
HAL Id: hal-03442486
https://hal.sorbonne-universite.fr/hal-03442486v1

Preprint submitted on 23 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematical modeling and adequate environmental
sampling plans are essential for the public health

assessment of COVID-19 pandemics : development of a
monitoring indicator for SARS-CoV-2 in wastewater

Nicolas Cluzel, Marie Courbariaux, Siyun Wang, Laurent Moulin, Sébastien
Wurtzer, Isabelle Bertrand, Karine Laurent, Patrick Monfort, Soizick Le

Guyader, Mickaël Boni, et al.

To cite this version:
Nicolas Cluzel, Marie Courbariaux, Siyun Wang, Laurent Moulin, Sébastien Wurtzer, et al.. Math-
ematical modeling and adequate environmental sampling plans are essential for the public health
assessment of COVID-19 pandemics : development of a monitoring indicator for SARS-CoV-2 in
wastewater. 2021. �hal-03442486�

https://hal.sorbonne-universite.fr/hal-03442486v1
https://hal.archives-ouvertes.fr


Mathematical modeling and adequate environmental
sampling plans are essential for the public health

assessment of COVID-19 pandemics : development
of a monitoring indicator for SARS-CoV-2 in

wastewater

Nicolas Cluzel1?, Marie Courbariaux1, Siyun Wang1, Laurent Moulin2,
Sébastien Wurtzer2, Isabelle Bertrand3, Karine Laurent1, Patrick Monfort4,

Obépine consortiuma, Soizick Le Guyader5, Mickaël Boni6, Jean-Marie
Mouchel7†, Vincent Maréchal8†, Grégory Nuel9,1†, and Yvon Maday10?†

1Sorbonne Université, Maison des Modélisations Ingénieries et Technologies (SUMMIT), 75005 Paris,
France

2Eau de Paris, Département de Recherche, Développement et Qualité de l’Eau, 33 avenue Jean
Jaurès, F-94200 Ivry sur Seine, France

3Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France
4HydroSciences Montpellier, UMR 5151, Université de Montpellier, CNRS, IRD, F-34093 Montpellier,

France
5Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France

6Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1
place Valérie André, F-91220 Brétigny-sur-Orge, France

7Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris,
France

8Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
9Stochastics and Biology Group, Probability and Statistics (LPSM, CNRS 8001), Sorbonne University,

Campus Pierre et Marie Curie, 4 Place Jussieu, 75005, Paris, France
10Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005

Paris, France
aObépine consortium includes Isabelle Bertrand, Soizick Le Guyarder, Christophe Gantzer, Mickael
Boni, Vincent Maréchal, Yvon Maday, Jean-Marie Mouchel, Laurent Moulin, Sébastien Wurtzer and

Rémy Teyssou.
†These authors contributed equally.

?Corresponding authors: nicolas.cluzel@sorbonne-universite.fr, yvon.maday@sorbonne-universite.fr

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.01.21262877doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.09.01.21262877
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract1

Since many infected people experience no or few symptoms, the SARS-CoV-2 epidemic2

is frequently monitored through massive virus testing of the population, an approach that3

may be biased and may be difficult to sustain in low-income countries. Since SARS-4

CoV-2 RNA can be detected in stool samples, quantifying SARS-CoV-2 genome by RT-5

qPCR in WWTPs1 has been proposed as an alternative tool to monitor virus circulation6

among human populations. However, measuring SARS-CoV-2 viral load in WWTPs7

can be affected by many experimental and environmental factors. To circumvent these8

limits, we propose here a novel indicator WWI2 that partly reduces and corrects the noise9

associated with the SARS-CoV-2 genome quantification in wastewater. This method has10

been successfully applied in the context of Obepine, a French national network that has11

been quantifying SARS-CoV-2 genome in a representative sample of French WWTPs12

since March 5th 2020. On August 26th, 2021, 168 WWTPs were monitored twice a week13

in the metropolitan and overseas territories of France. We detail the process of elaboration14

of this indicator, show that it is strongly correlated to the incidence rate and that the optimal15

time lag between these two signals is only a few days, making our indicator an efficient16

complement or even a credible alternative to the incidence rate. This alternative approach17

may be especially important to evaluate SARS-CoV-2 dynamics in human populations18

when the testing rate is low.19

1Wastewater treatment plants
2Wastewater indicator
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Figure 1: Graphical abstract.
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1 Introduction24

The SARS-CoV-2 pandemic has affected 214 million people worldwide and resulted in25

more than 6.6 million confirmed cases in France as of August 26th 2021. However, these26

figures underestimate the total number of infected people. Indeed, many asymptomatic27

virus carriers are not detected, except during random testing or when they are tested prior28

to travelling or as contact cases [13, 14]. Moreover, infected people with mild symptoms29

who do not seek medical assistance will not be screened either. Finally, massive individual30

testing may vary depending on the epidemiological situation and is economically difficult31

to sustain, particularly in low income countries.32

Several studies have demonstrated the value of wastewater-based epidemiology for moni-33

toring SARS-CoV-2 genome shedding in WWTPs as a putative surrogate or complemen-34

tary approach to classical epidemiological indicators [1, 9, 11, 12]. However, SARS-CoV-235

genome quantification in wastewater is subject to a number of shortcomings that must be36

corrected before such monitoring can be deployed on a large scale. These notably include37

(i) the intralaboratory variability, i.e. the repeatability error on measurements from the38

same sample and (ii) the inter-laboratory variability, i.e. the difference in genomic units39

per liter of effluent evaluated by two different laboratories for identical samples even when40

using similar procedures. (iii) Finally, the specificity of each wastewater network (unitary41

or separative), its topography, the proportion of industries and the characterization of their42

discharges are also criteria of variability that must be taken into account to be able to43

