\prime \pm 

\nu (\mu ) a.e. \mu , \nu =\Rightarrow I\nu (\tau , \mu ) = I \prime \nu (\tau , \mu ) and T [I](\tau ) = T [I \prime ](\tau )

for a.e. \tau , \mu \in ( - 1, 1)\times (0,\infty ) .

The proof of this result is deferred to the appendix at the very end of this paper.

One has also the following form of maximum principle for the RT equation. (If
one keeps in mind the analogy with harmonic functions recalled before Theorem 4.1,
the maximum principle below is a consequence of the monotonicity of the dependence
of the solution of (2.10)--(2.12) in terms of its boundary data, whereas the analogous
monotonicity in the case of harmonic functions is deduced from the maximum principle
for the Laplace equation.)

Corollary 4.2. Assume that 0 < \kappa \nu \leq \kappa M , while 0 \leq a\nu < 1 for all \nu > 0. Let
Q\pm 

\nu (\mu ) \leq B\nu (TM ) (resp., Q\pm 
\nu (\mu ) \geq B\nu (Tm)) for a.e. (\mu , \nu ) \in (0, 1)\times (0,\infty ). Then

I\nu (\tau , \mu ) \leq B\nu (TM ) and T [I](\tau ) \leq TM

(resp., I\nu (\tau , \mu ) \geq B\nu (Tm) and T [I](\tau ) \geq Tm )

for a.e.(\tau , \mu ) \in ( - 1, 1)\times (0,\infty ) .

Proof. Indeed, I \prime \nu = B\nu (TM ) and T [I \prime ] = TM (resp., I \prime \nu = B\nu (Tm) and T [I \prime ] =
Tm) is the solution of (2.11) with boundary data Q\prime \pm 

\nu (\mu ) = B\nu (TM ) (resp., Q\prime \pm 
\nu (\mu ) =

B\nu (Tm)). The announced inequalities follow from the comparison of solutions ob-
tained in Theorem 4.1.

Remark 4.3. In Theorem 3.1, if one has the stronger condition

0 \leq Q\pm 
\nu (\mu ) \leq B\nu (TM ) for a.e. (\mu , \nu ) \in (0, 1)\times (0,\infty ) ,

one obtains the following bound for the numerical and theoretical solutions:

0 \leq I1\nu \leq \cdot \cdot \cdot \leq In\nu \leq \cdot \cdot \cdot I\nu \leq B\nu (TM ) and 0 \leq T 1 \leq \cdot \cdot \cdot \leq Tn \leq \cdot \cdot \cdot \leq T \leq TM .

5. RT with Rayleigh phase function. In this section, we discuss the same
problem as in the previous section, with the isotropic scattering kernel replaced by the
Rayleigh phase function. In the case of slab symmetry, the Rayleigh phase function
is

p(\mu , \mu \prime ) = 3
16 (3 - \mu 2) + 3

16 (3\mu 
2  - 1)\mu \prime 2

(see section 11.2 in Chapter I of [6]). Observe that

(5.1) p(\mu , \mu \prime ) = 3
16 (3 + 3\mu 2\mu \prime 2  - \mu 2  - \mu \prime 2) \geq 3

16 > 0 ,
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while

(5.2) 1
2

\int 1

 - 1

p(\mu , \mu \prime )d\mu = 3
16 (6 + 3 \cdot 2

3\mu 
\prime 2  - 2

3  - 2\mu \prime 2) = 1 .

Keeping (2.12) as the defining equation for T [I], the problem becomes

(5.3)

\left\{     
(\mu \partial \tau + \kappa \nu )I\nu (\tau , \mu ) =

3
8\kappa \nu a\nu ((3 - \mu 2)J\nu (\tau ) + (3\mu 2  - 1)K\nu (\tau ))

+ \kappa \nu (1 - a\nu )B\nu (T [J ](\tau )) ,

I\nu (0, \mu ) = Q+
\nu (\mu ) , I\nu (Z, - \mu ) = Q - 

\nu (\mu ) , 0 < \mu < 1 ,

with

(5.4) J\nu := 1
2

\int 1

 - 1

\mu I\nu d\mu , K\nu = 1
2

\int 1

 - 1

\mu 2I\nu d\mu 

and (2.12). Starting from I0\nu (\tau , \mu ) = 0 and T 0(\tau ) = 0, one solves for In+1

(5.5)

\left\{     
(\mu \partial \tau + \kappa \nu )I

n+1
\nu (\tau , \mu ) = 3

8\kappa \nu a\nu ((3 - \mu 2)Jn
\nu (\tau ) + (3\mu 2  - 1)Kn

\nu (\tau ))

+ \kappa \nu (1 - a\nu )B\nu (T
n(\tau )) , Tn := T [In],

In+1
\nu (0, \mu ) = Q+

\nu (\mu ) , In+1
\nu (Z, - \mu ) = Q - 

\nu (\mu ) , 0 < \mu < 1 .

Since B\nu is nondecreasing for each \nu > 0, one easily checks with (5.1) that

0 = I0\nu \leq I1\nu \leq I2\nu \leq \cdot \cdot \cdot \leq In\nu \leq In+1
\nu \leq \cdot \cdot \cdot ,

0 = T 0\leq T 1\leq T 2\leq \cdot \cdot \cdot \leq Tn \leq Tn+1 \leq \cdot \cdot \cdot .

The construction of these sequences is straightforward:

(5.6)

Jn+1
\nu (\tau ) =S\nu (\tau ) +

3
16

\int Z

0

E1(\kappa \nu | \tau  - t| )\kappa \nu a\nu (3Jn
\nu (t) - Kn

\nu (t))dt

+ 3
16

\int Z

0

E3(\kappa \nu | \tau  - t| )\kappa \nu a\nu (3Kn
\nu (t) - Jn

\nu (t))dt

+ 1
2

\int Z

0

E1(\kappa \nu | \tau  - t| )\kappa \nu (1 - a\nu )B\nu (T
n(t))dt ,

Kn+1
\nu (\tau ) = 1

2

\int 1

0

\Bigl( 
e - 

\kappa \nu \tau 
\mu Q+

\nu (\mu )1\mu >0 + e - 
\kappa \nu (Z - \tau )

| \mu | Q - 
\nu (| \mu | )1\mu <0

\Bigr) 
\mu 2d\mu 

+ 3
16

\int Z

0

E3(\kappa \nu | \tau  - t| )\kappa \nu a\nu (3Jn
\nu (t) - Kn

\nu (t))dt

+ 3
16

\int Z

0

E5(\kappa \nu | \tau  - t| )\kappa \nu a\nu (3Kn
\nu (t) - Jn

\nu (t))dt

+ 1
2

\int Z

0

E3(\kappa \nu | \tau  - t| )\kappa \nu (1 - a\nu )B\nu (T
n(t))dt ,\int \infty 

0

\kappa \nu (1 - a\nu )B\nu (T
n+1)d\nu =

\int \infty 

0

\kappa \nu (1 - a\nu )J
n+1
\nu d\nu .
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Notice that the radiative intensity is eliminated, but can be recovered by

(5.7)

In+1
\nu (\tau , \mu ) = e - 

\kappa \nu \tau 
\mu Q+

\nu (\mu )1\mu >0 + e - 
\kappa \nu (Z - \tau )

| \mu | Q - 
\nu (| \mu | )1\mu <0

+1\mu >0

\int \tau 

0

e - 
\kappa \nu (\tau  - t)

\mu \kappa \nu 

\mu 
3
8a\nu ((3 - \mu 2)Jn

\nu (t) + (3\mu 2  - 1)Kn
\nu (t))dt

+ 1\mu >0

\int \tau 

0

e - 
\kappa \nu (\tau  - t)

\mu \kappa \nu 

\mu (1 - a\nu )B\nu (T
n(t))dt

+1\mu <0

\int Z

t

e - 
\kappa \nu | t - \tau | 

| \mu | \kappa \nu 

| \mu | 
3
8a\nu ((3 - \mu 2)Jn

\nu (t) + (3\mu 2  - 1)Kn
\nu (t))dt

+1\mu <0

\int Z

0

e - 
\kappa \nu | t - \tau | 

| \mu | \kappa \nu 

| \mu | (1 - a\nu )B\nu (T
n(t))dt .

Assume that 0 \leq Q\pm 
\nu \leq B\nu (TM ) , 0 \leq In\nu \leq B\nu (TM ), and 0 \leq Tn \leq TM . Thus

0 \leq Jn
\nu \leq B\nu (TM ) and 0 \leq Kn

\nu \leq 1
3B\nu (TM ), so that

(5.8)

In+1
\nu (\tau , \mu ) \leq 

\Bigl( 
e - 

\kappa \nu \tau 
\mu 1\mu >0 + e - 

\kappa \nu (Z - \tau )
| \mu | 1\mu <0

\Bigr) 
B\nu (TM )

+ 1\mu >0

\int \tau 

0

e - 
\kappa \nu (\tau  - t)

\mu \kappa \nu 

\mu 
3
8a\nu ((3 - \mu 2)B\nu (TM ) + (\mu 2  - 1

3 )B\nu (TM ))dt

+ 1\mu >0

\int \tau 

0

e - 
\kappa \nu (\tau  - t)

\mu \kappa \nu 

\mu (1 - a\nu )B\nu (TM )dt

+ 1\mu <0

\int Z

\tau 

e - 
\kappa \nu (t - \tau )

| \mu | \kappa \nu 

| \mu | 
3
8a\nu ((3 - \mu 2)B\nu (TM ) + (\mu 2  - 1

3 )B\nu (TM ))dt

+ 1\mu <0

\int Z

\tau 

e - 
\kappa \nu (t - \tau )

| \mu | \kappa \nu 

| \mu | (1 - a\nu )B\nu (TM )dt

= B\nu (TM )1\mu >0

\biggl( 
e - 

\kappa \nu \tau 
\mu +

\int \tau 

0

e - 
\kappa \nu (\tau  - t)

\mu \kappa \nu 

\mu ( 38a\nu (3 - 
1
3 ) + (1 - a\nu ))dt

\biggr) 
+B\nu (TM )1\mu <0

\Biggl( 
e - 

\kappa \nu (Z - \tau )
| \mu | +

\int Z

\tau 

e - 
\kappa \nu (t - \tau )

| \mu | \kappa \nu 

| \mu | (
3
8a\nu (3 - 

1
3 )+(1 - a\nu ))dt

\Biggr) 
= B\nu (TM ).

Besides, using again that T \mapsto \rightarrow B\nu (T ) is increasing for each \nu > 0 while \kappa \nu (1 - a\nu ) > 0
for all \nu > 0,

Tn+1 = T [In+1] \leq T [B\nu (TM )] = TM .

Summarizing, we have proved the following result.

Theorem 5.1. Assume that \kappa \nu > 0 while 0 \leq a\nu < 1 for all \nu > 0. Let the
boundary data Q\pm 

\nu satisfy

0 \leq Q\pm 
\nu (\mu ) \leq B\nu (TM ) for all \mu \in ( - 1, 1) and \nu > 0 .

Equation (5.6) defines an increasing sequence of radiative intensities In\nu and temper-
atures Tn converging pointwise to I\nu and T = T [I], respectively, which is a solution
of (5.3).

The argument above is based on the monotonicity of the sequences In\nu and Tn,
and does not give any information on the convergence rate.

