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Modeling linear absorption spectra of solvated chromophores is highly challenging as contributions are present
both from coupling of the electronic states to nuclear vibrations and solute-solvent interactions. In systems
where excited states intersect in the Condon region, significant non-adiabatic contributions to absorption
lineshapes can also be observed. Here, we introduce a robust approach to model linear absorption spectra
accounting for both environmental and non-adiabatic effects from first principles. This model parameterizes a
linear vibronic coupling (LVC) Hamiltonian directly from energy gap fluctuations calculated along molecular
dynamics (MD) trajectories of the chromophore in solution, accounting for both anharmonicity in the potential
and direct solute-solvent interactions. The resulting system dynamics described by the LVC Hamiltonian are
solved exactly using the thermalized time-evolving density operator with orthogonal polynomials algorithm
(T-TEDOPA). The approach is applied to the linear absorption spectrum of methylene blue (MB) in water.
We show that the strong shoulder in the experimental spectrum is caused by vibrationally driven population
transfer between the bright S1 and the dark S2 state. The treatment of the solvent environment is one of
many factors which strongly influences the population transfer and lineshape; accurate modeling can only be
achieved through the use of explicit quantum mechanical solvation. The efficiency of T-TEDOPA, combined
with LVC Hamiltonian parameterizations from MD, leads to an attractive method for describing a large
variety of systems in complex environments from first principles.

I. INTRODUCTION

Spectroscopy is a key step in the screening of mate-
rials and molecules for technological applications such
as photovoltaics, in understanding photochemical reac-
tions, and in the investigation of biological processes.1,2

In condensed phases, the environment can have a sig-
nificant influence on the spectral peak position and in-
tensity, causing a change in the electronic and nuclear
quantum states of the molecule.3–5 Modeling the effect of
the environment on a molecule in an accurate and com-
putationally affordable way is a persistent challenge.6,7

Additionally, the accurate and affordable quantum treat-
ment of nuclear dynamics and non-adiabaticity is in con-
stant development.8–11 The exact calculation of experi-
mental spectra in the condensed phase requires a unifi-
cation of accurate treatment of the non-adiabatic quan-
tum dynamics with proper inclusion of the effects of the
environment.12

In many cases, transitions involve bright, energet-
ically well-separated states, justifying the use of the
Condon approximation. Similarly, if the chromophore
is relatively rigid, the harmonic approximation can
be made for the shape of the initial and final state
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adiabatic Born-Oppenheimer potential energy surfaces
(PESs).13,14 This harmonic Franck-Condon approach has
been employed using time-dependent (effective for large
multi-mode systems) and time-independent (sum over
states, effective for smaller systems) techniques, and
can be easily extended to include linear effects of the
structure on transition dipole moment (Herzberg-Teller
effects).15–19 When the environment interacts weakly
with the ground and excited states, combining Franck-
Condon calculations with polarizable continuum mod-
els for the solvent environment can yield highly effec-
tive environment corrected vibronic lineshapes,20–22 and
for systems with stronger coupling to the environment,
some of the authors have presented combined ensem-
ble - Franck-Condon approaches to improve lineshapes
calculation.7,23–25

However, there are many instances where such a
Franck-Condon treatment of the absorption spectrum is
insufficient. For example, if there is a region of the PES in
which excited states intersect, causing a breakdown of the
Born-Oppenheimer approximation, electronic states may
mix, leading to non-adiabatic effects such as intensity-
borrowing between states.26,27 For polyatomic systems
these crossings are ubiquitous, but the Condon approxi-
mation relies on such crossings being far from the initial
state equilibrium, representing rare events. If such cross-
ings are close to the region of the potential sampled by
the ground state, and thus contribute to the absorption
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spectrum via non-adiabatic effects such as vibrationally
driven population transfer, it may become effective to
utilize the linear vibronic coupling (LVC) Hamiltonian
to describe the system dynamics.28

Historically the importance and efficacy of the LVC
model in describing spectral lineshapes is well reported.29

One seminal example is the calculation of the second sin-
glet excitation of pyrazine,30 and a recent egregious ex-
ample is the UV spectra of cyclopropane.31 In the lat-
ter case, the authors show extreme intensity borrowing
from the optically dark A′2 and A′1 states from the E′

state, completely transforming the absorption lineshape.
Generally, these studies have focused on small high sym-
metry molecules in the gas phase, where expensive nu-
merical approaches are both feasible and effective.32 The
previously highlighted examples of pyrazine and cyclo-
propane were successfully modeled using the multicon-
figurational time-dependent Hartree (MCTDH) method,
which is often regarded as the gold standard in many-
body approaches to non-adiabatic problems.33 Unfortu-
nately, these methods suffer from the ‘curse of dimen-
sionality’, meaning inclusion of only a few nuclear and
electronic degrees of freedom is feasible, and they gener-
ally utilize precalculated potential energy surfaces with
high level electronic structure methods.34 Recently, San-
toro and co-workers have parameterized the LVC Hamil-
tonian for a dense manifold of states for larger molecules
using more affordable time-dependent density-functional
theory. However, these calculations still limit the num-
ber of modes in the system by constructing LVC Hamil-
tonians in vacuum or relying on polarizable continuum
models to represent the environment.35–37

There are a number of approaches able to circumvent
the exponential scaling of many body states through the
use of efficient and compact representations of wave func-
tions, such as multilayer (ML-) MCTDH, matrix product
states (MPS), and tensor network states.38–40 A tensor
network-based, many body approach that has been de-
veloped to handle complex open quantum systems (OQS)
problems is the time-evolving density operator with or-
thogonal polynomials (TEDOPA) algorithm, based on
a mapping that transforms one or more environments
into a 1D chain of effective oscillator modes with nearest-
neighbour coupling (vide infra).41–43 This geometry un-
locks the full power of the MPS/Tensor networks ansatz
that perform optimally for 1D systems with locally short-
range couplings.44 Indeed, a recent comparison of ML-
MCTDH and MPS methods for 1D dipolar chains found
that the MPS approach was both faster and required less
computational memory to obtain accurate ground states
for this class of models.45

TEDOPA is in principle numerically exact, can be
combined with machine learning and entanglement renor-
malization methods, and also gives full access to ob-
servable bath dynamics, as recently verified through
time-resolved excited-state vibrational spectroscopy in
bipentacenes.40,46 However, until recently, accessing fi-
nite temperatures required time-consuming sampling

over bath configurations. This limitation was overcome,
first with the introduction of the thermofield approach,
in which a bath of negative energy modes that act like a
source of thermal energy are introduced, and later with
the mapping of Tamascelli et al. to treat a thermal en-
vironment by defining a temperature dependent spectral
density, leading to so called T-TEDOPA.47,48 These ad-
vances now allow finite temperature OQS dynamics to
be extracted from many-body pure state wave function
simulations at 0K - offering substantial advantages over
other methods in terms of efficiency.49 In this article we
demonstrate how this new capability allows us to pre-
dict optical spectra of real-world molecules in realistic
environments that can be directly compared to experi-
ments in solution. In achieving this, we will also show
how the Dirac-Frenkel variational principle applied to
the TEDOPA state allows us to include long-range cou-
plings that prove to be essential for including the energy
gap correlations that play a determining role in the ex-
cited state dynamics and spectra.

We apply this method to the curious case of the linear
absorption spectra of the cationic methylene blue (MB)
chromophore in aqueous solution. Both the molecular
structure and excitation have been shown to be envi-
ronmentally sensitive, and there are many open ques-
tions about the nature of solvent and aggregation of this
molecule and how it influences the spectral lineshape.50,51

Focusing on the monomeric solution, it shows a singular
peak (λmax = 664 nm, 1.86 eV) with a broad, almost
square, higher energy shoulder (610 nm, 2.03 eV) at half
the absorption maximum intensity.52 Despite its simple
lineshape, previous models for this system appear incom-
plete. The broad shoulder intensity has been previously
both significantly under- and over- estimated depending
on the electronic structure, solvent model, and vibronic
coupling method of choice.53 For example, a recent study
by de Queiroz et al. indicates the S2 state gains some
intensity when examining vertical excitations in explicit
solvent, suggesting non-Condon effects. Yet in the same
study their computation of the S0 → S1 Franck-Condon
spectra in vacuo overestimates the shoulder intensity.54

Here we expand on previous studies of MB by includ-
ing explicitly quantum mechanical treatment of the sol-
vent polarization on excitation and nuclear dynamics for
vibronic lineshapes. Linear absorption spectra are com-
puted using second and third order truncation of a cumu-
lant expansion of the linear response function constructed
from energy gap fluctuations along a molecular dynamics
trajectory. We also extend the lineshape calculations to
include the strong non-adiabatic effects of higher excited
states by solving the LVC problem for three electronic
states, finding that the S2 state of MB plays a large role
in determining the excited state dynamics and absorption
lineshape. In contrast to previous studies parameteriz-
ing LVC Hamiltonians from electronic structure theory
we show that LVC model parameters can be obtained di-
rectly from correlation functions55 calculated along gen-
erally anharmonic molecular dynamics simulations in ex-
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plicit solvent environments, capturing solute-solvent con-
figuration and polarization effects.56

