
HAL Id: hal-03426437
https://hal.sorbonne-universite.fr/hal-03426437v1

Submitted on 12 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Perturbations in dynamical models of whole-brain
activity dissociate between the level and stability of

consciousness
Yonatan Sanz Perl, Carla Pallavicini, Ignacio Pérez Ipiña, Athena Demertzi,

Vincent Bonhomme, Charlotte Martial, Rajanikant Panda, Jitka Annen,
Agustin Ibañez, Morten Kringelbach, et al.

To cite this version:
Yonatan Sanz Perl, Carla Pallavicini, Ignacio Pérez Ipiña, Athena Demertzi, Vincent Bonhomme,
et al.. Perturbations in dynamical models of whole-brain activity dissociate between the level and
stability of consciousness. PLoS Computational Biology, 2021, 17 (7), pp.e1009139. �10.1371/jour-
nal.pcbi.1009139�. �hal-03426437�

https://hal.sorbonne-universite.fr/hal-03426437v1
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Perturbations in dynamical models of whole-

brain activity dissociate between the level and

stability of consciousness

Yonatan Sanz PerlID
1,2,3,4☯*, Carla Pallavicini1,2,5☯, Ignacio Pérez IpiñaID
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Abstract

Consciousness transiently fades away during deep sleep, more stably under anesthesia,

and sometimes permanently due to brain injury. The development of an index to quantify the

level of consciousness across these different states is regarded as a key problem both in

basic and clinical neuroscience. We argue that this problem is ill-defined since such an

index would not exhaust all the relevant information about a given state of consciousness.

While the level of consciousness can be taken to describe the actual brain state, a complete

characterization should also include its potential behavior against external perturbations.

We developed and analyzed whole-brain computational models to show that the stability of
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conscious states provides information complementary to their similarity to conscious wake-

fulness. Our work leads to a novel methodological framework to sort out different brain

states by their stability and reversibility, and illustrates its usefulness to dissociate between

physiological (sleep), pathological (brain-injured patients), and pharmacologically-induced

(anesthesia) loss of consciousness.

Author summary

How can different states of reduced consciousness be characterized and classified? This

question carries great significance both for basic and clinical neuroscience, since loss of

consciousness is transient when induced by anesthesia or deep sleep, but can be perma-

nent in certain brain-injured patients. We demonstrated that perturbational analyses

applied to semi-empirical whole-brain models can disentangle conscious states of differ-

ent stability, providing information that complements data-driven metrics, and opening

the way for new computational tools for the diagnosis and prognosis of disorders of

consciousness.

Introduction

Human consciousness can be understood in terms of its contents, but also as a state extended

in time. The contents of consciousness are frequently investigated from a functional perspec-

tive, combining task-based paradigms from cognitive neuroscience with different neuroimag-

ing methods to reveal the brain mechanisms associated with explicit or implicit reports of

conscious awareness [1]. The study of temporally extended conscious states is more elusive,

with different authors agreeing more often on specific examples than on broad and clear defi-

nitions [2–5]. Some examples include the different stages of the human wake-sleep cycle [6],

the acute effects of anesthesia [7], and post-comatose disorders of consciousness [8]. These

states cannot be defined by the specific nature of their content; instead, our intuition suggests

that they involve overall reductions in the intensity or level of consciousness, perhaps up to the

point of becoming completely void of subjective experiences. A natural question emerges from

these considerations: how can the level of consciousness be estimated from third-person mea-

surements, and what is the validity of this estimation?

Several unidimensional scales have been developed and implemented for the purpose of

measuring the level of consciousness. Some are based on the observation and quantification of

behaviour, such as the scales used during surgery to determine the depth of anesthesia, or

those employed by neurologists to diagnose the severity of disorders of consciousness in

brain-injured patients [9]. Others are obtained from recordings of spontaneous or evoked

brain activity, either by following a data-driven approach or by computations informed by the-

oretical developments [10–15]. For instance, information integration theory (IIT) posits that

the level of consciousness corresponds to the amount of integrated information (f) in the

brain [16], which can be approximated by different metrics of complexity and data compress-

ibility [17]. These and other examples present the common feature of collapsing whole-brain

activity data into a single numerical index that is expected to correlate with the outcome of

behavioral scales, akin to a “thermometer” capable of objectively measuring the level of con-

sciousness taking a state of healthy wakefulness as a reference point [18].
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Leaving issues of practicality aside, it seems questionable that a single number can ade-

quately describe the global state of human consciousness. The brain is a highly complex system

composed of 1010 nonlinear units (neurons) interacting in 1015 sites (synapses) [19]. Consider-

ing this astonishing level of complexity, it is surprising that the brain self-organizes into a dis-

crete and reduced number of behaviorally distinct states [20], let alone that these states can be

placed along a unidimensional continuum parametrized by the level of consciousness [5]. In

reality, most numerical constructs associated with human brain and behaviour present multi-

ple independent factors—consider, for example, the leading models of personality, intelli-

gence, and mental disorders, all of which are multidimensional [21–23]. Analogously, states of

consciousness can be described by factors related to content (e.g. the level of sensory gating)

and function (e.g. the degree of global availability of information for cognitive processing), a

view that can be extended to states observed during certain psychiatric conditions, or arising

as a consequence of pharmacological stimulation [24]. In turn, each of these dimensions impli-

cates specific brain functional systems, as opposed to the global and emergent character of

metrics related to complexity and information integration. Still, numerical metrics for con-

sciousness could be valid as first approximations useful to assist clinicians in the diagnosis and

prognosis of difficult cases [8].

In contrast to this view, we propose that numerical metrics are essentially insufficient—

even when considered as approximations. A way of framing this insufficiency is noting that

consciousness can be characterized by descriptive and perturbational dimensions or, equiva-

lently, by the actual and potential state of the brain. The first dimension is related to the ques-

tion “how does this state feel like and what sort of behavior does it entail?”, while the second

addresses the stability of the state, thus answering the question: “how will this state behave if
perturbed?”. The perturbational dimension is uncorrelated with complexity-based metrics,

since both deep sleep and general anesthesia present marked reductions in complexity and

information integration [15,25], yet the first can spontaneously revert to wakefulness upon

sensory stimulation, while the second is associated with a more persistent state of unrespon-

siveness. An analogy with the mechanical systems studied in physics can be useful to consoli-

date the difference between both ways of describing a global brain state. Following this

analogy, states of consciousness are identified with equilibrium points, and the level of con-

sciousness corresponds to the mechanical energy associated with those points [26]. As in the

physical analogy, however, the level of consciousness fails to completely characterize present

and future behavior. For this purpose, the stability must also be taken into account; for

instance, by investigating how the system reacts to different external perturbations.

We pursued this line of inquiry by investigating functional magnetic resonance imaging

(fMRI) data corresponding to three different states of reduced consciousness: sleep, propofol

anesthesia, and post-comatose disorders of consciousness in brain injured patients. First, we

compared the similarity between these states using machine learning classifiers, thus con-

structing metrics that reflect the level of conscious awareness relative to reference states of

healthy wakefulness. Next, we assessed whether transitions between these states could be

induced by external stimulation in whole-brain dynamical system models of fMRI data [27],

leading to a perturbational similarity metric.

