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Nanoscale devices - either biological or artificial - operate in a regime where the usual assumptions
of a structureless, Markovian, bath do not hold. Being able to predict and study the dynamics of
such systems is crucial and is usually done by tracing out the bath degrees of freedom, which implies
losing information about the environment. To go beyond these approaches we use a numerically
exact method relying on a Matrix Product State representation of the quantum state of a system
and its environment to keep track of the bath explicitly. This method is applied to a specific example
of interaction that depends on the spatial structure of a system made of two sites. The result is
that we predict a non-Markovian dynamics where long-range couplings induce correlations into the
environment. The environment dynamics can be naturally extracted from our method and shine a
light on long time feedback effects that are responsible for the observed non-Markovian recurrences
in the eigen-populations of the system.

I. INTRODUCTION

Real life quantum systems are never truly isolated from
the rest of the Universe and are typically exposed to a
macroscopic number of fluctuating degrees of freedom
that constitute their often unobservable - and invariably
uncontrollable - environments [1, 2]. Weak interactions of
a quantum system with spectrally broad and dynamically
featureless environments lead to so-called Markovian dis-
sipation in which energy relaxation and decoherence can
be accurately described by a time-local Redfield or Lind-
blad master equation [1–3]. In these ‘leaky’ systems, the
perturbations of the environment caused by the system
rapidly and irreversibly propagate away, essentially re-
moving any trace, or ‘memory’, of prior interactions in
the way the environment acts locally on the embedded
system (see Fig. 1). Acting always in the instant and hav-
ing no dependence on the shared history of the system-
bath interactions, Markovian noise is thus very difficult
to control, and most strategies to combat its unwanted
effects simply aim at its total suppression.

However, in functional nanoscale materials the divid-
ing line between the system and environmental excita-
tions becomes less clear, and large and long-lasting cor-
relations between them can build up over the duration
of a process. In the presence of these non-equilibrium
conditions, these correlations can, inter alia, lead to
non-classical work extraction, energy transport and vi-
olation of detailed balance [4–6]. The investigation of
how open system-environment correlations influence and
might even help optimize energy harvesting, transport
and transduction processes in devices operating at the
few-quanta level is an important research line in the bur-
geoning field of quantum thermodynamics [7, 8].

Nowhere are these concepts of more relevance than in
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FIG. 1. Schematic representation of (a) a Markovian environ-
ment and (b) a non-Markovian environment. In a Markovian
environment, excitations created through the interaction with
the bath propagate away and don’t influence the system. By
contrast, in the non-Markovian case, these excitations can
have a backaction at a later time on a different part of the
system.

the protein-based ‘nanomachines’ that Nature has devel-
oped to perform the key optoelectronic tasks of photo-
synthesis. For example, the pigment-protein complexes
(PPC) that perform the electron transfers at the core of
photosynthesis are composed of photoactive pigments in
interaction with a highly structured environment made
of a protein scaffold that tunes the electronic and vibra-
tional properties of the molecular network. The structure
of such a ‘reaction center’ (RC) is shown in Fig. 2. The
electron transport (ET) chain is shown on the RHS of
Fig. 2, beginning at the ‘special pair’ of chlorophyll and
terminating at the quinone acceptors (not shown). In
higher plants, the hole left behind by electron transport
is ultimately refilled by the splitting of water and evo-
lution of oxygen [9]. This requires the RC is turn over
four electrons in a concerted action, a remarkable feat of
multi-carrier photocatalysis.

Coordinating multiple charge dynamics in structures
with poor dielectric screening and typical lateral sizes of
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only 5−6 nm requires exquisite spatio-temporal control of
energy transfer and electron transport, including mecha-
nisms of feedback to ensure the processes occur in the cor-
rect order without waste of excited state energies. While
the role of the structured environments found PPCs has
been widely discussed in terms of transport efficiency and
the possible support of coherent electronic dynamics in
light-harvesting [10–13], the signalling and potential ef-
ficiency gains from spatio-temporal feedback (FB) and
heralding feedforward (FF) processes in the environment
has received rather scant attention. However, first princi-
ples methods based on crystal structures do show that the
large secondary protein elements that span the electron
transport chain in the RC could ‘communicate’ the initial
and final sites of the electron transport, and may act to
prevent accumulation of further charges [14]. Elsewhere
in biology, the idea of dynamical structural changes as a
way to regulate processes is well established, especially
in the field of allosteric regulation [15, 16]. Considered
as an open quantum system problem, the existence of
strong spatio-temporal correlations necessitates a man-
ifestly non-Markovian description of the dynamics, as
the key physics is encoded in the retarded ‘action at a
distance’ that results from previous system-bath interac-
tions, energy exchange, etc. In this article we develop a
model that allows us to explore these effects in a fully
quantum mechanical description which opens a route to
establishing the phenomenology of non-Markovian dissi-
pation in the regime where system dynamics, relaxation
transitions and environmental signalling occur on sim-
ilar timescales. By first identifying and understanding
the underlying microscopic physics behind these phenom-
ena, we hope to build up a conceptual base that could
be used to exploit these effects, including any explicitly
non-classical effects, in artificial nanoscale devices.

However, capturing non-Markovian dynamics has
proven to be quite challenging because of the large
amount of information that usually needs to be kept
about the system’s dynamics and the large number of
(often continuous) modes in the environment which sub-
jects such problems to the curse of dimensionality : the
number of possible quantum states grows exponentially
with the number of modes of the environment. Moreover,
non-Markovian dynamics are also non-perturbative and
their study thus requires the use of advanced numerical
methods. There are two broad approaches to this prob-
lem, reduced density matrix methods and wave function
approaches. The former does not keep a microscopic de-
scription of the environment. The only information kept
about the environment is its correlation function – or
equivalently its spectral density. The evolution of the
system’s density matrix can then be described for exam-
ple, by an approximate weak coupling master equation
[1], or exactly using a process tensor [17] or a tensor
network representation of the influence functional as in
the Time Evolving Matrix Product Operator (TEMPO)
method [18, 19]. Indeed, a process tensor can be ex-
tracted from the TEMPO method [20] and this can lead

to still more efficient calculations [21]. The latter dis-
tinct approach relies on a wave-function representation
of the isolated joint system and keeps an explicit micro-
scopic description of the environment – but often with
an alternative description of its degrees of freedom. For
example, the Time Evolving Density operator with Or-
thonormal Polynomials Algorithm (TEDOPA) [22] maps
the continuum of independent modes of the environment
into a chain with nearest neighbours couplings. Al-
ternatively, the Multi-Layer Multi-Configuration Time-
Dependent Hartree (ML-MCTDH) method [23] relies
on a description of the environment degrees of freedom
with so called time-dependent single particle functions.
Both the reduced density matrix and wave-function ap-
proaches have gained numerical efficiency by using ten-
sor networks ansätze as their fundamental objects and
exploiting efficient contractions and compression tech-
niques.