This paper is structured as such. First, we present
background theory defining the linear vibronic coupling
problem in the context of our solvated chromophore,
methylene blue. Then we present background on the
T-TEDOPA method and the novel derivation of the re-
sponse function for the T-TEDOPA mapping. Next, we
take special care to address the nature of the bath cor-
relations for our solvated chromophore, and how they
are addressed in the T-TEDOPA framework and tensor
network calculations. The computational method for a)
ab initio calculation of various linear vibronic coupling
parameters of the chromophore, and b) the tensor net-
work calculation of the T-TEDOPA dynamics are then
described. In the results section we provide analysis of
our chosen molecule’s excitations and dynamics, estab-
lishing both the importance of considering the dark S2

state and the efficacy of our choice of Hamiltonians. We
then turn to the question of the importance of including
correlation between the excited state dynamics and their
influence on the spectral lineshape. From these results we
identify the role of the S1-S2 energy gap, and so explore
the range of this value obtained from electronic structure
calculations.

II. THEORY

In this work, we consider a three-level electronic sys-
tem consisting of an electronic ground state S0 and two
electronic excited states, S1 and S2, coupled to nuclear
degrees of freedom. The nuclear degrees of freedom are
described through the spin-boson model (SBM) or Brow-
nian oscillator model (BOM), which makes the assump-
tion that ground- and excited state PESs are harmonic
surfaces with the same curvature that only differ by a
displacement of their respective minima.57,58 The BOM
Hamiltonian can then be written as:

ĤBOM =

H0 V01 V02
V10 H1 0
V20 0 H2

 , (1)

where V0n = V †n0 denotes the transition dipole opera-
tor between the electronic ground and nth excited state.
We also assume that the Condon approximation is valid,
such that the dependence of the transition dipole oper-
ator on nuclear degrees of freedom can be ignored and
V0n(q̂) ≈ V0n. The nuclear Hamiltonian of the elec-
tronic ground state is denoted H0(q̂), and in the BOM
the nuclear Hamiltonians for a system with N vibrational

modes can be written as:

H0(p̂, q̂) =

N∑
j

(
p̂2j
2

+
1

2
ω2
j q̂

2
j

)
(2)

H1(p̂, q̂) =

N∑
j

(
p̂2j
2

+
1

2
ω2
j

(
q̂j −K{1}j

)2)
+ ∆01 (3)

H2(p̂, q̂) =

N∑
j

(
p̂2j
2

+
1

2
ω2
j

(
q̂j −K{2}j

)2)
+ ∆02 (4)

where ∆01 and ∆02 are the adiabatic energy gaps be-
tween the ground and first electronic excited state, and
ground and second excited state, respectively, and atomic

units are used throughout. K{1} denotes the displace-
ment vector of the minimum of the first electronic ex-
cited state relative to the electronic ground state, and ωj
is the angular frequency of mode j. For the simple BOM
Hamiltonian of a three-level system outlined above, the
system-dynamics is completely specified by the two spec-
tral densities of system-bath coupling for the first and
second electronic excited state:

J01(ω) =
π

2

N∑
j

ω3
j

(
K
{1}
j

)2
δ(ω − ωj), (5)

J02(ω) =
π

2

N∑
j

ω3
j

(
K
{2}
j

)2
δ(ω − ωj). (6)

Given that the first and second excited state are com-
pletely decoupled, the Condon approximation is as-
sumed, and the nuclear degrees of freedom are described
by the BOM Hamiltonian, the linear absorption spec-
trum σ(ω) can then be evaluated exactly in the cumulant
formalism56,57

σ(ω) ∝ ω
∫ ∞
−∞

dt eiωt (χ01(t) + χ02(t)) (7)

with

χ01(t) = |V01|2eiω
av
01texp (−g [J01] (t)) . (8)

Here, ωav
01 = 〈U01〉 is the ground state thermal average of

the energy gap operator U01 = H1−H0 between the elec-
tronic ground- and first excited- states, and g [J01] (t) is
the second-order cumulant lineshape function.57 Trunca-
tion of the cumulant expansion at second order is exact
for a system with Gaussian fluctuations of the energy gap,
as we have for this BOM Hamiltonian. For the purely lin-
ear coupling to nuclear degrees of freedom considered in
the BOM, g(t) is completely determined by the spectral
density and can be written as57

g [J ] (t) =
1

π

∫ ∞
0

dω
J (ω)

ω2

[
coth

(βω
2

)
[1− cos(ωt)]

− i[sin(ωt)− ωt]
]
.

(9)
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For the simple BOM Hamiltonian, Eqns. 8 and 9
yield the exact linear spectrum. However, ĤBOM ne-
glects a number of important effects on an optical ab-
sorption spectrum that are present in realistic systems.
Even when retaining a harmonic approximation to the
ground and excited state potential energy surfaces, allow-
ing the ground- and excited- state vibrational frequen-
cies to differ introduces non-linear energy gap fluctua-
tions for which the second-order cumulant lineshape is
no longer exact.56 The most general Hamiltonian based
on harmonic approximations to the PESs is the Gen-
eralized Brownian Oscillator Model (GBOM),56 which
allows for differences between the ground and excited
state curvature and mode-mixing effects described by
the Duschinsky rotation.59 The GBOM Hamiltonian can
be constructed from ground- and excited- state normal
mode analysis and can be solved exactly in the Franck-
Condon approach.16–18 Such Franck-Condon calculations
are implemented in a range of standard electronic struc-
ture packages. Furthermore, the Condon approximation
can be relaxed in this formalism through the inclusion
of Herzberg-Teller effects.16,17 It was recently shown by
some of the authors that the nonlinear coupling effects
introduced in the GBOM Hamiltonian can also be ap-
proximately recovered in the cumulant formalism by in-
cluding a third-order cumulant correction term.56

Both the cumulant approach and the Franck-Condon
approach based on the GBOM Hamiltonian can be used
to construct the linear absorption spectrum in systems
where the individual excited states are separated far
enough in energy that they can be treated as fully de-
coupled. However, if electronic excited states inter-
sect in the Condon region, this intersection leads to
strong coupling between the two excited states that is
dependent on nuclear coordinates, resulting in a break-
down of the Condon approximation and the intensity-
borrowing between electronic excited states that is com-
monly observed in linear absorption spectra of small or-
ganic chromophores.30,31,35,36

A simple model Hamiltonian that can describe these
dynamics is the linear vibronic coupling (LVC) Hamilto-
nian. For the purpose of the present work, we only con-
sider linear coupling between the two electronic excited
states, such that the LVC Hamiltonian can be written as

ĤLVC = ĤBOM +

N∑
j

0 0 0
0 0 Λj q̂j
0 Λj q̂j 0

 , (10)

where the couplings Λj to the bath in the off-diagonal
elements of the Hamiltonian that mixes the first and
the second excited state is then specified by the coupling
spectral density

J12(ω) =
π

2

N∑
j

Λ2
j

ω
δ(ω − ωj). (11)

In contrast to the BOM Hamiltonian, in the LVC
model the electronic and nuclear Hamiltonians no longer

commute, rendering an analytical description of time-
evolution unobtainable. Therefore, more sophisticated
methods are required, in this case T-TEDOPA. The de-
tails of this description of our system dynamics and the
linear response function χ(t) needed for absorption spec-
tra are contained in Sec. II B).