5
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compare the evolution of the epidemics at a regional scale or to deduce the trend nation-44

wide. The aforementionned variabilities must be corrected if the final purpose is a national45

monitoring network involving several laboratories, different protocols and many WWTPs.46

We propose herein an original design of a uniform indicator, WWI, that monitors viral47

load level in wastewater along time and that takes into account the above-mentioned vari-48

abilities. Its performance was assessed on 24 WWTPs followed by the Obepine network,49

a French national program that has been quantifying SARS-CoV-2 on some of the most50

important French WWTPs since March 3rd 2020. On August 26th 2021, 168 WWTPs51

were monitored twice a week. The WWI was compared to local case incidence on different52

EPCIs3. The robustness of this indicator to flow variations linked to various phenomena53

(rainfalls, civil engineering on the network imposing the detour of the watershed towards54

other plants, etc.) was estimated. Finally, we compared this indicator to the local incidence55

rate in order to estimate the correlation, the time lag between these two signals as well56

as the capacity of the WWI to anticipate major epidemiological changes (increased viral57

circulation, reduced circulation in response to governmental measures for example). This58

study focused on the peak of the so-called second wave that occurred in France during the59

fall of 2020.60

3Etablissement Public de Coopération Intercommunale (EPCI), a French administrative structure that brings
together several municipalities in order to exercise some of their common duties.

6
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2 Materials and methods61

2.1 Data sources62

2.1.1 WWI63

The local and regional values of WWI data are freely available for all plants treated by the64

Obepine network here.65

2.1.2 Incidence rate66

Incidence rate data are partially available in open access for 22 EPCIs and can be found67

here. For the Grand Reims metropolitan area, incidence data are not available in open68

access. We have retrieved them by studying the different dashboards issued by the ARS69

Grand-Est (example here). For three additional plants (Lagny-sur-Marne, Evry and Paris70

Seine Morée), the data corresponding to the specific watershed of these plants were directly71

transmitted to us by Santé Publique France.72

2.2 Data analysis73

Statistical analyses were performed using R and Python programming languages. When74

not directly provided, the incidence rate was computed according to the same formula75

used by Santé Publique France, using a weekly moving average. Clinical data were then76

processed through statsmodels’ seasonal decomposition function to extract their trends.77
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24 WWTPs were considered in the different statistical analyses, with varying sampling78

frequency detailed later on.79

2.3 Sampling, transport and analysis80

The statistical studies of this document were carried on a part of our total French wastew-81

ater samples collected between March 3rd 2020 and May 1st 2021. The protocol is as82

the following: wastewater samples were taken integratedly during a 24-hour period, were83

conserved at 5°C (+/- 3°C) and transported at 4°C. Quantification analyses, involving ex-84

traction, concentration and RT-qPCR or RT-dPCR steps [9, 10], were performed within 385

days after sampling. The data associated with these samples included incoming volume86

at the plant inlet, ammonium concentration, conductivity and COD4. The results of the87

quantification (in number of genome unit per liter) and other related data were then pro-88

cessed by mathematical tools. RT-qPCR or RT-dPCR were performed on the E and RdRp89

genes, the former being routinely used to process the WWI and the latter being used for90

validation purpose.91

4Chemical Oxygen Demand

8
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2.4 Consideration of flow fluctuations at the wastewater treat-92

ment plant inlet93

The WWI can have different quality indices, or EDQPI,5 depending on the richness of the94

data provided. A quality index of 1 corresponds to a viral load level without taking into95

account the flow inlet of a WWTP. That of 2 is improved, compared to 1, by adjusting96

the WWI using the incoming volume information. This helps neutralise the dilution97

effects due to precipitation or to watershed deviation. A level equal to 3 suggests the use98

of other physicochemical factors like NH4+, conductivity and COD in order to induce99

the wastewater volume related to human activities. Detailed mathematical formulas are100

indicated later on.101

The problem can be expressed as follows. LetC0,t be the SARS-CoV-2 concentration in the102

water that arrives at the inlet of the treatment plant. Then the SARS-CoV-2 concentration103

without dilution effect impacting the nominal operation of the network can be computed104

as follows:105

Ct =
C0,t × V0,t

Vt
= C0,t × αq,t (1)

where V0,t is the total volume at the inlet of the treatment plant on day t and Vt is the106

household wastewater volume. As these quantities need to be estimated, we approximate107

αq,t by α̂q,t = V̂0,t/V̂t, which is the volume normalization coefficient at time t and EDQPI108

5Experimental Data Quality and Precision Indicator

9
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q, where V̂0,t and V̂t are the estimations used for V0,t and Vt, respectively.109

• When V0,t and Vt are both unknown, the EDQPI is, by design, equal to 1 and110

both volumes are approached by the mean daily incoming volume at the inlet of the111

WWTP. This volume Vdb is extracted from the database of the French MTES6 listing112

all the useful data for the year 2017. We then have α̂1,t = Vdb/Vdb = 1.113

• When V0,t is measured and Vt is unknown, the EDQPI is, by design, equal to 2 and114

we approach Vt by Vdb. We then have α̂2,t = V0,t/Vdb.115

• WhenV0,t is measured andVt is estimated from physico-chemical dilution indicators116

(such as NH4+ concentration, conductivity and COD), the EDQPI is, by design,117

equal to 3. We then have α̂3,t = V0,t/V̂t.118

When the EDQPI is equal to 3, Vt is estimated by the average between rectified volumes119

from ammonium, conductivity and COD :120

V̂t = (1/3)×
[
V0,t

(
[NH4+]mes

[NH4+]dm

)
+ V0,t

(
σmes

σdm

)
+ V0,t

(
CODmes

CODdm

)]

where V0,t is the total volume at the inlet of the treatment plant on day t, [NH4+]mes is the121

NH4+ concentration measured on day t, [NH4+]dm is the mean concentration of NH4+122

measured on dry conditions the previous year, σmes is the electric conductivity measured123

on day t in S.cm−1, σdm is the mean electric conductivity measured on dry conditions the124