Results

Analysis overview

We explored the similarities and differences between brain states associated with varying levels

of consciousness, including wakefulness (W), three progressively deeper sleep stages (N1, N2,

N3), propofol-induced sedation (S) and anesthesia (LoC), and in patients suffering from
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disorders of consciousness (DoC), all diagnosed as unresponsive wakefulness syndrome

(UWS) or in the minimally conscious state (MCS). These states were compared using four dif-

ferent distance metrics, involving wakefulness recordings specific to each experimental condi-

tion. The first metric, the “classification distance” between states, was obtained by training a

random forest classifier to distinguish the first state from wakefulness, and assessing its gener-

alization accuracy (i.e. transfer learning) when distinguishing the second state from wakeful-

ness, using the individual whole-brain functional connectivity (FC) between blood-oxygen-

level-dependent (BOLD) signals as inputs [28]. The second metric, the “connectivity correla-

tion distance”, was based on computing the linear correlation coefficient between regional FC

profiles (averaged across subjects) from both states after subtraction of wakefulness FC as a

baseline. A high correlation implied that the FC profile of the region changed similarly

between both states relative to wakefulness. This distance was then defined as the proportion

of regions in the whole-brain parcellation presenting a significant (p<0.05, Bonferroni cor-

rected) correlation with R� 0.5.

The remaining two metrics were based on the results of a whole-brain computational

model of brain activity, constructed by coupling regional dynamics with structural connectiv-

ity estimated from DTI data (Fig 1) [29]. The dynamics of each region were given by the

Fig 1. Procedure followed to construct the whole-brain computational model. The dynamics of each node in the structural connectivity matrix are represented by a

Hopf bifurcation with three possible dynamical regimes depending on the value of the bifurcation parameter: stable fixed-point (a<0), stable limit cycle (a>0) and a

bifurcation between both regimes (a�0). The local bifurcation parameters are optimized to reproduce the empirical FC matrix computed from fMRI data acquired during

different states of consciousness, and constrained in their variation by the six RSNs (anatomical priors) reported in Beckmann et al. (2006): Vis M (medial visual), Vis L

(lateral visual), Aud (auditory), SM (sensorimotor), DM (default mode), EC (executive control).

https://doi.org/10.1371/journal.pcbi.1009139.g001
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normal mode of a Hopf bifurcation (also known as a Stuart-Landau nonlinear oscillator), pre-

senting three qualitatively different regimes depending on a single bifurcation parameter:

steady dynamics governed by noise (a<0), self-sustained oscillations at the fundamental fre-

quency of the regional empirical BOLD time series (a>0), and unstable behavior switching

back and forth between these two regimes (a�0 Local) bifurcation parameters were optimised

to reproduce the empirical FC of each state, with the constraint that regions located within dif-

ferent resting state networks (RSNs) [30] contributed as independent anatomical priors to

parameter variation [29]. Afterwards, we defined our third metric, the “model parameter dis-

tance”, as the euclidean distance between the associated set of optimal bifurcation parameters

obtained after fitting the model to the empirical FC using genetic algorithms (i.e. one local

parameter per region in the whole-brain parcellation). Finally, the fourth metric was the “per-

turbational distance”, determined from the behavior of the whole-brain model against simu-

lated external oscillatory perturbations. This framework consists of fitting the whole-brain

model to the empirical FC of each brain state and then applying an in silico stimulation proto-

col to assess the likelihood of inducing transitions between pairs of states [27,31]. The proce-

dure followed to construct the model and its sources of empirical information are described in

Fig 1. We then simulated external perturbations using an additive periodic forcing term of var-

iable amplitude incorporated to the dynamical equations of each pair of homotopic regions,

and evaluated whether the perturbation increased the similarity between the simulated FC and

the empirical FC of another target state [27,29]. For example, we evaluated whether external

stimulation applied to the model fitted to wakefulness FC could displace the simulated FC

towards that of sleep, anesthesia or brain injured patients, and vice-versa. If affirmative, we

interpreted that a transition could be induced between both states, leading to a low “perturba-

tional distance” value.

The first three metrics are data-driven and can be computed directly from the empirical

fMRI data, or from the inferred model parameters without addition of external stimulation,

hence they can be considered descriptive metrics. The fourth metric is perturbational, since it

measures whether external stimulation can drive simulated whole-brain FC between patterns

typical of different states of consciousness.

Classification distance between N3, LoC and UWS

We started by studying the similarity between states associated with deepest unconsciousness

in our dataset: N3 sleep, LoC and the UWS group of patients. As an exploratory first step, we

calculated the difference in FC for each state vs. wakefulness and then averaged across subjects.

These differences are shown in Fig 2A, both in matrix form and as anatomical renderings of

the functional connections associated with the top and bottom 5% differences. A similar pat-

tern of FC changes is evident for N3 and LoC (correlation between FC difference matrices:

R = 0.65), consisting of reduced FC in occipital and parietal regions, and increased FC in fron-

tal regions. On the other hand, UWS patients did not present such clear patterns, with high

magnitude FC differences scattered throughout the whole brain (UWS vs. LoC: R = -0.1; UWS

vs. N3: R = -0.1). This suggests that average FC changes relative to conscious wakefulness dur-

ing N3 sleep and LoC present substantial similarities, but are generally different from those

seen in UWS patients.

Next, we used individual subject FC data to train and evaluate three random forest classifi-

ers to distinguish N3, LoC and UWS from their corresponding wakefulness baseline. After

training and testing by cross-validation, each classifier was applied to recognize the other two

brain states from the corresponding W data (i.e. transfer learning was assessed). Arrows in Fig

2B indicate significant transfer learning classification accuracy; for example, an arrow from
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LoC to N3 indicates that a random forest classifier trained to distinguish LoC from W pre-

sented significant accuracy when applied to distinguish N3 from W. The three classifiers pre-

sented high and significant (p<0.001) performance when distinguishing W from the brain

states used for their training (indicated as self arrows in Fig 2B): N3 vs. W, <AUC> =

0.948 ± 0.005; LoC vs. W, <AUC> = 0.949 ± 0.004; UWS vs. W, <AUC> = 0.973 ± 0.001

(mean ± std). Next, we used the trained classifiers to sort datasets different from the ones they

were originally trained to distinguish. We found that algorithms trained using N3 sleep gener-

alized well to the classification of LoC from W and vice-versa, yielding significant transfer

learning (p<0.05) for the classifier trained using N3 sleep and evaluated on LoC (<AUC> =

0.92 ± 0.02), and for the classifier trained using LoC and evaluated on N3 sleep (<AUC> =

0.91 ± 0.01). However, significant transfer learning was not obtained for classifiers trained or

evaluated using the UWS dataset, thus establishing that the descriptive classifier distance met-

ric dissociated physiological and pharmacologically-induced states of unconsciousness from

the group of patients with most severe disorders of consciousness. This could reflect the differ-

ent patterns of FC changes that are associated with transient (N3 sleep, LoC) and persistent

(UWS) states of unconsciousness (Fig 2A).

