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Climate change is transforming marine ecosystems through the expansion and
contraction of species’ ranges. Sea ice loss and warming temperatures are expected to
expand habitat availability for macroalgae along long stretches of Arctic coastlines. To
better understand the current distribution of kelp forests in the Eastern Canadian Arctic,
kelps were sampled along the coasts for species identifications and percent cover.
The sampling effort was supplemented with occurrence records from global biodiversity
databases, searches in the literature, and museum records. Environmental information
and occurrence records were used to develop ensemble models for predicting habitat
suitability and a Random Forest model to predict kelp cover for the dominant kelp
species in the region – Agarum clathratum, Alaria esculenta, and Laminariaceae species
(Laminaria solidungula and Saccharina latissima). Ice thickness, sea temperature and
salinity explained the highest percentage of kelp distribution. Both modeling approaches
showed that the current extent of arctic kelps is potentially much greater than the
available records suggest. These modeling approaches were projected into the future
using predicted environmental data for 2050 and 2100 based on the most extreme
emission scenario (RCP 8.5). The models agreed that predicted distribution of kelp
in the Eastern Canadian Arctic is likely to expand to more northern locations under
future emissions scenarios, with the exception of the endemic arctic kelp L. solidungula,
which is more likely to lose a significant proportion of suitable habitat. However,
there were differences among species regarding predicted cover for both current and
future projections. Notwithstanding model-specific variation, it is evident that kelps are
widespread throughout the area and likely contribute significantly to the functioning
of current Arctic ecosystems. Our results emphasize the importance of kelp in Arctic
ecosystems and the underestimation of their potential distribution there.

Keywords: Laminariales, polar, ensemble model, species distribution model (SDM), climate change, shallow
subtidal benthic
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INTRODUCTION

Kelp forests dominate shallow rocky coasts in cold-water regions
(Wernberg et al., 2019). These forests are dominated by large
brown algae in the order Laminariales (Alongi, 2018). Where
abundant, kelps form marine forests that provide a number
of important ecosystem services: creating habitat, serving as
food and cover for pelagic and benthic organisms, acting as
nursery grounds for fish and other fauna, supporting complex
food webs through nutrient filtration, coastal protection, and
carbon sequestration through detritus export to deeper waters
(Krause-Jensen and Duarte, 2016; Eger et al., 2021). Kelp
forests are found along 28% of the world’s coastline (Starko
et al., 2021) and are present in 43% of the world’s marine
ecoregions (Krumhansl et al., 2016), covering ∼1,500,000 km2

(Jayathilake and Costello, 2020).
Climate change and human activities are altering

environmental conditions with habitat loss occurring at a
rapid rate in coastal zones, destabilizing habitat-forming species
(Halpern et al., 2015), including documented recent declines in
kelp forests globally (Duarte et al., 2018; Wernberg et al., 2018).
In the Arctic, the loss of sea ice (and consequently increased light
availability) and warming temperatures are predicted to increase
the geographic extent and depth range of marine vegetation, with
145,093 km2 of suitable habitat projected for this type of species
(Krause-Jensen et al., 2020). Coastal erosion from melting sea
ice, fragmenting permafrost, and unusually high glacial inputs
are, however, increasing sediment loads and freshwater inputs
in high-latitude coastal zones (Fritz et al., 2017), which could
result in direct kelp die-offs (Konar et al., 2017; Filbee-Dexter
et al., 2019) or offset positive impacts of increased light and
warmer temperatures (Bonsell and Dunton, 2018). Long-term
research from Greenland, Russia, and Norway suggests a warmer
Arctic with less sea ice may support higher kelp productivity and
biomass by expanding the northern range and lower depth limit
of these species (Filbee-Dexter et al., 2019; Krause-Jensen et al.,
2020). However, the degree to which these changes will positively
affect kelps will likely vary regionally, and depend on the extent
of glacial ice melt, permafrost collapse, turbidity increase, and
salinity reductions in coastal areas (Bartsch et al., 2016; Bonsell
and Dunton, 2018; Traiger and Konar, 2018).

The Arctic is the epicenter of the global climate crisis,
warming at least twice as fast as the global average (Niemi
et al., 2019; Ballinger et al., 2020). It is predicted that, without
taking action to reduce global warming, the Arctic will be
ice-free each summer before 2050 (Hwang et al., 2020). The
Canadian Arctic is warming at a rate three times the global
average (Flato et al., 2019) and the greatest reductions of sea
ice cover duration and concentration have been observed there
(Stammerjohn et al., 2012; Mudryk et al., 2018; Derksen et al.,
2019). The Eastern Canadian Arctic has been highlighted as
lacking historical baseline data generally (Archambault et al.,
2010) and for kelps, specifically (Krumhansl et al., 2016),
with sampling efforts for the latter only recently increasing
through documentation of kelp forests along Arctic and subarctic
coastlines between Ellesmere Island and Labrador and along
coasts in Lancaster Sound, Ungava Bay, Hudson Bay, Baffin

Bay, and Resolute Bay (Lee, 1973; Adey and Hayek, 2011; Filbee-
Dexter et al., 2019; Bringloe et al., 2020; Starko et al., 2021).
This critical knowledge gap is particularly worrisome given rapid
ongoing environmental changes along Arctic coasts (AMAP,
2017). Many uncertainties are related to this knowledge gap.
For example, the exact number of macroalgal species (including
kelp) is not certain, and there are different estimates in the
literature, ranging from 160 species at the Arctic scale (Bluhm
et al., 2011), but 210 at the Canadian Arctic scale (Archambault
et al., 2010). It is of particular interest to evaluate the current state
of these ecosystems before substantial changes occur (and can no
longer be measured or estimated). Anticipating these changes and
understanding these new ecosystems and their functioning is a
key priority for northern communities.

Modeling techniques are useful to fill gaps and make
predictions to help understand and predict where species may
be found and the rate and direction of predicted changes.
Species distribution models (SDM) have been used to predict
the distribution of suitable habitat for kelp at local (Gorman
et al., 2013; Bajjouk et al., 2015; Young et al., 2015), regional
(Raybaud et al., 2013; Assis et al., 2016; Wilson et al., 2019)
and global/Arctic (Müller et al., 2009; Assis et al., 2018a;
Jayathilake and Costello, 2020; Krause-Jensen et al., 2020)
scales. For the Arctic region, some of these works include
projections in the Eastern Canadian Arctic (Müller et al., 2009;
Assis et al., 2018a), but none of them have used data directly
from the field or focused on arctic populations. In fact, kelp
are poorly represented in studies on the processes driving
changes in habitat suitability and species distributions (Melo-
Merino et al., 2020). Ensemble modeling is a widely used
SDM tool (Hao et al., 2019) that has been shown to reduce
single-model bias (Araújo and New, 2007) by aggregating the
results of multiple models in a combined final mean prediction
(Araújo and New, 2007). An integrated ensemble approach
is especially important in cases where future projections are
being calculated, increasing the level of confidence in the results
(Guisan et al., 2017).

