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Abstract

During their evolution, proteins explore sequence space via an interplay between random mutations and

phenotypic selection. Here we build upon recent progress in reconstructing data-driven fitness landscapes

for families of homologous proteins, to propose stochastic models of experimental protein evolution.

These models predict quantitatively important features of experimentally evolved sequence libraries, like

fitness distributions and position-specific mutational spectra. They also allow us to efficiently simulate

sequence libraries for a vast array of combinations of experimental parameters like sequence divergence,

selection strength and library size. We showcase the potential of the approach in re-analyzing two

recent experiments to determine protein structure from signals of epistasis emerging in experimental

sequence libraries. To be detectable, these signals require sufficiently large and sufficiently diverged

libraries. Our modeling framework offers a quantitative explanation for different outcomes of recently

published experiments. Furthermore, we can forecast the outcome of time- and resource-intensive evolution

experiments, opening thereby a way to computationally optimize experimental protocols.
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INTRODUCTION

In the course of evolution, biological sequences

encoding proteins explore functional sequence

space. The observable sequence variability

between homologous sequences, i.e. sequences

connected by common ancestry, results from a

delicate balance between mutation and selection.

Mutations tend to randomize sequences, while

natural selection prunes most of those mutations

having a deleterious effect on fitness. When

analyzing large databases of homologous protein

families (Mistry et al., 2021), we therefore find

sequences with 70-80% different amino acids,

but highly conserved functional and structural

properties.
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In turn, it is possible to search for statistical

patterns in ensembles of homologous proteins

(Durbin et al., 1998), using tools borrowed from

statistical inference and unsupervised machine

learning, and to relate them to selective

constraints acting in these proteins. The most

prominent signal is conservation; a position in

a protein not (or rarely) changing amino acid

over extended evolutionary time scales, is likely

to play an important role in the protein’s function

(e.g. active sites in enzymes) or for the protein’s

structural stability (e.g. residues buried in the

protein core).

A second type of statistical signal has received

a lot of attention during the last decade (Cocco

et al., 2018; De Juan et al., 2013; Levy et al., 2017).

The correlations between the amino acids present

in pairs of residue positions can be extracted

via global statistical models like those used in

Direct Coupling Analysis (DCA) (Morcos et al.,

2011; Weigt et al., 2009), Gremlin (Balakrishnan

et al., 2011) or PSICOV (Jones et al., 2012).

This signal of residue-residue coevolution results

from epistatic couplings between residues in

structural contact in the folded proteins, i.e. of

residue pairs in direct physical interaction in the

three-dimensional structure of the protein, even

if possibly located at long distance along the

primary amino-acid sequence. Coevolutionary

methods, in particular when used as input for

structurally supervised deep-learning methods

like RaptorX (Xu, 2019), DeepMetaPSICOV

(Greener et al., 2019), AlphaFold (Senior et al.,

2020) or trRosetta (Yang et al., 2020), have

recently induced a revolution in protein-structure

prediction, reaching unprecedented accuracy

in computationally predicted structures close

to the accuracy of experimentally determined

structures (Jumper et al., 2021). Hundreds of

previously unknown protein structures have been

predicted this way (Ovchinnikov et al., 2017;

Tunyasuvunakool et al., 2021).

However, coevolutionary methods rely on the

availability of large alignments of homologous

but diverged proteins, since they rely on

statistical signatures extracted from sequence

variability (Haldane and Levy, 2019). Recently,

two groups have independently asked the question,

if experimentally generated sequences can be

used instead of natural homologs for contact

prediction (Fantini et al., 2020; Stiffler et al.,

2020). To this aim, they have proposed and

performed similar experiments. First, starting

from a given wildtype sequence, they have

iterated several rounds of alternating sequence

diversification via error-prone PCR (polymerase

chain reaction) (Cadwell and Joyce, 1992), and

selection for functionality (antibiotic resistance

for both experiments). In contrast to traditional

directed evolution (Arnold, 1998, 2018), selection

was very weak (low antibiotic concentrations), so

proteins are not simply optimized for function, but

may diversify their sequences while maintaining

a certain level of functionality. After a certain
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number of rounds, the resulting sequence library

was sequenced, to provide the data for statistical

learning.

The resulting functional sequence libraries were

quite diversified, with typical distances of 10-15%

of the sequence length from the wild-type protein

used as a starting point. This is much less than

in natural protein families, characterized typically

by average distances of 70-80% between homologs.

However, the simultaneous emergence of about 10-

40 mutations, and the depth of more than 104−105

sequences in the experimentally evolved libraries,

could make the detection of epistasis, and thus

contact prediction, possible (Fantini et al., 2020;

Stiffler et al., 2020).

Interestingly, both teams have run plmDCA

(Ekeberg et al., 2013), or evCouplings based on

plmDCA (Hopf et al., 2019), on the data –

with very different results. While the contact

signal in (Fantini et al., 2020) was quite weak,

and mostly concentrated to nearby positions

along the sequence, (Stiffler et al., 2020) found

a sufficiently accurate contact prediction to

enable the subsequent construction of an precise

structural model.