A. The LVC Hamiltonian in complex condensed-phase
environment

For a molecule in the gas phase, the LVC Hamiltonian
can be described in terms of 3N -6 well-defined vibra-
tional modes coupling to the electronic excitations. In
the condensed phase, such as for a chromophore in solu-
tion or embedded in a protein environment, a large num-
ber of bath modes couple to the system, including col-
lective chromophore-environment motion. In this case it
becomes convenient to consider the spectral densities in-
troduced in the previous section as continuous functions
that can be constructed from equilibrium quantum corre-
lation functions of fluctuation operators.55 The spectral
density J01(ω) describing the coupling to the first excited
state can then be written as

J01(ω) = iθ(ω)

∫
dt eiωt Im C01(t), (12)

where θ(ω) is the Heaviside step function and the quan-
tum autocorrelation function of the energy gap fluctua-
tion operator is given by

C01(t) = 〈δU01(q̂, t)δU01(q̂, 0)〉, (13)

and δU01 = (H1 −H0)− ωav
01 = U01 − ωav

01 .
The exact quantum correlation function C01(t) is, in

general, impossible to compute for anything but the most
simple model systems. A practical approach for com-
plex condensed phase systems is to approximately recon-
struct C01(t) from its classical counterpart using quan-
tum correction factors.60–62 In this work, we use the
harmonic quantum correction factor61,63 that can be de-
rived by equating the classical correlation function with
the Kubo-transformed quantum correlation function pos-
sessing the same symmetries as its counterpart.64,65 This
choice yields

J01(ω) ≈ θ(ω)
βω

2

∫
dt eiωt Ccl

01(t), (14)

where β = 1/kBT and θ(ω) is the Heaviside step function.
Eqn. 14 enables the computation of spectral densities

in complex condensed phase systems directly by eval-
uating classical correlation functions of electronic exci-
tation energy fluctuations computed along a molecular-
dynamics (MD) trajectory on the ground state poten-
tial energy surface. However, computing excitation en-
ergies from electronic structure methods such as time-
dependent density functional theory (TDDFT) yields
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adiabatic electronic states, i.e. states that are electroni-
cally decoupled but can change their electronic character
along the MD trajectory. Instead, to parameterize the
LVC Hamiltonian outlined in the previous section, it is
necessary to construct coupled diabatic states that do not
change character along the trajectory, and thus have con-
stant ground- to excited state transition dipole moments.

As with the choice of quantum correction factor,61,63

the choice of diabatic states is not unique and several
approaches exist to construct quasi-diabatic states from
adiabatic states.66–69 For the present example, we are in-
terested in exploring the effect of the coupling between
one bright and one dark state close in energy on the opti-
cal absorption spectrum. In this case, an efficient diabati-
zation strategy has been outlined previously by Subotnik
and co-workers.70 Following this approach, we define the
transition dipole matrix D as

D =

(
V01 · V01 V01 · V02
V01 · V02 V02 · V02

)
(15)

Diagonalizing D results in two states with maximally dif-
ferent transition dipole moments and oscillator strengths.
The eigenvectors of D can then be used to rotate the
diagonal matrix of adiabatic excitation energies into a
matrix with two diabatic excitation energies on the diag-
onal and their electronic coupling as the off-diagonal ele-
ments. Performing the diabatization procedure for every
snapshot along an MD trajectory, it is then straightfor-
ward to construct the classical autocorrelation functions
Ccl

01(t), Ccl
02(t) and Ccl

12(t), which, after substitution into
Eqn. 14, yields the spectral densities defining the LVC
Hamiltonian.

The final parameters needed to define the LVC Hamil-
tonian are the electronic energy gaps ∆01 and ∆02. As-
suming a linear coupling to vibrational degrees of free-
dom, these can be constructed from the classical ther-
mal averages of the energy gap fluctuations, such that
∆01 = ωav

01 − λR01. Here, λR01 is the nuclear reorganization
energy of electronic state S1 that can be computed from
the spectral density J01(ω) as:

λR01 =
1

π

∫ ∞
0

J01(ω)

ω
dω =

1

2

∑
j

ω2
j

(
K
{1}
j

)2
(16)

Using the above parameters, we can define two dis-
tinct measures of the energy gap between S1 and S2,
which is expected to be a key parameter in this sys-
tem determining the linear absorption spectrum. First,
∆12 = ∆02 − ∆01, which is the difference between the
minima of the diabatic S1 and S2 potential energy sur-
faces, and second, ωav

12 = ωav
02 − ωav

01 , the thermal average
of the diabatic S1-S2 energy gap difference, which repre-
sents a measure of the separation of the surfaces in the
Condon region.

B. T-TEDOPA & the Response Function

In this section we will briefly describe the T-TEDOPA
method and show how it may be employed to calculate
the response function. We begin by splitting ĤLVC into
three parts

ĤLVC = HS +HI +HB. (17)

HS is a system Hamiltonian governing the electronic
states

HS =

2∑
α=1

(λR0α+∆0α) |Sα〉 〈Sα|+δ(|S1〉 〈S2|+h.c.), (18)

where h.c. denotes the Hermitian conjugate of the pre-
ceding terms and λR0α denotes the reorganization energies
of the S1 and S2 baths. We have also included for com-
pleteness a coupling δ between S1 and S2, although in the
case of MB this coupling is extremely small. The Hamil-
tonian HI is the interaction Hamiltonian which describes
the coupling to the nuclear degrees of freedom (DOF).
We further decompose this interaction Hamiltonian as
follows

HI = HEL
I +Hδ

I , (19)

where the energy level interaction Hamiltonian HEL
I de-

scribes the coupling which causes fluctuations in the S1

and S2 energies, and where Hδ
I is responsible for the fluc-

tuations in the S1-S2 coupling matrix element. To begin
with, we make the assumption that the three fluctua-
tion motions in the system are uncorrelated, and thus we
treat the spectral densities J01, J02 and J12 as pertaining
to three independent bosonic baths which we label with
α = 1, 2 and 3 respectively. We will go on to refine this
assumption in section II C. Making the transformation
to second quantized creation and annihilation operators,
we obtain the following forms for the interaction Hamil-
tonians

HEL
I = − 1√

2

2∑
j,α=1

K
{α}
j ω

3
2
j (a†jα + ajα) |Sα〉 〈Sα| , (20)

Hδ
I =

∑
j

Λj√
2ωj

(a†j3 + aj3)(|S1〉 〈S2|+ h.c.). (21)

Finally, the bath Hamiltonian describing the free mo-
tion of the nuclei is given by

HB =

3∑
j,α=1

ωja
†
jαajα. (22)

The initial condition is the of product density matrices

ρ(0) = ρS ⊗ ρ{1} ⊗ ρ{2} ⊗ ρ{3}, (23)
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where ρ{α} is a thermal equilibrium density matrix for
bath α with inverse temperature βα and ρS = |S0〉 〈S0|
is the electronic ground state. These thermal density
matrices may appear a major problem since they rep-
resent statistical mixtures - implying an averaging over
a large number of initial states. However, by applying
Tamascelli et al.’s T-TEDOPA mapping to each bath,
we transform these density matrices into vacuum states
ρ{α} → |0〉α - single pure state wave functions - while
the bath spectral density picks up a temperature de-
pendence J(ω)→ Jβ(ω).47,48 This new thermal spectral
density, which encodes the detailed balance of thermal
emission and absorption in the mode coupling strengths,
is defined on the domain ω ∈ [−∞,∞] and thus intro-
duces effective negative energy modes into the bath. The
zero-temperature equilibrium correlation function of this
spectrally extended environment is identical to that of
the original finite temperature environment, and as the
reduced system dynamics defined by TrE{ρ(t)} can be
shown to be uniquely determined by the bath correlation
function, the proxy, extended zero temperature environ-
ment can be used to obtain finite temperature results.47

Moreover, the mapping can also be inverted on the bath
modes to provide thermal expectations for the nuclei in
the original basis.48,49

In general, the optical dipole operator is

V̂ = V01 |S0〉 〈S1|+ V02 |S0〉 〈S2|+ h.c., (24)

and the response function is given by

χ(t) = 〈V̂ (t)V̂ (0)〉ρ(0). (25)

Although the T-TEDOPA mapping preserves the dynam-
ics of the system’s reduced density matrix, it is not clear
that the same can be said for arbitrary multi-time cor-
relation functions,although some progress has recently
been made for the case of third-order response within
the thermofield approach.71 However, in the present case
the response function can be shown to depend on a re-
duced density matrix for the system which has been time-
evolved from a particular initial state; therefore, we can
correctly employ the mapping. Firstly, we expand the
thermal expectation of Eq. 25 and rearrange the contents
using the cyclic property of the trace

〈V̂ (t)V̂ (0)〉ρ(0) = Tr{eiĤtV̂ e−iĤtV̂ ρ(0)}

= Tr{V̂ e−iĤtV̂ ρ(0)eiĤt},
(26)

where Tr denotes the trace over all electronic and nu-
clear coordinates and we have dropped the subscript from
ĤLVC. Making use of the Condon approximation, we per-
form the trace over the nuclear DOF first giving

〈V̂ (t)V̂ (0)〉ρ(0) = TrS{V̂ TrE{e−iĤtV̂ ρ(0)eiĤt}}
= TrS{V̂ ρ′R(t)}
= 〈V̂ 〉ρ′R(t).