Regional FC similarity between states of consciousness

Next, we investigated local similarities between states of unconsciousness by means of the con-

nectivity correlation distance. Fig 3 shows anatomical renderings of the regions presenting a

significant correlation of their profiles of FC changes relative to the corresponding wakefulness

baseline between the states indicated in each inset text. For instance, the top left panel high-

lights the regions whose local FC profile changed similarly during N1 and N2 sleep, in both

cases relative to wakefulness. We first observe that most regions in the frontal lobe changed

their FC profile similarly during N1 and N2 sleep and that this also happened for most brain

regions in the comparison between N2 and N3 sleep, but for fewer regions in the comparison

between N1 and N3 sleep. The changes in FC brought upon by N3 sleep were also very similar

to those seen in LoC, but their similarity to S was less marked. FC changes during N2 sleep

were less similar to LoC than those observed during N3 sleep. Finally, regional FC changes

during DoC states (MCS and UWS) were not significantly correlated with those observed dur-

ing other states of reduced consciousness, and only presented widespread positive correlations

between them. Taken together, these results show that states of deeper unconsciousness are

Fig 2. Significant transfer learning accuracy between physiological and pharmacologically-induced states of unconsciousness (N3 sleep and LoC), but not

between them and pathological states of unconsciousness (UWS). (A) Average across subject FC differences for N3 vs. wake (left), LoC vs. wake (center), and UWS vs.

wake (right), together with anatomical renderings of the top (red) and bottom (blue) 5% functional connections associated with the largest difference between states in

absolute value. (B) Nodes in the diagram represent different brain states (N3, LoC, and UWS) and the arrows between them indicate that a machine learning classifier

trained to distinguish the source state from W presented significant transfer learning accuracy when distinguishing the target state from W (p<0.05, random label

shuffling with 1000 iterations, Bonferroni corrected).

https://doi.org/10.1371/journal.pcbi.1009139.g002
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more similar between them than compared to transitional states for which consciousness

could be partially preserved, such as N1 sleep and S. An exception was found in the compari-

son between S and LoC, where most brain regions presented similar FC changes, possibly

stemming from a similar neurochemical mechanism activated by propofol at different doses.

Correlations were more widespread between the states belonging to each different route

towards unconsciousness, i.e. between states corresponding to different sleep stages, propofol

doses, and DoC severity. As in the results obtained using the classification distance (Fig 2),

DoC behaved very differently from the other states: no significant correlations (|R|>0.5) in

regional FC changes were observed between these states and the others.

Descriptive distance metrics between states of consciousness

We extended the results shown in Figs 2 and 3 to include all the possible comparisons between

brain states, as well as the comparison based on the similarity of the optimal model parameters

(“model parameter distance”, based on the computational model described in Fig 1). Fig 4A

presents matrices containing z-scores of the aforementioned distance metrics between all pairs

of states (note that the classification distance was defined as 1-<AUC>). The matrix elements

are presented in graph form in Fig 4B, with only the top 25% matrix elements being shown.

The first matrix is based on the proportion of significant regions shown in Fig 3, i.e., the

ratio between the number of significant regions and the 90 regions in the brain atlas (“connec-

tivity correlation distance”). As shown in Fig 3, contiguous sleep stages presented the lowest

distances, while the distance between S/LoC and sleep stages gradually increased from N3 to

N1 sleep. As also expected from the previous figures, MCS and UWS patients were highly simi-

lar between them but not when compared to the other states. Similar results were obtained for

Fig 3. Shared patterns of regional FC changes reflect the progression towards unconsciousness during sleep and propofol-induced anesthesia, but these

similarities do not extend to DoC patients. Each panel contains an anatomical rendering of the regions presenting significantly correlated FC changes between the

states indicated in the insets. Red indicates a significant positive correlation in regional FC changes (R>0.5), while blue indicates a significant negative correlation (R<-

0.5).

https://doi.org/10.1371/journal.pcbi.1009139.g003
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the classification distance (Fig 4A, second matrix), which is already evident by inspection of

the matrix and its associated graph. The results obtained comparing the optimal model param-

eters (Fig 4A, third matrix) appear slightly different, but still preserve the three main findings

observed for the other metrics: sleep stages of similar depth tended to present the highest simi-

larities, S and LoC were more similar between them than to sleep stages, and DoC patients pre-

sented idiosyncratic changes that set them apart from the other states of consciousness.

Fig 4C shows a quantitative evaluation of the similarity between the three matrices, estab-

lishing that each descriptive distance metric can be used to predict all others. In these figures,

each point corresponds to a pair of brain states, with X and Y coordinates based on the

Fig 4. Significant positive correlations between all descriptive distance metrics computed for all pairs of states. (A) Matrices containing z-scores of the correlation,

classification and model parameter distances between all pairs of states of consciousness (B) Graph representation of the matrices in panel A, showing only the top 25%

matrix elements. (C) Scatterplots establishing the positive and significant correlation between all descriptive distance metrics. Each point represents a pair of states, and

the shade of purple indicates one of the following combinations of states: sleep-sleep, LoC-LoC, DoC-DoC, sleep-LoC, sleep-DoC, LoC-DoC. Since variables were

converted to ranks prior to the visualization, R and p represent the Spearman’s rank correlation coefficient and its associated p-value, respectively.

https://doi.org/10.1371/journal.pcbi.1009139.g004
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different combinations of distance metrics. As shown in the last panel, for example, pairs of

brain states presenting high machine learning transfer learning accuracy also yielded similar

model parameters, and vice-versa. In particular, all three metrics converge in the dissociation

between sleep and propofol-induced unconsciousness from DoC patients.

Perturbational distance between states of consciousness

After optimizing the computational model to reproduce the empirical FC of initial and target

states, we systematically simulated the effects of an external periodic perturbation introduced at

all pairs of homotopic regions. The perturbation was applied in the model optimized to reproduce

the FC of the initial state, and we evaluated how increasing perturbation amplitudes impacted on

the model goodness of fit computed relative to the target state. The perturbational distance was

computed as the best goodness of fit relative to the target state across amplitudes. According to

this definition, a low distance indicates that a suitable combination of perturbation amplitude

and stimulation site is capable of displacing the initial FC towards that of the target state, i.e. a

transition between initial and target state can be induced by external stimulation in the model.

The perturbational distances between all pairs of physiological, pharmacologically-induced

and pathological states of consciousness are summarized in matrix representation in Fig 5A. A

directed graph constructed from these matrix elements is presented in Fig 5B, where each

arrow indicates that certain stimulation parameters induce a transition from the initial to the

target state with ΔGoF�0.3. We observe that certain states receive several directed connections

(e.g. W) while others present the opposite behaviour (e.g. N1 sleep). States receiving several

connections can be considered stable, since external stimulation easily transitions other states

of consciousness towards them, but they generally remain the same when stimulated; con-

versely, states sending out several connections easily transition into other states when stimu-

lated, and hence can be considered unstable.

In Fig 5C we place all states of consciousness into a bi-dimensional diagram according to

their similarity to their corresponding wakefulness baseline (“level of consciousness”, Y-axis,

computed using the model parameter distance) and their instability, defined as the number of

outbound connections in Fig 5B (“instability against perturbations”, X-axis). In this diagram,

DoC and LoC appear as stable states of reduced consciousness, while W is both conscious and

stable. All sleep stages are comparatively less stable, with N1 sleep being the most fragile

against perturbations, consistent with its role as a transitional stage between early and deep

sleep. Finally, propofol sedation (S) was intermediate both in conscious level and stability.