In this paper, we present an extension of the TEDOPA
method to describe system-bath interactions that are
long-ranged even in the mapped chain topology. These
long-ranged interactions come in our model from a spa-
tial dependence of the phases of the coupling coefficients
between sites of the system and the environment. We de-
scribe the properties of these new couplings and how they
can be integrated in the usual Matrix Product Operator
(MPO) representation of the Hamiltonian in Sec. II C.
Notably, with this method the new tensors of the MPO
scale with the (small) dimension of the reduced system
and are independent of the (large) dimension of the en-
vironment. The time evolution is then performed on
a two-site system and its environment using a one-site
Time Dependent Variational Principal (1-TDVP) [24]
scheme with a Matrix Product State (MPS) represen-
tation of the wave-function. Standard tensor network-
based approaches, such as Time Evolving Block Decima-
tion (TEBD) [25], are formulated for local interactions
and can treat long-range interactions only at the cost
of an increased complexity (by increasing the number
of steps needed to perform the time evolution, for ex-
ample via the use of swap gates for TEBD [26]), thus
increasing its computational cost or decreasing its accu-
racy. Putting all these elements together, in Sec. III we
demonstrate regimes of the model where long time and
even periodic communication between the sites is medi-
ated by the environment.

II. METHODS

A. Model

We consider a 1-dimensional chain of N sites {α} in a
common 1-dimensional bosonic bath with modes charac-
terised by the wave-vectors k ∈ [−kc,+kc], where kc is
the environment cut-off wave-vector. The environment
dispersion relation is given by ωk = |k|c with c the speed
of the phonons in the bath. We restrict ourselves to the
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FIG. 2. Biological inspiration for our correlated bath model.
(Left) The protein structure of a nanoscale photosynthetic re-
action centre. Photoactive pigments are held rigidly by non-
covalent protein interactions that also tune their electronic
overlaps, interactions and excited state energies. The coordi-
nation of multiple cofactors by extended structures, such as
quasi-1d alpha helices, allows vibrational fluctuations to act
on different cofactors in a spatio-temporally correlated man-
ner. (Right) Structure of the cofactors active in charge sepa-
ration through quantum electron transport (ET). The oxida-
tion of water in photosynthesis requires four successful elec-
tron transports, and this multi-fermion process is regulated
through feed-forward (FF) and feedback (FB) mechanisms in-
duced by strong electron-hole interactions with the dissipative
protein scaffold.

single excitation subspace of the system described by a
Hamiltonian ĤS with nearest neighbour hopping.

Ĥ =ĤS + ĤE + Ĥint (1)

=

N∑
α=1

Eα |α〉 〈α|+
N−1∑
α=1

J (|α〉 〈α+ 1|+ h.c.)

+

∫ +kc

−kc
ωkâ

†
kâkdk +

∑
α

|α〉 〈α|
∫ +kc

−kc
(gαk âk + h.c.)dk

(2)

where âk is the annihilation operator of a bath mode of
wave-vector k, gαk = gkeikrα , with gk = g−k ∈ R, is the
coupling strengths between the system and the bath and
rα is the position of the site α.
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FIG. 3. Schematic diagram of the model under study. A
system composed of interacting sites is embedded into a sin-
gle bosonic environment. Each site couples differently to the
environment.

Here, the interaction between the excitation and the
bath depends explicitly on the position of this excitation
on the chain through the phases of the coupling constants
gαk . We call this type of coupling a plane-wave coupling.
A schematic of the model is presented in Fig. 3.

In the rest of the paper, we consider a system made
of two degenerate sites with an initial state where the
system and its environment are decoupled and the bath
is empty

|ψ(t = 0)〉 = |S(0)〉
⊗

k∈[−kc, kc]

|0k〉 , (3)

where |S(0)〉 is the initial state of the system and |0k〉
represents the vacuum state of the mode k of the bath.
Adding extra system sites does not add any complexity
to our method, but for simplicity and ease of results in-
terpretation in this paper we only present results for two
system sites. As we will explain in Sec. II B, the empty
bath can also be used to effectively describe a Gibbs state
at temperature T , and so we are able to extend our re-
sults to non-zero temperature. Even though the method
presented in this paper works for any initial state of the
system, in Sec. III and IV the initial state of the system
is chosen to be the highest energy eigenstate (i.e. upper

eigenstate) of the system Hamiltonian ĤS .

In order to study the time evolution of the system and
its bath, we use a numerically exact method based on the
implementation of the Time Dependent Variational Prin-
cipal (TDVP) with a tensor network formulation using a
MPS ansatz for the quantum states [27]. This method
requires a discrete representation of the environment in
order to write the MPS and to write the Hamiltonian as
a MPO.

B. Environment Chain Mapping

Instead of sampling k-modes of the environment to
keep only a discrete set of modes, we use a chain map-
ping approach that enables us to keep all the relevant
bath modes easily and at the same time generate a
discrete representation of the environment [22, 28, 29].
This method consists of using a unitary transformation
defined through a family of orthonormal polynomials
that transforms a continuous bosonic environment into
a semi-infinite chain and is known as Time Evolving
Density matrix with Orthonormal Polynomials Algorithm
(TEDOPA).

1. Zero Temperature

We separate positive and negative wave-vector modes
and apply to them two different chain mappings, and we

note b̂k
def.
= â−k. The bath and interaction Hamiltonians
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become

ĤE + Ĥint =

∫ +kc

0

dkωk(â†kâk + b̂†k b̂k)

+
∑
α

|α〉 〈α|
∫ +kc

0

dkgk

(
eikrα(âk + b̂†k) + h.c.

)
.

(4)

We now introduce two unitary transformations

âk≥0 =
∑
n

Un(k)ĉn , (5)

b̂k≥0 =
∑
m

Vm(k)d̂m , (6)

where the matrix elements are

Un(k) = Vn(k) = gkPn(k) (7)

where {Pn}n∈N are orthonormal polynomials with re-

spect to the measure µ(k) = |gαk |2 = g2
k

def.
= J(k) (which

is the bath spectral density) such that P0(k) = 1 and∫ +kc

0

Pn(k)Pm(k)J(k)dk = δn,m . (8)

The nature of the polynomials thus depends on the spec-
tral density of the bath. We chose an Ohmic spectral den-
sity with a hard cut-off (here at kc) J(k) = 2αkH(kc−k),
where α is a coupling strength and H the Heaviside step
function, as it is neither a trivial (i.e. flat) nor an exotic
spectral density that would obscure the effects induced by
the spatial correlations. Moreover, this spectral density
is commonly used in biological contexts [30]. In that case,
the Pn are Jacobi polynomials. Another useful property
of these polynomials is that they obey a recurrence rela-
tion

Pn(k) = (k −An−1)Pn−1(k) +Bn−1Pn−2(k) , (9)

where An is related to the first moment of Pn and Bn to
the norms of Pn and Pn−1 [22]. This recurrence relation
can be used to construct the polynomials with the condi-
tions that P0(k) = 1 and P−1(k) = 0. We can then map
the bath Hamiltonian using the unitary transformations
from Eqs. (5)-(6) to two tight-binding chains with the
same on-site energies ωn and hopping energies tn:

ĤE =
∑
n

ωn(ĉ†nĉn + d̂†nd̂n)

+ tn(ĉ†nĉn+1 + ĉ†n+1ĉn + d̂†nd̂n+1 + d̂†n+1d̂n) . (10)

For the interaction Hamiltonian, we apply the same
procedure and make use of Eq. (9) and find that the
chains couple to the system with coupling coefficients
γn(rα) and γn(rα)∗

Ĥint =
∑
α

|α〉 〈α|
∑
n

(
γn(rα)(ĉn + d̂†n) + h.c.