To understand the differences in results

given the similarity in approaches, we have

developed a modeling scheme, which allows us

to simulate protein evolution in a data-driven

sequence landscape. Comparison of simulated

and experimental data of both experiments shows

that our simulations reproduce quantitatively

the experimental observations. Furthermore,

the simulation scheme allows us to control

important parameters of the experiments, like

the evolutionary distance from the wildtype in

the final evolved library, the sequencing depth of

the library, or the strength of selection. We find

that our model is able to explain the difference in

contact prediction between the two experiments

in terms of sequence divergence and sequencing

depth.

The agreement between simulations and

experiments suggests that our modeling

framework allows for a quantitative analysis

of important questions about protein evolution,

like the mechanism underlying sequence space

exploration and the emergence of signatures

of epistasis with sequence divergence, cf. also

the related Sequence Evolution with Epistatic

Contributions (SEEC) model (de la Paz et al.,

2020). Beyond such basic questions in evolutionary

biology, our framework has also the potential

to help in optimizing experimental design. To

give an example, our simulations predict that

both experiments would have benefited from

slightly weaker selection, represented by slightly

lower antibiotic concentrations. This would have

enabled a faster exploration of the neighborhood

of the wildtype sequence and the occurrence of

slightly more deleterious mutations, which have

a better chance to be coupled by epistasis than

the predominantly neutral mutations accepted

at strong selection. Such predictions are very
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FIG. 1. Scheme of our evolutionary modeling approach: Starting from a wildtype sequence (red), we collect a large
multiple-sequence alignment of naturally diverged homologs (blue), which are used to learn a generative landscape model
using bmDCA (Figliuzzi et al., 2018). Evolution is simulated as a Markov process in this landscape, leading to simulated, or
in silico evolved mutant sequences. These sequences can be compared to the results of evolution experiments (Fantini et al.,
2020; Stiffler et al., 2020) (green), to assess estimated protein fitness (so-called statistical energies, cf. below), mutational
profiles, and DCA-based epistasis and contact prediction. The simulation scheme also allows for changing experimental
control parameters like final sequence divergence, sequencing depth, and selection strength.

interesting, since our computational approach

is efficient and can be applied to thousands

of protein families, while the experiments are

expensive in time and resources. Guiding them to

increase the success probability may therefore be

an impactful strategy. For instance, our approach

can be used to explore different protocols, such as

alternating cycles of strong and weak selection.

RESULTS

The general procedure of our modeling approach

is graphically illustrated in Fig. 1. In this

section, we first describe the data-driven sequence

landscape, which is inferred from multiple

sequence alignments of natural homologs of the

experimentally studied wildtype, i.e. from data

unrelated to the experiment. As a first check

of robustness, we show that this landscape

represents well the mutational effects of single-

residue substitutions when compared to a deep-

mutational scanning experiment, and that the

inclusion of epistatic couplings in the landscape

model is essential for its accuracy. The landscape

can thus be used as a proxy for the protein’s fitness

landscape.

Next, we present a minimal model of

evolutionary dynamics, very similar to but

more quantitative than SEEC. In this model,

mutations appear at the level of the DNA sequence

via single-nucleotide mutations, but selection acts

exclusively at the protein level, i.e. on the

amino-acid sequence translated from the DNA

sequence, via the inferred sequence landscape.

We will show that sequences generated in silico

by this model reproduce quantitative features

of the experimentally generated sequences, like

mutational profiles or the fitness distribution.
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Subsequently, we explore the potential of the

experiments by performing simulations under

variable conditions for sequence divergence,

sequencing depth, or selection strength. This

allows us to locate the two experiments in

an exhaustively scanned parameter space, to

understand the limitations of the experiments,

and to propose schemes for overcoming current

limitations.

An epistatic data-driven sequence landscape
captures mutational effects

The basis of our approach is a computationally

inferred sequence landscape, used as a proxy to

quantify protein fitness and selection acting on

proteins. To obtain this landscape, we first use

the Pfam protein-family database (Mistry et al.,

2021) to extract a multiple sequence alignment

(MSA) of diverged homologs of the wildtype

protein used in the experiments. Both studies

performed experiments with a member of the

beta-lactamase family (Pfam accession PF13354),

TEM-1 in (Fantini et al., 2020) and PSE-1

in (Stiffler et al., 2020); the latter work also

studied the acetyltransferase AAC6 (PF00583).

The details of the MSA construction are given in

Methods below; we find, e.g., an MSA of 18,334

beta-lactamase sequences.

The underlying idea of our work is to represent

the natural variability of this MSA via a generative

statistical model P (a1,...,aL), with (a1,...,aL)

representing an aligned amino-acid sequence,

i.e. the ai are either one of the 20 natural amino

acids, or an alignment gap. Since data are limited,

we need to assume some mathematical form for

P (a1,...,aL). Introducing

P (a1,...,aL)=
1

Z
exp{−E(a1,...,aL)} , (1)

we write the "statistical energy" E(a1,...,aL),

which is to be seen as a proxy for negative protein

fitness (Levy et al., 2017; Morcos et al., 2014), in

the form used by DCA (Cocco et al., 2018; Morcos

et al., 2011; Weigt et al., 2009),

E(a1,...,aL)=−
∑
i

hi(ai)−
∑
i<j

Jij(ai,aj) , (2)

as a sum over position- and amino-acid specific

single-residue biases, or fields, hi(ai) and pairwise

epistatic residue-residue couplings Jij(ai,aj). This

model, also known as Potts model, assigns low

statistical energy E to "good/fit" sequences of

high probability, and high E to "bad/unfit"

non-functional sequences of low probability.