6Ministère de la Transition écologique et solidaire
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previous year, CODmes is the chemical oxygen demand measured on day t, CODdm is the125

mean chemical oxygen demand measured on dry conditions the previous year.126

This formula only applies to days when rainfall was recorded and no civil engineering of127

the wastewater network was involved. Indeed, these could have caused the daily incoming128

volume to be significantly weaker than the mean of the historical year used to assess129

physico-chemical concentrations in dry conditions, thus leading to an incorrect estimation130

of rainfall induced additional volume on rainy days.131

In order to understand the importance of these additional data, we estimated by simulation132

the difference between the WWI with quality indices equal to 1 and 2. To do so, we first133

calibrated a parametrised statistic model under the two different settings of EDQPI 1 and134

2, i.e., without and with inlet volume measurement respectively, hence we got two WWI135

curves of corresponding EDQPI. Then for each of the two statistic models, we simulated a136

group of 1000 trajectories from its parameters. We finally computed the root-mean-square137

(RMS) deviation between the WWI of EDQPI 2 and each curve of each group of simulated138

trajectories. With the two sets of RMS deviations, we performed a one-factor ANOVA139

test to assess the impact of absence of daily incoming volume measurement of a plant,140

with null hypothesis being no significant difference between the 2 groups. We conducted141

the study on 22 sewage plants each with several samples taken on rainy days with several142

months of history. We ran the same simulation to compare EDQPI 2 and 3, this time on 2143

WWTPs for lack of sufficient physico-chemical data on the remaining sewage plants.144

11
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2.5 De-noising and interpolation through Kalman smoothing145

RT-qPCR quantifications are subject to many uncertainties. Using only the calculated virus146

concentrations to monitor the pandemic can therefore be misleading, as a large increase in147

the measured concentration can be due either to a real increase in virus concentration or148

to a positive quantification error. This error can be caused by different factors, during the149

concentration, extraction or RT-qPCR phases, as well as during the integrated sampling150

at WWTP and its transportation. Thus, standard materials and laboratory practices have151

a strong influence on the RT-qPCR performance [2]. Moreover, the raw signal included152

in each person’s stool may be altered during its stay in the sewer system and during153

the aforementioned analysis steps [3]. This is why these data are pre-processed through154

Kalman smoothing [6, 7, 8] in order to provide an estimate of the real amount of virus155

and to evaluate the uncertainty on this estimate. In this method, the existence of a time156

dependency between the actual quantities is exploited (i.e. an actual virus quantity in the157

wastewater on a given day provides information about the quantity that will be observed158

on the following days, due to the outbreak dynamics), while the successive errors in virus159

concentration measurements are independent from each other.160

The concentrations to be measured are sometimes below the quantification or the detection161

RT-qPCR thresholds. Consequently, we face a problem of censored data. In addition,162

samples are typically collected twice a week, resulting in missing data on some days.163

Finally, outliers may bias the smoothing. A new one dimensional Kalman smoothing164

method [4] has been developed to adapt to these particularities for the needs of Obepine,165

12
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which implied a numerical discretization. We applied the developed smoother on the166

logarithm of the measured quantities in order to take into account the exponential character167

of the growth observed during the epidemic period and the heteroscedasticity observed168

empirically on the residuals when the method is applied directly.169

The mathematical writing of the underlying model is as follows:170

Xt = ηXt−1 + δ + κεX,t

Ot ∼ B(p)

(Y ∗t |Ot = 0) = Xt + τεY,t

(Y ∗t |Ot = 1) ∼ U([a, b])

Yt = max(Y ∗t , `)εX,t

εY,t

 i.i.d∼ N (0, I),

(2)

where:171

t is the time index (ranging from 1 to n days), Xt ∈ R is the logarithm of the real172

concentration in wastewater at time t,X = (Xt)t∈{1,...,n} is the vector of log-transformed173

real concentrations (to be recovered) and Yt ∈ R is the logarithm transformation of the174

estimated concentration in wastewater measured by RT-qPCR at time t, Ct, defined in175

Equation 1 (Yt = log(Ct)). Yt is generally only partially observed. We noteT ⊂ {1, ..., n}176

the set of t at which Yt is observed. Y = (Yt)t∈T is the vector of measurements. Y ∗ is an177

accessory latent variable corresponding to a non-censored version of Y . I is the identity178

13
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matrix. η ∈ R, δ ∈ R, κ ∈ R+ and τ ∈ R+ are parameters (to be estimated). ` is the179

threshold below which censorship applies7. Ot ∈ {0, 1} is, for any t ∈ T , the indicator180

variable of the event "Y ∗t is an outlier". O = (Ot)t∈T . B(p) stands for the Bernouilli181

distribution of parameter p and U([a, b]) for the Uniform distribution on the interval [a, b].182

p is a meta-parameter designating the a priori probability of being an outlier (we take183

p = 2% here). a and b have to be chosen, they can for example correspond to quantiles184

(respectively very close to 0 and very close to 1) of the empirical marginal distribution185

of Y . The parameters η ∈ R, δ ∈ R, κ ∈ R+ and τ ∈ R+ of maximum likelihood are186

estimated by numerical optimization through Nelder-Mead [5] as explained in [4]. At time187

n, the developed smoother gives the law of Xt for t ∈ {1, ..., n} knowing Y = (Yt)t∈T ,188

as well as the probability for each Yt to be an outlier. We note the produced reconstitution189

X̂t = E(Xt|Yt∈T ).190

2.6 Consideration of inter-laboratory variability191

Several laboratories are providing sewage water SARS-CoV-2 viral load analyses to192

Obepine, each of them being in charge of various WWTPs. These laboratories have been193

selected based on their ability to carry out analyses properly using protocols that have been194

validated for the quantification of SARS-CoV-2 in wastewater [9, 10]. Nonetheless, com-195

parative ILA8 have demonstrated that the estimated virus concentrations obtained on the196

7In practice, ` can vary from one day to another, for instance if one works on quantities that correspond to the
multiplication of concentrations (with a detection limit) by a fluctuating volume. This can be taken into account
within our method with no additional cost.