Remark 5.2. One can easily check that the uniqueness theorem, Theorem 4.1,
holds verbatim for the problem (5.3) with Rayleigh phase function. See Appendix A
at the end of this paper for the proof.
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6. RT in a fluid with thermal diffusion. For clarity we consider the case of
a lake; we neglect the wind above the lake and we assume that the sunlight hits the
surface of the lake with a given energy. The depth of the lake should vary slowly with
x, y, but for the sake of simplicity, it is assumed to be uniform: \Omega = \BbbO \times (0, Z) for
some open set \BbbO \subset \BbbR 2 with C1 boundary, or piecewise C1 boundary.

With \bfitu \in H1(\Omega ) satisfying \nabla \cdot \bfitu = 0 and \bfitu \cdot \bfitn | \partial \Omega = 0, consider again the system
(2.9). Throughout this section, we assume isotropic scattering, with

(6.1) 0 \leq a\nu \leq aM < 1 , 0 < \kappa m \leq \kappa \nu \leq \kappa M , \nu > 0 .

Here, \rho is assumed to be a constant, and we choose \rho 0 = \rho in (2.14), so that \kappa \nu = \rho \=\kappa \nu ,
and \tau = z.

We further assume that the fluid flow is steady, and consider the system

\mu \partial zI\nu + \kappa \nu I\nu = \kappa \nu (1 - a\nu )B\nu (T ) + \kappa \nu a\nu J\nu , J\nu := 1
2

\int 1

 - 1

I\nu d\mu ,(6.2)

\bfitu \cdot \nabla T  - cP
cV
\kappa T\Delta T = 4\pi 

\rho cV

\int \infty 

0

\kappa \nu (1 - a\nu )(J\nu  - B\nu (T ))d\nu ,(6.3)

I\nu | z=Z,\mu <0 = Q - 
\nu (x, y, - \mu ), I\nu | z=0,\mu >0 = Q+

\nu (x, y, \mu ),
\partial T

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0.(6.4)

The boundary sources Q\pm 
\nu (x, y, \mu ) are bounded, measurable, nonnegative functions

defined a.e. on \BbbO \times ( - 1, 1)\times (0,\infty ).
As a first reduction, we solve (6.2) for the radiative intensity I\nu in terms of

the angle-averaged intensity J\nu and of the temperature T , and average the resulting
expression in \mu : proceeding as in Lemma 2.2, we arrive at the system

(6.5)

\left\{                     

J\nu (x, y, z) = S\nu (x, y, z)

+ 1
2

\int Z

0

\kappa \nu E1(\kappa \nu | z  - \zeta | ) (a\nu J\nu (x, y, \zeta ) + (1 - a\nu )B\nu (T (x, y, \zeta ))) d\zeta ,

\bfitu (\bfitx ) \cdot \nabla T (\bfitx ) - cP
cV
\kappa T\Delta T (\bfitx ) =

4\pi 
\rho cV

\int \infty 

0

\kappa \nu (1 - a\nu )(J\nu (\bfitx ) - B\nu (T (\bfitx )))d\nu ,

\partial T

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0 ,

where

(6.6) S\nu (x, y, z) :=
1
2

\int 1

0

\Bigl( 
e - 

\kappa \nu z
\mu Q+

\nu (x, y, \mu ) + e - 
\kappa \nu (Z - z)

\mu Q - 
\nu (x, y, \mu )

\Bigr) 
d\mu .

Once the angle-averaged radiative intensity is known J\nu , the radiative intensity
I\nu itself is easily obtained by solving the transfer equation (6.2) by the method of
characteristics; see (2.21).

Theorem 6.1. Assume that the absorption coefficient \kappa \nu and the scattering albedo
a\nu satisfy (6.1). Let the boundary source terms Q\pm 

\nu satisfy the following: for some
TM ,

0 \leq Q\pm 
\nu (\mu ) \leq B\nu (TM ) , 0 < \mu < 1 , \nu > 0 .

Consider \{ Jn
\nu , T

n\} n\geq 0 to be initiated by T 0 given and generated by

(6.7)

Jn+1
\nu (x, y, z) = S\nu (x, y, z)

+ 1
2

\int Z

0

\kappa \nu E1(\kappa \nu | z  - \zeta | ) (a\nu Jn
\nu (x, y, \zeta ) + (1 - a\nu )B\nu (T

n(x, y, \zeta ))) d\zeta ,
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(6.8)

\left\{       
\bfitu \cdot \nabla Tn+1 - cP

cV
\kappa T\Delta T

n+1 + 4\pi 
\rho cV

\int \infty 

0

\kappa \nu (1 - a\nu )B\nu (T
n+1
+ )d\nu 

= 4\pi 
\rho cV

\int \infty 

0

\kappa \nu (1 - a\nu )J
n+1
\nu d\nu ,

\partial T

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0 .

Then

S\nu (\bfitx ) = J0
\nu (\bfitx ) \leq J1

\nu (\bfitx ) \leq \cdot \cdot \cdot \leq Jn
\nu (\bfitx ) \leq Jn+1

\nu (\bfitx ) \leq \cdot \cdot \cdot \leq B\nu (TM ) , \nu > 0 ,

0 = T 0 \leq T 1(\bfitx ) \leq \cdot \cdot \cdot \leq Tn(\bfitx ) \leq Tn+1(\bfitx ) \leq \cdot \cdot \cdot \leq TM , \bfitx \in \Omega ,

and convergence to a solution (J, T ) of the system (6.5) holds.

Define

\scrB (T ) :=
\int \infty 

0

\kappa \nu (1 - a\nu )B\nu (T+)d\nu .

Observe that

\kappa m(1 - aM )\=\sigma T 4
+ \leq \scrB (T ) \leq \kappa M \=\sigma T 4

+ ,

where \pi \=\sigma is the Stefan--Boltzmann constant (see (2.3)). Observe also that the function
\scrB : R \rightarrow R is nondecreasing, and increasing on (0,+\infty ) by construction, since B\nu is
increasing on [0,+\infty ) for each \nu > 0.

For the sake of notational simplicity, in order to keep the number of physical
constants to a strict minimum, we assume henceforth that \rho cP\kappa T /4\pi = 1, and replace
\bfitu with \rho cV \bfitu /4\pi .

The key argument in the proof of this theorem is the following lemma.

Lemma 6.2. Let R \in L6/5(\Omega ). There exists at least one weak solution of

 - \Delta T + \bfitu \cdot \nabla T + \scrB (T ) = R ,
\partial T

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0 .

If R \geq 0 a.e. and | \{ x \in \Omega s.t. R(x) > 0\} | > 0, the weak solution of the problem
above is unique and satisfies T \geq 0 a.e. on \Omega .

Moreover, if R\prime \in L6/5(\Omega ) and R\prime \geq R a.e. on \Omega , the weak solution T \prime of the
problem above with the right-hand side R\prime satisfies T \leq T \prime a.e. on \Omega .

Proof. For each 0 < \varepsilon < 1, the problem

\varepsilon T\varepsilon  - \Delta T\varepsilon + \bfitu \cdot \nabla T\varepsilon + \scrB (T\varepsilon ) = R ,
\partial T

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0

has a weak solution in H1(\Omega ).
To see this, apply Theorem 1 of [19] with V = H1(\Omega ) to the nonlinear operator

\scrA \varepsilon : V \mapsto \rightarrow V \prime defined by

\langle \scrA \varepsilon T, \phi \rangle V \prime ,V =

\int 
\Omega 

(\varepsilon T\phi +\nabla T \cdot \nabla \phi + \phi \bfitu \cdot \nabla T + \scrB (T )\phi )d\bfitx .

That \scrA \varepsilon is continuous from V to V \prime easily follows from the Sobolev embedding
H1(\Omega ) \subset L6(\Omega ), which implies by duality the continuous inclusion L6/5(\Omega ) \subset V \prime .
Since \bfitu \in H1(\Omega ) \subset L6(\Omega ), one has

\bfitu \cdot \nabla T \in L3/2(\Omega ) \subset L6/5(\Omega ) \subset V \prime with \| \bfitu \cdot \nabla T\| L3/2(\Omega ) \leq \| \bfitu \| L6(\Omega )\| T\| H1(\Omega )
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and

\scrB (T ) \in L3/2(\Omega ) \subset L6/5(\Omega ) \subset V \prime with \| \scrB (T )\| L3/2(\Omega ) \leq \kappa M \=\sigma \| T+\| 4L6(\Omega ) .

Since \bfitu is a divergence free vector in H1(\Omega ) satisfying \bfitu \cdot n = 0 on \partial \Omega , the bilinear
functional

H1(\Omega )\times H1(\Omega ) \ni (T, \phi ) \mapsto \rightarrow 
\int 
\Omega 

\phi \bfitu \cdot \nabla Td\bfitx \in R

is skew-symmetric, and \scrB (T (x)) = 0 if T (x) \leq 0 by definition, so that

\langle \scrA \varepsilon T, T \rangle V \prime ,V = \varepsilon \| T\| 2L2(\Omega ) + \| \nabla T\| 2L2(\Omega ) +

\int 
\Omega 

\scrB (T )Td\bfitx \geq \varepsilon \| T\| 2H1(\Omega ) .

Hence \scrA \varepsilon is coercive on V . Besides, for all T1, T2 \in H1(\Omega ),

\langle \scrA \varepsilon T1  - \scrA T2, T1  - T2\rangle V \prime ,V = \varepsilon \| T1  - T2\| 2L2(\Omega ) + \| \nabla (T1  - T2)\| 2L2(\Omega )

+

\int 
\Omega 

(T1  - T2)(\scrB (T1) - \scrB (T2))d\bfitx \geq 0 .

Theorem 1 in [19] implies the desired existence result for each \varepsilon \in (0, 1).
Then, since R \geq 0 a.e. on \Omega , one has RT\varepsilon \leq RT\varepsilon + a.e. on \Omega , and therefore,

\varepsilon \| T\varepsilon \| 2L2(\Omega ) + \| \nabla T\varepsilon \| 2L2(\Omega ) + \=\sigma \kappa m(1 - aM )

\int 
\Omega 

T\varepsilon (\bfitx )
5
+d\bfitx \leq \langle \scrA \varepsilon T, T \rangle V \prime ,V

\leq 
\int 
\Omega 

R(\bfitx )T\varepsilon (\bfitx )+d\bfitx \leq \| R\| L6/5(\Omega )\| T\varepsilon +\| L6(\Omega ) \leq CS\| R\| L6/5(\Omega )\| T\varepsilon +\| H1(\Omega ) .

By H\"older's inequality \int 
\Omega 

T\varepsilon (\bfitx )
5
+d\bfitx \geq 1

| \Omega | 3/2 \| T\varepsilon +\| 
5
L2(\Omega ) ,

and since \| \nabla T\varepsilon +\| L2(\Omega ) \leq \| \nabla T\varepsilon \| L2(\Omega ), we see that

\| \nabla T\varepsilon \| 2L2(\Omega ) +
\=\sigma \kappa m(1 - aM )

| \Omega | 3/2 \| T\varepsilon +\| 5L2(\Omega ) \leq CS\| R\| L6/5(\Omega )

\Bigl( 
\| T\varepsilon +\| 2L2(\Omega ) + \| \nabla T\varepsilon \| 2L2(\Omega )

\Bigr) 1
2

so that

sup
0<\varepsilon <1

\bigl( 
\| \nabla T\varepsilon \| L2(\Omega ) + \| T\varepsilon +\| L2(\Omega )

\bigr) 
<\infty .