As illustrated in Fig. 1, we expect to find

low statistical energies for both natural and

experimentally evolved sequences. The strongest

couplings are known to be related to residue-

residue contacts in the three-dimensional protein

structure, cf. (Morcos et al., 2011).

The model parameters are inferred by the

currently most accurate version of DCA, called

bmDCA (Figliuzzi et al., 2018), which maximizes

the model’s likelihood via Boltzmann-machine

learning (Ackley et al., 1985). As is known from

the literature (Figliuzzi et al., 2018; Levy et al.,

2017; Sutto et al., 2015), this model is generative

because sequences sampled from P (a1,...,aL)
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reproduce many statistical properties of the MSA

of natural sequences. This does not only concern

fitted quantities like one- and two-site amino-

acid frequencies, but also non-fitted properties like

three-residue frequencies or the clustering of beta-

lactamases into subfamilies in sequence space.

Note that the epistatic couplings are essential for

the model to be generative: a profile model having

only fields hi(ai) but no couplings Jij(ai,aj),

i.e. a model assuming statistical independence of

all positions in the protein, is not generative in

the rather strict sense discussed above (Figliuzzi

et al., 2018). It misses both non-trivial second-

and higher-order correlations and the clustered

sequence distribution. Note also that, in a different

protein family (chorismate mutase, PF01817), the

same modeling approach was recently shown to

artificially generate fully in vivo functional protein

sequences (Russ et al., 2020).

To test the quantitative character of our

landscape E, we compare the model predictions

∆E=E(mutant)−E(wildtype) for the effect of

mutations introduced into a wildtype sequence,

with the results of a deep-mutational scan of the

beta-lactamase TEM-1 (Firnberg et al., 2014).

As is shown in Fig. 2A-B, the two are highly

correlated, with a Spearman rank correlation

of -0.77, cf. also (Figliuzzi et al., 2016; Hopf

et al., 2017) and the scatter plot supplementary

Fig. S1A directly comparing prediction and

experiment. This correlation shows that our

landscape E(a1,...,aL), even if inferred using

distantly diverged TEM-1 homologs, provides

quantitative information in the direct vicinity

of TEM-1. As expected, low statistical energies

correspond to high fitness values. To underline

the importance of the epistatic couplings in our

model, we also show in Fig. 2C and supplementary

Fig. S1B the predictions of a non-epistatic profile

model inferred from the same beta-lactamase

MSA: the correlation with the experimental data

decreases to -0.6, cf. (Figliuzzi et al., 2016).

This observation is central for our evolutionary

model since the selection of sequences with few

mutations with respect to the wildtype reference

will be modeled by energy differences ∆E as

introduced above.

A model of evolutionary dynamics reproduces
quantitative features of experimentally
evolved sequences

Evolution (natural and experimental) can be

seen as a stochastic process in a sequence

landscape, with random mutations and phenotypic

selection modeled by our statistical energy

E(a1,...,aL). A minimal model realizing this

idea is SEEC (de la Paz et al., 2020):

a random site i∈{1,...,L} is selected, and

an amino acid b∈{A,C,...,Y } is selected to

substitute ai with a probability proportional to

exp{−∆E(ai→b)}, with ∆E being the statistical-

energy difference between the mutated and

the unmutated sequences. A non-accepted or

synonymous mutation is characterized by ai=b.

Note that deletions and insertions are currently

not considered in our model.
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FIG. 2. Experimental and predicted mutational effects in TEM-1: Panel A shows the results of the deep-mutational
scanning experiment of Firnberg et al. (Firnberg et al., 2014), as compared to the computational predictions using the
epistatic Potts model (Panel B) and the non-epistatic profile model (Panel C). Panels A and B have a Spearman rank
correlation of -0.77, showing that low energies correspond to high fitness. Panels A and C have a reduced Spearman
correlation of -0.6 due to the absence of epistatic couplings in the profile model.

While this model can be used to explore

the qualitative influence of epistasis on protein

sequence evolution, our analysis requires a more

quantitative model taking in particular two

differences into account:

• Mutations happen at the nucleotide level. As a

consequence, not all amino acids are accessible

from all amino acids via a single nucleotide

mutation; and the set of accessible amino acids

depends specifically on the used codon.

• The experiments allow to vary selection

strength. For TEM-1 and PSE-1 this is done

by modifying the antibiotic concentration: the

same mutation can be more or less strongly

favored or suppressed.