)
(11)

S S

Un(k)

Continuous k-modes Discrete n-modes

γn(r)

γn(r)*

(a)

dE
dS dE

DMax

Wα Ĥ    
Ĥ|Ψ❭ = 

Wn

(b)

FIG. 4. (a) The unitary transformation Un(k) transforms a
continuous environment of uncoupled k-modes to semi-infinite
discrete tight-binding chains.
(b) Schematic diagram of the MPS representation of the wave
function of the system and the chain. The circles represent
individual tensors which rank is given by their number of
legs. The open legs correspond to physical Hilbert spaces
of dimensions dS for the system and dE for the environment.
The horizontal legs are virtual bonds related to the amount of
correlation between sites, their maximal dimension is DMax.
When a leg is shared between two tensors they are contracted
- i.e. summed over the corresponding index.

where

γn(rα) =

∫ +kc

0

dkJ(k)eikrαPn(k) . (12)

In preceding works, TEDOPA resulted in the system
being connected only to the first site of the chain. By
contrast, here the system is generally coupled to all the
sites of the chain, as represented in Fig. 4(a).

2. Finite Temperature

This chain mapping technique has been extended to de-
scribe finite temperature systems in a statistical mixture
as an equivalent zero temperature state vectors under
the name Thermalized - Time Evolving Density matrix
with Orthonormal Polynomials Algorithm (T-TEDOPA)
[24, 31]. It relies on allowing the bath to have negative
frequency modes to describe thermal fluctuations and us-
ing an alternative bath spectral density that captures
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the temperature dependence. To identify this new effec-
tive spectral density, we put the finite temperature bath
auto-correlation functions Cβ(r, t) for propagating and
counter-propagating modes in the form of a zero temper-
ature auto-correlation C∞(r, t).

The interaction Hamiltonian in interaction picture is

ĤI
int =

∑
α

|α〉 〈α|
∫ +kc

0

dkgk

(
ei(krα−ωkt)âk + h.c.

)
+
∑
α

|α〉 〈α|
∫ +kc

0

dkgk

(
e−i(krα+ωkt)b̂k + h.c.

)
(13)

=
∑
α

|α〉 〈α|
(
B̂1
rα(t) + B̂2

rα(t)
)
. (14)

Hence the bath correlation function for the propagat-
ing modes is

Cβ(r − r′, t) = 〈B̂1
r (t)B̂1

r′(0)〉B (15)

=

∫ +kc

0

dkJ(ωk)
(
nβ(ωk)e−i(k(r−r′)−ωkt)

+ (nβ(ωk) + 1)ei(k(r−r′)−ωkt)
)
(16)

where nβ(ωk) is the Bose-Einstein distribution and
β = (kBT )−1 is the inverse temperature. A more
detailed derivation can be found in Appendix A. We
could write the corresponding correlation function for
the counter-propagating modes which would be the same
except for the sign of the wave-number k. These two
correlation functions have, in addition to the usual
temperature-dependence β and time-dependence t, a
spatial-dependence r − r′ originating from the spatial-
dependence of the coupling coefficients {gαk } between the
system and the bosonic bath. Hence these correlation
functions contain more information (i.e. about space and
time) than the correlation functions usually encountered.
For zero-temperature, the correlation function reduces to

C∞(r − r′, t) =

∫ +kc

0

dkJ(ωk)ei(k(r−r′)−ωkt) . (17)

We want to rewrite Cβ(r − r′, t) in the same form as
Eq. (17), i.e. the integral of a spectral density times a
plane-wave phase factor. In other words, we want to find
a bath at zero T with a different spectral density but
with the same system dynamics as the finite T bath.

We recast the first term of Cβ(r−r′, t) in Eq. (16) such
that the argument of the exponential is the same as the
second term by sending k → −k, allowing for negative
frequencies (hence, ω−k = −ωk) and using the identity

nβ(−ωk) = −(nβ(ωk) + 1) . (18)

With this transformation we have, in a sense, double the
number of propagating modes. There are the propagat-
ing positive k modes with positive energies and the prop-
agating negative k modes with negative energies (coming
from the second term of the correlation function).

Finally, the bath correlation function for propagating
modes can be written

Cβ(r − r′, t) =

∫ +kc

−kc
dk Jext(ωk)(nβ(ωk) + 1)ei(k(r−r′)−ωkt)

(19)

with Jext is the spectral density with a domain ex-
tended to negative frequencies and antisymmetrized such
that Jext(−|ωk|) = −Jext(|ωk|). The same procedure
can be applied to the counter-propagating modes. We
can thus define orthonormal polynomials with the finite-
temperature spectral density

Jβ(k) = Jext(ωk)(nβ(ωk) + 1), (20)

which is always positive and continuously differentiable.
We define the unitary transformation to chain modes

âk =
∑
n

Uβn (k)ĉn for k ∈ [−kc,+kc] , (21)

b̂k =
∑
n

Uβn (k)d̂n for k ∈ [−kc,+kc] (22)

where Uβn (k) =
√
Jβ(k)P βn (k) and P βn (k) is a polynomial

of order n from a family of orthonormal polynomials with
respect to the measure dµ(k) = Jβ(k)dk, i.e.∫ +kc

−kc
P βn (k)P βm(k)dµ(k) = δn,m . (23)

With this set of orthogonal polynomials, we can map
the environment to two tight binding chains and a cou-
pling coefficient

γn(r) =

∫ +kc

−kc
dk Jβ(ωk)eikrP βn (k) (24)

between the system and the âk and b̂†k operators.

C. Hamiltonian MPO Formulation

To construct the MPO representation of a Hamiltonian
Ĥ which is made of a sum of local terms, we use a method
based on the recurrence relation presented in [32].