(27)

Thus, the response function can be expressed as the ex-
pectation value of V̂ with respect to the reduced system
density matrix ρ′R(t), which has been evolved from an ini-

tial state V̂ ρ(0). Unfortunately, V̂ ρ(0) does not represent
a valid initial state, since it contains only off-diagonal
components: |S1〉 〈S0| and |S2〉 〈S0|; therefore, it is not

possible to construct a simulation with V̂ ρ(0) as an initial

condition. Indeed, because V̂ is a Hermitian operator, its
expectation cannot equate to that of a multi-time corre-
lation function since the latter may be complex valued.
However, using the initial state ρ′S(0) = |ψ〉 〈ψ|, where
|ψ〉 = c(|S0〉+V01 |S1〉+V02 |S2〉) and measuring the non-

Hermitian operator V̂ ′ = V01 |S0〉 〈S1|+ V02 |S0〉 〈S2|, we
find exactly the same expectation value as we would have
found had we measured V̂ with the invalid initial condi-
tion V̂ ρ(0). This is because the system’s Hamiltonian
does not mix S1 or S2 with S0 and thus the additional
terms in ρ′S, such as |S1〉 〈S2|, will be projected out by

the measurement of V̂ ′. As ρ′S is a valid initial state, and
as nothing prevents us from measuring a non-Hermitian
operator, it is now straightforward to construct a simu-
lation for χ(t).

C. Bath Correlations

In the previous section we made the assumption that
the three fluctuation motions, corresponding to the two
energy levels and the coupling between them, were com-
pletely uncorrelated and could thus be treated as aris-
ing from three independent baths. While it is normally
justified to assume that there is no correlation between
the fluctuations of the coupling and those of the energy
levels, the bath motions required for these two kinds of
fluctuations being of very different natures, the same is
not in general true for the fluctuations of the energy lev-
els between themselves. Indeed, by measuring the cross-
correlator of the S1 and S2 energy fluctuation operators
along the MD trajectory

Ccross(t) = 〈δU01(q̂, t)δU02(q̂, 0)〉, (28)

we find a strong, principally positive, correlation between
these two motions for MB. This leads, via Eq. 12, to the
cross-correlation spectral density Jcross.

As a means of assessing quantitatively the strength
and parity of these correlations, we define the nor-
malized cross-correlation spectral density as J̃cross =
Jcross/

√
J01J02. This function takes values in the range

[1,−1] and has the following interpretation: if J̃cross = 1,
we have fully positively correlated modes; the bath in-
duced fluctuations of the S1 and S2 energies are perfectly
in phase - a raising of the S1 energy being associated
with a simultaneous raising of the S2 energy (although
the amplitudes, which are determined by J01 and J02,
need not be the same). Similarly, if J̃cross = −1, the
fluctuations will be perfectly anti-correlated - a raising
of the S1 energy being associated with a lowering of the
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S2 energy (again the amplitudes need not be identical).

Finally, if J̃cross = 0, the fluctuations are uncorrelated;
i.e., the energy fluctuations behave as two independent
sources of Gaussian noise.

The normalized cross-correlation spectral density for
MB from our energy gap sampling is plotted in SI Fig. 2.
We find that, with a few exceptions, the environmental
modes are between 40% and 100% positively correlated
(further analysis is presented in SI Sec.IX). In order to
include these correlations in the dynamical simulations
we must generalize the energy level interaction Hamilto-
nian HEL

I to take the following form:

HEL
I =

∑
k

∑
αβ

gαβk |Sα〉 〈Sα| (a
†
βk + aβk), (29)

where now, each harmonic bath couples to both the S1

and S2 energies. This interaction Hamiltonian is capable
of describing arbitrary correlations between the S1 and S2

energy fluctuations. The parameters gαβk are determined
so as to reproduce the calculated spectral densities J01,
J02 and Jcross. The details of the procedure for obtaining

gαβk are contained in SI Sec. III. LVC calculations per-
formed using the exact S1-S2 cross-correlation are labeled
MDCC (molecular dynamics cross-correlated).

There are two important limiting cases of this Hamil-
tonian. The first occurs when the off-diagonal coupling
coefficients vanish (g12k = g21k = 0), which corresponds
to the uncorrelated limit introduced in section II B. In
this case the two excited states are each coupled to their
own independent bosonic bath with no communication
between them. The second limiting case, which we re-
fer to as the fully positively correlated (FPC) limit, oc-

curs when the two columns of the matrix gαβk are iden-
tical; i.e., when g12k = g11k and g21k = g22k . In this case,

the coupling matrix gαβk possesses a zero eigenvalue and
thus HEL

I reduces to a coupling of the collective motion
of S1 and S2 to a single, shared bath (whose creation
and annihilation operators are the linear combinations

b
(†)
k = 1√

2

(
a
(†)
1k + a

(†)
2k

)
). The coupling Hamiltonian for

this case takes the form

HEL
I =

∑
k

(
g11k |S1〉 〈S1|+ g22k |S2〉 〈S2|

) (
b†k + bk

)
.

(30)
In the FPC limit the energy fluctuations of the two

excited states are induced by the same set of modes and
thus have no independent character. We interest our-
selves in this FPC limit for two reasons: first, it is inter-
esting to consider, from a theoretical point of view, the
effect of correlated energy fluctuations on the absorption
spectra and excited state dynamics; second, given that
for MB most modes are strongly positively correlated, the
FPC limit represents a reasonable approximation which
carries with it a significant reduction in computational
overhead, because of the need to simulate only one bath.
One could also consider the fully negatively correlated

limit where the coupling would be to the system opera-
tor g11k |S1〉 〈S1| − g22k |S2〉 〈S2|, however this is nonphysi-
cal for MB.

III. COMPUTATIONAL DETAILS

A. Molecular Dynamics and Electronic Structure
calculations

To sample the energy gap fluctuations needed to gener-
ate the necessary correlation functions and spectral den-
sities of MB in water, four independent trajectories of
8 ps length were generated. The same trajectories as
generated for a previous study by some of the authors
were used,72 and the full computational details can be
found therein. Here, we summarize the main computa-
tional details.

To obtain independent starting points for the four tra-
jectories, force field based molecular dynamics simula-
tions were performed in OpenMM,73 where water was
represented by the TIP3P74 water model and the MB
force field parameters were generated using the QUBEKit
package.75 The system was equilibrated as described in
Ref. 72 and a 4 ns production run in the NVT ensem-
ble was performed, where atomic positions and veloci-
ties were extracted every 1 ns to yield independent start-
ing points for mixed quantum mechanical/molecular me-
chanical (QM/MM) simulations.

Using the independent starting points, four 10 ps
QM/MM trajectories were generated using the inbuilt
QM/MM functionality of the TeraChem package.76 For
dynamics, the chromophore and its counter-ion were
treated quantum mechanically with the CAM-B3LYP
exchange-correlation functional77 and 6-31+G* basis set,
and all water molecules were described by the TIP3P
force field. Calculations were performed in the NVT
ensemble using a Langevin thermostat with a collision
frequency of 1 ps−1 and a time-step of 0.5 fs was used
throughout. The first 2 ps of each trajectory were dis-
carded to allow for the system to equilibrate after switch-
ing the chromophore Hamiltonian from the force field
Hamiltonian to the DFT Hamiltonian in the QM/MM
simulation, resulting in 8 ps of usable trajectory for each
independent trajectory. From these trajectories, snap-
shots were extracted every 2 fs for calculating vertical
excitation energies, yielding a total of 16,000 snapshots
from which the classical correlation functions were con-
structed.

Adiabatic excitation energies on each snapshot were
computed using time-dependent density-functional the-
ory (TDDFT) as implemented in the TeraChem code.78

To evaluate the influence of different choices of TDDFT
functional on the S1/S2 coupling, vertical excitation
energies were either computed at the CAM-B3LYP/6-
31+G* level of theory in the Tamm-Dancoff approxima-
tion or at the B3LYP/6-31+G* level of theory using full
TDDFT.77,79 This choice is motivated by the fact that
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the relative S1/S2 energy is very sensitive to the treat-
ment of long range Hartree-Fock exchange in the density
functional, with the CAM-B3LYP functional predicting a
larger energy difference between S1 and S2 (See SI Sec. V
for a discussion of the influence of different density func-
tionals on the calculated excited state energies for MB).
We note that the use of the B3LYP functional for com-
puting vertical excitation energies does introduce a mis-
match between the Hamiltonian generating the ground
state dynamics and the Hamiltonian generating the en-
ergy gap fluctuations. Such a mismatch can create ar-
tifacts in the computed correlation functions and spec-
tral densities of system-bath coupling, as is commonly
observed for spectral densities computed with TDDFT
using force-field-based MD trajectories.80–85 However,
the ground state properties of MB predicted by CAM-
B3LYP and B3LYP are expected to be similar enough
that this mismatch has a relatively minor influence on
the computed results. We further validate this choice in
SI Sec. VIII, where we compare single trajectory spec-
tral densities of B3LYP ground state dynamics in MM
water to the mixed CAM-B3LYP/B3LYP and CAM-
B3LYP/CAM-B3LYP spectral densities. The spectral
densities are fairly consistent, with a small red shift of
frequencies for B3LYP ground state dynamics compared
to the CAM-B3LYP dynamics.