To include these factors into our evolutionary

model, we introduce two important modifications

with respect to SEEC: First, we model

evolution at the level of the nucleotide sequence

(n11,n12,n13,...,ni1,ni2,ni3,...,nL1,nL2,nL3) coding

for the amino-acid sequence (a1,...,aL), i.e.

the nucleotide triplet (ni1,ni2,ni3) codes

for amino acid ai. For each possible codon

(n1,n2,n3)∈{A,C,G,T}3 (with the exception

of the stop codons), we introduce the set of

amino acids Aacc(n1,n2,n3)⊂{A,...,Y }, which are

accessible from (n1,n2,n3) by a single nucleotide

mutation. Possible substitutions for ai are

now only selected from Aacc(ni1,ni2,ni3), and

associated to a single nucleotide change. Note
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that also ai is in Aacc(ni1,ni2,ni3), accessible via

any synonymous mutation.

Second, selection strength will be regulated

by a new parameter β, having the form of

an inverse temperature β=1/T in statistical

physics, which modifies the sequence probability

to P ∼exp{−βE}. The "low-temperature" case

β>1 (T <1) corresponds to increased selection

(e.g. higher antibiotic concentration, or directed

evolution), in the limit β→∞ (T→0) only

the best possible amino acid in position

i is accepted. The "high-temperature" case

β<1 (T >1) corresponds to decreased selection

(e.g. lower antibiotic concentration); the limit

β→0 (T→∞) describes the case of mutation-

accumulation experiments without selection.

This idea is implemented in the following three

steps, which are performed recursively, cf. Methods

for details:

1. We randomly select a site i∈{1,...,L} to be

mutated, corresponding to the codon ni=

(ni1,ni2,ni3) and the amino acid ai.

2. One of the accessible amino acids

b∈Aacc(ni) is selected to substitute ai with

a probability P (b|a1,...,ai−1,ai+1,...,aL)∝

exp{−β∆E(ai→b)}. Due to the epistatic

couplings in Eq. (2), this probability

depends explicitly on the sequence context

(a1,...,ai−1,ai+1,...,aL).

3. One out of the possible codons for amino

acid b, which differs from ni in a single

nucleotide, is selected uniformly at random.

The resulting nucleotide and amino-acid sequences

remain thus mutually consistent.

The proposed dynamics can be efficiently

implemented, and very large sequence libraries

can be simulated over long times. To make

these data comparable to the libraries generated

by experimental evolution, we need to adapt

the simulation parameters: first, the number of

mutational steps in our simulation is not directly

related to the number of experimental generations

(because error-prone PCR may introduce multiple

mutations each round); we choose it to reach

the same average number of substituted amino

acids in the simulated and experimental libraries.

In this sense, different experimental mutation

rates can be parametrized by the number of

steps needed by our dynamics to reach the

same number of mutations. Second, the selection

strength β=1/T has no evident relation to the

antibiotic concentration used in the experiment.

We therefore tune the value of β=1/T such

that the statistical energy E(a1,...,aL) of the

simulated and the experimental sequences have

the same linear slope as a function of the number

of substitutions. For the case of PSE-1, shown

in Fig. 3, we find that T =1.4 is a good value,

cf. Panel A for the experimental data from (Stiffler

et al., 2020), and Panel B for simulated data. This
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FIG. 3. Statistical energy in dependence of sequence distance from wildtype: Panel A shows the statistical energies
of the sequences from generation 20 in Stiffler et al., as a function of the Hamming distance (number of substituted amino
acids) from the wildtype PSE-1. Panel B shows the same quantities for the in silico simulated sequences, where selection
strength T and the number of simulated evolutionary steps are adjusted to reproduce the average distance and the slope
from Panel A. Panel C shows an example of strong selection (T �1) leading to optimized sequences having lower statistical
energies / higher fitness. Panel D shows the case of very weak selection (T �1) resulting in random, mostly deleterious
substitutions strongly increasing statistical energy.

corresponds to low selection strength β=1/T <1.

Even if we adjust only average distance and slope,

we find that also the overall distribution is well

reproduced. Similar observations for TEM-1 and

AAC6 are shown in supplementary Figs. S2 and

S3.

Fig. 3C shows that for strong selection T =0.05

(β=20) the sequence energy decreases with the

number of substitutions, corresponding to an

increasing fitness as expected in a directed-

evolution scenario. Weak selection, shown in

Fig. 3D for T =20 (β=0.05), corresponds to a

sharp increase in statistical energy, and thus a loss

in fitness, as expected from the accumulation of

predominantly deleterious random mutations.