To define the kth tensor of the MPO, we have to de-
compose the Hamiltonian into a part that describes what
happens before the bond k (which is the bond connecting

site k and site k + 1) ĤL
k−1, after the bond k ĤR

k+1 and

at bond k
∑
a ĥ

L
k a ⊗ ĥRk a

Ĥ = ĤL
k−1 ⊗ 1̂Rk + 1̂Lk ⊗ ĤR

k+1 +
∑
a

ĥLk a ⊗ ĥRk a (25)

where 1̂Rk = 1̂⊗ . . .⊗ 1̂︸ ︷︷ ︸
N−k+1 times

and 1̂Lk = 1̂⊗ . . .⊗ 1̂︸ ︷︷ ︸
k times

. The last

term of Eq. (25) is an interaction Hamiltonian between
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the part of the system on the left of bond k and the one

on the right of bond k. Hence ĥLk a contains an operator

defined on the left of k and ĥRk a an operator defined on
the right of k (e.g. for a XY Z-Hamiltonian with nearest

neighbours couplings, we could have ĥLk a = JaŜ
a
k and

ĥRk a = Ŝak+1 with a ∈ {x, y, z}). A recurrence relation
between the right parts of the Hamiltonian at two con-
secutive sites can be defined:

ĤR
k

ĥRk
1̂Rk

 = Wk+1

ĤR
k+1

ĥRk+1

1̂Rk+1

 , (26)

with the matrices Wk defining the Hamiltonian MPO

Ĥ =∑
σ,σ′ ,w

W
σ1σ
′
1

1 w1
W

σ2σ
′
2

2 w1w2
. . .W

σNσ
′
N

N wN−1
|σ1 . . . σN 〉 〈σ′1 . . . σ′N | .

(27)

In Eq. (27) the σ and σ′ indices refer to the local Hilbert
spaces of the different parts of the system (i.e. sites and
chains modes) whereas the w indices relate to virtual
bonds between the different parts of the system. The
bath modes will be considered as extra sites where dif-
ferent kind of excitations (which couple to the excitation

living on the sites with the γαn
def.
= γn(rα) coefficients)

can live. We introduce a new set of commuting operators

{f̂α} such that |α+ 1〉 〈α| = f̂†α+1f̂α. Figure 4(b) shows
a schematic diagram of the MPO and how it contracts
with a MPS. The on-site tensor has a bond dimension
D = 2(α + 2) for the αth site and a physical dimension
(dimension of the local Hilbert space) dS = 2.

W1 =
(

1̂ J12f̂1 J12f̂
†
1 |1〉 〈1| |1〉 〈1| E1 |1〉 〈1|

)
(28)

and

W1<α≤N =

1̂ Jα+1αf̂α Jα+1αf̂
†
α 0 0

2(α−2)︷︸︸︷. . . |α〉 〈α| |α〉 〈α| Eα |α〉 〈α|
0 f̂†α
0 f̂α
1̂ 0

1̂ 0
. . .

...
0 0 0

1̂


(29)

with JN+1 N = 0 for the last system tensor. The chain
on-site tensor has a similar structure, but with a constant
bond dimension for each mode. The on-site tensor has
a bond dimension D = 2(N + 2) and, in principle, a
physical dimension d = ∞ that we truncate to a value
dE in our numerical treatment. The number of sites of

the two semi-infinite chains are also truncated at large
enough values Nm and N ′m, such that an excitation on
the chain does not have the possibility to reach the end
of the chain during the time evolution

W1≤n≤Nm =



1̂ tnĉ
†
n tnĉn 0 0 . . . 0 ωnĉ

†
nĉn

0 ĉn
0 ĉ†n
1̂ γ1

nĉn
1̂ γ1∗

n ĉ
†
n

. . .
...

1̂ γN∗n ĉ†n
1̂


,

(30)
with tNm = 0. The second chain tensors are identical

with d̂n′ and γn′(r)d̂
†
n′ instead of ĉn and γn(r)ĉn, where

n′ corresponds to ‘mirror’ site on the other chain. The
last tensor is

WN ′m
=



ωN ′m d̂
†
N ′m

d̂N ′m
d̂N ′m
d̂†N ′m

γ∗N ′m d̂
†
n′

γ1∗
N ′m

d̂n′
...

γN∗N ′m d̂n
′

1̂


. (31)

One might notice that the chain sites tensors have a
bond dimension D that is fixed by the number of sites
in the system N . This means that having a large envi-
ronment only increases the number of individual tensors
one needs but not their size. This result is central for
the tractability of this approach. The identity opera-
tors present on the diagonals carry out along the chain
the long range coupling coefficients such that they are
associated with the corresponding system site. Hence,
they allow a local representation of the Hamiltonian as a
MPO even though the interactions are long range across
the chain.

To illustrate how the Hamiltonian is recovered from
these tensors, we perform the calculation in the case
where there is only one site in the system and two modes
on a unique chain. In that case there are only three ten-
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sors:

W1 =
(
1̂ |1〉 〈1| |1〉 〈1| E1 |1〉 〈1|

)
, (32)

W2 =


1̂ t1ĉ

†
1 t1ĉ1 0 0 ω1t1ĉ

†
1ĉ1

0 0 0 1̂ 0 γ1
1 ĉ1

0 0 0 0 1̂ γ1∗
1 ĉ†1

0 0 0 0 0 1̂

 , (33)

W3 =


ω2ĉ
†
2ĉ2
ĉ2
ĉ†2
γ1

2 ĉ2
γ1∗

2 ĉ†2
1̂

 . (34)

The contraction of W2 and W3 gives a 5 × 1 tensor -
the same shape as W3 and the transpose of the shape of
W1

W2 ·W3 =


ω2ĉ
†
2ĉ2 + t1(ĉ†1ĉ2 + ĉ1ĉ

†
2) + ω1ĉ

†
1ĉ1

γ1
2 ĉ2 + γ1

1 ĉ1
γ1∗

2 ĉ†2 + γ1∗
1 ĉ†1

1̂

 . (35)

Further contraction with W1 gives a ‘scalar’ corre-
sponding to the Hamiltonian

W1 ·W2 ·W3 = ω2ĉ
†
2ĉ2 + t1(ĉ†1ĉ2 + ĉ1ĉ

†
2) + ω1ĉ

†
1ĉ1

+ γ1
2 |1〉 〈1| ĉ2 + γ1

1 |1〉 〈1| ĉ1 + γ1
2 |1〉 〈1| ĉ2

+ γ1∗
1 |1〉 〈1| ĉ

†
1 + γ1∗

2 |1〉 〈1| ĉ
†
2

+ E1 |1〉 〈1| (36)

W1 ·W2 ·W3 = Ĥ . (37)

III. ZERO TEMPERATURE

A. Couplings

Because of the dependence of the system-bath coupling
strengths on the spatial configuration of the system, the
system-chain couplings are long-ranged. In the cases pre-
sented in previous works [24, 31] the system only coupled
to the first site of the semi-infinite chain. The system
could thus only inject excitation at one end of the chain
which then would propagate according only to the tight-
binding interactions along the chain. In the present case,
the system-chain couplings are long range and thus the
system can create excitations on different regions of the
chain. Absolute values of the system-chain coupling for
zero temperature are shown in Fig. 5 for an Ohmic spec-
tral density.

The first site of the system couples only to the first site
of the chain. However the other sites couple to a range of
modes with a maximum strength for the mode n ∼ R/2c
with R the distance between the considered system’s site
and the first system’s site in units of k−1

c .

n

R

FIG. 5. Absolute value of the system-chain coupling con-
stants, for a bosonic bath with a hard cut-off Ohmic spectral
density, as a function of the chain modes n and the sites sepa-
rations R. Note that the main peak is centered around R/2c.
Here α = 0.12, c = 1 and kc = 1.