8Inter-laboratory assays
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same samples by different laboratories could sometimes differ in the order of magnitude197

of 1 log as shown in Table 2. In order to obtain a universal indicator for normalizing data198

provided by different laboratories [30], we have reworked the analysis results. The level199

of the indicator for a specific plant is thus related to the maximum concentration recorded200

by its associated lab on all the plants assigned to it within the Obepine network over a201

specific period. We have chosen a period between June 1st 2020 and January 1st 2021,202

which gives a maximum corresponding to the peak of the second wave of the epidemic.203

We then perform the following normalization:204

WWIt = 150
X̂t − log(Cm)

log(CM )− log(Cm)
(3)

Where WWIt is the WWI value at time t, X̂t is the previously defined reconstitution, Cm205

represents a quantification threshold of 1000 GU/L andCM is the maximum concentration206

historically recorded by the reference laboratory on plants with average daily flows similar207

to that of the plant of interest. The normalization factor of 150 was chosen a posteriori,208

so as to obtain a level between 40 and 85 around the beginning of September 2020, a209

period which corresponds for the majority of the plants to the middle of the exponential210

growth phase of the second wave in France. This level corresponds to a circulation level211

between fairly low and average, which would have given enough time to alert on the212

situation of resumption of the epidemic at this time. The maximum concentration is not213

solely based on the laboratory’s history, but more specifically on the basis of plants with214
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a similar flow to the one to be standardized. This additional selection makes it possible to215

harden the comparison criterion and to strengthen the ability to compare agglomerations216

where the epidemic situation is similar. For example, it is more likely to have 80% of217

the population infected at the same time in a sewage plant treating 10 inhabitants than218

in a sewage plant treating 10 million people. Without this partitioning, there could be a219

problem of underestimation of the epidemic situation in very large agglomerations in case220

of a critical health situation at a WWTP of much more moderate size, since the maximum221

concentration could never be approached by large sewage plants. We then chose to split222

the sewage plants in ten bins according to their average daily incoming volume, and assign223

a maximum concentration to each category.224

This formula still had a major drawback in the case of laboratories joining the project225

later than the historical ones, typically after December 2020. To deal with this flaw,226

we ran several ILA which we used to assess and update a proportionality coefficient227

between laboratories running the same protocol. For a laboratory joining late with no228

historical record, we multiply its analysis results by this proportionality coefficient and229

use the CM of the laboratory we have chosen as the reference for the calculation of this230

coefficient. Finally, under logistics and transport constraints and the workload limit of231

the laboratories, we designed that each laboratory receives and analyses sewage samples232

from plants distributed as evenly as possible over the French territory. This choice avoids233

the situation where one laboratory is assigned only to cities with a low incidence of the234

disease and another to cities with a high incidence of the disease, a situation that would235
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make difficult to compare the level of virus circulation between them. The consideration236

of this inter-laboratory variability allowed us to aggregate the WWI of different WWTPs237

and elaborate regional indicators to have a more objective insight of the epidemic situation238

on a larger scale. Each regional indicator represents the weighted average of the local239

indicators in the same area, with the weight of each plant corresponding to its average240

daily volume.241

3 Results242

We propose herein a new indicator (WWI) to convert the estimated amount of viral genomes243

that enter a WWTP per day in a unitless value. Diverse mathematical models (see Materials244

and Methods) make it possible to propose a smoothed tendency curve that faithfully reflects245

the epidemic situation at a WWTP.246

3.1 De-noising and interpolation through Kalman smoothing247

The results of this pre-processing are illustrated on an example of simulated data on Fig-248

ure 2 and on an example of real data from the Obepine network on Figure 3. As shown249

in Figure 2 on a set of simulated data, the mean signal reconstituted through this model250

faithfully reflects the true underlying process and shows low sensitivity to outliers. The251

successive reconstitutions of the underlying "true" auto-regressive process are expected252

to change at each new data point, since those bring additional information with regard253
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to the past. This is depicted Figure 3, with successive reconstitutions in different colors.254

Each intermediary reconstitution lies inside the 95% prediction interval of the final re-255

constitution. The difference between the final reconstitution and each of the intermediary256

reconstitutions is quite low, which means that there is usually not a lot of difference be-257

tween the results transmitted at a given date and those transmitted a week later with a pair258

of additional data points.259
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Figure 2: An example of the application of the proposed smoother (taking into account cen-
soring and outliers) on simulated data with 16% of censored data and p = 2% of outliers. The
censoring threshold corresponds to the RT-qPCR quantification threshold. The 95% predic-
tion interval should cover about 95% of the true underlying process (blue curve). The mean
reconstitution is faithful to the true underlying process.
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Figure 3: An example of the application of the proposed smoother (taking into account censor-
ing and outliers) on data from a wastewater treatment plant of the Obepine network : successive
predictions for the underlying process (never observed), X , 95% prediction interval and de-
tected outliers (with an outlier proportion of p = 2%). The censoring threshold corresponds to
the RT-qPCR quantification threshold. Each vertical dotted line corresponds to intermediary
reconstitutions over the course of the project, without taking into account any additional data
point past the reconstitution date. The difference between these intermediary reconstitutions
and the final reconstitution gives an idea of the error made weekly prior to knowing future data
points. The WWTP is the one in charge of the EPCI of Dijon, its associated laboratory being
Lab 2, see Table 2.
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3.2 Impact of inflow variation on the WWI260