To fully capture the influence of dynamic polarization
of the environment on the energy gap fluctuations, exci-
tation energies are computed by treating every solvent
molecule with a center of mass within 6 Å from any
chromophore atom fully quantum mechanically in the
TDDFT calculation, with the remaining solvent atoms
represented by classical point charges. This treatment
leads to QM region sizes of the order of ≈ 400 atoms
for the TDDFT calculations. Previous research by some
of the authors has shown that for some systems, com-
puted couplings of nuclear vibrations to electronic excited
state can be very sensitive to the treatment of polariza-
tion effects in the environment, thus making large QM
regions necessary.5 To assess whether the coupling be-
tween the S1 and S2 excited states in MB shows a similar
sensitivity to environmental polarization, we recompute
all excitation energies using both the B3LYP and the
CAM-B3LYP functional, where only the chromophore is
treated quantum mechanically and the full solvent en-
vironment is represented by classical point charges (see
Fig. 2 for an example of the two QM regions considered
in this work).

For all computed data sets, the quasi-diabatic states
are computed from the adiabatic energies and transi-
tion dipole moments following the approach outlined in
Ref. 70. This approach yields diabatic S1 and S2 ener-
gies, as well as their coupling, for every snapshot. Com-
puting classical autocorrelation functions for the dia-
batic states and the coupling, we can then parameterize
an LVC Hamiltonian that contains the full coupling be-
tween the chromophore and its complex environment (See
Sec. II A). To avoid numerical issues in the Fourier trans-

forms necessary to compute the relevant spectral densi-
ties, a decaying exponential of the form exp(−|t|/τ) is
applied to all classical correlation functions Ccl(t), where
τ = 500 fs. Further details of the formalism and imple-
mentation of cumulant lineshape calculations based upon
Ccl(t) can be found in recent publications by some of the
authors, and are available in the MolSpeckPy package.86

B. Tensor Network dynamics

In this section we provide the computational details
of the simulations carried out to determine the re-
sponse function χ(t). Time-evolution of the density ma-
trix under the LVC Hamiltonian was carried out us-
ing the one-site Time-Dependent-Variational-Principle
method (1TDVP) on tree and chain Matrix-Product-
States (MPS).40,87,88

An MPS, or tensor train as they are known within the
mathematics community, is a data structure that can be
used as an efficient representation of many-body quan-
tum states satisfying the one-dimensional form of the
area law. Although an MPS can in principle represent a
generic wave-function in any number of dimensions, they
are most successfully employed when the system in ques-
tion possesses a chain-like topology with open boundary
conditions. One may also extend the MPS concept to
consider systems with a quasi- one-dimensional topology,
i.e., a tree structure, using so called tree-MPS, provided
that there are no loops.40 The accuracy of the MPS ap-
proximation is controlled by a parameter known as the
bond-dimension, with a larger bond-dimension providing
a more accurate but more expensive representation. For
the simulations used to produce the absorption spectra
we present here, a maximum bond-dimension of 20 was
found to be sufficient.

By employing the chain mapping,42 it is possible to
transform the Hamiltonians described in sections II B and
II C into Hamiltonians with the desired topology. We
refer to SI Sec. IV for details on this procedure. The
tensor network structures resulting from the chain map-
ping are shown in Fig. 1 for the uncorrelated and FPC
limits introduced in section II C, and also for the general
MD cross-correlated (MDCC) case. In the case of un-
correlated S1-S2 energy fluctuations, the three harmonic
baths are transformed to three chains of harmonic os-
cillators with nearest-neighbour couplings, each coupled
to the central system site, resulting in a loop-free tree
topology. On the other hand, in the FPC limit, there
are only two baths and so one obtains a chain topology.
However, since one of the baths couples to both S1 and S2

with different spectral densities, one cannot avoid long-
range couplings. For example, if one performs a chain
mapping with respect to J01, while S1 will be coupled to
the first site only, S2 will be coupled to every site along
the chain. In practice, these long-range couplings intro-
duce only a modest increase in computational complex-
ity within 1TDVP.87 Specifically, the bond-dimension of
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a)

b)

c)

FIG. 1. Tensor network structures used for the various bath
configurations considered. (a) Uncorrelated baths, tree-MPS
with local interactions only. (b) FPC baths, chain-MPS with
some long-range interactions. (c) MDCC baths, tree-MPS
with long-range couplings. Bath modes involved in Hδ

I (cou-
pling) are shown in blue, while bath modes involved in HEL

I

are shown in red (tuning). While interactions between the
system and the tuning modes may become long-ranged, all
intra-chain couplings are nearest-neighbour (tn) for oscilla-
tors of frequency εn.

the Matrix-Product-Operator (MPO) representation of
the Hamiltonian only increases by one. Finally, in the
general MDCC case, one again obtains a tree, but now
long-range couplings are present on two of the chains.

Two controllable approximations are necessary to
make the simulations of these chain mapped Hamilto-
nians possible. These are: 1) the truncation of the local
Fock space of each chain mode to a finite set of states d
and 2) the truncation of the semi-infinite chains to a finite
number of chain sites N . Both of these approximations
introduce errors that are confined by rigorously derived
bounds.89 The linear absorption spectra presented here
were found to converge with chain modes truncated to
d = 20 Fock states and N = 150 chain modes for each
chain. The observable V̂ ′(t), used as a proxy for the re-
sponse function χ(t), was calculated at 1000 time steps
from t = 0 up to t = 240 fs. The response function
was found to decay to a steady state on the time scale
of ∼ 50 fs, which is physically reasonable for a molecu-

lar optical coherence at room temperature. Simulations
were performed on nodes consisting of two 12-core In-
tel Xeon Haswell (E5-2670v3) processors. Approximate
simulation times for the uncorrelated, FPC and MDCC
limits were, respectively, 9, 8 and 13 hours.

IV. RESULTS

A. Excited States and Spectra Computed Within the
Condon Approximation

Before presenting results computed with the LVC
Hamiltonian, we first discuss the results of TDDFT ex-
cited state calculations and spectra computed within the
Condon approximation for the S0 → S1 transition. These
results are jointly presented in the calculated absorption
lineshapes in Fig. 2 and in SI Sec. V.

For all functionals examined, when excitations are cal-
culated at the S0, S1 and S2 minima, the S0 → S1 transi-
tion of MB is bright and the S0 → S2 oscillator strength
is consistently low. S0 → S2 shows ∼0.5% the intensity
of the S0 → S1, indicating that any Franck-Condon ap-
proach for modeling S0 → S2 will lead to negligible con-
tributions to the total lineshape. Despite the consistency
of the oscillator strengths, the S1-S2 vertical energy gap
is highly sensitive to functional choice, ranging from 0.06
to 0.67 eV.

Fig. 2 shows the significant difference between the
experimental absorption lineshape of MB in water and
various Franck-Condon and cumulant lineshape calcu-
lations. In all four calculated lineshapes, the shoulder
blue shifted 0.15 eV from the 0-0 maxima is underes-
timated, and the general lineshape significantly under-
broadened. For the adiabatic Hessian Franck-Condon
(AHFC)91 calculation, the S1 excited state geometry and
normal modes have been evaluated (at the TDA/CAM-
B3LYP/6-31+G* level) and mode mixing effects are ac-
counted for through a Duschinsky rotation.59 This is
equivalent to representing the nuclear degrees of free-
dom through the generalized Brownian oscillator model
(GBOM).56 The resultant lineshape exhibits two shoul-
ders; one local to the 0-0 peak, and one separated by
0.15 eV and in line with the broad experimental shoul-
der. As presented in the SI Sec. V B, this AHFC line-
shape is reproduced by a range of functionals, for both
full TDDFT and TDA, for various solvent models, and
when including Herzberg-Teller effects. The main differ-
ences between functionals are absolute spectral position
(which is pinned to the zero-point corrected energy dif-
ference between the ground and S1 minima), and the
presence of the local shoulder. The local shoulder’s in-
tensity is correlated with increasing the fraction of long-
range exact exchange in the functional. The main shoul-
der 0.15 eV from the 0-0 transition that is in line with
the broad experimental shoulder however is consistently
underestimated by all DFT functionals employed here,
except by B3LYP with full TDDFT in vacuum, as we
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FIG. 2. Methylene blue experimental absorption lineshape and calculated Condon type spectra for the bright S1 state. Spectra
measured in water at low (monomeric) concentration, taken from Ref. 90. Structure of methylene blue (middle), and methylene
blue in 6Å water (right) represent the two quantum mechanical environments calculated in this study.

discuss further below.