We classified transitions in two groups, depending on the initial and target state. One

group corresponded to perturbations that increased the level of consciousness (i.e. all states to

W, N2/N3 to N1, N3 to N2, LoC to S, UWS to MCS), and another corresponded to perturba-

tions that decreased the level of consciousness (i.e. all reverse transitions). For each pair of

states we ranked homotopic regions in terms of their associated optimal ΔGoF, and computed

the average regional ranking separately across all transitions in the “increase level” and

“decrease level” groups. Thus, a high value for a region in the “increase level” group indicates

that perturbations applied to that region consistently tended to increase the level of conscious-

ness, and vice-versa for the “decrease level” group. Fig 5D presents a rendering of the top 50%

homotopic regions in each group. Simulated perturbations applied at the bilateral hippocam-

pus, inferior frontal cortex, anterior cingulate cortex and primary visual cortex (calcarine sul-

cus) systematically resulted in the best ΔGoF changes towards states of reduced consciousness.

Conversely, perturbations applied at the temporo-parietal junction (bilateral angular gyrus),

precuneus, precentral gyrus and middle frontal cortex resulted in the best ΔGoF changes

towards states of increased consciousness.
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In contrast to the results shown in Fig 4C, the perturbational distance metric provided informa-

tion complementary to that obtained from the descriptive distance metrics. Fig 5E shows that the

descriptive metrics were not significantly correlated with the perturbational metric; in other words,

even though some pairs of states presented similar patterns of FC changes relative to wakefulness,

externally-induced transitions between them were forbidden in our computational model.

Discussion

There are two different but related problems in the study of states of reduced consciousness.

The first concerns the identification of such states from a limited amount of behavioral

Fig 5. A perturbational metric for the distance between states of consciousness. (A) Matrix representation of the perturbational distance between all pairs of brain

states. (B) Directed graph representation of the matrix in Panel A, showing the possible externally-induced transitions between pairs of states of consciousness

(thresholded at ΔGoF�0.3). (C) Two-dimensional diagram of all states of consciousness according to their level of consciousness (i.e. similarity to its corresponding

wakefulness in terms of model distance metric) and their instability against external perturbations (sleep states are indicated in blue, S and LoC in purple, and DoC in

red). (D) Homotopic regions associated with the best ΔGoF changes in transitions towards states of reduced consciousness (blue) and increased consciousness (red). (E)

Scatter plots illustrating the non-significant correlation between perturbational and descriptive distance metrics. Each point represents a pair of states, and the shade of

purple indicates one of the following combinations of states: sleep-sleep, LoC-LoC, DoC-DoC, sleep-LoC, sleep-DoC, LoC-DoC. Since variables were converted to ranks

prior to the visualization, R and p represent the Spearman’s rank correlation coefficient and its associated p-value, respectively.

https://doi.org/10.1371/journal.pcbi.1009139.g005
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information and non-invasive brain activity recordings. This is the challenge faced by clini-

cians in the identification of DoC, a difficult task with up to 40% consensus-based misdiagno-

sis rate [32], as well as by anesthesiologists in the detection and prevention of intraoperative

awareness [33]. The second problem concerns the manipulation of conscious states by means

of externally induced perturbations, either to induce unconsciousness (i.e. anesthesia) or to

restore conscious wakefulness in patients [34–36] These two problems map onto the dimen-

sions we explored in the present work and are summarized in Fig 5C. Previous data-driven

and theoretical developments for the detection of consciousness from neuroimaging data [10–

13,15] represent partial solutions: what is also needed is an exhaustive and systematic method

to investigate the potential behaviour of global brain states under external stimulations. We

pursued this approach by combining different sources of empirical information with simple

but conceptually rich models of whole-brain activity, which allowed us to explore the stability

of different states of consciousness from passive recordings of fMRI data. Importantly, we

showed that the perturbational analysis provided information complementary to the results of

statistical and machine learning techniques applied directly to the data.

The representation of whole-brain activity by coupled dynamical systems was a crucial step

in our analysis. While previous experimental studies investigated the effects of localized exter-

nal perturbations during states of reduced awareness in humans [34–40], the systematic explo-

ration of targeted stimulation is possible by the freedom granted by computational models.

We opted to allow regional variability in the bifurcation parameters of the model, since differ-

ent brain regions could be more or less relevant to induce transitions between certain states of

consciousness, and this variability could depend upon the proximity of regional dynamics to

the bifurcation point [29]. The use of RSNs to constrain this regional variability, combined

with other sources of empirical data, increased the conceptual interpretability of our computa-

tional model. Due to the semi-empirical nature of the model, we were able to show that the

inferred parameters reflected the similarities between states of consciousness observed in FC

patterns; for instance, the distance metric based on random forest transfer learning accuracy

was significantly correlated with the metric obtained from the comparison of the optimal

model parameters (Fig 4C). However, the addition of external stimulation to the model

resulted in a distance metric that was independent from those obtained without perturbational

analysis (Fig 5E). In particular, this distance metric could not be predicted by the similarity of

the underlying model parameters, suggesting that perturbations are amplified by the system

nonlinearities, a behaviour characteristic of systems posed at or near a dynamical instability

[26,41].

States of consciousness can be analyzed in functional terms (i.e. behavior and cognition) as

well as by quantitative metrics derived from brain activity measurements. It is becoming

increasingly clear that functional analysis framed in terms of unidimensional “levels of con-

sciousness” could be insufficient to capture the richness and heterogeneity of conscious states

[5]. A conceptually similar unidimensional characterization is also pursued by different quan-

titative indices computed from neural activity recordings, such as information integration

[42], compressibility [15,25], causal density [18], the perturbational complexity index (PCI)

[12], and other data-driven metrics. Some of the most commercially successful markers of con-

scious awareness, such as the bispectral index for anesthesia monitoring [10], are based on this

approach. Our work questions whether markers of this kind can be sufficient, since they do

not address the potential behavior of the system against perturbations. Here, it is important to

draw a distinction between the stability of ongoing neural dynamics and the stability of global

brain states. PCI [12] and other related data-driven techniques [43] estimate the response of

within-state activity to perturbations, but it is assumed that the applied perturbation does not

result in a transition between brain states. In contrast, our interest lies precisely in determining
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the likelihood of observing such a transition upon external stimulation. Clearly, these different

approaches can yield independent and complementary information, since our perturbational

distance metric showed a dissociation between general anesthesia and deep sleep, while both

states present comparable PCI values [12]. Thus, while PCI and related methods can be used

in the clinics to assess the level of consciousness, we propose that our method could be eventu-

ally adapted to estimate the likelihood of recovery, either spontaneously or assisted by targeted

electrical stimulation. Furthermore, it could be used to predict the optimal brain regions to be

stimulated, an approach that could benefit from individual anatomical connectivity estimates.