Changes in environmental conditions can affect not only
the suitability of kelp habitat, but also the abundance of the
species that are present. Macroalgal abundance can be estimated
in terms of density, biomass and percent cover (e.g., Gorman
et al., 2013; Bajjouk et al., 2015; Young et al., 2015; Krumhansl
et al., 2016; van Son et al., 2020). However, quantitatively
calculating these various estimates of abundance for currently
unstudied areas and future scenarios cannot be done using most
SDM tools, which rely on presence/absence input data. The
Random Forest model is the natural candidate for this sort of
investigation due to its ability to model numeric results and
its very low computational cost that allows for much higher
replication of model runs.

Using a combination of these two modeling approaches
(ensemble models for habitat suitability supplemented with
Random Forest for kelp cover), this paper aims to identify the
primary environmental drivers and make spatial predictions of
habitat suitability and cover of kelps in the Eastern Canadian
Arctic under current conditions and a future extreme climate-
change scenario.
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MATERIALS AND METHODS

Study Region
The majority of the Canadian coastline is rocky (Frederick
et al., 2016), with erosional shorelines that are wave-dominated
(Nyberg and Howell, 2016). Much of the nearshore shallow
region is affected by ice scour, generally preventing rich bottom
flora from establishing (Stewart and Lockhart, 2005). This study
focuses on the Eastern Canadian Arctic (Figure 1). The largest
portion of the area of interest is the Hudson Bay Complex
(i.e., James Bay, Hudson Bay, Hudson Strait and Foxe Basin),
which is relatively shallow (150-m mean depth) (Prinsenberg,
1986) (Figure 1) and receives large volumes of freshwater
runoff and advected arctic marine waters (Stewart and Lockhart,
2005; and references therein). Variations in local atmospheric
conditions largely control sea-ice cover variability (Hochheim
and Barber, 2014; and references therein). The deepest and most
extensive ocean corridor (650-m deep) in the region is from
the Labrador Sea north through the central Davis Strait and
Baffin Bay, and west into Lancaster Sound (Tang et al., 2004;
Jørgensen et al., 2005).

Species Data
The kelp species selected for this study were: (1) Agarum
clathratum Dumortier, 1822; (2) Alaria esculenta (Linnaeus)
Greville, 1830; (3) Laminaria solidungula J. Agardh, 1868; and
(4) Saccharina latissima (Linnaeus) C. E. Lane, C. Mayes, Druehl
and G. W. Saunders, 2006. For the analysis to quantify kelp
cover, S. latissima and L. solidungula were grouped into the
‘Laminariaceae’.

The taxonomy of kelp species has been in flux for the last
couple of decades with some changes even at the genus level
(Lane et al., 2006; McDevit and Saunders, 2010; Starko et al.,
2019). The species included in this study were no exception to
these reorganizations and taxonomic challenges.

We identified name changes and possible misclassifications for
each species of interest in this study. Some historical specimens
of A. clathratum were labeled as Agarum cribrosum Bory de
Saint-Vincent, 1826, a synonym (Silva, 1991). For S. latissima,
some taxonomic synonyms we encountered included Laminaria
agardhii Kjellman, 1877, Laminaria groenlandica Rosenvinge,
1893, L. saccharina (Linnaeus) J. V. Lamouroux, 1813, and
Saccharina groenlandica (Rosenvinge) C. E. Lane, C. Mayes, L.
Druehl and G. W. Saunders, 2006 (Guiry and Guiry, 2020). For
the purposes of this study, we considered Saccharina longicruris
(Bachelot Pylaie) Kuntze, 1891 as equivalent to S. latissima
(McDevit and Saunders, 2010).

The species in the Eastern Canadian Arctic and North Atlantic
Ocean now known as Hedophyllum nigripes (J. Agardh) Starko,
Lindstrom and Martone, 2019, had in the past been attributed
to S. groenlandica, but Longtin and Saunders (2015) have shown
that S. groenlandica is a synonym of S. latissima. Moreover,
in terms of misidentifications, digitate forms of Hedophyllum
nigripes can be mistaken for Laminaria digitata, while non-
digitate forms of H. nigripes can be mistaken for S. latissima
(Longtin and Saunders, 2015). Therefore, non-digitate kelps

identified as S. groenlandica could be either S. latissima or
H. nigripes, while digitate kelps identified as L. digitata could be
H. nigripes. Our best efforts were done to separate these records
to model the predicted distributions. Initially, H. nigripes and
L. digitata occurrence locations were used to build individual
models, but the resulting predictions were not robust or
biologically meaningful. The scant occurrence points led to
additional problems, such as adding a spatial bias in the model
with training and testing points not being independent. Hence,
these species were not included in the final analysis.

For records where it was not possible to trace an image or
identification, a decision was made to trust the source, but it
is acknowledged that there could be issues regarding taxonomic
identifications in these cases.

Kelp Occurrence
Occurrence data of kelp species were compiled using museum
data records of kelp specimens from the National Herbarium of
Canada at the Canadian Museum of Nature (CANA). Each was
accompanied by a picture of the specimen, enabling identification
if a record needed to be renamed according to the most updated
taxonomic nomenclature. We also compiled information from
datasets collected from field campaigns that took place between
2011 and 2020 in different regions of the Eastern Canadian
Arctic (North Baffin Island, Hudson Strait, Roes Welcome Sound,
Foxe Basin, Baffin Bay, Davis Strait, Labrador Sea, and Ellesmere
Island). Divers and drop cameras were used to take pictures
and/or make videos along transects to identify kelp (see details
in Supplementary Table 1). To complement this dataset and
increase the number of occurrence points, biodiversity databases
such as the Global Biodiversity Information Facility (GBIF1)
and Ocean Biogeographic Information System (OBIS2) were
used. Additionally, a literature search was done to complete
occurrence records in places where there were gaps in the
information already gathered (Northeastern and Southwestern
Greenland, Svalbard, and some regions of the Barents and White
seas) (Borum et al., 2002; Hop et al., 2016; Schoenrock et al.,
2018; Filbee-Dexter et al., 2019; Ronowicz et al., 2020). We
also contacted kelp experts (e.g., G. Saunders) who provided
occurrence records from their lab databases (Supplementary
Figure 1, but also see Supplementary Table 2 for the
complete raw dataset).

To limit over-prediction, duplicate records were removed
and only a single presence record was retained for each grid
cell (see Section “Environmental Data” for details on grid size).
Occurrence points were considered at the same resolution as
the corresponding environmental layers (García-Roselló et al.,
2015), and data were rarefied to provide an unbiased sample
of points using the SDMtoolbox in ArcGIS (Brown et al.,
2017). This was calculated using the ‘Spatially Rarefy Occurrence
Data for SDMs’ tool, where spatially autocorrelated occurrence
points are removed. All points were verified to ensure that
they were in sea grids. Kelp normally grows along the coast in
the intertidal zone down to depths of approximately 30–40 m

1www.gbif.org
2www.obis.org
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FIGURE 1 | Map of the Arctic and the focal area for this study. (A) The Arctic region is shown in yellow with the focal area of the study highlighted with a green
polygon. Presence data points used in the ensemble model are shown as pink circles and purple squares (for details on the complete set of presence points
included for each species see Supplementary Figure 1). (B) The study area shows the recent Arctic field campaign collection points (purple squares) for kelp
coverage data used in the Random Forest and presence points for ensemble models (for details on sampling sites see Supplementary Table 1). Regions
discussed in the text are labeled.