We can also see in Fig. 5 that the amplitude of the
coupling before the peak decreases with the position of
the peak. Said differently, the larger distance between
the two sites, the less the second site interacts with the
beginning of the chain. Thus, we can expect that for
infinite separation when R→∞ this system will behave
like a spin-boson model (SBM). This limit is looked at in
Appendix C.

Looking at the opposite limit, when the separation be-
tween the two system sites vanishes, Eq. (2) tells us that
the system completely decouples from the environment.
Because each site in the system couples mostly to a spe-
cific region of the chain, we call our model “Correlated
Environment” in contrast with the cases where the sys-
tem couples only to the first site of the chain.

B. Non-Markovian recurrences and bath feedback

At zero temperature, the dynamics of the two-level
system in a bosonic environment is well known and de-
scribed by the SBM [1]. In the system’s eigen-basis, the
population of the upper state (high energy state) should
spontaneously decay to the lower state on a time-scale
given by the intensity of the coupling between the sys-
tem and the bath. The right panel of Figure 6 shows the
evolution of the eigen-populations with an initial state of
the system being the upper eigenstate. We clearly see
that the upper level population decays as expected until
ωct ≈ R/c when a revival happens. This revival corre-
sponds to an increased localisation of the excitation on
the second site of the system after following an evolution
in a spatial superposition. With the same conditions, the
SBM exhibits the same dynamics except for the revival.
However, we note that the two sites case presented here
can be mapped to a SBM with an effective spectral den-
sity depending on R (see Appendix B) but this property
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is ‘accidental’ and does not generalise to larger systems.

The study of the bath in the chain representation al-
lows us to have a spatial interpretation of the interaction
between the system and its environment as the maximum
coupling between a system’s site and the chain is local-
ized around n = R/2c. The left part of Fig. 6 shows a
heatmap of the occupation of the modes of the chains as a
function of time. The positive and negative chain modes
each correspond to one of the two chains necessary to
take into account propagating and counter-propagating
k-modes. The corresponding initial system state is an
excitation delocalised on the two sites with a separation
R = 40.

We can see that the chain modes around n = ±R/2c =
±20 get populated first and that the corresponding bath’s
excitations then propagate on the chains. At ωct ≈ 20
an excitation propagating from the mode n = 0 coupled
mostly to the the first site and an excitation propagating
from the mode n = 20 constructively interfere around
n = 10. The former continues to propagate on the chain
and traces a ray in the diagram. The latter reaches n = 0
at ωct ≈ 40 and is reflected. We can see from this dia-
gram that revivals happen when the excitation emitted
along the chain by one site reaches the part of the chain
interacting with the other site. We thus have a feedback
effect of the environment on the system.

The dynamics of the chain with negative modes is not
the reflection of the dynamics of the chain with posi-
tive modes. Indeed the negative chain modes correspond
to the propagating k-modes, hence the excitations cre-
ated by the second site move away from the origin of the
chain (which is coupled to the first site). On the contrary,
bath’s excitations created by the second site on the posi-
tive modes chain correspond to the counter-propagating
k-modes and move toward the origin of the chain. On
both chains the excitations created by the first system
site propagate toward the end of the chain as they move
away in real space from the first site. This explains the
apparent ‘asymmetry’ between the two chains.

The dynamics of the system, all other parameters be-
ing the same, only depends on the ration R/c.. This
is also true for the chain dynamics, for example the
(R = 40, c = 1) and (R = 20, c = 0.5) cases have the
same heatmaps. This was expected as the system’s sites
couple in both cases to the same parts of the chain and
the bath’s excitations travel on the chain at the same
speed.

Increasing the propagation speed of the bath excita-
tions we can generate several revivals with something like
an echo between the two sites, as shown in Fig. 7 where
revivals with decreasing amplitudes can be observed with
a periodicity of R/c. All the parameters are the same as
in Fig. 6 except the speed of the bath’s excitations that
has been doubled.

The left panel of Fig. 7 shows the heatmap of the chains
for the same parameters as Fig. 6 except the speed of
bosonic excitation c which is doubled. We note that even
though c is doubled, the speed of the excitation on the
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FIG. 6. System and bath dynamics. (Left) A heatmap of the
chain occupation in time showing the propagation of bath
excitations along the chains. (Right) Upper eigenstate popu-
lation. An eigenstate revival and a site localisation are asso-
ciated with a chain excitation reaching the beginning of the
chain. The separation between the two sites is R = 40, their
coupling is J = 0.25, the speed of sound is c = 1, α = 0.12
and kc = 1.

chain remains the same as the rays in both figures 6 and
7 travel the same distance along the chain in the same
time. The propagation speed on the chain is indepen-
dent of the coupling strength α or the bosonic excitation
speed c. The propagation speed on the chain depends on
the asymptotic hopping energy between the sites of the
chain which depends on the cut-off frequency ωc of the
spectral density which is here held constant [22]. How-
ever, for a fixed separation R, for c = 2 the modes for
which the coupling between the chain and the second
system site is maximal are twice as close to the origin as
the ones for c = 1 (as seen in Sec. III A). Hence, for a
given R, it takes half the time for an excitation to travel
from the second to the first system site for c = 2 than for
c = 1. The four revivals of eigen-population that we see
in Fig. 7 correspond to the four rays on the positive chain
that come from internal reflections of the initial chain ex-
citation highlighted with arrows. These rays correspond
to transmitted parts of bath’s excitations bouncing back
and forth between the two system sites.

To see the influence of the coupling strength α between
the system and the bath, we varied it while keeping a
fixed separation R between the system’s sites and a fixed
speed of the bosonic excitation c. These results are pre-
sented in Fig. 8 where we can see that increasing the
coupling strength sharpens the revivals and brings their
peaks closer to ωct ≈ R/c. The amplitude of the revivals
decrease with the increase of the upper level population
prior to the revival.

Figure 9 shows the coherence between the two sites
in the case described by Fig. 6 where the initial state
of the system is the upper eigenstate. For a degenerate
two-level system, the coherences are proportional to the
the upper eigenstate population. This means that the
revivals coincide with a decrease of coherences in absolute
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FIG. 7. (Left) A heatmap of the chain occupation in time
showing the propagation of bath excitations along the chains.
Arrows have been added to represent the trajectories of
chains’ excitations. (The unannotated figure is available in
Appendix D.) (Right) System eigen-sates population for an
initial state in the upper eigenstate). The separation between
the two sites is R = 20, their coupling is J = 0.25, the speed
of sound is c = 2, α = 0.12 and kc = 1. We can definitely see
a revival of population at a time consistent with the amount
of time needed for a bosonic excitation to travel into the bath
from one system’s site to the other.
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FIG. 8. Comparison of the dynamics of the upper eigenstate
at zero temperature for different values of the coupling to
the bath α. As the coupling increases, the revivals become
sharper. The other parameters are held constant at R = 30,
kc = 1, c = 1 and J = 0.25.

value. A decrease of coherences is hence associated with
re-localisation.