Fig. 3A-B shows global measures comparing

experimental and simulated sequences: the

Hamming distance is the number of substitutions

along the entire amino-acid sequence, the energy

also depends on the entire sequence. To increase

our confidence in the quantitative character of our

evolutionary model, we compare in Fig. 4 the site-

and amino-acid specific mutational frequencies

between experimental and simulated sequence

data. To this end, we extract the quantities fi(a)

describing the fraction of sequences in an MSA

having amino acid a in position i. Interestingly,

also this refined measure of sequence diversity

is very similar for simulated and experimental

sequences; we observe a high correlation of 86%,
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FIG. 4. Position-specific amino-acid frequencies for experimental and simulated sequence libraries: Panel A
shows the frequencies fi(a) of usage of amino acid a in site i in round 20 of experimental PSE-1 evolution, Panel B shows
the same quantity for simulated evolution. The Spearman rank correlation between the two frequency spectra is 86%.

cf. Fig. S4. These plots highlight the importance

of working only with amino acid substitutions

accessible via single-nucleotide mutations: many

amino acids show zero frequency in both plots

due to inaccessibility. The mutational spectrum

predicted without considering the accessibility

of amino acids is shown in supplementary

Fig. S4: we see that the mutational frequencies

are more homogeneously distributed, close-to-

zero-frequency mutations become very rare as

compared to the experimental sequences. The

correlation goes down to 65% between simulated

and experimental data in this case.

Based on these observations, we conclude

that our evolutionary model, which combines

mutations at the nucleotide level with selection at

the amino-acid level, is able to reproduce well the

statistical features of the experimental sequences.

This conclusion is also confirmed, when using

TEM-1 and AAC6 as initial wildtype sequences,

cf. supplementary Figs. S5 and S6.

In-silico sequence-space exploration, and the
emergence of epistatic signals

Having developed a quantitative model to

simulate experimental evolution, we are now

able to explore evolutionary scenarios going

well beyond those realized in the experiments.

We can systematically analyze the influence

of the sequence divergence from wildtype,

of the sequenced library depth, and of the

selection strength on the accuracy of coevolution-

based contact prediction. Each setting of these

parameters would require long experiments and

would sometimes be inaccessible due to the high

number of experimental rounds or the depth of the

sequenced library.

Computationally this becomes straightforward

although intensive: we have performed many runs

of evolutionary simulations, each producing an

MSA with specific parameters, simulating the
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FIG. 5. Accuracy of contact prediction as a function of sequence number and sequence divergence: Panel A
shows the accuracy of contact prediction as a function of the average sequence divergence from wildtype PSE-1 and the
depth of the sequenced library. The accuracy is measured via the positive predictive value (PPV), i.e., the fraction of true
positive contact predictions in the first 100 DCA-predicted contacts, cf. Methods for details. The selection strength T =1.4
corresponds to the experimental condition in (Stiffler et al., 2020). The highlighted square indicates an average Hamming
distance of about 27 and a sequence library of 165,000, as realized in (Stiffler et al., 2020). Panel B shows the same quantities
for wildtype TEM-1, and for the experimental conditions used in (Fantini et al., 2020).

possible outcome of an evolutionary experiment,

as represented in Fig. 5. Each square in these plots

corresponds to the average over five simulation

runs. Depicted is the positive predictive value,

which measures the fraction of true positive

contact predictions within the first 100 contact

predictions, cf. Methods for details. Due to

the large number of contact predictions to

be performed, we used GaussDCA (Baldassi

et al., 2014), a very fast, even if not the

most accurate contact predictor. Panel A shows

the plot for the selection strength used in the

experiments for PSE-1. The red zone corresponds

to inaccurate contact predictions, being sometimes

hardly better than random (PPV ∼ 0.13). It is

found consistently for small sequence libraries,
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and for sequence libraries of low divergence from

wildtype. It becomes evident that we need to go

to a sufficient number of simultaneous mutations

to be able to detect at least a weak epistatic

signal between mutations, which can be used for

contact prediction. However, this signal remains

weak: we need much larger sequence libraries of at

least about 50,000 sequences to reach a reasonable

contact prediction. However, even for the largest

and most diverged library we have studied, a PPV

of only 0.7-0.8 is reached, which remains below

the contact prediction reached by using the MSA

of natural homologs, which was used before for

the inference of our sequence landscape. The latter

reaches a PPV of 0.98 using GaussDCA. Panel

B shows the same observables for experiments

starting with the TEM-1 sequence, the overall

results are very similar to PSE-1, even if some

quantitative details depend on the initial wildtype

sequence.

It might be speculated that better contact-

prediction algorithms may shift the region of

non-trivial predictions down to lower Hamming

distances from wildtype, or to lower sequence

numbers. While the computational cost of

plmDCA is too high to reproduce the full analysis

of Fig. 5, we have re-analyzed two columns

at average Hamming distance 41 and 65. As

is shown in supplementary Fig. S7, for low

sequence numbers GaussDCA and plmDCA give

very similar low prediction accuracies, while the

improved accuracy of plmDCA over GaussDCA

becomes visible only at sufficiently high sequence

numbers. At the resolution of our analysis, no shift

in the boundary is observable.

The conditions of the experiments for PSE-1

and TEM-1 are highlighted, in the two panels

of Fig. 5. For PSE-1, 20 rounds of evolution led

to an average sequence distance of 27 amino-

acid substitutions from wildtype, and a sequenced

library of 165,000 distinct sequences (Stiffler

et al., 2020). Interestingly, this point is located

slightly beyond the boundary of emergence of

coevolutionary signal. The predicted average PPV

of 0.58 is comparable to the 0.65 obtained using

the experimental MSA cf. Methods.