Each trend curve is associated with a reliability index (EDQPI). EDQPI equals 1 when261

the WWI is calculated with an estimated flow and 2 when the real wastewater flow is262

used. By using the actual inflow volume of a plant, dilution effects by one-time events263

such as precipitation and civil engineering on the sewage network can be counterweighted.264

This led us to estimate the impact of rainfall on local trend curves. Table 1 shows that the265

difference between WWI signals calculated with EDQPI 1 and EDQPI 2 data is statistically266

significant in 21 of 22 WWTPs. The only case for which the null hypothesis is not rejected267

is Rouen, which is one of the plants sampled only once a week. With an average of 180268

rainy days per year, it is conceivable that the test result would be different with a higher269

sampling frequency. Therefore, this result indicates that plant inflows needs to be informed270

as soon as possible to improve EDQPI and primarily during periods of prolonged rainfall271

or reduced flow, regardless of plant size. We also tested the differences between quality272

indices 2 and 3 at two plants. EDQPI is set to 3 when physico-chemical factors can be273

measured on samples such as NH4+ concentration, conductivity and COD. The ANOVA274

results suggest that the difference is not significant this time (i.e., an EDQPI of 2 would275

be as effective in accounting for rainfall as an EDQPI of 3) although further investigation276

on a larger number and a wider variety of plants would be required.277
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Table 1: Significance test results for difference between EDQPI 1 and EDQPI 2.
WWTP Inhabitant equivalent capacity Number of samples per week p-value

Forges-les-eaux 16 000 1 <0.0001
Fécamp 45 000 1 <0.0001
Saint-Denis lès Sens 64 000 2 <0.0001
Auxerre-Appoigny 83 000 2 <0.0001
Nantes-2-Petite Californie 180 000 2 <0.0001
Evry 220 000 2 <0.0001
Lyon-La Feyssine 300 000 2 <0.0001
Le Havre 320 000 1 <0.0001
Lagny-sur-Marne 350 000 2 0.0017
Dijon 400 000 2 <0.0001
Lille Grimonpont 420 000 2 <0.0001
Reims 470 000 7 <0.0001
Nancy-Maxeville 500 000 2 <0.0001
Rouen 550 000 1 0.488
Paris Marne Aval 550 000 2 <0.0001
Nantes-1-Tougas 600 000 2 <0.0001
Nice-Haliotis 620 000 2 <0.0001
Lyon-Pierre Bénite 630 000 2 <0.0001
Toulouse-Ginestous 950 000 2 0.034
Lyon-Saint-Fons 980 000 2 <0.0001
Strasbourg 1 000 000 2 0.0012
Paris Seine Amont 3 600 000 2 <0.0001

3.3 Consideration of inter-laboratory variability278

We take a critical look at the normalization technique we used to account for the inter-279

laboratory variability. As no WWTP had been analyzed by at least two different labora-280

tories over the course of the project, we simulated an hypothetic behavior of a network281

with only one plant analyzed by the 9 Obepine laboratories. We chose one laboratory as a282
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reference (Lab 1), and simulated quantification results varying from this reference, using283

May 2021 ILA results summarized in Table 2. To do so, we simulated a synthetic signal284

and assigned it to Lab 1. Then, using Table 2, we synthesized 8 others signals using scaling285

factors drawn from normal distributions whose parameters were estimated using May 2021286

ILA results. For each sampling date and each laboratory, a credible scaling factor was287

drawn from these normal distributions. We compared three normalization techniques. CM288

refers to a single common maximum concentration among all laboratories. LSM refers289

to the modelisation we used, with a laboratory-specific maximum concentration. CMILA290

refers to a single common maximum concentration after scaling all the laboratories results291

to a reference laboratory using ILA results. Figure 4 shows that our normalization tech-292

nique significantly reduces the inter-laboratory variability for laboratories 4 to 8. Results293

are not significantly improved for the remaining 3 laboratories because such a normaliza-294

tion is not needed, as their scaling factors are close to 1 and their inter-samples replicability295

is quite good. Results can still be significantly improved, especially for lower values of296

WWI, once ILA are carried out.297

Table 2: May 2021 ILA results as scaling factors between the 9 Obepine laboratories, in relation
to one laboratory taken as reference (Lab 1).

Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 Lab 8 Lab 9

Scaling factor mean 0.95 1.20 1.96 3.96 10.64 0.40 6.50 1.12
Scaling factor std 0.31 0.34 0.54 0.74 9.00 0.077 2.62 0.43
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Figure 4: Simulation of different inter-laboratory variabilities and normalization techniques.
We simulate the simple case of a single plant in a network analyzed by the 9 Obépine laborato-
ries. (a) shows the results if the WWI normalization formula is applied with a CM common to
all laboratories. Results show a clear disparity between laboratories and a strong attenuation
towards laboratories with lower quantifications results than laboratory 6. (b) shows the correc-
tion brought by using a CM specific to each laboratory. Results are significantly improved for
laboratories 4 to 8. The difference is not significant for the remaining 3 laboratories which all
have a scaling factor close to 1 and a good inter-samples replicability. (c) shows the correction
brought by using ILA results and estimating a scaling factor between each laboratory and Lab
1. As shown in (d), CMILA still is the overall best normalization technique. CM, LSM and
CMILA respectively accounts for a common maximum, a laboratory-specific maximum and
a common maximum after scaling following ILA. RMSE are calculated using the Lab 1 as
reference.
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3.4 Correlation and lag between the WWI and the incidence298

rate299

We now focus on several EPCIs whose incidence rate is available at a local scale, within300

which the sewage network connects to one single WWTP, to limit possible omission biases301

related to the outbreak of the epidemic in neighborhoods not connected to the monitored302

plant, which may produce a phase shift. To determine the period over which to calculate303

the correlation between the two signals (the WWI and the incidence rate), we consider the304

following. The results of the virological tests are reported by municipality of residence305

and not municipality of testing, while the wastewater signal is localized and unchangeable.306