(Wernberg et al., 2019). However, some occurrences were located
within inland grids. For these occurrences, any that were up to
two grid cells inland were moved to the closest sea grid using
the Near Proximity tool in ArcMap v10.2.2. Any points further
inland were removed from the database.

All retained occurrence points were then clipped to only
include those that were from Arctic environments (using the
Arctic region delimited by the Arctic Monitoring and Assessment
Programme, AMAP) (Figure 1A and Supplementary Figure 1)
to ensure that the data used for modeling was focused on cold-
adapted kelp populations. Populations that are distributed on
the extreme ends of their temperature ranges can have local
adaptations to marginal climatic conditions present in those
places, so this approach excluded occurrence data from southern
limits of these species that could skew the model (Angilletta
et al., 2006; Trivedi et al., 2008; Vale et al., 2014; Bennett et al.,
2015). Furthermore, the relative contribution of environmental
variables used can also depend on the geographic scale to
which the model is fit (Nyström Sandman et al., 2013). Models
that are fitted regionally have been shown to perform better
when the interest is to model marginal populations (Vale et al.,
2014; Guisan et al., 2017). This is because, for widespread
species, model accuracy can be reduced and distribution can
be overestimated due to different ecological preferences among

subpopulations within the species range (Stockwell and Peterson,
2002; Hernandez et al., 2006). This consideration is particularly
important in our case, since arctic kelp are part of arctic marine
biomes that consist of unique assemblages in polar waters
(Bringloe et al., 2020) and the species selected for this study are
known to have true arctic populations (Müller et al., 2009).

Kelp Cover
Previous and recent research campaigns across the Eastern
Canadian Arctic (Filbee-Dexter et al., 2021) collected kelp cover
data that allow habitat suitability and percent cover of kelp species
to be modeled and predicted throughout this region. Abundance
of kelp can be measured in several ways, with biomass per
area, number of individuals per area (i.e., density) and percent
cover being the three most common. Although biomass per area
provides the best measure of algal standing stock, most of the
data combined in the present study and used to estimate kelp
abundance were derived from videos or photographs of the kelp
canopy and seafloor. Because it is not possible to extract either
biomass or density reliably from photographs, percent cover was
chosen to maximize the number of sites for which data could be
obtained. All sampling campaigns collected video or still images
of the seafloor at comparable depths either by SCUBA diving
or using a drop camera or remotely deployed camera system
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(for further details on sampling campaigns see Supplementary
Table 1). Video transects were analyzed by taking frame grabs
(10 – 12 per transect) at regularly spaced intervals along the
video (∼20 – 30 s depending on total video time). Only high-
quality images with a clear view of the canopy or substratum
were used. Photographs were analyzed for percent cover of all
kelp species and other macroalgae using ImageJ (Schindelin
et al., 2012) and the point-count method to calculate percent
cover by overlaying 49 evenly spaced points on each image and
identifying the seaweeds (or substratum) under each point. In
some videos it was difficult to distinguish between L. solidungula
and S. latissima so these species were grouped into the single
category “Laminariaceae spp.”.

Environmental Data
Environmental data layers were used as input for modeling
habitat suitability and cover of kelp in the Eastern Canadian
Arctic. These layers were downloaded at a global scale from Bio-
ORACLE v2.13 (Assis et al., 2018b) and then cropped to the Arctic
region. Bio-ORACLE layers are created from pre-processed
global ocean re-analyses of a combination of satellite and in situ
observations to calculate monthly averages for present conditions
(roughly 2000–2014) (Assis et al., 2018b). The resolution of
these environmental layers was 5 arcmin (approximately 9.2 km
at the equator). A set of 9 environmental layers were initially
included to model the present conditions in the Arctic and
were composed of long-term mean values of minimum and
maximum records per year (except for surface temperature – see
explanation below) of variables at the maximum depth of the grid
cell and/or sea surface values. Environmental layers that were
included in the study were based on knowledge about variables
highlighted as being important limiting factors for kelp taxa and
that have been used in other modeling studies (Zacher et al.,
2009; Bosch et al., 2018). These variables included sea surface
temperature, sea surface salinity, ice thickness, bottom current
velocity, dissolved oxygen, photosynthetically available radiation
(PAR), and bottom minerals and nutrients (iron, nitrate, and
phosphate). A sensitivity test was done to identify a priori the type
of temperature layer that is most significant for kelp (the one that,
by itself, best explains known kelp distribution) by calculating
individual Generalized Linear Models for each species using
only minimum, maximum and mean sea surface and bottom
temperature. This analysis was limited to temperature layers since
it is the primary variable assumed to limit the distribution of
species (Spence and Tingley, 2020). Only maximum sea surface
temperature showed good predictor performance on its own and
was thus included in the set of predictors. Bathymetry and land
distance were obtained from Aquamaps4 (Kaschner et al., 2016) at
the same resolution as the Bio-ORACLE layers. These two layers
were used as masks for both modeling approaches (see below)
after the models were run and were used to filter out pixels that
were too deep or too far from land to have any real likelihood
of supporting kelp. Besides, these two variables are indirect
predictors, which are expected to be weaker at larger extents and

3www.bio-oracle.org/release-notes-2-1.php
4www.aquamaps.org/

are only appropriate for use at local scales (Austin, 2002; Nyström
Sandman et al., 2013). Fine-scale measured variables become
predictors with less predictive accuracy over a wider geographical
scale (Nyström Sandman et al., 2013). Any pixels deeper than
50 m or more than 15 km from the coastline were removed from
the final results. Supplementary Figure 2 shows the workflow for
environmental variables selection.

Modeling Approaches
Variable Selection
The inclusion of correlated variables may lead to errors in the
model and not correspond to real physiological tolerances of a
species (Marcelino and Verbruggen, 2015). Hence, collinearity of
the set of 9 variables was tested by applying a combination of
the Variance Inflation Factor (VIF) in R (Naimi et al., 2014) and
Pearson correlation coefficient (PCC) (Supplementary Figure 2).
The VIF method can detect hidden correlation structures that
are often not seen through pairwise correlations (Guisan et al.,
2017). After the stepwise elimination of highly inflating variables
using the selection criterion VIF > 10, some remaining variables
were still clearly correlated, and PCC (0.8) was applied. Only six
variables were thus retained for model predictions: (1) maximum
surface temperature, (2) mean surface salinity, (3) mean ice
thickness, (4) mean bottom iron, (5) mean bottom phosphate,
and (6) mean bottom current velocity (Supplementary Figure 2).

Note that after models were run, the variable importance
across models for each species were averaged and raw values
rescaled to range from 0 to 1 to compare and select the top few
most important variables.