This is in contrast to the TEM-1 experiment of

(Fantini et al., 2020), cf. Fig. 5B: the experiment

was performed for fewer rounds, leading to less

divergence from TEM-1, and the sequence library

was less deeply sequenced. The resulting library,

with an average Hamming distance of 18 from

TEM-1 and with 34431 unique sequences, is

located slightly below the line of emergence of

coevolution signal. This observation provides a

potential explanation for the observed reduced

performance in contact prediction.

The AAC6 results show that reduced sequence

divergence can, at least partly, be compensated

by a strong increase in the number of sequences in

the evolved MSA, cf. supplementary Fig. S8, which

confirms original findings of (Stiffler et al., 2020).

Even if having only an average Hamming distance

of about 8 substitutions, the large library of more
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than 106 sequences allows for the detection of a

weak contact-related signal.

The results depend substantially on the strength

of selection. Supplementary Fig. S9 shows the

extreme cases of very strong and very weak

selection discussed before. Both show inaccurate

prediction. An important difference becomes

visible when looking at the horizontal axes: all

use the same number of simulated evolutionary

steps. In the case of strong selection, sequences

stay closer to the wildtype, since most mutations

are deleterious and selected against, and they

stay close to each other. So while being all

functional, they do not accumulate sufficient

sequence variability to provide a reliable epistatic

signal. In the case of extremely weak selection,

almost all mutations are acceptable. Sequences are

found to diverge strongly from the initial PSE-1

sequence, but the absence of selection causes also

an absence of coevolution.

DISCUSSION

The aim of this work was to showcase the

potential of evolutionary models in data-driven

sequence landscapes. Recent progress in landscape

modeling has led to advances in using sequence

alignment to predict protein structure, mutational

effects and even to design non-natural but

biologically functional sequences. Here we show

that, equipped with a simple stochastic dynamics

capturing the interplay between mutation and

selection, these landscapes lead to models which

are able to describe in a quantitatively accurate

way the results of evolution experiments. This

is not only restricted to proteins, as studied in

this work, but similar evolution experiments have

been performed for RNA (Zhou et al., 2018)

and could therefore be analyzed in an analogous

way starting from sequence landscapes for RNA

families (Kalvari et al., 2021).

The applications for experimental evolution are

evident: we can use our modeling to optimize

experimental evolution protocols, e.g., when we

search for fully functional sequences but at some

minimum number of mutations from a starting

sequence, or when we want to explore sequence

space optimally for contact prediction. In this case,

we could, e.g., optimize the selection strength. In

the case of the beta-lactamases studied in this

article, Fig. 6 shows that a slightly lower selection

pressure (i.e. higher selection temperature) would

have led to even better contact predictions.

However, this potential increase is weak as

compared to the one reachable by more diverged

sequences.

A possible obstacle in such applications is the

fact that the selection temperature T , which

we use to model selective pressure, has to be

fitted from experimental data via the slope of

the statistical energies of the evolved sequences

vs. their distance from wildtype. To understand

the minimal sequence requirements for reaching

robust and accurate slope estimates, we have

subsampled the experimental sequence libraries

of PSE-1 for rounds 10 and 20. As is shown in
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FIG. 6. Dependence of the contact-prediction accuracy on selection strength: We show the PPV (100 predicted
contacts) of simulated MSAs at variable selection strength T (Panel A for PSE-1, Panel B for TEM-1), and for different
sequence distances from the wildtype protein. We predict that, for the distances observed in the evolution experiments (27
for PSE-1, 18 for TEM-1), both experiments would have benefited from slightly lower anti-biotic concentrations.

supplementary Fig. S10, we observe (i) that the

slope can be estimated accurately already from

about 200-300 sequences, while the estimation

error becomes large when using less than 100

sequences, and (ii) that the estimates are almost

equal for round 10 and round 20. We conclude

that the selection temperature T can be reliably

determined with moderate experimental effort

(low number of sequences, few experimental

rounds). Once estimated, the parameters can

be used in simulations, which may guide more

massive experiments evolving large sequence

libraries over many rounds.

We see our current model as a starting point

for more detailed evolutionary models. There is

space for a substantial gain in accuracy: we can

introduce biases in the mutations introduced by

error-prone PCR directly into the model (Moore

and Maranas, 2000; Pritchard et al., 2005), the

latter can be derived from data by analyzing

synonymous mutations. Furthermore, we can

introduce codon bias, the difference between

transitions and transversions, the fact that error-

prone PCR may introduce simultaneously several

mutations before selection, or the emergence of

phylogeny in cycles of mutation and selection.

The modeling can also benefit from

experimental feedback. If sequence libraries

would also be sequenced before and after the

selection step, we could establish a better

correspondence between statistical energies and

selection, up to a gauge of statistical energies vs.

antibiotic concentrations.