Another way to show that this revival of eigen-
population (relocalisation) is an incoherent mechanism
is to look at the evolution of the purity λ = tr[ρ2

S ] of the
system state. The purity measures how close state is to
a pure state: For λ = 1, the state is a pure state and
for λ = 0.5 the state of a two level system is a maximal
statistical mixture. Figure 10 presents the evolution of
the purity, and clearly shows that revivals are associated
with an increase of mixedness of the system’s state.
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FIG. 9. Real and imaginary part of the coherence between
the two system sites. The real part is proportional to the
upper eigenstate population, hence the revival coincides with
a sudden loss of coherence.
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FIG. 10. Purity tr[ρ2S ] of the system. The revival corresponds
to a loss of purity.

Hence the mechanism behind the revivals can be seen
as a partial measurement by the environment on the sys-
tem’s sites that, as a consequence, re-localizes the sys-
tem’s excitation. As the purity is a first order approx-
imation of (one minus) the von Neumann entropy, the
decreasing purity at the time of a revival can be seen as
an increasing entanglement between the system and its
environment. This analysis is consistent with what as
been previously said and can be further understood by
considering the chain sites that couple the most to the
system sites as fragments of the environment that can
inform us about the system populations [33]. Indeed,
knowing when the chain modes around n = 20, in the
case where R = 40 and c = 1, have a gain in population
enables us to affirm that there will be a revival at this
same time.
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IV. FINITE TEMPERATURE

A. Couplings

The finite temperature coupling constants between the
system and the chain keep broadly the same form as the
zero temperature ones. An example profile for several dif-
ferent system site separations is displayed in Fig. 11. The
differences are that the amplitudes increase with temper-
ature, and the peak value is no longer centered around
the mode n = R/2c but rather n = R/c. For β = 0.5
the amplitude of the coupling is doubled compared to
the zero temperature case. We also note that the tail
before the peak presents more oscillations than the zero-
temperature one which is smoother. The change in the
coupling profile as a function of temperature is shown
in Fig. 12. For high and moderately high temperatures,
the couplings decrease in amplitude as β increases but
are still centered around n ≈ R/c. For high values of β,
the amplitude stays constant but the maximum swaps to
n ≈ R/2c as we recover the zero temperature value.

n

FIG. 11. Absolute value of the system-chain coupling con-
stants at finite temperature, for a bosonic bath with a hard
cut-off Ohmic spectral density, as a function of the chain
modes n and the site separations R. The peaks are centered
around n = R/c. Here α = 0.12, β = 0.5, c = 1 and kc = 1.

B. Non-Markovian recurrences and bath feedback

Using the method presented in Sec. II B 2, we also in-
vestigated the finite temperature dynamics of the system.
For a large range of values of β, the system’s dynamics
stay qualitatively the same except that the steady state
population is increased because of thermal fluctuations,
as we can see for β = 5 in Fig. 13.

The peak of the coupling is at n = R/c and not R/2c as
in the zero temperature case, but the propagation speed
along the chain is doubled because the support of the ex-
tended spectral density is twice as large as the support
of the zero-temperature spectral density [31]. The left

5 10 15 20

0.0

0.1
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0.3

FIG. 12. Absolute value of the system-chain coupling con-
stants at finite temperature, for a bosonic bath with a hard
cut-off Ohmic spectral density, as a function of the chain
mode number n for a fixed R = 5 and several temperatures
(α = 0.12 and kc = 1).

part of Fig. 13 shows the time-frequency diagram for fi-
nite temperature for the inverse temperature β = 5 and
a separation R = 30. For this intermediate temperature,
the chain excitation propagate balistically in way similar
to the zero temperature case, except that modes are more
populated thanks to thermal fluctuations. Wave-packets
emitted from the origin of the chain and the part cou-
pled to the second site interfere when they meet. Hence,
we see interference fringes appear when excitations with
different phases come together. As in the finite tempera-
ture case, when excitations reach the origin of the chain
they give rise to a revival of the eigenstate population.
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FIG. 13. (Left) A heatmap of the chain occupation in time
showing the propagation of bath excitations along the chains.
(Right) Upper eigenstate population. The separation between
the two sites is R = 30, the speed of sound is c = 1, the inverse
temperature β = 5 and α = 0.12.

Figure 14 shows the upper eigenstate population for
increasing values of the temperature. The revivals are
still present for moderate temperatures such as β = 5
but they become barely noticeable for high-temperature,
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as we can also see in Fig. 15. Between β = 5 and β = 1
the dynamics of the chains’ modes are the same but the
populations are increased by a factor ∼ 5. This increased
population is a direct consequence of the thermal popu-
lation. We can see, in Fig. 14, that the amplitude of the
revival seems to be related to the depth of the plateau
reached before ωct ≈ R/c. Hence, as the eigen popu-
lation in this region gets closer to a half, the revival is
suppressed.
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FIG. 14. Upper eigenstate populations for R = 30, ωc = 1,
c = 1, ω0 = 0.25 and α = 0.12 for several values of the inverse
temperature β.

For higher temperature, as in Fig. 15, the behaviour
of the chain is akin to the one we could see for a SBM
with a Ohmic spectral density [34] but duplicated on the
chain. As they propagate on the chain, excitations leave
a trail of populated modes behind them that correspond
to the cones we can see on the figure.
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FIG. 15. (Left) A heatmap of the chain occupation in time
showing the propagation of bath excitations along the chains.
(Right) Upper eigenstate population. For high-temperature
the revival is less pronounced. The separation between the
two sites is R = 30, the speed of sound is c = 1, the inverse
temperature β = 1 and α = 0.12.

V. CONCLUSION

Motivated by the ability of biological nanostructures
to coordinate (opto)electronic processes through the re-
laying of environmental (structural) ‘signal’ motions,
we have presented a numerically exact exploration of
a model that can describe these highly non-Markovian
effects. To do so, we have extended the standard T-
TEDOPA techniques, in the 1TDVP formulation, to
treat the long-range chain couplings that encode infor-
mation about spatial correlations. In doing so, we have
proved that for system-bath problems with spatially cor-
related interactions, the Hamiltonian matrix product op-
erator will always have a bond dimension proportional to
the number of system states, regardless of the range of the
interactions. Provided that – as in most models of open
systems – the environment is non-interacting, this allows
tensor network to be a computationally powerful method
for exploring multisite dynamics where non-Markovian
environmental feedback could lead to functionally rele-
vant non-equilibirum states and/or transient effects that
could materially alter the outcome of a process, if a cer-
tain set of events precede it.

As our first exploration of this aspect of highly struc-
tured nanoscale dissipation, we have shown, with a model
composed of two sites, that one of the simplest concep-
tual forms of correlated environments (plane waves in 1D)
supports strong spatio-temporal feedback effects that in-
troduce new timescales into the dissipative dynamics and
show clear signs of having stored information about the
early time motion, i.e. after sharp decays, we find sharp
revivals. Moreover, we have also found that periodic be-
haviour with T = R/c can also be obtained in which each
revival acts as a generator of subsequent revivals, leading
to periodic – but highly anharmonic – energy exchange
between the system states. Finally, we have shown that
finite temperatures tend to broaden and suppress these
revival effects, although they visibly persist for tempera-
tures up to the system energy gap.