Moreover, the WWI is expected to capture contributions from asymptomatic and mildly307

symptomatic patients, which we suspect not to be negligible during the June-August 2020308

period, whereas the incidence rate only reports diagnosed people. As we want to calculate309

the correlation between the two signals over a period where they are supposed to be similar310

and thus where the WWI is supposed to mainly capture a majority of people also likely311

to be diagnosed, we decided to focus on the period corresponding to the second wave of312

the epidemic in France. To avoid being biased by the movements of individuals during313

the 2020 summer vacations, we consider the start date of September the 1st, 2020, from314

which the majority of holidaymakers returned to their residence city. We consider that315

the last point of the interval of interest is the date from which the signal undergoes a new316

growth phase following the decay of the second peak of the epidemic. This date can thus317
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vary depending on the different local dynamics of the epidemic. We then drag the subpart318

of the incidence rate curve over a +/- 30-day window until we find the time lag that yields319

the best correlation with the WWI. We use cross-correlation as a measure of similarity320

between the two signals. The cross-correlation calculation is performed between the WWI321

and the log transformation of the incidence rate. Since correlation is sensitive to outliers322

especially when sample size is small, we subsampled the incidence signal using 50% of323

the available data so as to avoid certain special patterns resulting in an unnaturally high324

correlation. The time lag resulting the highest positive correlation is recorded. A positive325

lag value indicates that the WWI is ahead of the studied epidemic signal. A negative lag326

value indicates that the WWI is lagging behind it. We selected several EPCIs to study the327

results on cities of different sizes and various regions, using the results of three different328

laboratories. Finally, we briefly discuss the case of two regional WWIs.329

Figure 5 shows an example of simulation results on the Lagny-sur-Marne WWTP. There330

is a strong correlation (> 0.92) between the WWI and the incidence rate during the second331

wave for this WWTP. Moreover, the optimal phase shift between the two signals is quite332

low (2 days), meaning the WWI was a great surrogate to the incidence rate at that time.333

Figure 6 and Table 3 show some interplant variance on the time lag and the correlation334

between WWI and incidence rate. Such a variance in time lag between WWTPs has335

already been reported [20]. The intra-experimental variance is significantly higher for the336

WWTP of Nancy, whose average correlation with the incidence rate is not as strong as337

that of the other WWTPs. As the samples were taken with a one shot sampling and not338
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Figure 5: Simulation example on the Lagny-sur-Marne WWTP. The top plot shows WWI and
incidence rate curves as well as the sample points selected for that simulation (the shadowy area
corresponds to the period of interest). The bottom left plot displays the computed correlation
values for lag values varying between -20 and 20 days. A positive lag means that the WWI is
ahead of the incidence rate. A negative lag means that the WWI is lagging behind the incidence
rate. The bottom right plot displays a scatter plot of WWI vs incidence rate at best time lag (2
days, with a correlation coefficient of 0.932), as well as the linear regression fitted on the data.
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Figure 6: WWI and incidence rate lag estimates in days (n = 1000 simulations with random
sampling of 50% of incidence rate curve). The Red dotted line indicates the zero offset level.
The Blue dotted line is the median level over the 7 medians. The intra-experimental variance
is significantly higher for the WWTP of Nancy, whose samples were not integrated before
October 20th 2020, leading to a more pronounced noise on the first half of the wave.
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integrated over 24 hours until October 20th, 2020 at this plant, it cannot be excluded that339

the correlation is weaker due to a more pronounced noise on the samples taken before this340

date [12]. As previously argued, we did not consider the time period between July and341

August 2020, one of the reasons is that we may have detected an earlier emergence of342

the pandemic than the incidence rate, as witnessed before by [22]. An explanation could343

be that, by the time, it was mainly younger populations that were affected, among which344

less symptomatic cases were reported. It is then sensible that the proportion of tested345

positive to total infected was rather low at that time. It is thus conceivable that the signal346

captured by the WWI differs more significantly from the incidence rate during that period347

because the two indicators monitored different populations by that time than at the second348

peak of the epidemic. Such a change in the demographic of the pandemic has already been349

reported in the state of Massachusetts [19] and is shown in Figure 7. The correlation is still350

good between the two compared signals (>0.85 for every WWTP except Nancy), which351

is consistent with the results of [1, 9, 12, 25, 26, 27, 28]. An inter-WWTP variance in352

median time lag remains, as seen in Table 3, and is going to be discussed in section 3.5. Yet353

imperfect as they do not sample a population as large as the one surveyed by the incidence354

rate because we could only monitor a fraction of the cities of the different French regions,355

regional wastewater indicators still show a good correlation (minimum correlation of 0.8)356

with their clinical counterparts, as shown in Figure 8 and Table 4. Moreover, the regional357

WWI is peaking ahead of the regional hospitalizations for both studied regions during the358

second wave, which is consistent with the findings of [23, 24].This illustrates the good359
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aggregation capability of the WWI thanks to the normalization techniques we used, and360

our ability to follow the epidemic situation at a larger scale, despite monitoring at best less361

than 60% of a region’s inhabitants, as shown in Table 4.362

Table 3: WWI and incidence rate lag estimates during the second wave of Fall 2020. Best
correlation is the median of the best correlation over 1000 experiments. Montpellier was
sampled once a week at that time. *Strasbourg, Nancy, Evry and Dijon were sampled once a
week until mid October 2020, then twice a week. Lagny and Seine-Morée were sampled twice
a week.