Another method sharing commonalities with our approach is network controllability, which

has been used to reveal structural brain nodes whose perturbation can transition brain dynam-

ics towards other collective network states. While interesting, the implementation by Gu et al.

diverges from ours in several key aspects, the most salient being their linearization and tempo-

ral discretization of the dynamics. Finally, the results obtained from our perturbational analy-

sis are fully consistent with well-understood differences in responsiveness between sleep and

propofol-induced anesthesia; for example, with the observation that arousals are more easily

elicited during sleep than under the effects of anesthesia (equivalently, surgeons cannot wait

for the onset of sleep to start operating). While responsiveness can be probed by direct sensory

stimulation, our model was capable of reproducing the same result through the exhaustive

exploration of all pairs of homotopic regions, i.e. not restricted to sensory regions.

Deep sleep and propofol-induced anesthesia present similarities in terms of brain activity

and their associated neurochemical pathways. Both states are associated with slow [44] and

regular activity of cortical origin [15,25], breakdown of large-scale FC [45,46], and increased

inhibitory neurotransmission [47]; furthermore, propofol anesthesia may result in sleep-like

homeostatic regulation [48]. The results we presented in Fig 2 are in line with these observa-

tions and also point towards marked differences between these states and the conditions of

MCS and UWS patients, which have been previously shown to present distinct changes in

EEG dynamics [49]. A recent article demonstrated significant transfer learning between data-

sets comprising propofol anesthesia and DoC patients, which is at odds with the results of our

analysis [50]. We believe this contradiction could arise due to the large variability that exists

between cohorts of brain-injured patients [51]. Future studies should attempt to settle this

issue by investigating larger and more homogenous patient populations.

Within the different stages of human sleep, we showed that N1 sleep (a transitional stage

between wakefulness and deep sleep) presented the highest instability against perturbations.

N1 sleep is characterized by diminished thalamo-cortical coupling with preserved cortical acti-

vation, a condition compatible with conscious mentation and imagery during the onset of

sleep [52]. From an evolutionary perspective, it is reasonable that N1 sleep is susceptible to

transitioning towards wakefulness upon external stimulation, since during this stage the indi-

vidual is vulnerable to environmental threats, while offline information processing associated

with learning and memory consolidation is not yet taking place [53]. On the other hand, pro-

pofol-induced unconsciousness and DoC are either artificially induced or arise as a conse-

quence of brain injury, and thus do not reflect the adaptive pressures that constrain the

stability of human sleep. These constraints are also reflected in the sequence of states that com-

prise human sleep: the orderly progression from wakefulness to N3 sleep [54] is disrupted

when sudden awakenings occur. The output of our model was consistent with these dynamics,

since external perturbation could only induce transitions from N3 sleep to wakefulness, but

failed to elicit similar transitions towards intermediate sleep stages.

The non-reversible nature of severe DoC could be linked to alterations in the underlying

structural connectivity of the brain, as a consequence of injury [55,56]. While whole-brain

functional connectivity is known to be preserved even during states of deep unconsciousness
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[57,58], it tends to reduce towards the structural connectivity backbone [20,59,60], suggesting

that this backbone imposes a limit to the functional disintegration that is possible in healthy

brains. However, the analysis of the changes reported in Fig 2 reveals that patients present a

substantially different functional architecture compared to that seen during sleep and propo-

fol-induced loss of consciousness, which could stem from a fundamentally different (and more

variable) organization of anatomical connections. We note that our analysis does not preclude

the possibility of inducing transitions towards conscious wakefulness in patients, but individu-

ally chosen targets might be necessary due to the aforementioned variability. Also, it could be

possible that the recovery of consciousness can be accelerated by neurochemical and pharma-

cological means [61], which cannot be easily accommodated within the proposed modeling

framework.

The choice of periodic stimulation was determined mainly by the local dynamics, which

consisted of nonlinear oscillators with a single natural frequency. However, future modeling

efforts incorporating more complex dynamics could allow in silico rehearsal of interventions

with ampler neurobiological interpretation; for instance, a dynamic mean-field model

informed by empirical receptor density maps could be used to explore the result of activating

specific neurotransmitter systems (e.g. serotonin, dopamine) [62,63]. This flexibility could be

used to extend our analysis to other conscious states, such as those seen in certain psychiatric

patients. That different psychiatric conditions can present distinct levels of stability is known

to clinical practitioners who have encountered patients suffering from bipolar disorder on one

extreme, and catatonic patients on the other. Also, the application of machine learning classifi-

ers combined with computational models could inform the hypothesis that certain pharmaco-

logical interventions mimic the symptomatology of certain psychiatric syndromes, such as in

the psychotomimetic hypothesis of serotonin 2A receptor agonists (also known as “psychedel-

ics”) [64].

Our results should not only be discussed in terms of the allowed transitions between states,

but also in terms of which regions are associated with those transitions, and how those transi-

tions depend on the external forcing amplitude. In Fig 5D we showed that transitions towards

states of heightened consciousness were systematically linked to perturbations located in the

precuneus, temporo-parietal junction and the middle frontal cortex, regions presenting a sig-

nificant overlap with the default mode network [65] and in line with electrical stimulation tar-

gets shown to improve behavioural signatures of consciousness in DoC patients (38). These

regions have also been shown to robustly reflect the level of consciousness [46,55,66,67] and

conscious information access in cognitive neuroscience paradigms [1]. Consistently with pre-

vious work (29), the effect of perturbing these regions also depended on the amplitude of the

periodic forcing term; for instance, perturbations applied to the temporo-parietal junction

asymptotically increased the similarity to wakefulness, while a small perturbation located at

the prefrontal cortex sufficed to reproduce an arousal. The qualitatively different behavior

upon simulated perturbations represents a set of rich predictions to be addressed by future

experiments.

While each independent source of empirical information incorporated into our model

increased its interpretability, it also imposed specific limitations to our analysis. For instance,

functional connectivity was estimated from recordings acquired in different centers, which

could represent a potential source of confounds. However, since our approach focused on

transfer learning accuracy and each machine learning classifier was trained using a control

group acquired using a matched scanner and data acquisition protocol, we believe it was less

vulnerable to classification biases related to different experimental conditions. The use of ana-

tomical connectivity estimated in a group of healthy participants could represent another limi-

tation for the modeling of patient data. Nevertheless, since brain-injured patients may present
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heterogeneous lesion locations [51] it could be that the average healthy connectivity constitutes

a reasonable first estimate. Also, since the perturbations failed to induce widespread transitions

between LoC/sleep and DoC (even when considering the same anatomical connectivity) we

can expect that this result will be furthered when incorporating more accurate group-specific

connectivity. Finally, we opted to simulate the stimulation of homotopic regions only. This

restriction ensures that the stimulation protocols explored in the model are experimentally

possible. Future extensions of our work include the development of heuristics capable of con-

straining the exploration of stimulated regions to those associated with an experimentally fea-

sible stimulation protocol.

In conclusion, the investigation of dynamical stability can be informative for the characteri-

zation of different brain states, allowing the dissociation between reversible vs. non-reversible

and pharmacological vs. physiological states, with potential applications to neurologic and psy-

chiatric conditions associated with persistent states of abnormal consciousness and cognition.