By the Banach--Alaoglu and Rellich theorems, there exists a subsequence of T\varepsilon (still
denoted T\varepsilon for simplicity) such that

T\varepsilon + \rightarrow T+ in Lp(\Omega ) and \nabla T\varepsilon \rightarrow \nabla T weakly in L2(\Omega )

for all p \in [1, 6) while \varepsilon 1/2T\varepsilon is bounded in L2(\Omega ). Hence, for each \phi \in H1(\Omega ), one
has

0 =

\int 
\Omega 

(\varepsilon T\varepsilon \phi +\nabla T\varepsilon \cdot \nabla \phi + \phi \bfitu \cdot \nabla T\varepsilon + \scrB (T\varepsilon )\phi )d\bfitx 

\rightarrow 
\int 
\Omega 

(\nabla T \cdot \nabla \phi + \phi \bfitu \cdot \nabla T + \scrB (T )\phi )d\bfitx =: \langle \scrA T, \phi \rangle V \prime ,V
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in the limit as \varepsilon \rightarrow 0, so that T is a weak solution of

 - \Delta T + \bfitu \cdot \nabla T + \scrB (T ) = R ,
\partial T

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0 .

Observe that

\langle \scrA T - \scrA T \prime , (T - T \prime )+\rangle V \prime ,V =\| \nabla (T - T \prime )+\| 2L2(\Omega )+

\int 
\Omega 

(\scrB (T ) - \scrB (T \prime ))(T - T \prime )+d\bfitx \geq 0 ,

since\int 
\Omega 

(T - T \prime )+\bfitu \cdot \nabla (T - T \prime )d\bfitx =

\int 
\Omega 

\bfitu \cdot \nabla 1
2 (T - T \prime )2+d\bfitx =

\int 
\partial \Omega 

1
2 (T - T \prime )2+\bfitu \cdot nd\sigma (\bfitx ) = 0 ,

denoting by d\sigma (\bfitx ) the surface element on \partial \Omega . Hence

R \leq R\prime a.e. on \Omega =\Rightarrow \langle (R - R\prime ), (T  - T \prime )+\rangle V \prime ,V = \| \nabla (T  - T \prime )+\| L2(\Omega ) = 0 .

Since \Omega is connected, (T  - T \prime )+ = c a.e. on \Omega for some constant c \geq 0.
A first consequence of this remark is that if R\prime \geq 0 a.e. on \Omega , weak solutions of

 - \Delta T \prime + \bfitu \cdot \nabla T \prime + \scrB (T \prime ) = R\prime ,
\partial T \prime 

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0

satisfy

T \prime \geq 0 a.e. on \Omega , unless R\prime = 0 a.e. on \Omega , in which case T \prime = Const. \leq 0 .

A second consequence is that if R\prime \geq R \geq 0, with | \{ x \in \Omega s.t. R \geq 0\} | > 0, the
solutions T and T \prime of

 - \Delta T + \bfitu \cdot \nabla T + \scrB (T ) = R ,
\partial T

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0

satisfy T \geq 0 and T \prime \geq 0, and (T  - T \prime )+ = c a.e. on \Omega for some constant c \geq 0.
Besides

0 = \langle R - R\prime , (T  - T \prime )+\rangle V \prime ,V = \langle \scrA T  - \scrA T \prime , (T  - T \prime )+\rangle V \prime ,V = \| \nabla (T  - T \prime )+\| 2L2(\Omega )

+

\int 
\Omega 

(\scrB (T ) - \scrB (T \prime ))(T  - T \prime )+d\bfitx = c

\int 
\Omega 

(\scrB (T \prime + c) - \scrB (T \prime ))d\bfitx .

Since T \prime \geq 0 a.e. on \Omega , and since \scrB is increasing, this implies that c = 0. Therefore

R\prime \geq R \geq 0 with | \{ x \in \Omega s.t. R \geq 0\} | > 0 =\Rightarrow (T  - T \prime )+ = 0 .

Hence T \leq T \prime a.e. on \Omega .

Proof of Theorem 6.1. For the sake of clarity, we systematically omit the tangen-
tial variables x, y in the integral equations for the averaged radiative intensity Jn

\nu (as
well as for the radiative intensity I\nu itself), since these variables are only parameters
in all these formulas. We start from

T 0 \equiv 0 , J0
\nu (z) = S\nu (z) > 0 .

Construct iteratively (Tn, Jn
\nu )n\geq 0 by the following recursion formula: first, compute

Jn+1
\nu (z) = S\nu (z) +

1
2

\int Z

0

\kappa \nu E(\kappa \nu | z  - t| )(a\nu Jn
\nu (t) + (1 - a\nu )B\nu (T

n(t)))dt .
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Then let Tn+1 be the solution of

(6.9)  - \Delta Tn+1+\bfitu \cdot \nabla Tn+1+\scrB (Tn+1) =

\int \infty 

0

\kappa \nu (1 - a\nu )Jn+1
\nu d\nu ,

\partial Tn+1

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0 .

Obviously, J1
\nu \geq J0

\nu > 0, and applying Lemma 6.2 implies that T 1 \geq T 0 a.e. on \Omega .
Moreover,

Tn \geq Tn - 1 and Jn
\nu \geq Jn - 1

\nu > 0 =\Rightarrow Jn+1
\nu \geq Jn

\nu > 0 ,

and applying Lemma 6.2 shows that Tn+1 \geq Tn a.e. on \Omega .

Assume that Q\pm 
\nu (\mu ) \leq B\nu (TM ). It will be more convenient to deal with radiative

intensities I\nu instead of their angle-averaged variants J\nu . Therefore, we define In\nu to
be the solution of

(\mu \partial z + \kappa \nu )I
n+1
\nu = \kappa \nu (1 - a\nu )B\nu (T

n) + \kappa \nu a\nu J
n
\nu , Jn

\nu = \~In\nu ,

In+1
\nu (Z, - \mu ) = Q - 

\nu ( - \mu ) , In+1
\nu (0,+\mu ) = Q+

\nu (+\mu ), 0 < \mu < 1 .

Let us prove by induction that

In\nu \leq B\nu (TM ) a.e. on \Omega \times ( - 1, 1)\times (0,+\infty ) ,

Jn
\nu \leq B\nu (TM ) a.e. on \Omega \times (0,+\infty ) , Tn \leq TM a.e. on \Omega .

This is true for n = 0 since T 0 \equiv 0, while

I0\nu (z, \mu ) = 10<\mu <1e
 - \kappa \nu z/\mu Q+

\nu (\mu ) + 10< - \mu <1e
 - \kappa \nu (Z - z)/| \mu | Q - 

\nu ( - \mu )
\leq (10<\mu <1 + 10< - \mu <1)B\nu (TM ) , so that 0 \leq J0

\nu \leq B\nu (TM ) .

If this is true for some n \geq 0, then

(\mu \partial z + \kappa \nu )I
n+1
\nu = \kappa \nu \Sigma 

n
\nu , 0 \leq \Sigma n

\nu \leq B\nu (TM ) ,

In+1
\nu (Z, - \mu )

\bigm| \bigm| \bigm| 
0<\mu <1

= Q - 
\nu ( - \mu ) , In+1

\nu (0,+\mu )
\bigm| \bigm| \bigm| 
0<\mu <1

= Q+
\nu (+\mu ) .

Thus, proceeding as (5.8) shows that In+1
\nu \leq B\nu (TM ). Hence Jn+1

\nu \leq B\nu (TM ), and
one solves (6.9) for Tn+1. Since Jn

\nu \geq S\nu > 0 and\int \infty 

0

\kappa \nu (1 - a\nu )J
n+1
\nu d\nu \leq 

\int \infty 

0

\kappa \nu (1 - a\nu )B\nu (TM )d\nu = \scrB (TM ) ,

we conclude from Lemma 6.2 that Tn+1 is a.e. less than or equal to the solution of
the problem

 - \Delta T + \bfitu \cdot \nabla T + \scrB (T ) = \scrB (TM ) ,
\partial T

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0 ,

which is obviously the constant TM . Hence Tn+1 \leq TM a.e. on \Omega , so that we have
proved by induction the desired chain of inequalities.

From these inequalities, we conclude that the sequences Jn
\nu and Tn converge a.e.

pointwise on \Omega \times (0,\infty ) and on \Omega , respectively, to limits denoted J\nu and T , and
that this convergence also holds in Lp(\Omega \times (0,\infty )) and Lp(\Omega ) for all p \in [1,\infty ) by
dominated convergence.

Passing to the limit in (6.7) immediately shows that J\nu , T satisfy the first equation
in (6.5). As for the second equation, one can pass to the limit in the right-hand side
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and in the nonlinear term on the left-hand side of (6.8). Since Tn+1 is a weak solution
of (6.8), one has Tn+1 \in H1(\Omega ) and

(6.10)

\int 
\Omega 

\nabla Tn+1(\bfitx ) \cdot \nabla \phi (\bfitx )d\bfitx  - 
\int 
\Omega 

Tn+1(\bfitx )\bfitu (\bfitx ) \cdot \nabla \phi (\bfitx )d\bfitx =

\int 
\Omega 

hn+1(\bfitx )\phi (\bfitx )d\bfitx 

for all \phi \in H1(\Omega ), with

hn+1 :=

\int \infty 

0

\kappa \nu (1 - a\nu )(J
n+1
\nu  - B\nu (T

n+1))d\nu 

so that hn+1 is bounded in Lp(\Omega ) for all p \in [1,\infty ). Taking \phi = Tn+1, and observing
that \int 

\Omega 

Tn+1(\bfitx )\bfitu (\bfitx ) \cdot \nabla Tn+1(\bfitx )d\bfitx =

\int 
\partial \Omega 

1
2T

n+1(\bfitx )2\bfitu (\bfitx ) \cdot \bfitn \bfitx d\sigma (\bfitx ) = 0

since \bfitu \cdot \bfitn | \partial \Omega = 0 shows that Tn+1 is bounded, and therefore weakly relatively
compact in H1(\Omega ). Since we already know that Tn+1 \rightarrow T in Lp(\Omega ) for all p \in [1,\infty )
as n\rightarrow \infty , we conclude that Tn+1 \rightarrow T weakly in H1(\Omega ). At this point, we can pass
to the limit in the weak formulation of (6.10), and this shows that T satisfies the
second equation in (6.5).

Next, we discuss the convergence rate of (6.7). We shall use the monotonic
structure of the RT equations. Consider the upper approximating sequence

\mu \partial zH
n
\nu = \kappa \nu (a\nu K

n - 1
\nu + (1 - a\nu )B\nu (\Theta 

n - 1) - Hn
\nu ) , K\nu = 1

2

\int 1

 - 1

H\nu d\mu ,

\bfitu \cdot \nabla \Theta n  - \Delta \Theta n =

\int \infty 

0

\kappa \nu (1 - a\nu )(K
n
\nu  - B\nu (\Theta 

n))d\nu ,

Hn
\nu (0, \mu ) = Q+

\nu (\mu ) , Hn
\nu (Z, - \mu ) = Q - 

\nu (\mu ) , 0 < \mu < 1 ,
\partial \Theta n

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0

for all n \geq 1, initialized with \Theta 0 = TM and H0
\nu = K0

\nu = B\nu (\Theta 
0).

Theorem 6.3. Assume that the absorption coefficient \kappa \nu and the scattering albedo
a\nu satisfy (6.1). Assume, moreover, that the constant C1 defined in (2.18) satisfies

(6.11) 0 \leq \gamma :=

\biggl( 
sup
\nu >0

(1 - a\nu )C1(\kappa \nu ) + sup
\nu >0

a\nu C1(\kappa \nu )

\biggr) 
< 1 .

Let the boundary source terms Q\pm 
\nu satisfy the bound

0 \leq Q\pm 
\nu (\mu ) \leq B\nu (TM ) , 0 < \mu < 1 , \nu > 0 .