Habitat Suitability: Ensemble Models
Predicted habitat suitability was calculated and modeled using
ensemble models with biomod2 v3.4.6 (Thuiller et al., 2020)
within R v4.0.3 (R Core Team, 2020). Five modeling techniques
known to be robust and perform well in this type of approaches
were run: Maximum Entropy (MaxEnt), Generalized Linear
Model (GLM), Random Forest (RF), Artificial Neural Network
(ANN), and Generalized Additive Model (GAM). Detailed
information on these models is available in Thuiller et al. (2020).

Prediction of suitable species habitat uses two types of
information as input: (i) occurrence data (species known
occurrence points) complemented with the generation of pseudo-
absence/background points, and (ii) environmental variables as
data layers. Model evaluation was done using cross-validation
with 70% of the occurrence points chosen randomly and used
to train the model and the other 30% to test it. Five replicates
of 1,000 random pseudo-absence points were generated to build
several sets of pseudo-absences to prevent sampling bias (Guisan
et al., 2017). The use of a smaller numbers of pseudo-absences is
suggested when there are limited numbers of presence points in a
species’ database (Barbet-Massin et al., 2012).

The five models used to build the final ensemble model
were run with default setting options. A complete set of default
options can be found in the biomod2 package under the function
‘Print_Default_ModelingOptions()’. Replicate model runs were
done five times, and the average was used as the final outcome of
the models, which was then converted to binary values of suitable
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and unsuitable habitat. This binary classification was based on
the maximum training sensitivity plus specificity threshold since
it is known to produce the most accurate predictions (Jiménez-
Valverde and Lobo, 2007; Liu et al., 2013). True Skill Statistic
(TSS), the Receiver Operating Curve (ROC), False Alarm Ratio
(FAR), Accuracy, and Success Ratio (SR) were used to assess
the accuracy of predictions (see Supplementary Table 3 for
more information on model evaluation metrics). Models with
a TSS score < 0.7 were excluded from the final ensemble
predictions as suggested as an evaluation metric quality threshold
by Guisan et al. (2017). This measures ranges from −1 to +1,
with statistically excellent model performance being indicated by
a minimum of 0.7 (Allouche et al., 2006).

Cover: Random Forest
Of the models used in the ensemble that can provide the
continuous numerical outputs needed to estimate kelp cover (%),
Random Forests are the least computationally expensive and tend
to be the most accurate (Li and Wang, 2013). Kelp cover was
modeled with this single modeling technique as it allowed for
many more repetitions to be performed than an ensemble model.
The same environmental layers used for the ensemble model were
used here to create 1,000 independent Random Forests, each
grown with 200 trees (i.e., branches). Results of each individual
Random Forest were trained on a random set of 70% of the
abundance data and tested on the remaining 30%. The cover
values per pixel for these 1,000 models were averaged to produce
the final results. Running this higher number of models allowed
for a more meaningful calculation of the variance in the cover
projected by the models.

An important difference between the continuous Random
Forest and the presence-only ensemble approach is that only
the cover values found within the study area (Figure 1A,
green box, and Figure 1B, purple squares) were used for the
Random Forests, such that the environmental data fed to the
Random Forests was restricted to this area as well. Projections
of kelp cover were presented only in the regions where habitat
suitability was predicted.

Future Projections
After running, testing, and validating predictive models of
current kelp habitat suitability and cover, these predictions
were projected into the future under global change scenarios.
Environmental layers representing future global change were
obtained from Bio-ORACLE v2.1 for the most extreme emission
scenario (RCP 8.5) for the years 2050 and 2100. Under this
extreme emission future scenario without climate policies,
increasing greenhouse gas emissions are projected to create a
median temperature anomaly of 4.9◦C relative to pre-industrial
levels by the end of the century (Riahi et al., 2007; Moss
et al., 2010) and an ice-free Arctic during the summer season
by 2050 (Hwang et al., 2020). All of the variables that were
used for running the models for present conditions were also
used for models that were projected into the future, with the
caveat that only temperature, salinity, ice thickness and current
velocity data layers changed for projected future scenarios
(Supplementary Figure 2).

RESULTS

Importance of Variables
Of the six environmental variables that were used as explanatory
predictors for habitat suitability and cover, each was, in
different proportions, included as one of the top four most
important predictors for at least one species and for one
of the models (Figure 2 and Supplementary Table 4).
Four environmental predictors (temperature, ice cover,
salinity, and phosphate) were selected for habitat suitability
predictions, but their relative importance varied by species.
Environmental predictors for cover were more variable
and included all six variables. Ice thickness and salinity
were the most important predictors for all combinations
of species and methodologies, together explaining up to
62% of kelp habitat suitability and 44% of kelp cover
(Figure 2 and Supplementary Table 4). Temperature and
phosphate were also important (mainly for habitat suitability),
while iron and current velocity were only important for
cover (Figure 2).

Looking at response curves of environmental variables
across all species for ensemble models, the most notable
link between variable importance in habitat suitability for
L. solidungula is that it decreases at a slower pace in regions
of greater ice thickness (together with S. latissima) and is less
tolerant to higher temperatures (Figure 3A). This differs to
the other species, where predicted habitat suitability is highest
in regions with less ice. This is most strongly pronounced
for A. clathratum, partially explaining why it is projected to
increase so much in future change scenarios. The response
curves for the Random Forest models (Figure 3B) tend to
be noisier than for the ensembles (Figure 3A), with multiple
local optima per species and variable. Generally, the Random
Forests predict higher percent cover for Laminariaceae than
for the other species. This is due to the higher percent cover
values in the raw data and it should be noted that this is a
different scale than the binary presence/absence results of the
ensemble models.

Predicted Suitability
The area of projected present-day suitable habitat for
L. solidungula is the highest of the four modeled species at
269,000 km2, while the lowest is for A. esculenta at 183,000 km2.
Almost all of the study area is predicted to be suitable for at least
one of the species modeled, with the exception of James Bay,
where none of the kelps are predicted to be present. In total, the
estimated area of suitable habitat considering all modeled species
in the Eastern Canadian Arctic was 312,000 km2.

Habitat suitability throughout the Eastern Canadian Arctic
is projected to increase for all modeled species except for
L. solidungula (Figure 4). The greatest gain in range of suitable
habitat is projected for A. clathratum by 2100 at +39,000 km2

(Figure 4A), with expansion projected southward along the coast
of Hudson Bay, westward along the Arctic Archipelago seen in
the study region, and eastward along the north and west coasts
of Greenland. There are some minor losses in suitable habitat
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FIGURE 2 | Environmental variable importance (rounded in%, highlighting the% contribution of that variable that explains the modeled distribution) for species and
model runs (habitat suitability: Ensemble models, cover: Random Forest). Pictures of the species were taken from the herbarium of the Canadian Museum of Nature
(CANA) (details in Supplementary Table 4).

projected in the Gulf of Boothia, west of Baffin Island. Although
most of the coastal regions in Hudson Bay are projected to
become more suitable for A. clathratum in the future, there is no
suitable habitat projected in James Bay (Figure 4A).