We expect that future metrics to monitor levels of sleep, anesthesia and residual consciousness

in brain injured patients are expanded to represent this additional dimension, with positive

consequences in clinical practice and in the neuroscientific investigation of human conscious-

ness and its disorders.

Materials and methods

Ethics statement

Sleep dataset. Written informed consent and the experimental protocol was approved by

the local ethics committee “Ethik-Kommission des Fachbereichs Medizin der Goethe-Univer-

sität Frankfurt am Main, Germany” with the ethics application title “Visualisierung von

Gehirnzuständen in Schlaf und Wachheit zum Verständnis der Abnormitäten bei Epilepsie

und Narkolepsie” and the assigned number: 305/07 in Frankfurt (Germany).

Propofol sedation and anesthesia dataset. Written informed consent, approval by the

Ethics Committee of the Medical School of the University of Liège.

DoC dataset. Written informed consent to participate in the study was obtained directly

from healthy control participants and the legal surrogates of the patients, approval by the Eth-

ics Committee of the Medical School of the University of Liège.

Experimental data

We analyzed fMRI recordings from 81 participants scanned at two independent research sites:

Frankfurt: 15 subjects during wakefulness and sleep; Liège: 14 healthy subjects during wakeful-

ness and under propofol sedation and anesthesia; 16 patients diagnosed as MCS, 15 patients

diagnosed as UWS, and 21 healthy and awake controls.

Sleep dataset. Simultaneous fMRI and EEG was measured for a total of 73 subjects EEG

via a cap (modified BrainCapMR, Easycap, Herrsching, Germany) was recorded continuously

during fMRI acquisition (1505 volumes of T2�-weighted echo planar images, TR/TE = 2080

ms/30 ms, matrix 64 × 64, voxel size 3 × 3 × 2 mm3, distance factor 50%; FOV 192 mm2) with

a 3 T Siemens Trio (Erlangen, Germany). An optimized polysomnographic setting was

employed (chin and tibial EMG, ECG, EOG recorded bipolarly [sampling rate 5 kHz, low pass

filter 1 kHz] with 30 EEG channels recorded with FCz as the reference [sampling rate 5 kHz,

low pass filter 250 Hz]. Scalp potentials measured with EEG allow the classification of sleep

into 4 stages (wakefulness, N1, N2 and N3 sleep) according to the American Academy of Sleep

Medicine (AASM) rules (54). Pulse oximetry and respiration were recorded via sensors from

the Trio [sampling rate 50 Hz]) and MR scanner compatible devices (BrainAmp MR+, Brai-

nAmpExG; Brain Products, Gilching, Germany), facilitating sleep scoring during fMRI
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acquisition. We selected 15 subjects who reached stage N3 sleep (deep sleep) and contiguous

time series of least 200 volumes for all sleep stages. Previous publications based on this dataset

can be consulted for further details (see, e.g., [68]).

Propofol sedation and anesthesia. Resting-state fMRI volumes from 18 healthy subjects

were acquired in four different states following propofol injection: wakefulness, sedation, uncon-

sciousness, and recovery. Data acquisition was performed in Liège (Belgium). Subjects fasted for

at least 6 h from solids and 2 h from liquids before sedation. During the study and the recovery

period, electrocardiogram, blood pressure, pulse oximetry (SpO2), and breathing frequency

were continuously monitored (Magnitude 3150M; Invivo Research, Inc., Orlando, FL). Propofol

was infused through an intravenous catheter placed into a vein of the right hand or forearm. An

arterial catheter was placed into the left radial artery. Throughout the study, the subjects breathed

spontaneously, and additional oxygen (5 l/min) was given through a loosely fitting plastic face-

mask. The level of consciousness was evaluated clinically throughout the study with the scale

used in [69]. The subject was asked to strongly squeeze the hand of the investigator. She/he was

considered fully awake or to have recovered consciousness if the response to verbal command

(“squeeze my hand”) was clear and strong (Ramsay 2), as sedated if the response to verbal com-

mand was clear but slow (Ramsay 3), and as unconscious, if there was no response to verbal

command (Ramsay 5–6). Ramsay scale verbal commands were repeated twice for each con-

sciousness level assessment. Functional MRI acquisition consisted of resting-state functional

MRI volumes repeated in the four states: normal wakefulness (Ramsay 2), sedation (Ramsay 3),

unconsciousness (Ramsay 5), and recovery of consciousness (Ramsay 2). The typical scan dura-

tion was half an hour for each condition, and the number of scans per session (200 functional

volumes) was matched across subjects to obtain a similar number of scans in all states. Func-

tional images were acquired on a 3 Tesla Siemens Allegra scanner (Siemens AG, Munich, Ger-

many; Echo Planar Imaging sequence using 32 slices; repetition time = 2460 ms, echo time =

40 ms, field of view = 220 mm, voxel size = 3.45×3.45×3 mm3, and matrix size = 64×64×32).

Previous publications based on this dataset can be consulted for further details (see, e.g., [46]).

Disorders of consciousness. The dataset comprised resting-state fMRI volumes on

healthy controls (>18 years old and free of psychiatric and neurological history) and unse-

dated patients presenting disorders of consciousness (Department of Radiology, Centre Hospi-

talier Universitaire (CHU), Liège). The cohort included 21 healthy controls (8 females; mean

age, 45 ± 17 years), 43 patients (25 in MCS, 18 in UWS, 12 females; mean age, 47 ± 18 years.

See Supplementary Information with single subject demographic information). UWS patients

show signs of preserved vigilance, but do not exhibit non-reflex voluntary movements, and are

incapable of establishing functional communication [70]. Patients in MCS show more complex

behavior indicative of awareness, such as visual pursuit, orientation response to pain, and non-

systematic command following; nevertheless, these signs are consistent but may be manifested

sporadically [71]. The inclusion criteria for patients were brain damage at least 7 days after the

acute brain insult and behavioral diagnosis of MCS or UWS performed with the Coma Recov-

ery Scale–Revised (CRS-R) [9]. The CRS-R is currently the most sensitive scale to characterize

disorders of consciousness and evaluates and includes 23 arranged items organized on sub-

scales for auditory, visual, motor, oromotor, communication, and arousal function. Each item

assesses the presence or absence of specific physical signs, which represent the integrity of

brain function as presence or absence of cognitively mediated responsiveness.

Data were acquired on a 3T Siemens TIM Trio MRI scanner (Siemens Medical Solutions,

Erlangen, Germany): 300 T2�-weighted images were acquired with a gradient-echo echo-pla-

nar imaging (EPI) sequence using axial slice orientation and covering the whole brain (32

slices; slice thickness, 3 mm; repetition time, 2000 ms; echo time, 30 ms; voxel size, 3 × 3 × 3

mm; flip angle, 78˚; field of view, 192 mm by 192 mm). A structural T1 magnetization-
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prepared rapid gradient echo (MPRAGE) sequence (120 slices; repetition time, 2300 ms; echo

time, 2.47 ms; voxel size, 1.0 × 1.0 × 1.2 mm; flip angle, 9˚) [20].

fMRI preprocessing. For each participant and for each brain state, we used FSL tools to

extract and average the BOLD signals from all voxels. The FSL preprocessing included a 5mm

spatial smoothing (FWHM), bandpass filtering between 0.01–0.1 Hz, and brain extraction

(BET), followed by a transformation to a standard space (2mm MNI brain) and down sam-

pling for a final representation in a 45x54x45, 2mm voxel space.