The other linear absorption lineshapes contained
in Fig. 2 are computed in the vertical gradient
Franck-Condon (VGFC)91 and third order cumulant
approaches.56 In the vertical gradient method the un-
derlying vibronic Hamiltonian is the BOM parameterized
using the ground state vibrational modes and a single ex-
cited state gradient calculation at the ground state min-
imum. The VG approach thus provides a connection be-
tween the AHFC GBOM-type calculations and the effec-
tive mapping to the BOM in the cumulant method. The
key spectral features are maintained between the AHFC
and VGFC methods, indicating that there is only mod-
erate improvement from including Duschinsky rotations
or differences between ground and excited state PES cur-
vatures for high frequency modes. However, the VGFC
is significantly less broadened, suggesting that changes
in frequency and Duschinsky rotation are important for
treating low frequency modes. The cumulant lineshapes
presented here are calculated in the third order approxi-
mation from the diabatized S1 spectral densities for the
system with 6 Å of QM solvent. As will be discussed,
the diabatic S2 dipole intensity along these trajectories
are practically zero, leading to no contribution to the to-
tal cumulant lineshape. These lineshapes do not display
the local shoulder, with the 0-0 peak instead appearing
as a broad Lorentzian profile, but do display a secondary
vibronic peak in line with the broad experimental shoul-
der. The thermalization and broadness of the peak ap-
pear slightly better modeled by the cumulant than the
Franck-Condon approaches, which can be attributed to
the extensive sampling which capture low frequency dy-
namics (including solvent effects) and some contributions
from sampling anharmonic regions of the PES.

Although Fig. 2 displays 3rd order cumulant line-
shapes, which include corrections due to non-linear cou-

plings to nuclear degrees of freedom that go beyond
the simple BOM Hamiltonian, these lineshapes are very
similar to the second order cumulant lineshapes (see SI
Sec. VII). This similarity shows that non-linear couplings
to nuclear degrees of freedom are small, such that the
BOM is a good approximation to the underlying dynam-
ics of the system. The appropriateness of the model is
echoed by the small skewness values (see SI Sec. VII)
for the energy gap fluctuations of both the diabatic S1

and S2 surfaces. As the higher order moments of the en-
ergy gap fluctuations go to zero, their statistics become
exactly Gaussian, then become wholly described by the
2nd order cumulant approximation, and are thus equiva-
lent to a perfect mapping to a set of displaced harmonic
oscillators.

In a recent study, de Queiroz et. al. per-
formed AHFC calculations of MB in vacuum at the
TDDFT/B3LYP/def2-SVP level, which produces a large
shoulder in line with experimental results, stemming
purely from vibronic contributions to the S1 state.54 Our
calculations over a range of functionals and lineshape
approaches suggest that this large shoulder is anoma-
lous, occurring only for this specific combination of full
(non-TDA) TDDFT and B3LYP in vacuum, and could
be due to the excited state geometry optimization yield-
ing a state that is of mixed S1-S2 character. Many re-
sults in their work indicate state mixing. For example,
they report difficulties in optimizing excited states, as
well as intensity-borrowing effects of the S2 in snapshot
calculations that include explicit solvent. In our studies,
this large vibronic shoulder in the lineshape is not repro-
duced by TDA/B3LYP in vacuum or any methodology in
PCM solvent. Similarly, if we perform a vertical gradient
Franck-Condon calculation at the TDDFT/B3LYP level
in vacuum, the shoulder is removed. We present results
for this analysis in SI Sec V C.
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In summary, we find that despite considering differ-
ent approaches to computing the lineshape, a range of
density functionals, and the inclusion of environmental
effects through the cumulant approach, there is a consis-
tently poor reproduction of the broad experimental spec-
tral shoulder when only considering the transition from
the ground state to the bright S1 state. Furthermore,
in static FC calculations, the transition from the ground
state to the S2 state is consistently dark and does not
contribute significantly to the lineshape. We also find
that the fluctuation statistics of the excited states are
closely Gaussian and the BOM is a robust model for the
problem at hand. Lastly, TDDFT calculations presented
in the SI show that the S1-S2 gap is very sensitive to
the choice of electronic structure method, and for sev-
eral functionals the gap is so small that decoupling in
the calculation of linear absorption spectra is likely in-
accurate. In addition, previous results by de Queiroz et.
al. show that significant intensity-borrowing between S1

and S2 can occur for selected snapshots of MB in explicit
solvent,54 suggesting that both non-adiabatic and solvent
effects might play an important role in the experimental
lineshape.

We now turn to analysis of the QM/MM ground state
ab initio molecular dynamics and the energy gap fluc-
tuations that act as input for constructing the spectral
densities that we use to evaluate cumulant spectra and
parameterize the LVC dynamics. In Fig. 3 we show a
300 fs window of a single trajectory’s energy gaps and
corresponding oscillator strengths. On the left of Fig.
3 we show the transition densities when the adiabatic
states are well-separated, with the S1 excitation having
a lower energy and high oscillator strength, whilst the S2

is higher in energy and has low oscillator strength. There
are dips in the oscillator strength of the S1 state at 3076
and 3120 fs which coincide with peaks in the S2 inten-
sity. As can be seen in the oscillator strengths at around
3200 fs, there are also crossings between the S1 and S2

states; the bright and dark states energetically reorder.
On the right of Fig. 3, we show transition densities of
adiabatic electronic excited states at a point of degener-
acy. These represent the S1 and S2 states becoming ’left’
and ’right’ mirrored degenerate excitations. The increase
in S2 dipole intensity for certain regions of the potential
energy surface is consistent with the results of de Queiroz
et. al. seen for individual MD snapshot calculations in
explicit solvent.54 Strong state mixing (as measured by
adiabatic S2:S1 oscillator strength ratio of 1:3 or greater)
occurs for approximately 3.3 % of snapshots at the CAM-
B3LYP/TDA/6Å QM solvent level. Thus, non-adiabatic
mixing of excited states occurs semi-frequently around
the ground state equilibrium. However, this value is sig-
nificantly enhanced to 16.8% for the B3LYP/TDDFT/6Å
QM data set, and would likely further increase when ac-
counting for nuclear quantum effects within the MD sam-
pling of the ground state PES.24

Application of the diabatization scheme outlined in
Ref. 70 to adiabatic snapshot data is very successful in

separating the adiabatic S1 and S2 into a bright diabatic
S1 and a dark diabatic S2 state. These diabatic states
are indicated by the dashed lines in Fig. 3. The consis-
tency of these states restores the Condon approximation,
at the price of introducing an explicit coupling between
the diabatic S1 and S2 states that has to be accounted
for by solving the LVC Hamiltonian. Applying the quan-
tum correction factor and Fourier transform of the clas-
sical correlation functions of diabatic energy gap fluctu-
ations leads to the spectral densities for the ground to
S1, ground to S2, and coupling spectral densities shown
in Fig. 4. J01(ω) and J02(ω) detail the ground state vi-
brational frequencies that couple to the electronic states,
whilst J12(ω) describes the ground state vibrational fre-
quencies that couple the excited states. These peaks can
be assigned approximately to vibrational normal modes
calculated for the isolated molecule, which we detail in
the SI Sec. IX. To summarize, the diabatic S1 and S2

are shown to couple to A1 symmetric modes, whilst the
diabatic coupling is driven by asymmetric B2 modes. Sig-
nificant contributions to the spectral density range from
110 to 1710 cm−1, with the most intense coupling occur-
ring between the S2 and the mode at 1710 cm−1, which
is a C-C symmetric ring stretching mode.

Diabatic S1 and S2 spectral densities and their dia-
batic coupling spectral density are presented in SI Sec. I,
along with the exhaustive table of parameters for the
LVC Hamiltonian. The key result of this data is that
the average transition dipole moments are quite consis-
tent between electronic structure methods, with the S2

remaining consistently dark for both CAM-B3LYP and
B3LYP in both QM and MM solvent. Similarly, the sol-
vent reorganization energy obtained by integrating the
spectral densities (eq. 16) is consistent, and there is
minimal change in spectral densities when different func-
tionals are used for the ground state ab initio molecular
dynamics. However, the energy gap between the minima
of the diabatic potential energy surfaces ∆12 is quite sen-
sitive to the functional and environment. This is seen in
∆12 having a value of 0.087 eV for CAM-B3LYP in QM
solvent, and -0.026 eV in B3LYP MM solvent. This en-
ergy gap strongly influences the amount of mixing that
occurs between the states in the LVC dynamics.