For A. esculenta, a net gain in the range of suitable habitat
is predicted along the coast of western Greenland and westward
along the Arctic Archipelago (Figure 4B). Minor losses in suitable
habitat in Hudson Bay, Foxe Basin, and the fjords of Baffin Island
appear in the 2050 projection and increase in size by 2100. Of
the four modeled species, A. esculenta shows the lowest overall
change in projected suitable habitat, with a projected gain in area
of +33,000 km2 over the present area by 2050, but only a further
increase of+4,000 km2 by 2100.

Laminaria solidungula is projected to have the greatest loss in
suitable habitat by 2100 (−212,000 km2, Figure 4C). The 2050
projection shows that most of Hudson Bay and the upper arm of
the Northwest Passage will no longer be suitable for L. solidungula
while some new suitable habitat may occur along the west coast of
Greenland. Any reprieve observed in 2050 will, however, be lost
by 2100 when it is projected that all but the very northernmost
portion of this species’ current estimated extent will no longer be
suitable (Figure 4C). This makes the projected suitable habitat of
L. solidungula by far the smallest of the four species by 2100.

The other Laminariaceae species modeled in this study,
S. latissima, shows a contrasting trend relative to L. solidungula.
It is projected to have the largest gain in suitable habitat in
2050 at +64,000 km2 and the second largest gain in area of
suitable habitat, after A. clathratum, by 2100 at +17,000 km2.
The projected area of present day suitable habitat is the second
highest, although the large projected increases in the future
throughout much of the study area project that S. latissima
will have the largest area of suitable habitat in both 2050
and 2100 (Figure 4D). Declines are projected for some areas
(e.g., north of Baffin Bay, Foxe Basin and Hudson Bay) by

2100. In general, suitable habitat is projected to occur in the
northernmost reaches of the study area and is expected to persist
into the future. As the ocean warms and ice recedes, the model
projects that S. latissima will gain suitable habitat along much
of the west coast of Greenland and the northern arm of the
Northwest Passage.

Predicted Cover in Suitable Regions
Of the study area regions that are projected in the present day
to provide suitable habitats for A. clathratum, the densest cover
(%) is predicted along the northeast coast of Baffin Island, with
an average net cover of 5% (Figure 5A). As the range of projected
suitable habitat for this kelp expands in 2050, the density of cover
is predicted to increase along the north coast of Baffin Island
and somewhat within Foxe Basin, although the overall cover is
predicted to either remain the same or decrease throughout the
habitable range, with no overall change. The areas that show
decreases in cover in 2050 are projected to remain low in 2100,
but much of the coastline in the southern half of the study area
where suitable habitat is projected to expand is predicted to see
increased cover. However, these changes nearly balance out with
a net change of−1% in cover overall across the study area.

Much of the predicted expansion in suitable habitat for
A. esculenta in the northern regions of the study area (Figure 4B)
is not predicted to be accompanied by increases in cover, and the
current average cover in suitable habitats is only 2% (Figure 5B).
Increases in cover by 2050 are projected along the southern shore
of Hudson Bay, the northern arm of the Northwest Passage, the
east coast of Baffin Island, and the Labrador coast. By 2100,
the increased cover along the Labrador coast is projected to
persist, while that along much of the east coast of Baffin Island is
projected to increase further. Some minor decreases in cover are
projected within Hudson Strait by both 2050 and 2100. Overall,
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FIGURE 3 | Environmental response curves (generalized additive model) across all species and models. (A) Ensemble models for habitat suitability and (B) Random
Forest for percent cover (Mean ice thickness, maximum surface temperature, mean surface salinity, mean bottom iron, mean bottom phosphate, mean bottom
current velocity). Acla, Agarum clathratum; Aesc, Alaria esculenta; Lsol, Laminaria solidungula; Slat, Saccharina latissima; Lam, Laminariaceae. Note that values for
the X- and Y-axes differ between the (A) ensemble and (B) Random Forest model panels and that the species shown between the two modeling approaches differ,
as explained in the methods. The standard error for the GAMs are shown as dark gray ribbons.

an increase in cover of 1% is projected by 2050, but increasing
losses in Hudson Strait by 2100 reduce the gain back to+0%.

As described above, it was necessary to combine the model
results for Laminariaceae species. The projected suitable habitat

for these two species differs substantially (Figures 4C,D), with
L. solidungula predicted to all but disappear from the Eastern
Canadian Arctic by 2100, whereas S. latissima should see gains
in suitable habitat area. It is thus not surprising that combining
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FIGURE 4 | Predicted suitable habitat calculated using the results from the ensemble model projections of kelp presence in the Eastern Canadian Arctic: (A) Agarum
clathratum; (B) Alaria esculenta; and Laminariaceae spp.: (C) Laminaria solidungula; and (D) Saccharina latissima under present (left panel), 2050 (middle panel),
and 2100 (right panel). The presence data used in the models are shown with dots (left panel), and the colored text labels at the bottom of each panel show the total
surface area (rounded to the nearest 1,000 km2) projected to be suitable habitat for the given species. All values are based on an assumed depth limit of 30 m. For
clarity, all pixels within 15 km of land or 50-m deep are shown.
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these two species with very different fates into a single Random
Forest model produced quite convoluted results. The average
present-day projections for the cover of Laminariaceae spp. is
23%, which is by far the highest of all of the modeled species
(Figure 5C). Projecting to 2050 shows that most of the projected
habitable area will experience great increases or decreases in
cover, but only an overall change of +2%. By 2100, most of
the gains seen by 2050 will be reversed and the model projects
overall losses of cover, with an average of −2%. Note that
this projected loss is likely the effect of L. solidungula, having
losses that are proportionally greater than predicted habitat
gains in S. latissima. Unfortunately we cannot separate these
effects based on percent cover projections (Figure 5C), although
it may be inferred from the habitat suitability projections
(Figures 4C,D).

Predictions of percent cover from the Random Forest models
show higher average cover values (Supplementary Figure 3)
when results are not filtered by habitat suitability predictions
as shown here (Figure 5), although the northeastern part of
Baffin Island is the region where there is predicted gain in
percent cover for all species. The whole Eastern Arctic is
predicted to suffer considerable environmental changes (e.g.,
reduced ice thickness and sea surface salinity and increased
sea surface temperature) (Figure 6), but the northeastern coast
of Baffin Island shows the least pronounced changes. In this
region, maximum temperatures do not change as much as the
other regions and ice persists, indicating that the northeastern
coast of Baffin Island may act as a refugia with conditions
similar to present day.

Model Accuracy
As ensemble models are made up of the average of many models,
it is important to consider the quality of individual models,
potentially removing models from the ensemble that do not have
a TSS score of at least 0.7. Briefly, the only model that never failed
was RF, contrasting with MaxEnt that was the one that failed
the most. The complete set of model evaluation metrics across
species and models are provided in Supplementary Table 3, and
the range of scores for the various models that made up the
ensembles in Supplementary Figure 4A.

Rather than filtering the individual Random Forest cover
models based on TSS tests, all of the outputs from the validation
portion of the 1,000 model runs were averaged together by pixel
and the ranges in accuracy were documented (Supplementary
Figure 4B). In general, by comparing percent cover results and
model accuracy for all species, we observed that the Random
Forest models underperformed at predicting areas with cover
higher than 30%, and almost never predicted model covers
greater than 60% even though observed values of 100% cover exist
in the dataset (see summary of Supplementary Figure 4B). Thus,
actual percent cover throughout the Eastern Canadian Arctic is
likely much higher than the results shown here.