The following preprocessing steps were performed using specially developed Matlab scripts.

First, we corrected the data by performing regressions between the displacement parameters,

the average signals extracted from the white matter and ventricles, their first derivatives, and

the voxel-wise BOLD signals, retaining the residuals for further analysis. Next, we applied vol-

ume censoring (i.e. scrubbing), and discarded subjects who presented significant relative head

displacements in more than 20% of the recorded frames, with a criterion for movement signifi-

cance set as a displacement between consecutive frames exceeding 0.5 mm (see the supplemen-

tary information for the statistical analysis of the scrubbing process across the different data

sets). For the remaining subjects, we removed the first 3 frames and those which exceed the

aforementioned threshold. Finally, we averaged all voxels within each ROI defined in the auto-

mated anatomical labeling (AAL) atlas, considering only the 90 cortical and subcortical non-

cerebellar brain regions [72] to obtain one BOLD signal per ROIs.

This way, we obtain datasets with comparable smoothness and stability that can be com-

pared across conditions.

During preprocessing, 4 subjects were removed from the anesthesia data set, as well as 9

MCS patients and 3 UWS patients (see supplementary information).

Structural Connectivity. The structural connectome was obtained applying diffusion ten-

sor imaging (DTI) to diffusion weighted imaging (DWI) recordings from 16 healthy right-

handed participants (11 men and 5 women, mean age: 24.75 ± 2.54 years) recruited online at

Aarhus University, Denmark. For each participant a 90x90 SC matrix was obtained that repre-

sents the connectivity between ROIs. Data preprocessing was performed using FSL diffusion

toolbox (Fdt) with default parameters. The probtrackx tool in Fdt was used to provide automatic

estimation of crossing fibers within each voxel, which has been shown to significantly improve

the tracking sensitivity of non-dominant fiber populations in the human brain. The connectivity

probability from a seed voxel i to another voxel j was defined as the proportion of fibers passing

through voxel i that reached voxel j (sampling of 5000 streamlines per voxel [73]). All the voxels

in each AAL parcel were seeded (i.e. grey and white matter voxels were considered). The connec-

tivity probability Pij from region i to region j was calculated as the number of sampled fibers in

region i that connected the two regions, divided by 5000 × n, where n represents the number of

voxels in region i. The resulting SC matrices were computed as the average across voxels within

each ROI in the AAL thresholded at 0.1% (i.e. a minimum of five streamlines) and normalized

by the number of voxels in each ROI. Finally, the data were averaged across participants.

Multivariate machine learning classifiers

We trained random forest classifiers [74] to distinguish reduced states of consciousness from

wakefulness based on empirical individual FC matrices (fully connected weighted matrices

computed using Pearson’s linear correlation coefficient between BOLD time series from each

subject), using a five-fold cross-validation procedure to estimate classifier accuracy. Classifiers

were first trained to distinguish between wakefulness and a state of reduced consciousness,

and their accuracy was then tested in the classification between wakefulness and all other states

of consciousness (i.e. transfer learning accuracy was assessed). Random forest classifiers were
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trained using scikit-learn (https://scikit-learn.org/) [75]. We trained random forest classifiers

with 1000 decision trees and a random subset of features of size equal to the (rounded) square

root of the total number of features. The quality of each split in the decision trees was mea-

sured using Gini impurity, and the individual trees were expanded until all leaves were pure

(i.e. no maximum depth was introduced). No minimum impurity decrease was enforced at

each split, and no minimum number of samples was required at the leaf nodes of the decision

trees (the classifier hyperparameters can be found in https://scikit-learn.org/).

To assess the statistical significance of the classifier accuracy values, we trained and evalu-

ated a total of 1000 random forest classifiers using the same features (i.e. FC matrices) as

inputs, but scrambling the class labels. We then constructed an empirical p-value by counting

how many times the accuracy of the classifier with scrambled class labels was greater than that

of the original classifier All accuracies were computed as the area under the receiver operating

characteristic curve (AUC) and considered significant at p<0.05. Subsequently, the generaliz-

ability of the classifiers to distinguish other sleep states from wakefulness was evaluated by

applying both the original and scrambled classifiers, and constructing p-values analogously.

Regional FC similarity

For all states of consciousness, we computed the average functional connectivity (FC) of each

AAL region and subtracted the average FC computed from the wakefulness data, thus yielding

a regional profile of FC changes for each state. We then computed the connectivity correlation

distance between pairs of states S1, S2 with FC matrices C1, C2 as follows,

d S1; S2ð Þ ¼ 1 �
1

90

P90

j IðjÞ ð1Þ

Where I(j) is defined as,

IðjÞ ¼ 1; if jRðC1ði; jÞ;C2ði; jÞÞj > 0:5; i ¼ 1 to 90; i 6¼ j

IðjÞ ¼ 0; if jRðC1ði; jÞ;C2ði; jÞÞj < 0:5; i ¼ 1 to 90; i 6¼ j

Here, the FC of state 1 is obtained as the average across subjects with wakefulness sub-

tracted, and analogously for state 2.

Whole-brain model

We implemented a whole-brain model consisting of a network of nonlinear oscillators coupled

by the structural connectome (SC). Each oscillator was modeled by a normal form of a Hopf

bifurcation and represented the dynamics of one of the 90 brain regions in the AAL template.

The key neurobiological assumption is that dynamics of macroscopic neural masses can range

from fully synchronous (i.e. activated state with self-sustained oscillations) to a stable asyn-

chronous state governed by random fluctuations, with an intermediate state presenting com-

plex temporal features linked to noise-induced transitions through the bifurcation point [29].

A secondary assumption is that fMRI can capture the dynamics from both regimes with suffi-

cient fidelity to be modeled by the equations.

Without coupling, the local dynamics of brain region j are modeled by the complex-valued

equation,

dzj
dt
¼ aþ ioð Þzj � zjjzjj

2
ð2Þ
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In this equation zj is a complex-valued variable (zj = xj+yj), and ωj is the intrinsic oscillation

frequency of node j. The intrinsic frequencies ranged from 0.04–0.07 Hz and were determined

by the averaged peak frequency of the bandpass-filtered fMRI signals of each individual brain

region. The parameter a is known as the bifurcation parameter and controls the dynamical

behavior of the system. For a<0 the phase space presents a unique stable fixed point at zj = 0,

thus the system asymptotically decays towards this point. For a>0 the stable fixed point

changes its stability, giving rise to a limit cycle and to self-sustained oscillations with frequency

fj ¼
oj
2p

and amplitude proportional to the square root of a (see Fig 1).

The coordinated dynamics of the resting state activity are modeled by introducing coupling

determined by the SC. Nodes i and j are coupled by Cij (the i, j entry of the SC matrix). To

ensure oscillatory dynamics for a>0, the SC matrix was scaled to a maximum of 0.2 (weak cou-

pling condition). In full form, the coupled differential equations of the model are the follow-

ing,

dxj
dt
¼ a � x2

j � y2

j

� �
xj � ojyj þ GSiCij xi � xj

� �
þ bZj tð Þ ð3Þ

dyj
dt
¼ a � x2

j � y2

j

� �
yj þ ojxj þ GSiCij yi � yj

� �
þ bZj tð Þ ð4Þ

The parameter G represents a global coupling factor that scales SC equally for all the nodes.