Nancy Evry Montpellier Dijon Lagny Seine-Morée Strasbourg

Lag (days) -5 -2 -2 3 2 6 1
Sampling frequency (days) 2* 2* 1 2* 2 2 2*
Best correlation 0.758 0.857 0.877 0.893 0.923 0.943 0.948

Table 4: Regional WWI correlation and lag estimates with incidence rate and hospitalizations
during the second wave of Fall 2020. Best correlation is the median of the best correlation over
1000 experiments. IR means the WWI is compared with the incidence rate, H means the WWI
is compared with the daily new hospitalizations in the corresponding region. The estimated
surveyed population was calculated by considering the volume Vdb of each plant and a daily
consumption of 200L per inhabitant.

Île-de-France - IR Île-de-France - H Grand-Est - IR Grand-Est - H

Lag (days) -2 7 2 8
Estimated surveyed population 33.1% 33.1% 58.6% 58.6%
Best correlation 0.806 0.855 0.941 0.966
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Figure 7: Evolution of the ratio of positive tests among each age bracket in France (straight
lines) and of the screening rate (black dotted line). The screening rate corresponds to the
number of test performed in France per 100,000 inhabitants. 20-29 years old bracket peaked
during Summer 2020 and accounted for around 35% of the positive tests at its peak on August
21st 2020. Overall, the ratio increased from early June 2020 to late August 2020 among this
age bracket. Conversely, the ratios among 40 years old and older categories were dwindling
from July or even earlier for some of them. Infections were thus predominant among young
people during Summer 2020 and less likely to be detected through conventional testing as the
screening rate was about 3 times less important than at the peak of the second wave.
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Figure 8: Simulation example for the Grand-Est region and the incidence rate. The top plot
shows WWI and incidence rate curves as well as the sample points selected for that simulation
(the shadowy area corresponds to the period of interest). The bottom left plot displays the
computed correlation values for lag values varying between -20 and 20 days. A positive lag
means that the WWI is ahead of the incidence rate. A negative lag means that the WWI is
lagging behind the incidence rate. The bottom right plot displays a scatter plot of WWI vs
incidence rate at best time lag (1 day, with a correlation coefficient of 0.956), as well as the
linear regression fitted on the data.
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3.5 Impact of the sampling frequency363

The monitored WWTPs are collected twice a week with integrated 24h sampling, except364

for a few rare exceptions including the Reims WWTP, which is analyzed on average every365

day of the week, with rare exceptions. Since the Reims WWTP has been monitored for366

more than a year, it can be used to study the impact of the sampling frequency on the367

WWI signal. To do so, we compared its WWI signal with all available samples to WWI368

signals that would have been obtained from different sampling combinations comprised369

between 1 and 6 days per week. For the two-day tests, we only considered the case where370

the selected days were not consecutive. For the three-day simulation, we also prevented371

combinations where two days were consecutive. For the four-day scenario, we considered372

all possibilities except those where at least three days were consecutive. We then used two373

metrics to quantify this impact: RMSE between each WWI signal and cover rate between374

their respective 95% prediction intervals. We define the cover rate CR with the following375

formula :376

CR =
2× Scommon

S1 + S2

whereScommon is the intersection area between the two prediction intervals (see Figure 10),377

S1 andS2 being the areas of the prediction intervals of the considered models. We chose this378

formula and not only the Scommon to account for the case where wider prediction intervals,379
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implying greater uncertainties, would lead to greater cover rates than better models with380

narrower intervals because it would have a greater intersection with the whole prediction381

interval of the default model.382

Since the medians of the lags between the WWI and the incidence rate were quite different383

between WWTPs as shown in Figure 6, we wanted to evaluate the impact of the sampling384

days on this offset. To do so, we also used the data from the Reims WWTP. This allowed385

us to compare different versions of the WWI and to compare them with the incidence386

rate. We tested all combinations of two sampling days per week, excluding the possibility387

that sampling occurs on two consecutive days (a situation that can sometimes occur for388

logistical reasons but should remain exceptional). This plant was not included in the389

second wave offset study because wastewater analysis results were impacted by logistical390

problems at that moment. To assess the influence of sampling, we tested the time period391

around the January 2021 epidemic growth (between November 30th 2020 and January392

22nd 2021), which is visible on both the incidence rate curve and the WWI curve. As the393

incidence data from Reims were not available for weekends and holidays, we revised the394

sampling rate upwards for the tests in this city as the number of points was lower (60% of395

the points compared to 50% for the studies focused on the second wave).396

We can see on Figure 9 that both metrics show a clear improvement between once and397

twice a week sampling (RMSE is cut by more than half and median cover rate improves by398

16%). While both RMSE and cover rate gains seem to be weaker than the ones we had from399

once to twice a week, it is important to notice that their variance has also been significantly400
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Figure 9: Quantitative results of the sampling frequency analysis performed over the Reims
WWTP. The left plot displays the evolution of the cover rate between 95% prediction intervals
obtained with a reduced number of sampling days and the full signal. The cover rate represents
the common surface of 95% prediction intervals between the default model and the studied
subsampled model. The right plot shows the RMSE between the WWI. The x-axis represents
the sampling frequency. 2’ frequency is a particular case of biweekly sampling where at least
2 days separate each sampling day (e.g. Monday can only be paired with Thursday or Friday).
3 days sampling seems to be the best cost-performance tradeoff. 2’ solution still brings an
improvement to simple 2 days sampling if 3 days sampling cannot be achieved.