As seen in Supplementary Figure 5, S. latissima was the one
with higher values of standard errors given the proportion of
models that had <0.7 TSS values (Supplementary Figure 4A).
For the Laminariaceae there is near perfect agreement within
the ensemble models about the habitat suitability in the deeper

waters of the Labrador Sea and Baffin Bay. With the exception
of L. solidungula, there is also good model agreement about the
habitat suitability along the coast of Labrador.

DISCUSSION

In this study we show the predicted current status and changes
in suitable habitat and cover of the main kelp forest forming
species in the Eastern Canadian Arctic. In general, most of
the coastal regions of the Eastern Canadian Arctic, with the
exception of James Bay, provide suitable habitat for kelp
under current environmental conditions. Thus, the potential
extent of Arctic kelps is much greater than the breadth of
the heretofore sampled sites. This potential suitable habitat
of over 312,000 km2 in the Eastern Canadian Arctic alone
would significantly increase the current estimate for subtidal
macroalgae in the entire Arctic, which is 675,000 km2, depth
clipped 0–30 m (Krause-Jensen et al., 2020). It would also
likely increase the estimated global distribution of kelp forests,
which is currently estimated to be between 1,469,900 and
2,500,000 km2 (Krause-Jensen and Duarte, 2016; Filbee-Dexter,
2020; Jayathilake and Costello, 2020), because these global
estimates have underestimated the extent of suitable habitat in
the Arctic. This large extent of suitable habitat is likely due
to both the long coastline created by the many islands, fjords
and bays within the archipelago and surrounding continental
coasts (representing ∼10% of the world’s coastlines depending
on the resolution used), and the wide shallow coastal zone
that often extends 10 s of km from the shoreline within the
depth limits of macroalgae. Numerous uncertainties surround
this estimate and prevent direct comparisons between global
models, but we have considerable data for this region that has
been added. Our results highlight the importance of including
this vast region – which has not been counted in global models
- in our understanding and assessments of the global status and
trends of the world’s kelp forests.

There is strong evidence that the kelp extent in the Eastern
Canadian Arctic is undergoing significant changes. Suitable
habitat is predicted to increase under an extreme climate change
scenario (RCP 8.5) for most of the modeled species, except for
the Arctic endemic L. solidungula, which is predicted to lose
a considerable proportion of suitable habitat in most of this
region, giving place to species such as S. latissima that are not
exclusively Arctic species and are also distributed widely in more
temperate regions. We predicted up to 60% cover in areas of
suitable habitat in the present, with changes in patterns of cover
under future scenarios varying by kelp species, ranging from
40% gain to 40% loss in cover. Models show cover loss to be
greatest for Laminariaceae spp. mainly due to the associated loss
predicted for L. solidungula. Much smaller net average changes in
cover (from −2% to +2%) are predicted as changes among areas
largely balance out.

Variables
Sea surface temperature and ice thickness were retained for most
of the species and algorithms used, contributing up to 48%
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FIGURE 5 | Predicted cover (%) calculated in regions of suitable habitat using the results from the Random Forest model in the Eastern Canadian Arctic: (A) Agarum
clathratum, (B) Alaria esculenta, and (C) Laminariaceae spp. The text labels in the bottom right of the panels in the left column show the average % cover in suitable
habitat areas. The text column in the center and right columns show the average change in the % cover for that projected year. Note that these changes are not
large due to much of the suitable habitat having a projected change in cover of 0%. All values shown are based on calculations of an assumed depth limit of 30 m,
but for clarity, pixels are shown with a depth limit of 50 m or if they are within 15 km of land.

to species model predictions. This is in agreement with other
studies showing that temperature is one of the main predictors
that contribute significantly to explaining kelp distribution (Assis
et al., 2016; Jayathilake and Costello, 2020; Krause-Jensen et al.,

2020). Kelps are sensitive to warming temperatures, which can
often be a stressor at warm range edges along temperate coasts
(Duarte et al., 2018; Wernberg et al., 2018; Filbee-Dexter et al.,
2021), and we have shown that, in our study, L. solidungula was
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FIGURE 6 | Top three environmental predictors used in kelp models. These layers have been modified from the original source (Bio-ORACLE v2.1; Assis et al.,
2018b) to show changes through time in mean ice thickness, mean sea surface salinity, and maximum sea surface temperature.

the species with the greatest sensitivity to higher temperatures
(which translates later into the species having the highest
predicted loss in area). However, many kelp species in the
Arctic experience temperatures close to their lower thermal
limit and demonstrate improved recruitment and growth under
1–3◦C increases (Filbee-Dexter et al., 2019). Such responses will
vary across kelp species and subpopulations (Bringloe et al.,
2020), with more cold-adapted species, such as A. esculenta
and L. solidungula, becoming limited when temperatures exceed

10◦C. Changes in temperature translate into loss of sea ice, but
it is difficult to predict with certainty how these changes will
affect kelp given that the rate of change in sea ice extension may
be collectively underestimated by climate models (Peng et al.,
2020). In addition to the direct relationship with warming, the
presence of sea ice can have a direct mechanical effect on kelp.
Sea ice thickness can limit distribution due to ice abrasion and
changes in light exposure (Conlan et al., 1998; Wiencke, 2009;
Clark et al., 2013). Our results show that L. solidungula is the
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species with greatest tolerance to the presence of ice and regions
where ice persists under climate change scenarios are likely where
this species will find refugia. Although we used a common depth
cut-off in the distribution models, the presence of thick sea ice
has been shown to limit the lower depth limit of kelps (Krause-
Jensen et al., 2012), potentially resulting in overestimation of areal
extents in the more northern regions in our study area.

Salinity was also among the top three variables explaining
the distribution of kelp. Melting ice and glaciers can reduce
salinity and this increase in fresh water can be an important
stressor for kelp (Spurkland and Iken, 2011; Traiger and Konar,
2018), negatively affecting osmotic and ionic levels as well as
the photosynthetic apparatus (Kirst, 1990; Kirst and Wiencke,
1995). This stress can also affect early life stages, and thus the
complete kelp life cycle (Lind and Konar, 2017). Consequently,
kelp populations could be highly impacted by the predicted
changes in salinity in the Hudson Bay region under climate
change scenarios, given that it is known that river discharge in
the region can influence the system (Déry et al., 2018).

A considerable proportion of the percent cover for all species
was also explained by iron (up to 29% of variable importance).
Iron is an essential nutrient for primary production and may
be a limiting factor in marine systems, including macroalgae
(Price, 1968; Johnson et al., 1997; Anton et al., 2018). For
consistency, the same environmental variables were used in both
modeling approaches when results from the two methodologies
were merged. However, the scale at which processes act may
differ, affecting the most relevant variables explaining suitability
as compared to cover. We think that iron may play an important
role in predicting abundance (% cover) at a local scale but have
less of a role in predicting the general distribution of the species
(at a broader scale). Iron deficiency can decrease growth of
certain algae (Miller et al., 2016; Shao et al., 2020; and references
therein). However, iron-related experimental work has been best
studied for phytoplankton, and much less-so for multicellular
macroalgae (Suzuki et al., 1995; Miller et al., 2014). That being
said, iron has been shown to play a very important role in the
growth, reproduction, gametogenesis, and pigment synthesis of
Laminaria and Saccharina spp. (e.g., Motomura and Sakai, 1984;
Suzuki et al., 1994; Lewis et al., 2013; Iwai et al., 2015).