However, the potential of such evolutionary

models in data-driven landscapes goes far beyond

the application to experimental evolution. As is

shown by SEEC (de la Paz et al., 2020), already

the simplest non-trivial evolutionary model
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allows for illuminating important consequences

of epistasis in evolution, like the site- and time-

dependence of substitution rates. We anticipate

that the proposed modeling framework may

capture many of these effects in a highly

quantitative way. The relatively simple modeling

framework proposed in our paper might also be a

starting point for more theoretical-mathematical

analyses about, e.g., the emergence of epistatic

signals in sequence libraries. In this context, it

might also be interesting to see in how far more

distributed signatures of epistatic signal, possibly

related to protein function rather than contacts,

become visible in experimentally evolved sequence

libraries, cf. (Rivoire et al., 2016; Shimagaki and

Weigt, 2019; Tubiana et al., 2019).

METHODS
Sequence data
Sequences from experimental evolution

We include in our analysis the sequence data

coming from the experiments of in vitro evolution

by (Fantini et al., 2020) on TEM-1 and by (Stiffler

et al., 2020) on PSE-1 and AAC6.

The aligned amino-acid sequences from (Fantini

et al., 2020) were kindly provided by the authors

prior to publication, and can also be found at

http://laboratoriobiologia.sns.it/supplementary-

mbe-2019/. The raw sequencing reads

are available at the National Centre for

Biotechnology Information Sequence Read

Archive (SRA) with accession code PRJNA528665

(http://www.ncbi.nlm.nih.gov/sra/PRJNA528665).

Amino-acid sequences with more than 6 gaps

were discarded as a quality control to remove

sequences with lower quality.

(Stiffler et al., 2020) ran two experiments

using the PSE-1 beta-lactamase and the

AAC6 acetyltransferase as starting wildtypes.

Aligned sequencing reads from the last

round of the two experiments (translated

into amino-acid sequences) can be found

at https://github.com/sanderlab/3Dseq.

The raw sequencing reads are available

at the National Centre for Biotechnology

Information Sequence Read Archive

(SRA) with accession code PRJNA578762

(http://www.ncbi.nlm.nih.gov/sra/PRJNA578762).

Our models are built for the Pfam-annotated

positions using the corresponding Pfam domains

PF13354 (Beta-lactamase2) and PF00583

(Acetyltransf_1). We re-aligned the wildtype

sequence using the hmmalign command from the

HMMer software suite (Eddy, 2011) and profile

Hidden Markov Models (pHMM) downloaded

from Pfam (Mistry et al., 2021). We then

removed from the experimental MSA all columns

corresponding to non-matched states of the

wildtype sequence.

The resulting MSAs of experimentally evolved

sequences have 202 sites and 165,855 sequences for

PSE-1 (round 20), and 34,431 sequences for TEM-

1 (generation 12). For AAC6 we find 117 sites and

1,260,048 sequences (round 8).
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Natural homologous sequences and preprocessing
of the training set

The MSAs of natural homologous sequences

of the two considered protein families PF13354

(Beta-lactamase2) and PF00583 (Acetyltransf_1)

were generated running the hmmsearch command

from the HMMer software suite (Eddy, 2011) on

the UniProt database (The UniProt Consortium,

2021). Insertions were removed, and sequences

with more than 10% gaps and duplicated

sequences were excluded to improve the quality

of the alignment. Any sequence closer than

80% to the wildtypes TEM-1, PSE-1, or AAC6

was excluded from the alignments to avoid the

introduction of biases towards these sequences

in the bmDCA learning. The resulting MSAs

included 18,333 (43,576) homologous and non-

identical aligned sequences of length 202 (117) for

PF13354 (PF00583).

Note that some residues, which are present

in the N- and C-terminal regions of the

experimental sequences, are not covered by the

Pfam domains, and therefore excluded from our

analyses. Extending the MSA beyond the borders

of the Pfam domains would lead to the inclusion

of evolutionarily less conserved positions, and thus

to the inclusion of highly gapped columns into the

MSA of natural data. Such columns have been

previously found to compromise the accuracy of

DCA landscapes (Figliuzzi et al., 2016) and are

therefore left out in this study.

The natural MSA were used to train two Potts

models using bmDCA (Figliuzzi et al., 2018) in the

implementation of (Barrat-Charlaix et al., 2021),

which provides the currently most accurate DCA

models.

Evolutionary model

As already discussed in Results, our evolutionary

model combines mutations at the nucleotide

level with selection at the level of aligned

amino-acid sequences. We therefore need

to specify both the nucleotide sequence

n=(n11,n12,n13,...,ni1,ni2,ni3,...,nL1,nL2,nL3)

and the resulting amino-acid sequence

a=(a1,...,aL), which is translated from n using

the standard genetic code. Since we consider

full-length aligned sequences of Pfam domains,

stop codons are not allowed in n. Furthermore,

we have to accommodate alignment gaps possibly

existing in a: a gap in a is represented by a

triplet of gaps in n. Gaps are not changed during

our simulations, our model does consider only

single-nucleotide substitutions, but no insertions

and no deletions. Note that the grey columns in

Fig. 4 and supplementary Figs. S5, S6 correspond

to gaps in the wildtype sequence, which are

conserved both in the experiment and in the

model.