Then one has

(6.12)

0 \leq T 0 \leq \cdot \cdot \cdot \leq Tn - 1 \leq \Theta n \leq \cdot \cdot \cdot \Theta 1 \leq TM ,

0 \leq J0
\nu \cdot \cdot \cdot \leq Jn - 1

\nu \leq Kn
\nu \leq \cdot \cdot \cdot \leq K1

\nu \leq B\nu (TM ) ;

\| \scrB (Tn+1) - \scrB (Tn)\| L1(\Omega ) \leq \| \scrB (\Theta n+1) - \scrB (Tn)\| L1(\Omega ) \leq \gamma n| \Omega | \scrB (TM ) ,

\| Jn+1
\nu  - Jn

\nu \| L1(\Omega \times (0,+\infty )) \leq \| Kn+1
\nu  - Jn

\nu \| L1(\Omega \times (0,+\infty )) \leq 
\gamma n| \Omega | \scrB (TM )

\kappa m(1 - aM )
;

\| \scrB (T ) - \scrB (Tn)\| L1(\Omega ) \leq 
\gamma n

1 - \gamma 
| \Omega | \scrB (TM ) ,

\| J\nu  - Jn
\nu \| L1(\Omega \times (0,+\infty )) \leq 

\gamma n| \Omega | \scrB (TM )

\kappa m(1 - aM )(1 - \gamma )
.
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Proof. First, one has

\mu \partial zH
1
\nu + \kappa \nu H

1
\nu = \kappa \nu B\nu (TM ) \geq 0 , 0 < z < Z ,

0 \leq H1
\nu (0,+\mu ) = Q+

\nu (\mu ) \leq B\nu (TM ) , 0 < \mu < 1 ,

0 \leq H1
\nu (Z, - \mu )= Q - 

\nu (\mu ) \leq B\nu (TM ) , 0 < \mu < 1 ,

=\Rightarrow H1
\nu (z, \mu ) = 10<\mu <1

\Bigl( 
e - \kappa \nu z/\mu Q+

\nu (\mu ) + (1 - e - \kappa \nu z/\mu )B\nu (TM )
\Bigr) 

+ 10< - \mu <1

\Bigl( 
e - \kappa \nu (Z - z)/| \mu | Q - 

\nu ( - \mu ) + (1 - e - \kappa \nu (Z - z)/\mu )B\nu (TM )
\Bigr) 

0 \leq I0\nu \leq H1
\nu \leq B\nu (TM ) , 0 \leq J0

\nu \leq K1
\nu \leq B\nu (TM ) .

Hence

\scrB (\Theta 1) + \bfitu \cdot \nabla \Theta 1  - \Delta \Theta 1 =

\int \infty 

0

\kappa \nu (1 - a\nu )K
1
\nu d\nu \leq \scrB (TM ) ,

so that 0 \leq T 0 \leq \Theta 1 \leq TM by Lemma 6.2. The same induction argument as in the
proof of Theorem 6.1 shows that

0 \leq \cdot \cdot \cdot \leq \Theta n \leq \Theta n - 1 \leq TM ,

0 \leq \cdot \cdot \cdot \leq Hn
\nu \leq Hn - 1

\nu \leq B\nu (TM ) , 0 \leq \cdot \cdot \cdot \leq Kn
\nu \leq Kn - 1

\nu \leq B\nu (TM ) .

Moreover, assume that we have proved that

0 \leq T 0 \leq \cdot \cdot \cdot \leq Tn - 1 \leq \Theta n \leq \cdot \cdot \cdot \Theta 1 \leq TM ,

0 \leq I0\nu \leq \cdot \cdot \cdot \leq In - 1
\nu \leq Hn

\nu \leq \cdot \cdot \cdot H1
\nu \leq B\nu (TM ) ,

0 \leq J0
\nu \cdot \cdot \cdot \leq Jn - 1

\nu \leq Kn
\nu \leq \cdot \cdot \cdot \leq K0

\nu \leq B\nu (TM ) .

Then

\mu \partial z(H
n+1
\nu  - In\nu )+\kappa \nu (H

n+1
\nu  - In\nu ) =\kappa \nu a\nu (K

n
\nu  - Jn - 1

\nu )

+ \kappa \nu (1 - a\nu )(B\nu (\Theta 
n) - B\nu (T

n - 1)) \geq 0 ,

(Hn+1
\nu  - In\nu )(0,+\mu ) = (Hn+1

\nu  - In\nu )(Z, - \mu ) = 0 , 0 < \mu < 1 ,

so that In\nu \leq Hn+1
\nu and Jn

\nu \leq Kn+1
\nu . Then \partial \Theta n+1

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= \partial Tn

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0 and

\scrB (\Theta n+1) + \bfitu \cdot \nabla \Theta n+1  - \Delta \Theta n+1 =

\int \infty 

0

\kappa \nu (1 - a\nu )K
n+1
\nu d\nu ,

\scrB (Tn) + \bfitu \cdot \nabla Tn  - \Delta Tn =

\int \infty 

0

\kappa \nu (1 - a\nu )J
n
\nu d\nu ,

and Lemma 6.2 implies that Tn \leq \Theta n+1 . Hence we have proved by induction that

0 \leq T 0 \leq \cdot \cdot \cdot \leq Tn - 1 \leq \Theta n \leq \cdot \cdot \cdot \Theta 1 \leq TM ,

0 \leq I0\nu \leq \cdot \cdot \cdot \leq In - 1
\nu \leq Hn

\nu \leq \cdot \cdot \cdot H1
\nu \leq B\nu (TM ) ,

0 \leq J0
\nu \cdot \cdot \cdot \leq Jn - 1

\nu \leq Kn
\nu \leq \cdot \cdot \cdot \leq K1

\nu \leq B\nu (TM ) for all n \geq 1,

which implies the two first chains of inequalities in (6.12).
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Then

\scrB (\Theta n+1) - \scrB (Tn) + \bfitu \cdot \nabla (\Theta n+1  - Tn) - \Delta (\Theta n+1  - Tn)

=

\int \infty 

0

\kappa \nu (1 - a\nu )(K
n+1
\nu  - Jn

\nu )d\nu ,
\partial (\Theta n+1  - Tn)

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0 ,

=\Rightarrow 
\int 
\Omega 

(\scrB (\Theta n+1) - \scrB (Tn))d\bfitx =

\int 
\Omega 

\int \infty 

0

\kappa \nu (1 - a\nu )(K
n+1
\nu  - Jn

\nu )d\nu d\bfitx ,

because

\int 
\partial \Omega 

\biggl( 
(\Theta n+1  - Tn)\bfitu \cdot \bfitn \bfitx  - \partial (\Theta n+1  - Tn)

\partial n

\biggr) 
d\sigma (\bfitx ) = 0 .

Then Kn+1
\nu (\bfitx ) - Jn

\nu (\bfitx )

= 1
2

\int Z

0

\kappa \nu E1(\kappa \nu | z  - \zeta | )(1 - a\nu )(B\nu (\Theta 
n) - B\nu (T

n - 1))(x, y, \zeta )d\zeta 

+ 1
2

\int Z

0

\kappa \nu E1(\kappa \nu | z  - \zeta | )a\nu (Kn
\nu  - Jn - 1

\nu )(x, y, \zeta )d\zeta .

=\Rightarrow \epsilon n :=

\int 
\Omega 

\int \infty 

0

\kappa \nu (1 - a\nu )(K
n+1
\nu  - Jn

\nu )d\nu d\bfitx = 1
2

\int 
\BbbO 
dxdy

\int \infty 

0

d\nu 

\int Z

0

dz

\int Z

0

\kappa 2\nu E1(\kappa \nu | z  - \zeta | ) \cdot (1 - a\nu )
2(B\nu (\Theta 

n) - B\nu (T
n - 1))(x, y, \zeta )d\zeta 

+ 1
2

\int 
\BbbO 
dxdy

\int \infty 

0

d\nu 

\int Z

0

dz

\int Z

0

\kappa 2\nu E1(\kappa \nu | z  - \zeta | ) \cdot (1 - a\nu )a\nu (K
n
\nu  - Jn - 1

\nu )(x, y, \zeta )d\zeta .

At this point, we integrate first in z and use (2.18) to obtain

\epsilon n =

\int 
\Omega 

\int \infty 

0

\kappa \nu (1 - a\nu )(K
n+1
\nu  - Jn

\nu )d\nu d\bfitx 

\leq 
\int 
\BbbO 
dxdy

\int \infty 

0

d\nu 

\int Z

0

C1(\kappa \nu )\kappa \nu (1 - a\nu )
2(B\nu (\Theta 

n) - B\nu (T
n - 1))(x, y, \zeta )d\zeta 

+

\int 
\BbbO 
dxdy

\int \infty 

0

d\nu 

\int Z

0

C1(\kappa \nu )\kappa \nu (1 - a\nu )a\nu (K
n
\nu  - Jn - 1

\nu )(x, y, \zeta )d\zeta 

\leq sup
\nu >0

(1 - a\nu )C1(\kappa \nu )

\int 
\Omega 

\int \infty 

0

\kappa \nu (1 - a\nu )(B\nu (\Theta 
n) - B\nu (T

n - 1))(\bfitx )d\nu d\bfitx 

+sup
\nu >0

a\nu C1(\kappa \nu )

\int 
\Omega 

\int \infty 

0

\kappa \nu (1 - a\nu )(K
n
\nu  - Jn - 1

\nu )(\bfitx )d\nu d\bfitx 

\leq sup
\nu >0

(1 - a\nu )C1(\kappa \nu )

\int 
\Omega 

(\scrB (\Theta n) - \scrB (Tn - 1))(\bfitx )d\bfitx 

+sup
\nu >0

a\nu C1(\kappa \nu )

\int 
\Omega 

\int \infty 

0

\kappa \nu (1 - a\nu )(K
n
\nu  - Jn - 1

\nu )(\bfitx )d\nu d\bfitx 

= \epsilon n - 1

\biggl( 
sup
\nu >0

(1 - a\nu )C1(\kappa \nu ) + sup
\nu >0

a\nu C1(\kappa \nu )

\biggr) 
.

Hence \epsilon n \leq \epsilon 0\gamma 
n with \gamma := (sup\nu >0(1 - a\nu )C1(\kappa \nu ) + sup\nu >0 a\nu C1(\kappa \nu )) \in [0, 1) , while

\epsilon 0 \leq | \Omega | \scrB (TM ) < \infty . Hence the sequence (Kn
\nu ,\Theta 

n)n\geq 1 of upper approximations and
the sequence (Jn

\nu , T
n) of lower approximations provided by (6.7) are adjacent. In
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particular,

\| \scrB (Tn+1) - \scrB (Tn)\| L1(\Omega ) =

\int 
\Omega 

(\scrB (Tn+1) - \scrB (Tn))d\bfitx 

\leq 
\int 
\Omega 

(\scrB (\Theta n+1) - \scrB (Tn))d\bfitx \leq \epsilon 0\gamma 
n

for all n \geq 1, so that \| \scrB (T ) - \scrB (Tn)\| L1(\Omega ) \leq \epsilon 0\gamma 
n

1 - \gamma . Similarly,\int 
\Omega 

\int \infty 

0

\kappa \nu (1 - a\nu )(J
n+1
\nu  - Jn

\nu )d\nu d\bfitx 

\leq 
\int 
\Omega 

\int \infty 

0

\kappa \nu (1 - a\nu )(K
n+1
\nu  - Jn

\nu )d\nu d\bfitx \leq \epsilon 0\gamma 
n ,

\kappa m(1 - aM )\| J\nu  - Jn
\nu \| L1(\Omega \times (0,\infty )) \leq 

\sum 
m\geq n

\int 
\Omega 

\int \infty 

0

\kappa \nu (1 - a\nu )(J
m+1
\nu  - Jm

\nu )d\nu d\bfitx 

\leq 
\sum 
m\geq n

\int 
\Omega 

\int \infty 

0

\kappa \nu (1 - a\nu )(K
m+1
\nu  - Jm

\nu )d\nu d\bfitx \leq \epsilon 0\gamma 
n

1 - \gamma 
.