These results encouragingly point to the idea that suit-
ably tailored environments could be coupled to electronic
processes in order to produce well-defined functional ef-
fects at later times and in distant places in the structure.
To explore this in more detail requires the inclusion of
larger, multi-component systems, and this is something
we have shown could be done with the present method.
However, in the majority of nanostructures, biological or
otherwise, the 1D plane wave environment is likely to
be an oversimplification. It be therefore be of future in-
terest to consider different kinds of relationship between
mode frequencies and spatial correlation in the system-
bath interactions, such as those that can be extracted
by molecular dynamics simulations of proteins [35, 36],
normal mode analysis[37, 38], or coarse-grained methods
that access the slow, large amplitude motions of com-
plex structures [39, 40]. Given that the present method
works with arbitrarily structured spectral functions and
can handle long-range system-environment interactions
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in the chain or tree tensor representations of the prob-
lem, we hope that this work will encourage further exam-
ination of the no-doubt rich functional phenomenology of
spatially correlated open quantum systems.
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T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R.
Fleming, Evidence for wavelike energy transfer through
quantum coherence in photosynthetic systems, Nature
446, 782 (2007).

[11] E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi,
P. Brumer, and G. D. Scholes, Coherently wired light-
harvesting in photosynthetic marine algae at ambient
temperature, Nature 463, 644 (2010).

[12] A. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. F.
Huelga, and M. B. Plenio, The role of non-equilibrium
vibrational structures in electronic coherence and reco-
herence in pigment–protein complexes, Nat. Phys. 9, 113
(2013).

[13] C. Kreisbeck and T. Kramer, Long-lived electronic coher-
ence in dissipative exciton dynamics of light-harvesting
complexes, J. Phys. Chem. Lett. 3, 2828 (2012).

[14] F. Müh and A. Zouni, The nonheme iron in photosystem
ii, Photosynth. Res. 116, 295 (2013).

[15] O. Bozovic, C. Zanobini, A. Gulzar, B. Jankovic,
D. Buhrke, M. Post, S. Wolf, G. Stock, and P. Hamm,
Real-time observation of ligand-induced allosteric transi-
tions in a pdz domain, Proc. Natl. Acad. Sci. U. S. A.
117, 26031 (2020).

[16] J. Guo and H.-X. Zhou, Protein allostery and conforma-
tional dynamics, Chem. Rev. (Washington, DC, U. S.)
116, 6503 (2016).

[17] M. R. Jørgensen and F. A. Pollock, A discrete memory-
kernel for multi-time correlations in non-Markovian
quantum processes, Phys. Rev. A 102 (2020).

[18] A. Strathearn, P. Kirton, D. Kilda, J. Keeling, and B. W.
Lovett, Efficient non-Markovian quantum dynamics us-
ing time-evolving matrix product operators, Nat Com-
mun 9, 3322 (2018).

[19] D. Gribben, A. Strathearn, J. Iles-Smith, D. Kilda,
A. Nazir, B. W. Lovett, and P. Kirton, Exact Quantum
Dynamics in Structured Environments, Phys. Rev. Res.
2, 013265 (2020).

[20] M. R. Jørgensen and F. A. Pollock, Exploiting the causal
tensor network structure of quantum processes to ef-
ficiently simulate non-Markovian path integrals, Phys.
Rev. Lett. 123, 240602 (2019).

[21] G. E. Fux, E. P. Butler, P. R. Eastham, B. W. Lovett,
and J. Keeling, Efficient exploration of Hamiltonian pa-
rameter space for optimal control of non-Markovian open
quantum systems, Phys. Rev. Lett. 126, 200401 (2021).

[22] A. W. Chin, A. Rivas, S. F. Huelga, and M. B. Plenio, Ex-
act mapping between system-reservoir quantum models
and semi-infinite discrete chains using orthogonal poly-
nomials, J. Math. Phys. (Melville, NY, U. S.) 51, 092109
(2010).

[23] H.-D. Meyer, Studying molecular quantum dynam-
ics with the multiconfiguration time-dependent Hartree
method, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2,
351 (2012).

[24] A. J. Dunnett and A. W. Chin, Simulating Quan-
tum Vibronic Dynamics at Finite Temperatures With
Many Body Wave Functions at 0 K, Front. Chem. 8,
10.3389/fchem.2020.600731 (2021).

[25] G. Vidal, Efficient simulation of one-dimensional quan-
tum many-body systems, Phys. Rev. Lett. 93, 040502
(2004).

[26] Y.-Y. Shi, L.-M. Duan, and G. Vidal, Classical simula-
tion of quantum many-body systems with a tree tensor
network, Phys. Rev. A 74, 022320 (2006).

[27] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken,
and F. Verstraete, Unifying time evolution and optimiza-
tion with matrix product states, Phys. Rev. B 94, 165116
(2016).

[28] J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio,
Efficient Simulation of Strong System-Environment In-
teractions, Phys. Rev. Lett. 105, 050404 (2010).

https://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199213900.001.0001/acprof-9780199213900
https://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199213900.001.0001/acprof-9780199213900
https://doi.org/10.1142/8334
https://doi.org/10.1007/978-3-642-20561-3
https://doi.org/10.1088/1367-2630/18/7/073007
https://doi.org/10.1088/0953-4075/48/3/035501
https://doi.org/10.1088/0953-4075/48/3/035501
https://doi.org/10.1103/PhysRevA.93.020102
https://doi.org/10.1002/9780470758472
https://doi.org/10.1002/9780470758472
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature08811
https://doi.org/10.1103/PhysRevA.102.052206
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1103/PhysRevResearch.2.013265
https://doi.org/10.1103/PhysRevResearch.2.013265
https://doi.org/10.1063/1.3490188
https://doi.org/10.1063/1.3490188
https://doi.org/10.1002/wcms.87
https://doi.org/10.1002/wcms.87
https://doi.org/10.3389/fchem.2020.600731
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1103/PhysRevLett.105.050404


13

[29] M. P. Woods, M. Cramer, and M. B. Plenio, Simulating
Bosonic Baths with Error Bars, Phys. Rev. Lett. 115,
130401 (2015).

[30] M. Mohseni, Y. Omar, G. S. Engel, and M. B. Ple-
nio, Quantum Effects in Biology (Cambridge University
Press, 2014).

[31] D. Tamascelli, A. Smirne, J. Lim, S. F. Huelga, and M. B.
Plenio, Efficient Simulation of Finite-Temperature Open
Quantum Systems, Phys. Rev. Lett. 123, 090402 (2019).

[32] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana,
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Appendix A: Correlation function

For a bath operator of the form

B̂r(t) =

∫
dk

(
gkeikre−iωktâk + h.c.