These equations were integrated to simulate empirical fMRI signals using the Euler-Maruyama

algorithm with a time step of 0.1 seconds. ηj represents additive Gaussian noise in each node

and scaled by factor β fixed at 0.04. When a is close to the bifurcation (a~0) the additive Gauss-

ian noise gives rise to complex dynamics as the system continuously switches between both

sides of the bifurcation.

Fitting to empirical data

We selected the group-averaged static functional connectivity of each state of consciousness as

the empirical observable to be fitted by the model. The BOLD signals corresponding to each

ROI in the AAL template were filtered in the frequency range of 0.04–0.07 Hz, since this fre-

quency band has been shown to contain more reliable and functionally relevant information

compared to other frequency bands, and also to be less affected by noise [76–79]. Subse-

quently, the filtered time series were transformed into z-scores. For each state of conscious-

ness, the amount of participants was selected based on the presence of uninterrupted epochs of

that state lasting more than 194 samples (Wsleep = 15; N1 = 15; N2 = 15; N3 = 15; Wprop = 14;

S = 14; LoC = 14; Wcon = 21; MCS:16; UWS:15). Afterwards, the FC matrix was computed as

the matrix of Pearson’s correlation coefficients between the BOLD signals of all pairs of regions

of interest (ROIs) in the AAL template. Fixed-effect analysis was used to obtain group-level FC

matrices, meaning that Fisher’s R-to-z transform z = atanh(R) was applied to the correlation

values before averaging over participants within each state of consciousness.

We applied the model described by Eqs 3 and 4 to simulate BOLD signals for each ROI, fix-

ing the parameter G = 0.5 Previous research showed that the optimal values of G and a are

related by a monotonic function, so that fixing G before model fitting preserves the differences

in the optimal bifurcation parameter between states [41]. We then used an anatomical prior

based on six RSNs to constrain how different groups of nodes could contribute independently

to the final bifurcation parameters. Each local bifurcation parameter was obtained as the linear

combination of the contribution of the RSNs spanning that ROI. In this way, we embedded

the parameters governing the dynamics of the 90 ROIs into a six-dimensional parameter space
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defined by the independent contributions of the RSNs [29]. We simulated the same number of

samples for each subject and the same number of subjects per state, and then we followed a

procedure to compute the simulated FC identical to the one used for the empirical data. We

used the structure similarity index (SSIM) [80] as a metric to compare the simulated and

empirical FC, thus defining the goodness of fit (GoF) for parameter optimization (the target

fitting function was defined as 1-GoF). We implemented a genetic algorithm to optimize the

six parameters and maximize the GoF of the model. For each state of consciousness, we simu-

lated an initial population of 10 elements, 200 generations of offspring and then we performed

100 independent runs of the genetic algorithm. Previous work implementing the same optimi-

zation procedure can be consulted for further details [29]. Finally, we selected the combination

of parameters yielding the simulated FC with the lowest GoF among the 100 runs of the

algorithm.

Perturbational distance

The external perturbation was represented as an additive periodic forcing term incorporated

to the equation of each node, given by Fj ¼ F0j
cosðojtÞ, where F0j

is the perturbation ampli-

tude and ωj is the natural frequency of node j, computed directly from the BOLD time series.

The effects of the perturbation were investigated systematically for all 45 pairs of homotopic

regions in the AAL atlas, with the purpose of providing a conceptual model of the effects of

transcranial alternating current stimulation (tACS). This perturbation was initially applied in

the model with parameters chosen to reproduce an initial state, and the amplitude (F0j
) of

node j and its homotopic pair was parametrically increased from 0 to 2 in steps of 0.1 (averag-

ing 100 independent simulations for each node pair and F0j
value). For each value of F0j

the

resulting FC matrix was computed, and its similarity to the FC of the target state was deter-

mined as follows,

DGoF ¼
GoFðFCsimtarget

; FCemptarget
Þ � GoFðFCsimF

; FCemptarget
Þ

GoFðFCsimtarget
; FCemptarget

Þ � GoFðFCsiminitial
; FCemptarget

Þ
ð5Þ

In this equation, FCsimF
is the FC matrix obtained with the perturbation, FCemptarget

represents

the empirical FC matrix of the target state, FCsimtarget
is the simulated FC matrix of the target

state, and FCsiminitial
is the simulated matrix of the initial state. According to this normalization,

as ΔGoF approaches 0 the simulation with optimal bifurcation parameters for the initial state

plus the perturbation approaches the best empirical fit of the model to the target FC. Con-

versely, as ΔGoF increases the perturbation fails to change the FC in the direction of the opti-

mal FC of the target state (29). The results of transitions induced by perturbing all nodes as a

function of the forcing amplitude are shown supplementary information

Supporting information

S1 Table. Patients’ demographic and clinical characteristics. Diagnosis: MCS: minimally

conscious state, UWS: vegetative state/unresponsive wakefulness syndrome. Etiology: 1: trau-

matic brain injury, 2: anoxia, 3: other. Coma Recovery Scale-Revised subscales: Auditory

function 4: Consistent Movement to Command, 3: Reproducible Movement to Command, 2:

Localization to Sound, 1: Auditory. Startle, 0: None. Visual function 5: Object Recognition, 4:

Object Localization: Reaching, 3: Visual Pursuit, 2: Fixation, 1: Visual Startle, 0: None. Motor

function 6: Functional Object Use, 5: Automatic Motor Response, 4: Object Manipulation, 3:

Localization to Noxious. Stimulation, 2: Flexion Withdrawal, 1: Abnormal Posturing, 0: None/
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Flaccid. Oromotor/Verbal function 3: Intelligible Verbalization, 2: Vocalization/Oral Move-

ment, 1: Oral Reflexive Movement, 0: None. Communication scale 2: Functional: Accurate, 1:

Non-Functional: Intentional, 0: None. Arousal scale 3: Attention, 2: Eye Opening without

stimulation, 1: Eye Opening with stimulation 0: Unarousable. Inclusion field stands for the

subject that were included in the full analysis after fMRI pre-processing.

(XLSX)

S2 Table. Mean and standard deviation (std) of the final number of volumes per condition.

W_sleep: wakefulness corresponding to the sleep dataset; W_prop: wakefulness corresponding

to the propofol dataset.

(XLSX)

S1 Fig. Node assessment of the likelihood of inducing transitions between pairs of states

based on the in silico stimulation protocol. This likelihood is obtained using the ΔGoF,

which measures the similarity between the functional connectivity (FC) of the target and the

perturbed brain state. Low values of ΔGoF represent similar FC between target and perturbed

state, and thus a high likelihood of inducing a transition between both states. The x-axis lists

all the possible transitions between the assessed states of consciousness, the y-axis contains the

name of the regions in the AAL parcellation, and the color scale indexes ΔGoF.

(TIF)
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