B. Bath correlation

In Fig. 5 we present calculated lineshapes (left) and ex-
cited state population dynamics (right) from T-TEDOPA
applied to the LVC Hamiltonian parameterized using the
spectral densities and parameters from the CAM-B3LYP
data set in 6 Å explicit QM solvent, examining different
approaches to treating the bath correlation. To first test
the T-TEDOPA method without coupling, we compare
the T-TEDOPA approach applied to the LVC Hamilto-
nian with deactivated S1-S2 coupling to the third-order
cumulant lineshape. Both these methods have the same
pure diabatic spectral densities; however, for the uncou-
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FIG. 3. Excitation energies and oscillator strengths for a segment of trajectory 1 as computed with CAM-B3LYP and a 6 Å QM
region. Adiabatic energies and oscillator strengths are shown as solid lines, corresponding diabatic values are shown as dotted
lines. The transition densities of the adiabatic S1 and S2 states for two specific snapshots along the MD trajectory are also
shown.
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FIG. 4. Spectral densities of the diabatic S1 and S2 states, as
well as the S1/S2 coupling spectral density as computed for
the CAM-B3LYP data set in 6 Å explicit QM solvent.

pled LVC approach the total lineshape is given by the
sum of the S1 and the low intensity S2 contribution,
which slightly increases and smooths the high energy
shoulder, whereas the third order cumulant approach in-
cludes some effects due to non-linear energy gap fluctu-
ations. As expected, the peak maxima are effectively
identical (seen in the legend shift values), the onsets are
very similar, and they both significantly underestimate
the experimental shoulder.

As discussed in the methodology and graphically illus-
trated in Fig. 1, we utilize three different regimes for de-
scribing the nature of the couplings between S1 and S2 in
the LVC Hamiltonian. The computationally cheapest is
the uncorrelated (labeled UC) bath, where the tree-MPS
has only local interactions and the cross-correlation be-
tween the electronic state fluctuations is assumed to be
zero. In the other extreme, the fully positively correlated
(FPC) limit, the cross-correlation between fluctuations
is unity, such that fluctuations in S1 drives an equivalent
change in S2 and vice versa. There is a bath shared by the
states, leading to a chain-MPS with some long-range in-
teractions, and an increase in computational expense over
the UC system. Lastly, the more expensive and physical
approach is to include the exact structure of the normal-
ized cross-correlation between electronic states. Examin-
ing the short-time (first 50 fs) regime of the population
dynamics, which strongly influences the linear absorp-
tion spectrum, we note significantly different amounts of
fast population transfer to S2 depending on the coupling
model. If the states are uncoupled, the S1 population
stays pure. However, allowing any kind of S1-S2 coupling
leads to a fast (<20 fs) and significant (∼15%) popula-
tion transfer from S1 to S2. This population transfer
decreases the main peak intensity in the linear absorp-
tion spectrum and increases the intensity of the shoulder.
The first 8 fs are very similar between models, indicat-
ing a fast transition of a portion of the wavepacket from
the S1 to the S2 PES via the CI close to the Condon re-
gion. The populations quickly differ after this point; for
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FIG. 5. Effect of tensor network bath configurations on lineshape (left) and S1 population (right) using the 6Å QM water
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the UC system the population dynamics evolves into a
steady state and further mixing with S2 is limited, whilst
the correlations in the FPC bath persist and drive fur-
ther population transfer to and from the S2 state. This
population of S2 is reflected in the absorption lineshapes,
with the FPC model displaying a stronger shoulder fea-
ture, moving closer to experiment, whereas the change in
shoulder intensity for the UC bath is moderate. Lower-
ing the main peak intensity through population transfer
also decreases the sharpness of the absorption onset, and
FPC most closely matches the experimental onset.

The dynamics and lineshape using the MDCC bath
closely mirror FPC, which is rationalized by the fact
that the average MD sampled cross-correlation value is
0.8. The key differences in the dynamics of these two
models are that the secondary dip is not driven as low
as in the FPC dynamics, and the following peak struc-
ture is slightly dampened. This dampening could be due
to the small cross-correlation value of specific modes or
from general lowering of cross-correlation across the en-
tire frequency range. The lower population transfer for
the MDCC manifests in the section of the lineshape be-
tween the main S1 and S2 features and the intensity of the
high energy shoulder feature is preserved by the MDCC
method.

Therefore, we find that if cross-correlation between
states has an average value close to one, the FPC model
is a good approximation to the MDCC dynamics and
can lead to appropriate lineshapes for the LVC Hamilto-
nian with reduced computational cost. However, in this
case the inclusion of the exact structure of the fluctua-
tions (in MDCC) between electronic states comes with
only a modest increase in computational cost due to the
efficiency of MPS/T-TEDOPA. Overall, including non-
adiabatic transitions appears essential, as significant fast
population transfer occurs even when ignoring correla-

tion between the electronic states.

C. Influence of the S1-S2 gap

1. Functionals and environment

Having found the spectral shoulder intensity to be
strongly sensitive to the population transfer between the
electronic excited states, we next consider the parame-
ters in our LVC Hamiltonian. Noting the consistency
of the spectral densities, diabatic dipole moments, and
reorganization energies between different solvent models
and electronic structure methods, the adiabatic energy
gap ∆12 between the two excited state surfaces presents
itself as the most important parameter for this problem.

The computed absolute vertical excitation energies of
S1 and S2 vary by 0.6 eV depending on the density func-
tional used (see SI Sec. V). We also find that the diabatic
S2 state shows a larger variance in energy depending on
the amount of exact exchange in the functional due to
having greater charge-transfer character than S1. This
leads to a strong functional sensitivity in the S1-S2 gap.
In principle, it would be desirable to determine an accu-
rate S1-S2 energy gap using higher-level electronic struc-
ture methods. However, both the size of the MB molecule
and the fact that explicit solvent environment plays a
significant role in the value of the energy gap makes
precise evaluation prohibitive. Instead, we proceed by
calculating the MDCC MPS/T-TEDOPA dynamics and
lineshape for parameters calculated in different solvent
environments (QM vs MM) and for B3LYP/TDDFT vs
CAM-B3LYP/TDA to examine the influence of the LVC
parameter choice on the computed lineshape. Fig. 6
summarizes these results, with the legend of the popula-
tion dynamics (right) indicating the average energy gap
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for the given LVC parameterization. The average en-
ergy gap ωav

12 is the energy difference between diabatic
S1 and S2 averaged over our molecular dynamics con-
figuration sampling around the ground state equilibrium
(ωav

12 = ωav
02 − ωav

01), and is a robust measure of the gap
between states in the Condon region.

The most extreme average energy gap ωav
12 values are

CAM-B3LYP QM (0.29 eV) and B3LYP MM (0.12 eV).
Here, using point charge models for solvent reduces ωav

12

by 0.05 eV. These values directly translate into the pop-
ulation dynamics; we find that large ωav

12 leads to a re-
tention of population in S1, whereas the smallest value
leads to the greatest population transfer. For the first 20
fs the population transfer is almost four times larger for
B3LYP MM over CAM-B3LYP QM, which directly man-
ifests in the absorption lineshape. Although the trend in
population transfer is gap sensitive, the structure and os-
cillations are remarkably consistent when using MDCC.
This consistency stems from the similarity in spectral
densities and cross-correlation between data sets.

Also in this figure we present the MDCC and UC pop-
ulations and lineshape for the CAM-B3LYP/QM data
but with the average energy gap artificially reduced by
40%., to match the B3LYP/QM system. For the reduced
gap MDCC, the structure of the dynamics is conserved
but the population transfer is greater. The short time
dynamics are equivalent to B3LYP/QM, but at longer
times we see that reducing the gap leads to greater popu-
lation transfer, with S2 becoming the majority populated
state. However, reducing the energy gap alone is insuf-
ficient for increasing the lineshape shoulder. If the bath
correlation is ignored (UC) then the dynamics (particu-
larly oscillations) are dampened, and whilst the general
population transfer is large, the shoulder is weaker and
decays slowly. This finding indicates that the reproduc-
ing the shoulder in the lineshape is only possible with an
exact description of Jcross as well as accurate evaluation
of the solvent polarized electronic energies.

2. Controlling the average energy gap

Given that our calculations show a large variance in av-
erage energy gap and that no singular ab initio method
presents itself as unequivocally better for the calculation
of excited states, we examine how population dynamics
and lineshapes change for a range of average gap val-
ues. Using the CAM-B3LYP/TDA/6Å QM data set we
present in Fig. 7 these results for increments of 20% av-
erage energy gap reduction. This range spans an average
energy gap value from 0.29 eV to 0.06 eV. This small
value is equivalent to the S1-S2 vertical excitation en-
ergy gap as calculated with TDA/B3LYP/PCM, which
is presented in SI Sec. V.

Reducing the gap and utilizing the MDCC model is
highly effective at progressing the calculated lineshape
towards the broad experimental shoulder, with the best
result occurring for the energy gap reduced by 60%.