This concludes the proof of the convergence statements in (6.12).

Remark 6.4. The condition sup\nu >0(1 - a\nu )C1(\kappa \nu ) < 1 implies that the absorption-
emission nonlinearity is a contraction, while sup\nu >0 a\nu C1(\kappa \nu ) < 1 implies that the
scattering term is also a contraction. The condition \gamma < 1 implies that these two
terms are contractions separately, leading to the exponential rate in Theorem 6.3 (3).
As a\nu \in [0, 1] and \kappa \nu \mapsto \rightarrow C1(\kappa \nu ) is monotone increasing from 0 to 1, for a given a\nu 
there is always a \kappa \ast such that (6.11) holds for all \kappa \nu < \kappa \ast . Conversely, if it is known
that \kappa \nu < \kappa \ast , for some \kappa \ast , for all \nu , there is a maximum a\ast for which (6.11) for all
a\nu < a\ast . By Lemma 2.1, C1 < 1. Hence \gamma < 1 if a\nu is independent of \nu , whatever
the upper bound \kappa M in (6.1) is. The more a\nu varies between 0 and 1, the lower \kappa M
must be to satisfy \gamma < 1.

With the monotonic structure of the RT equations, our argument will also provide
the uniqueness of the solution of the system (6.2)--(6.4).

Theorem 6.5. Under the same assumptions as in Theorem 6.3, there exists at
most one solution (I\nu , T ) of the problem (6.2)--(6.4) such that T \in L\infty (\Omega ),

I\nu \geq 0 a.e. on \Omega \times ( - 1, 1)\times (0,\infty ) and T \geq 0 a.e. on \Omega .

Proof. Let (I\nu , T ) be a solution of (6.2)--(6.4), and assume that the upper ap-
proximating sequence (Hn

\nu ,\Theta 
n)n\geq 1 satisfies I\nu \leq Hn

\nu and J\nu \leq Kn
\nu , with T \leq \Theta n.

Then, one has

\mu \partial z(H
n+1
\nu  - I\nu ) + \kappa \nu (H

n+1
\nu  - I\nu ) =\kappa \nu a\nu (K

n
\nu  - J\nu )

+ \kappa \nu (1 - a\nu )(B\nu (\Theta 
n) - B\nu (T )) \geq 0 ,

(Hn+1
\nu  - I\nu )(0,+\mu ) = (Hn+1

\nu  - I\nu )(Z, - \mu ) = 0 , 0 < \mu < 1 .

Solving this equation for (Hn+1
\nu  - I\nu ) by the method of characteristics shows that

I\nu \leq Hn+1
\nu , and therefore, J\nu \leq Kn+1

\nu . Next, one has

\scrB (\Theta n+1) - \scrB (T ) + \bfitu \cdot \nabla (\Theta n+1  - T ) - \Delta (\Theta n+1  - T )

=

\int \infty 

0

\kappa \nu (1 - a\nu )(K
n+1
\nu  - J\nu )d\nu \geq 0 ,

\partial (\Theta n+1  - T )

\partial n

\bigm| \bigm| \bigm| 
\partial \Omega 

= 0,
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so that T \leq \Theta n+1 according to Lemma 6.2.
It remains to check the initial step of this induction argument. Since T \in L\infty (\Omega ),

we pick \Theta 0 = max(TM , \| T\| L\infty (\Omega )) and H0
\nu = K0

\nu = B\nu (\Theta 
0). Hence T \leq \Theta 0 by

construction. Next, we prove that I\nu \leq B\nu (\Theta 
0). Multiplying both sides of (6.2) by

s+(I\nu  - B\nu (\Theta 
0)), we repeat the argument of the proof of Theorem 4.1:

\partial z\langle \mu (I\nu  - B\nu (\Theta 
0))+\rangle 

=  - \langle \kappa \nu (1 - a\nu )(I\nu  - B\nu (\Theta 
0)) - (B\nu (T ) - B\nu (\Theta 

0))s+(I\nu  - B\nu (\Theta 
0))\rangle 

 - \langle \kappa \nu a\nu (I\nu  - B\nu (\Theta 
0)) - (J\nu  - B\nu (\Theta 

0))s+(I\nu  - B\nu (\Theta 
0))\rangle =  - D1  - D2 .

We have seen in the proof of Theorem 4.1 that

D2 = \langle \kappa \nu a\nu (I\nu  - B\nu (\Theta 
0)) - (J\nu  - B\nu (\Theta 

0))s+(I\nu  - B\nu (\Theta 
0))\rangle 

= \langle \kappa \nu a\nu (I\nu  - B\nu (\Theta 
0)) - (J\nu  - B\nu (\Theta 

0))(s+(I\nu  - B\nu (\Theta 
0))) - s+(J\nu  - B\nu (\Theta 

0))\rangle \geq 0 .

As for D1, observe that

D1 =\langle \kappa \nu (1 - a\nu )((I\nu  - B\nu (\Theta 
0)) - (B\nu (T ) - B\nu (\Theta 

0)))(s+(I\nu  - B\nu (\Theta 
0)) - s+(T - \Theta 0))\rangle ,

which is positive by our assumption on T which implies that s+(T  - \Theta 0) = 0. Inte-
grating on \Omega , we conclude that\int 

\BbbO 
\langle \mu +(I\nu  - B\nu (\Theta 

0))+\rangle (x, y, Z)dxdy =

\int 
\BbbO 
\langle \mu  - (I\nu  - B\nu (\Theta 

0))+\rangle (x, y, 0)dxdy = 0

and that D1 = D2 = 0 a.e. on \Omega . Now, since \kappa \nu (1  - a\nu ) \geq \kappa m(1  - aM ) > 0, the
condition D1 = 0 implies that

((I\nu  - B\nu (\Theta 
0)) - (B\nu (T ) - B\nu (\Theta 

0)))(s+(I\nu  - B\nu (\Theta 
0)) - s+(T - \Theta 0)) = 0,

which implies in turn that s+(I\nu  - B\nu (\Theta 
0))=s+(T - \Theta 0) = 0.

Hence I\nu \leq B\nu (\Theta 
0), which completes the proof of the initialization of our induction ar-

gument. Summarizing, we have proved that if one chooses \Theta 0 = max(TM , \| T\| L\infty (\Omega )),
the solution (I\nu , T ) of (6.2)--(6.4) considered satisfies

I\nu \leq Hn
\nu \leq Hn - 1

\nu \leq \cdot \cdot \cdot \leq H0
\nu = B\nu (\Theta 

0) , while T \leq \Theta n \leq \Theta n - 1 \leq \cdot \cdot \cdot \leq \Theta 0 ,

where (Hn
\nu ,\Theta 

n) is the upper approximating sequence. A similar argument (with a
slightly simpler initialization) shows that

I\nu \geq In\nu \geq In - 1
\nu \geq \cdot \cdot \cdot \geq I0\nu = 0 , while T \geq Tn \geq Tn - 1 \geq \cdot \cdot \cdot \geq T 0 = 0 .

With this, we easily prove the uniqueness of the solution of (6.2)--(6.4). If (I\nu , T )
and (I \prime \nu , T

\prime ) are two solutions satisfying the assumptions of Theorem 6.5, we initialize
the upper approximating sequence with \Theta 0 = max(TM , \| T\| L\infty (\Omega ), \| T \prime \| L\infty (\Omega )). The
argument above shows that In\nu \leq I\nu , I

\prime 
\nu \leq Hn+1

\nu while Tn \leq T, T \prime \leq \Theta n+1. Hence

\| J\nu  - J \prime 
\nu \| L1(\Omega \times (0,\infty )) \leq \| Kn+1

\nu  - Jn
\nu \| L1(\Omega \times (0,\infty )) \leq 

| \Omega | \gamma n

\kappa m(1 - aM )
\scrB (\Theta 0) ,

\| \scrB (T ) - \scrB (T \prime )\| L1(\Omega ) \leq \| \Theta n+1  - Tn\| L1(\Omega ) \leq \gamma n| \Omega | \scrB (\Theta 0) .

When n\rightarrow \infty it shows that T = T \prime a.e. on \Omega and J\nu = J \prime 
\nu a.e. on \Omega \times (0,\infty ). Once

it is known that J\nu = J \prime 
\nu a.e. on \Omega \times (0,\infty ), solving (6.2) for I\nu and I \prime \nu by the method

of characteristics shows that I\nu = I \prime \nu a.e. on \Omega \times ( - 1, 1)\times (0,\infty ).
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Several remarks regarding Theorems 6.1, 6.3, and 6.5 are in order.
Remarks.
(1) One can treat slightly more general situations with the same techniques. For

instance, one could assume that the scattering rate a\nu depends on z, and is a slowly
varying function of x, y. This may be useful to include a layer of clouds in our problem.
Similarly, one can treat the case where \rho is not a constant, but for instance a function
of z, by introducing an optical length defined as in (2.14). Typically, one could assume
that 0 < \rho m \leq \rho (z) \leq \rho M < \infty , and recast the RT equation in terms of the variable
\tau instead of z. Of course, this will modify the drift-diffusion operator in the left-hand
side of (6.3), but in a way that should be tractable by the same methods.

(2) One could enrich the class of boundary conditions considered here by taking
into account the albedo coefficients of the boundary at z = 0 and z = Z. This should
lead to more serious modifications of the strategy discussed above, but we expect that
some of our results can be modified to handle these more general boundary conditions.

(3) Until now, we have treated the case of an incompressible fluid with constant
density. This is the reason for the factor cP /cV multiplying the heat diffusivity. One
can treat in the same manner the case of low Mach number flows of a compressible
fluid which could be useful for the stratosphere. (In the case of water at 20\circ C, one
finds that cP /cV = 1.007, so that this ratio is very close to 1 for all practical purposes.)

(4) Including Boussinesq's approximation in our model in order to take into ac-
count the buoyancy created by the temperature dependence of the density is a more
difficult problem in the first place because the motion equation of the fluid becomes
coupled to the simple system considered here. We will address this problem in future
work.

7. Numerical simulations. This section is meant to show that iterations (3.2),
(5.6), and (6.7), proposed in the previous sections, are monotone, implementable, ro-
bust, and computationally fairly fast. Here, robustness means that there are no singu-
lar integrals and convergence is not subject to the adjustment of sensitive parameters;
in other words, the mathematical properties derived above are observed numerically.

Two computer programs have been written: one in C++ with (3.2) or (5.6) for the
case \kappa T = 0 and the other in the FreeFEM language [17] with (6.7) for the general
case, either in Cartesian coordinates (2D) or in spherical ones (3D).

The programming is straightforward except at three places:
1. Writing a function to compute the exponential integrals is simple due to two

formulas

(7.1)

E1 (x) =  - \gamma  - lnx+

\infty \sum 
k=1

( - 1)k+1xk

k k!
, \gamma = 0.577215664901533,

En+1(x) =
e - x

n
 - x

n
En(x),

but the tail of the series falls below machine precision if x > 18. For practical
purposes, keeping 9+ (int(x) - 1) \cdot 5 terms in the series is more than enough.

2. When thermal diffusion is neglected, one must solve for T , with J\nu given,\int \infty 

0

\kappa \nu (1 - a\nu )B\nu (T )d\nu =

\int \infty 

0

\kappa \nu (1 - a\nu )J\nu d\nu .