Originally, there were variables that were not retained in the
models since they were highly correlated (e.g., phosphate was
highly correlated to nitrates). Thus, PAR, dissolved oxygen and
nitrate could also explain the distribution/cover of kelp, but their
roles cannot be distinguished from the other variables.

Habitat Suitability
A northward expansion of habitat suitability is predicted for all
species, except for L. solidungula. This general pattern can be
largely explained by the increase in temperature and decrease
of sea ice to the north, creating more suitable habitat. This
northward expansion is in accordance with historical trends and
models for subtidal Arctic macroalgae with past environmental
predictions as shown by Krause-Jensen et al. (2020). They
predicted that comparing past (1940–1950) with present (2000–
2017) conditions would show a gain in habitat suitability in our
study area, mainly situated in northern Hudson Bay and around

Baffin Island. This seems to be the general trend from the past to
the present, with further northward expansion in the future, as we
show here, potentially accelerating due to global change-related
temperature increases. However, although not considered in our
region of study, local stressors and regional variations (and not
only global drivers) may affect kelp forest dynamics (Krumhansl
et al., 2016; Krause-Jensen et al., 2020).

The case of L. solidungula differs from the other kelps as
models predict a very high loss of area of suitable habitat (−79%
suitable habitat in 2100 compared to predicted present habitat).
A possible explanation is that L. solidungula is a truly Arctic
species occurring in cold water masses near the freezing point
(Hooper, 1984) and even the most southern populations are
adapted to small annual temperature ranges (Müller et al., 2009).
Our results for L. solidungula agree with the work by Müller
et al. (2009), who predicted extensions in northern areas without
permanent ice cover and retreats in Hudson Bay and southern
Baffin Island, Labrador and Newfoundland. The other three
species display broader distribution patterns that could allow
them to have more plastic physiological responses to warmer
temperatures (Bartsch et al., 2008). In addition, L. solidungula
can withstand light limitation for long periods (Dunton and
Schell, 1986), depending only on photosynthetic radiation during
ice break-up at intermediate ice concentrations (Bonsell and
Dunton, 2018). Hence, light would not be a limiting factor for
its predicted northward extension whereas the other species
would benefit from earlier ice break-ups for their photosynthetic
radiation requirements. At the same time, as an Arctic endemic
species predicted to lose habitat in more southern regions,
L. solidungula may not have many other northern locations to
where it could expand.

In general, James Bay was not predicted to provide suitable
habitat for any of the modeled kelp species, which may be
explained by the particularities of the region relative to the rest of
the assessment area. James Bay is characterized by considerable
freshwater runoff from the surrounding land mass, together with
a great amount of river borne sediments, with mud bottoms
dominating most of the bay (Stewart and Lockhart, 2005; Nozais
et al., 2021). It is generally shallow (rarely deeper than 50 m)
and has historically had vast subtidal meadows of eelgrass,
Zostera marina, along its coastlines (Stewart and Lockhart, 2005).
Current and future salinity conditions likely play a major role in
creating environmental conditions that are currently and will not
in the future be suitable for kelp. As highlighted in the results
and in Section “Variables,” salinity is one of the most important
variables that explain kelp distribution, and kelp tend to have
limited development and survival in regions with low salinity
(Taylor, 1954).

Only Arctic populations of kelp species were included as
model inputs, which could be a factor affecting the predicted
patterns. The four kelp species considered in this study are known
to have a boreal/Arctic distribution (Filbee-Dexter et al., 2019;
Wernberg et al., 2019). Modeling populations that are adapted
to colder environments should more accurately predict the
distribution of these algae in the study region. One assumption
of SDM is that species observations are suited to the model and
aim of the study (Guisan et al., 2017). In other words, selection
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criteria for species observations must correspond to the question
to be addressed. We wished to make predictions of the current
distribution pattern of Arctic populations and in the future
under a global change scenario. Marine benthic ecosystems in the
Arctic may have evolved as Arctic assemblages rather than being
an extension of cold-tolerant flora from temperate ecoregions
(Bringloe et al., 2020). Given that Arctic macroalgae seem to be
characterized by populations that are genetically distinct from
conspecifics in less northern areas (Bringloe et al., 2020), focusing
on Arctic populations seemed the logical choice.

Cover
Net changes in kelp cover through time generally balanced out
in our predictions (increasing in some regions while decreasing
in others at a similar pace and extension). This suggests that
although the overall suitable habitat for kelp is expanding, local
or regional drivers of kelp abundance in the Eastern Canadian
Arctic are predicted to display a more mixed response to climate
change. Interestingly, the regions where all species are predicted
to gain some percent cover is in the northern sections of Baffin
Island, where predictions of climate change in the Eastern Arctic
region are considered to change less drastically compared to the
other locations in the study regions. For example, the decline in
sea ice cover has been relatively slow over the past few decades
(Stammerjohn et al., 2012), meaning this region could act as a
refugia for kelp and thus is likely important for endemic species.

Kelp cover can be a proxy measure for kelp biomass,
individual size and productivity. The pattern of regional increases
and decreases in abundance agrees with trends at a global scale
from a time series of kelp abundance over the past half-century
described by Krumhansl et al. (2016). They found no detectable
change in kelp abundance in 35% of the global ecoregions
assessed in their study, and decreases in kelp abundance for
38% of ecoregions, with proportional changes in the Arctic
ecoregions they examined being positive but very close to zero.
Nevertheless, Arctic ecosystems were largely underrepresented
in the ecoregions included in this global analysis (only Beaufort
Sea and East Greenland Shelf were among the 34 ecoregions
examined), making it difficult to know if this pattern is applicable
to our assessment region. In our study area, Laminariaceae spp.
were predicted to decline the most in average cover (−2%).
This could be because L. solidungula, which will experience
more suboptimal conditions, is driving the overall trend for
Laminariaceae spp. In contrast, our estimations of little to no
change in kelp cover do not agree with those of increased kelp
abundance in the Arctic measured in the field (Krause-Jensen
et al., 2012). It is possible that the geographic and oceanographic
complexity of the region, with resulting gradients in nutrients,
salinity, sea ice polynyas and varying seafloor substrata create
a complex regional pattern of kelp abundance in the eastern
Canadian Arctic, that results in localized regions of gains and
losses in abundance.