As mentioned before, for each codon

(n1,n2,n3)∈{A,C,G,T}3, we consider the set

of amino acids Aacc(n1,n2,n3)⊂{A,...,Y }, which

are accessible from (n1,n2,n3) by a single

nucleotide mutation.
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Our simulation of sequence evolution proceeds

by iterating the following three steps defining a

Markov chain (MC) in the space of nucleotide

sequences (note that, due to the degeneracy of the

genetic code, the process is not a Markov chain in

amino-acid sequence space):

1. A position i∈{1,...,L} is chosen uniformly

at random along the amino-acid sequence,

corresponding to the codon ni=(ni1,ni2,ni3)

and the amino acid ai. While ai=”−”, i.e.

a gap is chosen, we repeat the selection of

the position i.

2. Out of all accessible amino acids b∈Aacc(ni),

we selected one using the conditional

probability Pβ(b|a−i), which couples the

amino acid b explicitly to the sequence

context a−i=(a1,...,ai−1,ai+1,...,aL) :

Pβ(b|a−i)=
exp

{
βhi(b)+β

∑
j(6=i)Jij(b,aj)

}
zi(a−i)

,

(3)

with

zi(a−i)=
∑

b∈Aacc(ni)

exp
{
βhi(b)+β

∑
j(6=i)

Jij(b,aj)
}

(4)

being a normalization constant. In difference

to Z in Eq. (1), it can be calculated

efficiently by summing over the less than 20

accessible amino acids.

3. One out of the possible codons for amino

acid b, which differs from ni in a single

nucleotide, is selected uniformly at random.

The new amino acid b substitutes ai in a, and

the new codon ni in n. We thereby conserve

the coherence between nucleotide and amino-acid

sequence.

To simulate an entire MSA of M sequences,

the process is initiated M times in the wildtype

reference sequence, and M independent runs of

the MC are performed. The number of steps

in these MCs is chosen such that the average

Hamming distance of the generated amino-acid

sequences reaches a target number. Note that the

Hamming distances may vary from MC to MC,

since Aacc(ni) contains the case b=ai accessible

via any synonymous mutations. The Hamming

distance can therefore assume any value between

zero and the number of performed mutational

steps.

Simulated sequence data for contact
prediction

Our evolutionary algorithm has three input

parameters adding to the wildtype sequence

and the statistical-energy model: the number

of sequences M , the number NMC of steps of

our evolutionary Markov chain model, and the

selection temperature T . Given this triplet of

numbers it outputs an MSA obtained simulating

evolution for NMC iterations starting from

the wildtype sequence, repeating the sampling

independently M times at temperature T =1/β.

For each wildtype sequence, we simulated the

outcome of different protein evolution experiments

by scanning these three input parameters within
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a range of interest. For MSA generated starting

from TEM-1 or PSE-1 (AAC6) we varied M in

the range 100−165,000 (500−1,250,000), NMC in

the range 5-255 (4-120) and T in the range 0.05-20.

To save resources and time, given the

computational cost of sampling, we opted

for a scheme that would allow us to reduce the

number of independent MC chains needed to

simulate evolution. For each temperature T , we

run 165000 (1250000) independent Markov Chains

for TEM-1 and PSE-1 (AAC6) and printed MSAs

at the desired number of MC steps until 255

(120) MC steps. The MSAs with less sequences

were obtained by randomly subsampling without

replacement from the MSA with 165000 (1250000)

sequences. To produce more statistics we ran the

same simulations 5 times.

Contact prediction

Contact prediction was performed using

GaussDCA (Baldassi et al., 2014) for all MSA,

included, for coherence, the experimental ones.

GaussDCA is the computationally most efficient

implementation of DCA. Its accuracy of contact

prediction is slightly inferior to plmDCA or

bmDCA. However, we use it since in our analysis

we had to predict contacts for a large number

of partially deep simulated MSA (cf. Fig. 5) to

explore multiple combinations of sampling time,

sample size and selection strengths.

The reweighting parameter was set to 0 for

contact prediction of in-silico MSAs, as this

reduces computational time and is coherent

with the independence of the simulated Markov

chains. On the other hand, contact prediction

of experimental MSAs was performed using

the default option ":auto" of GaussDCA for

reweighting. These different treatments of

simulated and experimental sequences are

based on the fact, that simulations generate

statistically independent sequences (conditioned

to wildtype initialization), while the experiments

may generate sequence ensembles having non-

trivial phylogenetic effects. The pseudocount

was set to 0.6 (0.5) for PSE-1 and TEM-1

(AAC6) empirically, as we found it to be a good

intermediate value for MSAs with very different

statistics.

Intra-chain atomic distances for both families

were obtained by running the single-protein

mode of the code provided by Pfam Interactions

(https://doi.org/10.5281/zenodo.4080947), we

used the shortest distance between heavy atoms

of the two amino acids among all structures of

the Protein Data Bank (PDB) (Burley et al.,

2021) listed in Pfam. Following standards in

coevolutionary contact prediction, all pairs with

distance below 8Åand a minimum separation of 5

positions along the sequence are kept as contacts

for the calculation of the PPV (positive predictive

value). For AAC6 we used a more stringent cutoff

of 5.5Å, since the structural variability across the

protein family is already well represented in the

PDB.
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