Newton iterations are used combined with dichotomy. The integrals are ap-
proximated with the trapezoidal rule on a mesh which is uniform in wave-
length with up to 900 points, though 300 are usually more than enough.
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3. When thermal diffusion is not neglected, the temperature equation has a
similar nonlinearity which requires iterations. We use the time dependent
problem, discretized by a method of characteristics, as follows, which is un-
conditionally stable:
(7.2)
1

\delta t
(Tm+1(x) - Tm(x - \delta tu(x))) - \kappa T\Delta T

m+1 +

\int \infty 

0

\kappa \nu (1 - a\nu )B\nu (T
m+1)d\nu 

=

\int \infty 

0

\kappa \nu (1 - a\nu )J\nu d\nu ,

with Dirichlet or Neumann conditions on the boundaries. Then a standard
P 1 finite element approximation of the temperature equation is applied for
the discretization in a finite-dimensional space Vh on a triangular (2D) or
tetrahedral (3D) mesh. Then the numerical approximation of Tm+1 is also
the solution of the minimization problem below, Tm and J\nu given, which can
be solved by a Broyden--Fletcher--Goldfarb--Shanno (BFGS) method:

(7.3)

min
T\in Vh

\int 
\Omega 

\biggl[ 
T 2

2\delta t
+

\kappa T
2
| \nabla T | 2 +

\int \infty 

0

\Biggl( 
\kappa \nu (1 - a\nu )

\int T

0

B\nu (T
\prime )dT \prime 

\Biggr) 
d\nu 

\Biggr] 
dx

 - 
\int 
\Omega 

T

\biggl( 
1

\delta T
Tm(x - \delta tu(x)) +

\int \infty 

0

\kappa \nu (1 - a\nu )J\nu d\nu 

\biggr) 
dx.

Speed-up can be achieved by using for initial value in BFGS, the temperature
computed by the Newton algorithm mentioned above with \kappa T = 0.

The first set of tests is for the RT system decoupled from the temperature equation.
The second set of test involves the complete system in 2D and the third is also with
RT coupled with the temperature equation but in 3D.

7.1. RT in the troposphere without thermal diffusion. The troposphere
is roughly 12km thick. When air density is \rho (z) = \rho 0e

 - z, with \rho 0 = 1.225 \cdot 10 - 3, a
change of vertical coordinate is made, \tau = 1  - e - z to remove the exponential from
the equations; thus \tau \in (0, Z) with Z = 1 - e - 12.

We wish to study the influence of \kappa \nu on T . As said earlier, \=\kappa \nu is the mass-
extinction coefficient, and \kappa \nu = \rho 0\=\kappa \nu is the absorption coefficient, defined as a di-
mensionless parameter between 0 and 1 which measures the output to input ratio of
\nu -light crossing a horizontal unit length (here 1 km) of air layer. Note, however, that
we are not restricted to \kappa \nu \in (0, 1) because of the following observation.

Remark 7.1. When Z is large, T (\tau ) computed by (3.2) with \kappa \nu is equal to T ( \tau L )
computed by (3.2) with \kappa \nu L.

Incidently, this implies that if \tau \mapsto \rightarrow T (\tau ) is decreasing, increasing \kappa uniformly in
\nu will cause a uniform decrease of temperature.

The problem is as follows: find I\nu (\tau , \mu ) and T (\tau ) verifying (2.10), (2.12), and the
boundary conditions used in [9]:

(7.4) I(0, \mu )| \mu >0 = Q\nu \mu , I(Z, \mu )| \mu <0 = 0.

The first one implies that the Earth receives sunlight on its surface and that the
computation does not include the effect of the atmosphere on the sun rays during
their downward travel (\mu < 0). It is generally assumed that visible light is unaffected
by air.
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Due to Planck's law for black bodies, Earth radiates (\mu > 0) infrared radiations
upward; the second boundary condition says that these escape at \tau = Z without
back-scattering.

The frequency spectrum of interest is \nu \in (0, 20 \cdot 1014). It is convenient to rescale
some variables:

\nu \prime = 10 - 14\nu , T \prime = 10 - 14 k

h
T = 10 - 14 1.381 \cdot 10 - 23

6.626 \cdot 10 - 34
T =

T

4798
,

so as to write

B\nu (T ) = B0
\nu \prime 3

e
\nu \prime 
T \prime  - 1

, with B0 =
2h

c2
1042 =

2\times 6.626 \cdot 10 - 34

2.9982 \cdot 1016
1042 = 1.4744 \cdot 10 - 8.

We may work with B\nu /B0 and I\nu /B0 so that, forgetting the primes, we have (2.10)
with (2.12) and (7.4) with

(7.5) B\nu (T ) =
\nu 3

e
\nu 
T  - 1

, Q\nu = Q0B\nu (1.209), Q0 = 2 \cdot 10 - 5,

because with TSun being 5800\circ K, it is now 5800/4798 = 1.209; Q0 is found from the
sunlight energy sent to Earth, Qsun = 1370Watt/m2:

(7.6) Qsun =

\int \infty 

0

Q0B0B\nu (1.209)10
14d\nu = Q01.4744 \cdot 106

(1.209\pi )4

15
= 1.023 \cdot 107Q0.

This leads to Q0 = 13.4 \cdot 10 - 5, but the Sun sees Earth as a disk of surface \pi R2

while the Earth surface re-emitting radiations is 2\pi R2, so 6.7 \cdot 10 - 5 should be used
instead. Yet this value is too high as it gives an Earth temperature of around 400\circ K.
It comes down to 3.1 when it is corrected by the latitude, 1\surd 

2
at 45\circ , and by the Earth

albedo: 35\% of the Sun energy is reflected, i.e., not absorbed, by the Earth surface.
Furthermore, due to the alternation of days and nights only a portion of the final value
should be retained [9]. Thus Q0 is in the range (1.5, 3) \cdot 10 - 5. A reasonable value is
Q0 = 2 \cdot 10 - 5, because, with a constant \kappa = 0.5, the temperature near the ground is
found to be around 24\circ C; but it should not be taken for its face value because rains,
clouds, etc. are not accounted for.

Scattering is the sum of an isotropic part and a Rayleigh part; both have their
own a\nu , function of altitude (i.e., \tau ) and \nu .

To simulate clouds, isotropic scattering is activated between altitude Z1 and Z2 >
Z1 and

a\nu (z) = \alpha [4max(z  - Z1, 0)max(Z2  - z, 0.)/(Z2  - Z1)
2].

It is known that Rayleigh scattering is a function of \nu 4 in the ultraviolet range at
high altitude, so it is switched on above altitude Z2 and is O(\nu 4) for \nu \in (0.8, 1.2):

a\prime \nu (z) = \alpha [40max(\nu  - 0.8, 0)2 max(1.2 - \nu , 0)2 max(z  - Z2, 0)/(Z  - Z2)].

The values of the physical and numerical parameters are as follows:
\bullet \alpha = 1

2 or zero; Z1 = 6km, Z2 = 9km.
\bullet Absorption coefficient \kappa \nu digitalized from Gemini measurements.
\bullet Discretization: 60 altitude stations, 485 frequencies corresponding to a uni-
form grid in wavelength in (1,20)\mu m.

\bullet Number of iterations 20.
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The Gemini measurements of the absorption are posted on the internet in
https://www.gemini.edu/observing/telescopes-and-sites/sites\#Transmission.

Figure 1 shows \kappa 0\nu versus wavelength c/\nu . Recall that visible light is in the range
0.4  - 0.7\mu m (i.e., 450--750 THz) and relevant infrared radiations are in the range
0.8 - 20\mu m (i.e., 0.03--0.4 THz).

To assess the sensitivity of the temperature to gas like carbon dioxide opaque,
for wavelengths in 7--9\mu m and 1--3\mu m, we constructed \kappa 1\nu by increasing \kappa 0\nu by a factor
3, and capped at 1, in the infrared range 7--8\mu m. Similarly, we constructed \kappa 2\nu by
increasing \kappa 0\nu by a factor of 3, and capped at 1, in the range 1--3\mu m. These are
displayed in Figure 1.
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Fig. 1. Absorption \kappa 0
\nu versus wavelength (3/\nu ) read from Gemini measurements; \kappa 1

\nu is \kappa 0
\nu 

increased in the infrared range 2--3\mu m and \kappa 2
\nu is \kappa 0

\nu increased in the range 8--14\mu m. The \times marks
show the 487 grid points for the integrals in \nu .

Convergence of the lower increasing and upper decreasing sequences is studied
with and without Rayleigh scattering.

The convergence of the lower sequences is faster and is slightly slower in the
presence of scattering. Yet, for both, 20 iterations seem appropriate for a three-digit
precision.

Next, results are shown with \kappa 0\nu , \kappa 
1
\nu , and \kappa 

2
\nu , with and without scattering. Figures

3 and 4 show the mean radiation intensity J\nu versus wavelength at altitude 0 and
12km. Notice the dramatic changes when going from \kappa 0\nu to \kappa 1\nu and the smaller changes
in the opposite direction when going from \kappa 0\nu to \kappa 2\nu . Note too that scattering decreases
J\nu . It is also interesting to note that in the frequency range where \kappa 0\nu is very small
such as wavelength 3--4\mu m and 10--14\mu m, J\nu is also small; it is because the Planck
function with the Earth temperature (3.2) cannot create \nu -waves in regions where \kappa \nu 
is small.

Figure 5 shows the scaled temperatures versus altitude computed with \kappa 0\nu , \kappa 
1
\nu , and

\kappa 2\nu with and without scattering. Note that going from \kappa 0\nu to \kappa 1\nu decreases the temper-
atures by 5\%. On the other hand, going from \kappa 0\nu to \kappa 2\nu increases the temperatures by
2\%.

https://www.gemini.edu/observing/telescopes-and-sites/sites#Transmission
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Fig. 2. Temperatures scaled by 4, 798 without (left) and with (right) scattering: convergence
history. The dashed curves are computed with an initial T 0 = TSun/10 and the solid curves with
T 0 = 0. Notice the monotonic convergence towards a solution after 20 iterations. The iterations
shown for the upper and lower solutions are (5, 7, 9, 11, 20). This computation has used Q0 = 3\cdot 10 - 5.
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Fig. 3. Computed mean radiation intensities 105 \cdot J\nu (0) at the ground level for \kappa 0
\nu , \kappa 1

\nu , \kappa 2
\nu 

with scattering (\alpha = 1
2
) and for \kappa 0

\nu without scattering.

Comments.
\bullet CPU time is 20\prime \prime on a Macbook air M1, but with a smoother \kappa \nu , 50 \nu -
integration points are sufficient, cutting the CPU time by 10 to 2\prime \prime .

\bullet We observed that a highly oscillating \kappa \nu did not cause any programming or
convergence problems. The total light intensities J plotted on Figures 3 and
4 show clearly that the method traces the small or large changes on \kappa \nu .

\bullet Figure 2: Monotone convergence from below and from above is observed. The
convergence from below, i.e., starting with T 0 = 0, is faster than the one from
above, starting from T = Tsun/10, and it is slightly slower in the presence of
scattering.
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2
.

\bullet Figure 5: Increasing \kappa \nu in the Earth infrared range can cause either an in-
crease or a decrease of temperature, depending on the position of the change
in the infrared spectrum.

\bullet Isotropic and Rayleigh scattering did not change the above conclusion (see
Figure 5).