Model Limitations
We chose ensemble models to use a more inclusive methodology
that uses the average from a set of models rather than results
from any single model. We found this approach to be the
most robust for addressing our questions, although every model

has its limitations to consider. SDM is a correlative approach
incorporating only environmental information related to the
species’ known occurrence. This, in some ways, disregards the
physiology of the species. Work by Gamliel et al. (2020) has
suggested that when physiology is incorporated in SDMs, model
predictions display smaller changes in distributions, translating
this into smaller range shifts than previous predictions. This
further supports our choice of using only Arctic distributional
data. One method of including organismal physiology in this type
of analysis is by integrating macroalgal phenology to improve
predictions (Chefaoui et al., 2019), but this was beyond the scope
of the current work.

For our study, we also used different methodologies, each with
distinct assumptions and considerations that need to be taken
into account, to address the two different aspects of distribution
and cover. For example, the exact regions and data points used
differed between methodologies. Because the ensemble model
used presence data and environmental layers for the full Arctic
range, whereas the Random Forest models were restricted to
abundance data that were collected in situ from sites in the study
area accessible by divers, the latter did not include data from
areas with high ice thickness. In contrast, data for the ensemble
models included museum records from CANA that specifically
sampled from under the ice. In our study, the importance of
different environmental layers varied depending on the modeling
approach. These differences can be related to the scale at which
species respond to the environment, and thus the resolution at
which the species - environment relationship is analyzed can
confound comparisons (Mertes and Jetz, 2018). In addition,
the extent of the study area can change the importance of an
environmental variable (Nyström Sandman et al., 2013; Guisan
et al., 2017). Thus, the differences found between our two
modeling approaches can be related to the scale of the process
being modeled (cover predicting results at a local scale vs. habitat
suitability predicting at a regional/global scale).

Low performance of some models can be explained by
these kelp species having widespread distributions. Possible local
and/or regional adaptations can result in poorer performing
models since more specific responses (at the physiological
level for example) can be related to processes happening in
the local environment (in a polar environment for example)
(Stockwell and Peterson, 2002; Nyström Sandman et al., 2013).
We endeavored to minimize this effect by only using occurrence
points from Arctic populations (see above), although some
models nonetheless had low performance. This discrepancy could
be related to the relationship between distribution extent and
niche ranges, since better predictions are expected from species
with narrow niches (Nyström Sandman et al., 2013). Another
explanation could be related to the diversity of algorithms and
base assumptions for each model included in the ensemble
method. The data included in each model (occurrence data
points and number of pseudo-absences/background) was the
same for all algorithms to standardize inputs. However, the
number of absences, pseudo-absences, or background data that
are appropriate for inclusion in a given model has a degree of
uncertainty since pseudo-absences do not correspond to true
absences, and the assumptions behind each model can influence
outcomes (Sillero, 2011).
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Perspectives
Kelps are foundation species that form important marine
habitats. As such, the predicted distribution of these algae
not only highlights the distribution of this foundation species
group, but also underlines their likely ecological importance
in this under-studied region. The predicted expansion of kelp
species to more northern regions in the Arctic may thus
create new opportunities to the potential benefit of other
species that may arrive through range expansion or as novel
introductions (i.e., non-indigenous species). Changes in habitat
and cover of these species may also trigger changes to the
entire ecosystem since they are very important food and habitat-
provision resources for many benthic organisms (Dunton and
Schell, 1986; Debenham, 2005). Effects could be extended beyond
where kelps grow. For example, a large proportion of kelp
production is exported to deeper waters (estimated at 82% of the
primary productivity), becoming a very important food source
where it settles and potentially plays an important role in marine
carbon sequestration, calculated to exceed that sequestered by
angiosperms in coastal habitats (Krause-Jensen and Duarte, 2016;
Krause-Jensen et al., 2018).

Native boreal, non-indigenous, and invasive species could
likely expand their ranges as these high-latitude regions become
more suitable due to global change (Goldsmit et al., 2020)
such that species from temperate regions are expected to
have greater success in establishing if they are introduced
to high-latitude regions (Krause-Jensen and Duarte, 2014).
In addition, a recent horizon-scanning exercise for marine
invasive species in the Hudson Bay complex identified
macroalgae as one of the taxonomic groups with highest
risk of invasion in the region (Goldsmit et al., 2021). Invasive
macroalgae have been found to produce ecological impacts
even when they are outside of their thermal range of origin
(at the lower limit of the known minimum temperatures in
their native ranges) (Bennett et al., 2021). Together, these
characteristics suggest that the region could face major risks in
the near future.

More than just environmental factors can affect kelp presence
and abundance (our models show regions of habitat suitability
and cover considering only the relationship with environmental
predictors). These predictions could be highly affected by
biological factors and interactions such as grazing and kelp
colonization. The presence of herbivores such as urchins can
greatly modify the prevalence of kelp (Estes and Duggins, 1995),
but grazing vulnerability varies according to kelp species, size,
and age, among other factors (Gagnon et al., 2005; Ng and
Micheli, 2020). Additionally, kelp are generally considered to
have a restricted dispersal capacity modified by ocean circulation
and currents (Brennan et al., 2014), although many factors
related to the environmental conditions, time and disturbance
may play a very important role in dispersal and colonization
(Reed et al., 1992, 1997). These processes are highly variable
among kelp species; for example, A. esculenta is considered to
be more of an opportunistic species, is capable of long distance
dispersal, and is often the first species to colonize disturbed
sites (Vadas, 1968; Himmelman et al., 1983). Colonization of
newly suitable habitat by kelp forests, therefore, requires that

kelp propagules be transported to these areas, and this process
will vary based on source population proximity and species
composition, as well as environmental factors and direction of
the currents. Including biological processes such as herbivory
and recruitment in modeled predictions was beyond the scope
of our work, hence the importance of interpreting our analyses
only in terms of habitat suitability predictions which consider
environmental variables. Future work should focus on combining
our predicted habitat suitability with an examination of these
important biological processes, in order to move from habitat
suitability to a possible future realized extent of kelp forests in
the Eastern Canadian Arctic.

CONCLUSION

The contemporary global decline of kelp forests was the main
subject of a recent horizon scan of global biological conservation
issues (Sutherland et al., 2020). In this context, the results of our
study highlight the need for appropriate management actions for
this natural resource, as suggested by other researchers (Filbee-
Dexter et al., 2019; Krause-Jensen et al., 2020). There remains,
however, a great need for the collection of additional field
data in the Canadian Arctic (including the Eastern Canadian
Arctic) to better understand the current extent of kelp forests
in the region. However, our findings highlight that kelp in
this region could account for a considerable proportion of the
total kelp forest area globally, but that it has been historically
underestimated. Although current predictions are somewhat
uncertain, the possible expansion of kelp forests should provide
new habitats for fish and other marine organisms, increased
carbon storage, and a suite of other ecosystem services along
Arctic coastlines. This finding may be a silver lining of a
changing climate because the appearance of kelp forests along
the coastlines of the Eastern Canadian Arctic will bring with
them an increase in primary productivity and potentially other
commercially valuable species (Filbee-Dexter et al., 2019; Eger
et al., 2021). It may therefore be advisable that marine resource
managers in the areas where increased habitat suitability of kelp is
predicted be ready to manage and develop this resource, whether
it be due to increases to existing stocks or the novel appearance of
these species and the ecosystems for which they are a foundation.
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