All population dynamics have similar structure, but the
driven population transfer to the S2 state grows increas-
ingly large as the gap closes. This population transfer
mostly occurs in the first 25 fs. The intermediate time
dynamics (100-150fs) show very similar plateaus in pop-
ulation transfer. The long time oscillations are strongly
dampened for gap reduction > 40%.

We conclude that fast S1 →S2 population transfer is
the main driver of the broad linear absorption spectral
shoulder of the MB monomer in water. However, even
with inclusion of non-adiabatic effects using the exact
solution to the LVC Hamiltonian and the explicit sol-
vent environment, we are unable to completely recreate
the experimental spectra. This discrepancy can be re-
lated to several factors. The most practical of these con-
siderations is that although reducing the energy gap in
an a posteriori manner improves the lineshape, it does
not correctly account for changes in the structure of
the cross-correlation. Clearly the structure of the cross-
correlation is important in driving fast dynamics and
spectral shoulder intensity, and even moderate changes
can reduce low frequency broadening and more strongly
couple high frequency vibrations. Better electronic struc-
ture methodologies may lead to more accurate properties,
in particular the coupling spectral density and the cross-
correlation. Another source of improvement may be the
inclusion of non-linear terms beyond our LVC model. For
example, although the energy gap fluctuations of the di-
abatic S1 and S2 states seem well described by a lin-
ear coupling model given the small corrections the third-
order cumulant lineshape provides over the second-order
cumulant approach, we are unable to determine how ac-
curately the coupling between S1 and S2 is modeled by
the LVC Hamiltonian for this system.

V. CONCLUSION

We have presented a novel methodology for the cal-
culation of the LVC Hamiltonian using a tensor network
based approach for quantum dynamics and parameter-
ized using data from ab initio molecular dynamics and
TDDFT. This method has been applied to the large and
curious shoulder in the linear absorption spectra of aque-
ous methylene blue (MB), demonstrating the role of vi-
brationally driven population transfer from the bright S1

to the dark S2.
This methodology is highly attractive as it may be ap-

plied to arbitrarily large chromophores in complex envi-
ronments; capturing the influence of solvent polarization
and dynamics, and some anharmonicity, in the spectral
densities, whilst still giving exact quantum dynamics. In-
deed, the MPS/T-TEDOPA method presents itself as ex-
ceptionally computationally efficient and affordable for
the evaluation of non-adiabatic dynamics between two
electronic states with exact inclusion of cross-correlation
by introducing an additional bath. It is readily extend-
able to a greater number of states, and is particularly ap-
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pealing for complex linear absorption lineshapes, where
only short time propagation is required to compute con-
verged spectra. Further investigation of T-TEDOPA,
particularly pertaining to the nature of many-time cor-
relation functions and the retention of bath dynamics, is
highly promising for the calculation of quantum dynam-
ics and their interpretation in spectroscopy. Some recent
studies have made use of bath observables,40,46 and this
is to be examined in the case of MB.

We note several key results for MB. Firstly, the map-
ping to the BOM, and the extension to the LVC is ef-
fective, as measured by the fluctuation statistics. The
S1 and S2 both couple to high and low frequency modes
with A1 symmetry, whilst the diabatic coupling is due to
B2 modes. Upon calculating the LVC dynamics and line-

shape we find it essential to accurately account for both;
the correlations between fluctuations in S1 and S2, and
the average energy gap. The structure of the correlations
lead to more effective mixing and show richer oscillatory
population dynamics, and the energy gap significantly
influences the general population transfer. Most spec-
tral densities and parameters for the LVC are fairly in-
sensitive to the solvent model or the parameters of the
TDDFT calculation, with the exception of the average
S1-S2 gap which is very sensitive and difficult to appraise
accurately. Choosing a reasonable value for this param-
eter when calculating the LVC lineshapes leads to signif-
icantly better agreement with experiment. Intriguingly,
the excited state population dynamics show signs of a
transition in the dominant character of S1, as the aver-
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age energy gap between the bright S1 and dark S2 - at the
ground state geometry - is reduced. While unimportant
at room temperature for the absorption spectrum, the
emission spectrum will be highly sensitive to the detailed,
non-adiabatic dynamics of the excited states, as they re-
lax in solvent. The present numerically exact method-
ology can be extended to these problems, and will be
pursued in future work.
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39M. Schröter, S. D. Ivanov, J. Schulze, S. P. Polyutov, Y. Yan,
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diabatic states from block diagonalization of the electronic hamil-
tonian,” The Journal of Chemical Physics 89, 7367–7381 (1988),
https://doi.org/10.1063/1.455268.

67J. E. Subotnik, S. Yeganeh, R. J. Cave, and M. A. Ratner, “Con-
structing diabatic states from adiabatic states: Extending gener-
alized mulliken–hush to multiple charge centers with boys local-
ization,” The Journal of Chemical Physics 129, 244101 (2008),
https://doi.org/10.1063/1.3042233.

68T. Van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L.
Cheng, and Q. Wu, “The diabatic picture of electron trans-
fer, reaction barriers, and molecular dynamics,” Annual Review
of Physical Chemistry 61, 149–170 (2010), pMID: 20055670,
https://doi.org/10.1146/annurev.physchem.012809.103324.

69C. E. Hoyer, X. Xu, D. Ma, L. Gagliardi, and D. G. Truh-
lar, “Diabatization based on the dipole and quadrupole: The dq
method,” The Journal of Chemical Physics 141, 114104 (2014),
https://doi.org/10.1063/1.4894472.

70G. R. Medders, E. C. Alguire, A. Jain, and J. E. Subotnik, “Ul-
trafast electronic relaxation through a conical intersection: Nona-
diabatic dynamics disentangled through an oscillator strength-
based diabatization framework,” The Journal of Physical Chem-
istry A 121, 1425–1434 (2017).

71M. F. Gelin and R. Borrelli, “Simulation of nonlinear femtosec-
ond signals at finite temperature via a thermo field dynamics-
tensor train method: General theory and application to time-
and frequency-resolved fluorescence of the fenna–matthews–olson
complex,” Journal of Chemical Theory and Computation (2021).

72T. J. Zuehlsdorff, H. Hong, L. Shi, and C. M. Isborn, “Nonlinear
spectroscopy in the condensed phase: The role of duschinsky
rotations and third order cumulant contributions,” The Journal
of Chemical Physics 153, 044127 (2020).

73P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao,
K. A. Beauchamp, L.-P. Wang, A. C. Simmonett, M. P. Harrigan,
C. D. Stern, R. P. Wiewiora, B. R. Brooks, and V. S. Pande,
“Openmm 7: Rapid development of high performance algorithms
for molecular dynamics,” PLOS Comput. Biol. 13, 1–17 (2017).

74W. L. Jorgensen, J. Chandrasekhar, and J. D. Madura, “Com-
parison of simple potential functions for simulating liquid water,”
J. Chem. Phys. 79, 926 (1983).

75J. T. Horton, A. E. A. Allen, L. S. Dodda, and D. J. Cole,
“Qubekit: Automating the derivation of force field parameters
from quantum mechanics,” J. Chem. Inf. Model 59, 1366–1381
(2019).

76I. S. Ufimtsev and T. J. Martinez, “Quantum Chemistry on
Graphical Processing Units. 3. Analytical Energy Gradients and
First Principles Molecular Dynamics,” J. Chem. Theory Comput.

5, 2619–2628 (2009).
77T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange-

correlation functional using the Coulomb-attenuating method
(CAM-B3LYP),” Chem. Phys. Lett. 393, 51–57 (2004).

78C. M. Isborn, N. Luehr, I. S. Ufimtsev, and T. J. Mart́ınez,
“Excited-State Electronic Structure with Configuration Interac-
tion Singles and Tamm–Dancoff Time-Dependent Density Fucn-
tional Theory on Graphical Processing Units,” J. Chem. Theory
Comput. 7, 1814–1823 (2011).

79P. J. Stephen, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch,
“Ab Initio Calculation of Vibrational Absorption,” The Journal

of Physical Chemistry 98, 11623–11627 (1994).
80M. C. Zwier, J. M. Shorb, and B. P. Krueger, “Hybrid Molecu-

lar Dynamics-Quantum Mechanics Simulations of Solute Spectral
Properties in the Condensed Phase: Evaluation of Simulation
Parameters,” J. Comput. Chem. 28, 1572–1581 (2007).

81A. M. Rosnik and C. Curutchet, “Theoretical Characterization of
the Spectral Density of the Water-Soluble Chlorophyll-Binding
Protein from Combined Quantum Mechanics/Molecular Mechan-
ics Molecular Dynamics Simulations,” J. Chem. Theory Comput.
11, 5826–5837 (2015).

82S. Chandrasekaran, M. Aghtar, S. Valleau, A. Aspuru-Guzik,
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