Finally, note that the Earth albedo and the clouds seem to play an important role in
the effect of the greenhouse gases on the temperature of the atmosphere [8]. If it is
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modeled by a Lambert condition of the type

I\nu (0, \mu ) - \beta I\nu (0, - \mu ) = \mu Q0B\nu (TSun) \forall \mu > 0;

then the present numerical method can handle it and our preliminary test shows an
increase of temperature when \beta increases; while this is another story, it is yet another
proof of the versatility of the present numerical formulation for climate modeling.

7.1.1. Relevance to global warming. The simulations made above indicate
that an increase of opacity in the atmosphere may cause cooling or warming depending
on the range of frequencies where the change of opacity occurs. It is known that CO2
is opaque to wavelengths around \lambda 1 = 2\mu m and around \lambda 2 = 6\mu m. According to
Figure 1 the \lambda 1 peak heats the atmosphere and the \lambda 2 peak cools it. Cooling does
not go against the physical observations because it is known that CO2 cools the high
atmosphere: see Figure 13 in [8] and this Belgian website, for instance:
www.aeronomie.be/en/news/2021/rising-co2-levels-also-cause-cooling-upper-layers-atmosphere.

What differentiates high and low altitudes? Clouds, for one thing, probably play
a big role; also the absorption coefficient depends on the pressure, i.e., on altitude.
The present formulation does not allow it, but it is not hard to see that by taking the
greatest value for each frequency on the left-hand side of (3.2) and compensating for
the difference on the right-hand side, the iterations on the source are still convergent.
Thus there are many opportunities for future developments. We will show also, in
[13], that the method is not confined to stratified atmospheres and that the full
three-dimensional problem can be solved by iterations on the source in an integral
formulation; it is much more expensive computationally but still a lot cheaper than
SHDOM and Monte-Carlo.

One should be cautious not to draw early conclusions before the full problem is
solved; the purpose of the present study is to show that here is a method which is
mathematically well understood and numerically faster than others.

7.2. Radiative transfer with thermal diffusion in a pool. Consider the
vertical cross-section of a pool, \Omega , heated from above, possibly by the Sun, and
subject to wind on its surface, but without evaporation. The bottom is elliptical
with maximum length 3 and height 1.

The time dependent Navier--Stokes equations are solved with a kinematic viscosity
\nu F = 0.05. A no-slip condition \bfitu = (0, 0)T is applied on the bottom boundary and
a Dirichlet condition on the horizontal boundary \bfitu = (10, 0)T to simulate the wind
velocity.

The Taylor--Hood finite element method is used with the space Vh of continuous
piecewise quadratic velocities on a triangulation and the space Qh of piecewise linear
pressures on the same triangulation. Galerkin-characteristic discretization in time is
used: at each time step n + 1, find \bfitu n+1

h \in Vh, satisfying the boundary conditions,
and pn+1

h \in Qh, such that

(7.7)

\int 
\Omega h

\bigl( 
1
\delta t\bfitu 

n+1
h \cdot \^\bfitu h + \nu F\nabla \bfitu n+1

h \cdot \nabla \^\bfitu h  - pn+1
h \nabla \cdot \^\bfitu h + \^ph\nabla \cdot \bfitu n+1

h

\bigr) 
dx

=

\int 
\Omega h

1
\delta t\bfitu 

n
h(\bfitx  - \bfitu n

h(\bfitx )\delta t) \cdot \^\bfitu hdx \forall \^ph \in Qh, \forall \^\bfitu h \in Vh, with \^\bfitu h| \partial \Omega = 0.

There are 764 vertices in the triangulation. Figure 6 displays the velocity vectors after
50 time steps of size 0.02; stationarity is reached. The computation takes 12\prime \prime .

www.aeronomie.be/en/news/2021/rising-co2-levels-also-cause-cooling-upper-layers-atmosphere
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For the temperature, (6.5) is rescaled and discretized by (7.3). We chose \kappa T = 0.5,
a\nu = 0, with vertical RT in the fluid, from its surface down into the liquid and Dirichlet
conditions on the bottom boundary T = 0.057 which is approximately the reduced
temperature found in the previous section.

The liquid water absorption parameter \kappa \nu can be found in
https://en.wikipedia.org/wiki/Electromagnetic absorption by water.
It turned out to be CPU prohibitive to solve the problem with such a detailed

\kappa \nu ; the bottleneck is in the computation of the integral in T of B\nu (T ) required by the
variational principle (7.3). Hence we approximated \kappa \nu by its regression line in the
range \nu \in (0.02, 7)10 - 14:

\kappa \nu = \kappa 0  - \kappa 1\nu with \nu \in (0.02, \nu max) \nu max = 7, \kappa 0 = 0.7, \kappa 1 = 0.5/\nu max.

Then the integral of \kappa \nu B\nu (T ) can be computed analytically:\int \infty 

0

\kappa \nu B\nu (T )d\nu = T 4\kappa 0
\pi 4

15
 - 24T 5\kappa 1\zeta (5),

where \zeta is the Riemann function, \zeta (5) = 1.03693.
The time dependent temperature equation is solved until convergence to a sta-

tionary state with 50 time steps of size 0.1. The convection terms are treated explicitly
so as to use (7.3) which is solved by the BFGS module in FreeFEM++. The computation
takes 326\prime \prime . The solution is shown in Figure 6. One sees the effect of the current in
the fluid on the temperature distribution which has shifted to the right.

Fig. 6. Velocity vectors and temperature in a pool subject to wind on its top boundary and
given temperature on the bottom. The wind creates a large eddy rotating clockwise which, in turn,
moves the hotter fluid region to the right.

Note that with a Neumann condition on the bottom the temperature would keep
rising with time and even with a Dirichlet condition on the bottom boundary there is
a critical value for \kappa T and/or Q0 below which the temperature rises with time. Here
Q0 = 0.02, which is much bigger than the value for the sunlight, but with the latter
the temperature is almost constant everywhere, equal to its bottom value 0.06.

7.3. RT with thermal diffusion in the atmosphere of a planet. Consider
the atmosphere of a spherical planet, heated by the Sun, with a known ground tem-
perature Te. The computational domain is the space between a sphere of radius R2

and a sphere of radius R1 < R2.

https://en.wikipedia.org/wiki/Electromagnetic_absorption_by_water
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As before the sunrays travel unaffected and hit the ground; so the radiative part
is governed by the first equation in (2.10) with (2.12) and (7.4), i.e., the second
equation in (2.10) is replaced by (7.2). The density of the atmosphere is constant
rather than decaying exponentially with altitude. The absorption parameter chosen
for the computation is also constant \kappa = 0.5. The wind velocity is a rotating Poiseuille
flow around an axis (sin \=\psi , 0, cos \=\psi )T which is not aligned with the direction of the
Sun. In spherical coordinates it is

u = r(H  - r)[cos\psi , sin\psi , 0]T , r is the distance to the ground,

where H = R2 - R1. The time dependent equation (7.2) is solved in spherical coordi-
nates (details can be found in [16, Appendix A]). The computational domain becomes
a solid rectangle with periodic conditions; it is discretized with a uniform distribution
of vertices 16\times 8\times 8 in the domain (0, 2\pi )\times (0, \pi )\times (0, Z) with Z = 1.

The equations are discretized in time and space by a Galerkin-characteristic
method and piecewise linear conforming finite elements on tetrahedra. The time
step is \delta t = 0.1 and the thermal diffusion is \kappa T = 0.01. The stratified approximation
requires R1 to be large and H small. For the visualizations, however, we map the solid
rectangle onto the spherical domain with R1 = 1 and R\prime 

2 = 2. As before TSun = 1.209

and Q0 = 2 \cdot 10 - 5. Initially Tt=0 is set to Te = Tsun
\kappa 
2

\bigl( 
Q0E3(\kappa z)

\bigr) 1
4 . On the surface

of the planet T is set to 0.95Te(0).
Figure 7 shows the temperatures after 15 iterations without wind. The computing

time is 357\prime \prime . The Sun is at infinity in the direction opposite to the blue region. Blue
means cold; it corresponds to the night on this part of the planet. Yet with more
time iterations we would see this zone heated by thermal diffusion due to the fixed
temperature of the planet.

Figure 8 compares the temperatures with and without wind. The planar views
correspond to cross-sections of the domain by the plane z = 0. Here, the Sun is in the
horizontal direction on the right, but the wind transports its heat counterclockwise.

7.4. Conclusion. In this article a special case of radiative and heat transport
has been studied, the so-called stratified approximation. The one-dimensional RT
equations are coupled with the temperature equation. Existence and uniqueness have
been established with almost no restriction on the absorption and scattering parame-
ters. Furthermore, the proofs are based on a formulation of the problem which gives
rise to an efficient numerical algorithm for RT coupled with the heat equation for a
fluid. Upper and lower positive solutions can be computed and the convergence to
the unique solution is polynomial.

The method has been implemented numerically and indeed arbitrary precision can
be obtained, even with highly oscillating absorption or scattering coefficients. Fur-
thermore, it is computationally very fast when the thermal diffusion is neglected and
reasonably fast otherwise, at least with absorption coefficients which are polynomial
functions of the frequencies.

It has been applied to the computation of the temperature in the Earth atmos-
phere, to that of a pool heated from above, and to the atmosphere of a planet with
a large thermal diffusion. However, these are test cases rather than a full solution of
physical problems and so one should be cautious not to draw early conclusions from
these computations; the purpose of the present study is to show that here is a method
which is mathematically well understood and numerically faster than others.

There are many other applications, especially for climate modelling and in nuclear
engineering for which these new mathematical and numerical results should be useful.
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Fig. 7. Temperature in the atmosphere of a planet heated by a sun, when thermal diffusion
propagates heat in unlit regions and also in the presence of a counterclockwise rotating wind. Note
that the thickness of the atmosphere has been expanded for readability.

IsoValue
0.00435628
0.00745484
0.00952055
0.0115863
0.013652
0.0157177
0.0177834
0.0198491
0.0219148
0.0239805
0.0260462
0.0281119
0.0301776
0.0322433
0.034309
0.0363747
0.0384404
0.0405061
0.0425719
0.0477361

IsoValue
0.00334239
0.00651699
0.0086334
0.0107498
0.0128662
0.0149826
0.017099
0.0192154
0.0213318
0.0234482
0.0255646
0.027681
0.0297974
0.0319138
0.0340302
0.0361466
0.038263
0.0403794
0.0424958
0.0477868

Fig. 8. Temperature in the atmosphere of a planet heated by a sun on the right with wind
(right) and without wind (left); it is a counterclockwise rotating wind around an axis almost (but not
quite) perpendicular to the figure. Thermal diffusion propagates heat in unlit regions and the wind
transports the heat counterclockwise. Note that the thickness of the atmosphere has been expanded
for readability.

Appendix A. Proof of Theorem 4.1.
Set s+(z) = 1z\geq 0. We recall that z+ = max(z, 0) = zs+(z), while z - =

max( - z, 0). We multiply both sides of the RT equation for two solutions I\nu and
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I \prime \nu by s+(I\nu  - I \prime \nu ) and integrate in all variables with the notation

\langle \Phi \rangle :=
\int \infty 

0

\int 1

 - 1

\Phi (\mu , \nu )d\mu d\nu .

With T = T [I] and T \prime = T [I \prime ] defined by (2.16), let us compute

D := \langle \kappa \nu ((I\nu  - I \prime \nu ) - a\nu (J\nu  - J \prime 
\nu ) - (1 - a\nu )(B\nu (T ) - B\nu (T

\prime )))s+(I\nu  - I \prime \nu )\rangle 
= \langle \kappa \nu (1 - a\nu )((I\nu  - I \prime \nu ) - (B\nu (T ) - B\nu (T

\prime )))s+(I\nu  - I \prime \nu )\rangle 
+\langle \kappa \nu a\nu ((I\nu  - I \prime \nu ) - (J\nu  - J \prime 

\nu ))s+(I\nu  - I \prime \nu )\rangle =: D1 +D2 .