)
, (A1)

as in Eq. 2 and a bath in a Gibbs state

ρ̂B =
exp

(
βĤB

)
Z

, (A2)

where Z is the partition function, the bath correlation function is

Cβ(r − r′, t− t′) def.
= trB

[
B̂r(t)B̂r′(t

′)ρ̂B

]
(A3)

=

∫
dk

∫
dq
(
gr∗k g

r′

q eiωkt−iωqttr
[
â†kâqρ̂B

]
+ gαk g

β∗
q eiωqt

′−iωkt)tr
[(
â†kâq + δ(k − q)

)
ρ̂B

])
(A4)

=

∫
dk

∫
dq δ(k − q)

(
gr∗k g

r′

k eiωk(t−t′)nβ(ωk) + grkg
r′∗
k e−iωk(t−t′)(nβ(ωk) + 1)

)
(A5)

=

∫
dk |gk|2

(
ei(ωk(t−t′)−k(r−r′))nβ(ωk) + e−i(ωk(t−t′)−k(r−r′))(nβ(ωk) + 1)

)
(A6)

Cβ(r − r′, t− t′) =

∫
dk J(ωk)

[
coth

(
βωk

2

)
cos (ωk(t− t′)− k(r − r′))− i sin (ωk(t− t′)− k(r − r′))

]
, (A7)

with the bath spectral density J(ωk) = |gk|2. This bath correlation function has a triple dependence on temperature
β, time t− t′ and space r − r′.

Appendix B: Mapping to SBM for N = 2

The N = 2 case is a specific case where, because of the symmetry around the mid-point between the two sites, the
problem presented in this paper can be written in the form of a SBM with an effective spectral density that depends
explicitly on the sites separation. Consider the interaction Hamiltonian Ĥint in Eq. (2) in the case of a two-site system
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with intersite distance R, we have

Ĥint =
∑
α

|α〉 〈α|
∫ +kc

−kc
(gαk âk + gα∗k â†k)dk (B1)

=
∑
α

|α〉 〈α|
∫ +kc

0

(
gαk (âk + â†−k) + gα∗k (â†k + â−k)

)
dk . (B2)

We can introduce a new set of vibrational modes, the symmetric mode ĉk and the antisymmetric mode d̂k

ĉk =
âk + â−k√

2
, (B3)

d̂k =
âk − â−k√

2
. (B4)

Hence, the interaction Hamiltonian becomes

Ĥint =
∑
α

|α〉 〈α|
∫ +kc

0

[
gαk
√

2(ĉk + ĉ†k) + gα∗k
√

2(ĉk + ĉ†k)

+ gαk
√

2(d̂k − d̂†k)− gα∗k
√

2(d̂k − d̂†k)
]
dk (B5)

We choose the origin of position at the midpoint between the two sites so that

Ĥint =
(
|−R/2〉 〈−R/2|+ |R/2〉 〈R/2|

)∫ +kc

0

2
√

2gk cos

(
kR

2

)
(ĉk + ĉ†k)dk

+
(
|−R/2〉 〈−R/2| − |R/2〉 〈R/2|

)∫ +kc

0

2
√

2igk sin

(
kR

2

)
(d̂†k − d̂k)dk (B6)

Ĥint = 1̂S const + σ̂z

∫ +kc

0

2
√

2igk sin

(
kR

2

)
(d̂†k − d̂k)dk (B7)

Therefore the system only couples to the antisymmetric vibration modes and thus corresponds to a SBM with an
effective spectral density Jeff(k) = 8|gk|2 sin2(kR2 ). However for larger values of N it is no longer possible to map the
system to a SBM. This is similar to the spin-mapping presented in [18].

Appendix C: Limit Cases

1. Large Separation

According to the coupling structure presented in Sec. III A, the further away the two sites of the system are, the
less the second site interacts with the beginning of the chain. Thus, we can expect that for infinite separation when
R → ∞ this system will behave like a SBM. Figure 16 shows the comparison between the SBM and the infinite
separation case.

2. Low Temperature

The finite temperature effective spectral density Jβ(k) converges toward the zero temperature one when β →∞ as its
value for negative wave-vector becomes uniformly null. Hence, the quantities calculated using this finite temperature
function should all converge toward their zero-temperature counterparts when β is increased. Figure 17 shows that
the population dynamics of the zero-temperature case is recovered.

For the same reasons the couplings γn(R) determined with the finite temperature spectral density should become
identical to the zero-temperature ones calculated with the spectral density J(k). This was already shown in Sec. IV B
with the absolute values of the coupling constants γn(R) as shown in Fig. 12. The real and imaginary parts of the
zero-temperature coupling constants for the two sites are presented in Fig. 19. Figure 19 shows the coupling constants
at a finite temperature β = 0.5 for comparison. The finite temperature couplings for a large β are presented in
Fig. 20 and show that the finite temperature coupling coefficients converge to the zero-temperature ones when the
limit β →∞ is taken.
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FIG. 16. Dynamics of the up-state |↑z〉 of a Spin Boson Model (SBM) compared with the dynamics of the upper eigenstate of
the Correlated Environment model for corresponding parameters (kc = 1, c = 1, J = 0.25 and α = 0.2) with a large separation
R = 200 between the two sites of the system. The two dynamics are the same.
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FIG. 17. Upper Level Population for zero temperature (solid line) and β = 106 (dashed line) all other parameters being the
same (α = 0.03, J = 0.25, c = 1 and kc = 1). The dynamics obtained with the zero-temperature and finite-temperature
algorithms are identical.

Appendix D: Bath Dynamics

The unannotated version of the bath dynamics displayed in Fig. 7, presenting several consecutive revivals of the
upper eigenstate population for R = 20 and c = 2 is shown in Fig. 21.
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FIG. 18. (a) Real part of the zero-temperature couplings for the two sites of the system as a function of the chain modes. (b)
Imaginary part of the zero-temperature couplings. The negative values along the x-axis correspond to the chain of negative
wave-vectors and the positive values to positive wave-vectors.
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FIG. 19. (a) Real part of the finite-temperature couplings for the two sites of the system as a function of the chain modes. (b)
Imaginary part of the finite-temperature couplings. The negative values along the x-axis correspond to the chain of negative
wave-vectors and the positive values to positive wave-vectors. Parameters are the same as in Fig. 11, and in particular β = 0.5.
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FIG. 20. (a) Real part of the finite-temperature couplings for the two sites of the system as a function of the chain modes at
β = 106. (b) Imaginary part of the zero-temperature couplings at β = 106. The behaviour is identical to the one obtained with
the zero-temperature algorithm. The negative values along the x-axis correspond to the chain of negative wave-vectors and the
positive values to positive wave-vectors. The other parameters are the same as in Fig. 18.
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FIG. 21. (Left)A heatmap showing the propagation of bath excitations along the chains. (Right) System eigen-sates population
for an initial state in the upper eigenstate). The separation between the two sites is R = 20, their coupling is J = 0.25, the
speed of sound is c = 2, α = 0.12 and kc = 1. We can definitely see a revival of population at a time consistent with the
amount of time needed for a bosonic excitation to travel into the bath from one system’s site to the other.
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