Since \int 1

 - 1

((I\nu  - I \prime \nu )(\tau , \mu ) - (J\nu  - J \prime 
\nu )(\tau ))d\mu = 0

and since s+(J\nu  - J \prime 
\nu ) is independent of \mu , one has

D2 = \langle \kappa \nu a\nu ((I\nu  - I \prime \nu ) - (J\nu  - J \prime 
\nu ))(s+(I\nu  - I \prime \nu ) - s+(J\nu  - J \prime 

\nu ))\rangle \geq 0

since the function z \mapsto \rightarrow s+(z) is nondecreasing and \kappa \nu a\nu \geq 0. Similarly,

T = T [I] and T \prime = T [I \prime ] =\Rightarrow \langle \kappa \nu (1 - a\nu )((I\nu  - I \prime \nu ) - (B\nu (T ) - B\nu (T
\prime )))\rangle = 0,

and since s+(T  - T \prime ) is independent of \mu and \nu , one has

D1 = \langle \kappa \nu (1 - a\nu )((I\nu  - I \prime \nu ) - (B\nu (T ) - B\nu (T
\prime )))(s+(I\nu  - I \prime \nu ) - s+(T  - T \prime ))\rangle .

Since B\nu is increasing for each \nu > 0, one has s+(T  - T \prime ) = s+(B\nu (T )  - B\nu (T
\prime )).

Hence

D1 = \langle \kappa \nu (1 - a\nu )((I\nu  - I \prime \nu ) - (B\nu (T ) - B\nu (T
\prime )))(s+(I\nu  - I \prime \nu ) - s+(B\nu (T ) - B\nu (T

\prime )))\rangle \geq 0

since \kappa \nu (1 - a\nu ) \geq 0 and z \mapsto \rightarrow s+(z) is nondecreasing.
Let I\nu and I \prime \nu be two solutions of (2.11) with boundary data

I\nu (0, \mu ) = Q+
\nu (\mu ) , I\nu (Z, - \mu ) = Q - 

\nu (\mu ) , 0 < \mu < 1 ,

I \prime \nu (0, \mu ) = Q\prime +
\nu (\mu ) , I \prime \nu (Z, - \mu ) = Q\prime  - 

\nu (\mu ) , 0 < \mu < 1 .

Assume that

Q\pm 
\nu (\mu ) \leq Q\prime \pm 

\nu (\mu ) for a.e. (\mu , \nu ) \in (0, 1)\times (0,\infty ) .

Then
\partial \tau \langle \mu (I\nu  - I \prime \nu )+\rangle =  - D1  - D2 \leq 0

so that \tau \mapsto \rightarrow \langle \mu (I\nu  - I \prime \nu )+\rangle (\tau ) is nonincreasing. Since

Q - 
\nu \leq Q\prime  - 

\nu =\Rightarrow \langle \mu (I\nu  - I \prime \nu )+\rangle (Z) = \langle \mu +(I\nu  - I \prime \nu )+\rangle (Z) \geq 0 ,

Q+
\nu \leq Q\prime +

\nu =\Rightarrow \langle \mu (I\nu  - I \prime \nu )+\rangle (0) =  - \langle \mu  - (I\nu  - I \prime \nu )+\rangle (0) \leq 0 ,

one has

0 = \langle \mu (I\nu  - I \prime \nu )+\rangle = D1 = D2 for a.e. \tau \in (0, Z),

(I\nu  - I \prime \nu )+(0, - \mu ) = (I\nu  - I \prime \nu )+(Z, \mu ) = 0 for a.e. \mu \in (0, 1) .
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Besides, since \kappa \nu (1 - a\nu ) > 0 for all \nu > 0,

D1 = 0 =\Rightarrow s+(I\nu (\tau , \mu ) - I \prime \nu (\tau , \mu )) = s+(T [I] - T [I \prime ]) for a.e. (\tau , \mu , \nu ) .

Next, we use the K-invariant (in the terminology of section 10 in Chapter I of
Chandrasekhar [6]) for solutions of the RT equation with slab symmetry. We compute

\partial \tau 

\biggl\langle 
\mu 2

\kappa \nu 
(I\nu  - I \prime \nu )+

\biggr\rangle 
=  - \langle a\nu \mu ((I\nu  - I \prime \nu ) - (I \prime \nu  - \~I \prime \nu ))s+(T [I] - T [I \prime ])\rangle 

 - \langle (1 - a\nu )\mu ((I\nu  - I \prime \nu ) - (B\nu (T [I]) - B\nu (T [I
\prime ])))s+(T [I] - T [I \prime ])\rangle 

=  - \langle \mu (I\nu  - I \prime \nu )s+(T [I] - T [I \prime ])\rangle =  - \langle \mu (I\nu  - I \prime \nu )+\rangle = 0 ,

since \int 1

 - 1

\mu (I \prime \nu (\tau ) - \~I \prime \nu (\tau ))d\mu =

\int 1

 - 1

\mu (B\nu (T [I]) - B\nu (T [I
\prime ]))d\mu = 0 .

Next, we integrate in \tau \in (0, Z), and observe that

(I\nu  - I \prime \nu )+(0, - \mu ) = 0 and Q+
\nu (\mu ) \leq Q\prime +

\nu (\mu ) for a.e. \mu \in (0, 1)

=\Rightarrow 
\biggl\langle 
\mu 2

\kappa \nu 
(I\nu  - I \prime \nu )+

\biggr\rangle 
(\tau ) =

\biggl\langle 
\mu 2

\kappa \nu 
(I\nu  - I \prime \nu )+

\biggr\rangle 
(0) = 0 .

Thus, we have proved that

Q\pm 
\nu (\mu ) \leq Q\prime 

\nu 
\pm 
(\mu ) for a.e. (\mu , \nu ) \in (0, 1)\times (0,\infty )

=\Rightarrow I\nu (\tau , \mu ) \leq I \prime \nu (\tau , \mu ) for a.e. (\tau , \mu , \nu ) \in (0, Z)\times ( - 1, 1)\times (0,\infty )

=\Rightarrow T [I](\tau ) \leq T [I \prime ](\tau ) for a.e. \tau \in (0, Z) .

Exchanging Q\pm 
\nu (\mu ) and Q

\prime 
\nu 
\pm 
(\mu ) above shows that I\nu = I \prime \nu and T [I] = T [I \prime ], which is

the announced uniqueness.

Proof of Remark 5.2. Let (I\nu , T [I]) and (I \prime \nu , T [I
\prime ]) be the solutions of (5.3)

corresponding to the boundary data Q\pm 
\nu and Q\prime \pm 

\nu , respectively, such that Q\pm 
\nu (\mu ) \leq 

Q\prime \pm 
\nu (\mu ) for a.e. (\mu , \nu ) \in (0, 1)\times (0,\infty ). First, we slightly modify the treatment of D2

as follows:

D2 = 1
2

\int \infty 

0

\kappa \nu a\nu 

\int 1

 - 1

(I\nu  - I \prime \nu )+(\mu )d\mu d\nu 

 - 1
2

\int \infty 

0

\kappa \nu a\nu 

\int 1

 - 1

\int 1

 - 1

p(\mu , \mu \prime )(I\nu  - I \prime \nu )(\mu 
\prime )s+(I\nu  - I \prime \nu )(\mu )d\mu 

\prime d\mu d\nu .

Since p \geq 0 and 1
2

\int 1

 - 1
p(\mu , \mu \prime )d\mu = 1, one has

p(\mu , \mu \prime )(I\nu  - I \prime \nu )(\mu 
\prime )s+(I\nu  - I \prime \nu )(\mu ) \leq p(\mu , \mu \prime )(I\nu  - I \prime \nu )+(\mu 

\prime ) ,

so that

D2 \geq 1
2

\int \infty 

0

\kappa \nu a\nu 

\int 1

 - 1

(I\nu  - I \prime \nu )+(\mu )d\mu d\nu 

 - 1
2

\int \infty 

0

\kappa \nu a\nu 

\int 1

 - 1

\int 1

 - 1

p(\mu , \mu \prime )(I\nu  - I \prime \nu )+(\mu 
\prime )d\mu \prime d\mu d\nu = 0 .
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As in the proof of Theorem 4.1, we see that

\langle \mu (I\nu  - I \prime \nu )+\rangle (\tau ) = 0 for a.e. \tau \in (0, Z) ,

and

s+(I\nu (\tau , \mu ) - I \prime \nu (\tau , \mu )) = s+(T [I](\tau ) - T [I \prime ](\tau ))

for a.e. (\tau , \mu , \nu ) \in (0, Z)\times ( - 1, 1)\times (0,\infty ), while

(I\nu  - I \prime \nu )+(0, - \mu ) = (I\nu  - I \prime \nu )+(Z, \mu ) = 0 for a.e. \mu \in (0, 1) .

Next, we compute

\partial \tau 

\biggl\langle 
\mu 2

\kappa \nu 
(I\nu  - I \prime \nu )+

\biggr\rangle 
=  - 1

2

\int \infty 

0

a\nu 

\int 1

 - 1

\mu (I\nu  - I \prime \nu )+(\tau , \mu )d\mu d\nu 

+ 1
2

\int \infty 

0

a\nu 

\int 1

 - 1

\mu 

\int 1

 - 1

p(\mu , \mu \prime )(I\nu  - I \prime \nu )+(\tau , \mu 
\prime )d\mu \prime d\mu d\nu s+(T [I](\tau ) - T [I \prime ](\tau ))

 - \langle (1 - a\nu )\mu ((I\nu  - I \prime \nu ) - (B\nu (T [I]) - B\nu (T [I
\prime ])))s+(T [I] - T [I \prime ])\rangle 

=  - \langle a\nu \mu (I\nu  - I \prime \nu )s+(T [I] - T [I \prime ])\rangle  - \langle (1 - a\nu )\mu (I\nu  - I \prime \nu )s+(T [I] - T [I \prime ])\rangle 
=  - \langle \mu (I\nu  - I \prime \nu )s+(T [I] - T [I \prime ])\rangle =  - \langle \mu (I\nu  - I \prime \nu )+\rangle = 0 ,

since \int 1

 - 1

\mu p(\mu , \mu \prime )d\mu =

\int 1

 - 1

\mu (B\nu (T [I]) - B\nu (T [I
\prime ]))d\mu = 0 .

Finally, we integrate in \tau \in (0, Z), and conclude as in the previous section that

(I\nu  - I \prime \nu )+(0, - \mu ) = 0 and Q+
\nu (\mu ) \leq Q\prime +

\nu (\mu ) for a.e. \mu \in (0, 1)

=\Rightarrow 
\biggl\langle 
\mu 2

\kappa \nu 
(I\nu  - I \prime \nu )+

\biggr\rangle 
(\tau ) =

\biggl\langle 
\mu 2

\kappa \nu 
(I\nu  - I \prime \nu )+

\biggr\rangle 
(0) = 0 .

Hence Q\pm 
\nu (\mu ) \leq Q\prime \pm 

\nu (\mu ) for a.e. (\mu , \nu ) \in (0, 1)\times (0,\infty ) implies that I\nu (\tau , \mu ) \leq I \prime \nu (\tau , \mu )
for a.e. (\tau , \mu , \nu ) \in (0, Z)\times ( - 1, 1)\times (0,\infty ), and T [I](\tau ) \leq T [I \prime ](\tau ) for a.e. \tau \in (0, Z).
This implies the uniqueness of the solution as explained in the proof of Theorem
4.1.
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