reduced when upgrading from twice to three times a week. Achieved gains from three401

days and a more important sampling frequency does not seem as much interesting, for402

both metrics.403

Qualitative wise, we can see on Figure 10 that going from 6 to 3 sampling days does not404

bring any significant difference to the WWI signal. Yet, short term interpretations can405

still be affected on specific periods as, the less sampling days available, the more biased406

towards outliers the WWI can become. Such a situation can be seen on subfigure (d): while407

the default signal is continuously dwindling from early to mid-January, the subsampled408

signal is actually shortly going down then increasing towards a plateau. Even though the409
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Figure 10: Examples of subsampling on the Reims WWTP, ranging from six days (top left) to
one day per week (bottom right). Dotted lines represent the respective 95% prediction intervals
for default (black) and subsampled (red) models. The default model uses all the available data
from the Reims WWTP (usually 7 samples a week). Continuous lines show the WWI of both
models. The blue-colored surface represents the intersection of both prediction intervals. The
vertical grid corresponds to Mondays. On figure (d), short term trend of red and black signals
differs early January. On subfigure (e), local peaks on early September and early December
are missing on the subsampled signal. Subsampling can also induce couple days of time lags
in peaks, as shown in figure (f) with both same local peaks.
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general dynamics of the signal are still captured through once and twice a week sampling,410

local variations can be missed. On subfigure (e), local peaks on early September and late411

November are missing on the subsampled signal. They are captured through once a week412

sampling, but with a slight offset.413

Figure 11 shows that a similar variance as the inter-WWTP variance shown in Figure 6414

can be observed by changing the sampling days of the same sewage plant (the experiments415

were conducted on the Reims WWTP). Indeed, the difference in variance between the two416

sets of median time lags from the 7 WWTPs of Figure 6 and the 14 two-days combinations417

of Figure 11 is not statistically significant (p-value=0.78). The difference in time lags418

observed in Figure 6 between the 7 WWTPs studied could thus be notably explained by419

the approximation on the WWI signal because of subsampling.420
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Figure 11: WWI and incidence rate lag estimates in days with varying sample days for the
treatment plant of Reims (n = 1000 simulations with random sampling of 60% of incidence
rate curve). Default corresponds to the WWI as it is routinely processed with every single data
point available. Other possibilities are obtained through resampling twice a week on specific
weekdays. The Red dotted line indicates the zero offset level. The Blue dotted line is the
median level over the 14 medians. As the difference in variance between the set of median
time lags from the 7 WWTPs of Figure 6 and the set of median time lags from the 14 two-days
combinations displayed here is not statistically significant, subsampling could be one of the
factors explaining the variability in optimal time lags between WWTPs shown in Figure 6.
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3.6 Assessment of the comparative ability of the WWI421

The WWI was designed to make comparable the analysis results provided by different422

laboratories, each with its own analysis bias. These plants may treat very different vol-423

umes of water with varying proportions of water from households, rainfall runoff, and424

other sources. In order to verify that this objective of uniformity is indeed achieved, we425

studied further the relationship between the WWI and a so-called reference indicator of426

the virus circulation derived from the incidence rate, which is considered as having a good427

comparative ability. If the objective of uniformity is reached, we expect this relationship428

to be the same whichever plant is considered.429

430

To test the achievement of the uniformity objective, we consider the following 3 nested431

linear mixed effects models of increasing complexity:432

• The first one is the simple linear model (Model 0) which corresponds to the case433

when the homogeneity objective is fully fulfilled:434

WWIi,t = ι+ γZi,t + εi,t, εi,t
i.i.d.∼ N (0, s2), (Model 0)

where WWIi,t is the WWI value at time t for plant i, Zi,t is the corresponding435

reference indicator, ι ∈ R, γ ∈ R (the intercept and the slope in the linear relation)436

and s ∈ R+ (the level of uncertainty of the relation) are parameters to be estimated.437

• The second one is a mixed effect model (Model 1) with a random effect on the438
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intercept. It corresponds to the case when the homogeneity target is fulfilled with439

regard to the multiplicative relation with the reference indicator, but not with regard440

to the additive relation with the reference indicator:441

WWIi,t = ι+Ki + γZi,t + εi,t, εi,t
i.i.d.∼ N (0, s2) (Model 1)

Ki
i.i.d.∼ N (0, s2K),

where, in addition to the terms of Model 0, Ki is the intercept random effect for442

plant i and sK ∈ R+ is a parameter to be estimated.443

• The third and last one is a mixed effects model with 2 random effects (Model 2). It444

corresponds to the case when the homogeneity target is not fulfilled with regard to445

the multiplicative relation nor with regard to the additive relation with the reference446

indicator:447

WWIi,t = ι+Ki + (γ +Gi)Zi,t + εi,t, εi,t
i.i.d.∼ N (0, s2) (Model 2)Ki

Gi

 i.i.d.∼ N

0,

 s2K sKG

sKG s2G


 ,

where, in addition to the terms of Model 1, sKG ∈ R and sG ∈ R+ are parameters448
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to be estimated and Gi is the slope random effect of plant i.449

In the study that follows, the reference indicator, Z, is the logarithm of the incidence rate450

of the geographic area connected to the treatment plant considered at the same date. In451

effect, this indicator is considered as a good indicator by the sanitary authorities. The452

logarithmic transformation makes it possible to find a linear growth like the one obtained453

for the WWI and thus a comparable curve shape. This reference indicator can be assumed454

to be universal when it is not affected by public health policies or population movements,455

for example. We thus restrict the study to the so-called second wave of the epidemic in456

France excluding main holiday periods, from September the 1st, 2020 to December the457

15th, 2020.458

We estimated a time lag between the two indicators the same way we did in section 3.4, and459

temporally realigned them accordingly. The focus is on all WWTPs which were analyzed460

at that time and for which the incidence rate is available for the related municipalities,461

even though the surveyed populations are not always exactly the same, but considered462

close enough. To learn the model parameters, we only use the points for which we have463

measurements at the WWTPs. This notably permits to measure the gain in comparative464

ability along the successive stages of the WWI construction.465

Figure 14 shows the relation between the WWI and the incidence rate in log scale from466

the full mixed effects model (Model 2). Among the WTTPs considered for the training467

of the models, one has a stronger negative impact on the comparative ability of the WWI468

than the others, Montpellier-Maera, with an intercept significantly higher than the ones469
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of the other WWTPs, resulting in a potential positive bias. The difference could partly470

be explained by the fact that the related laboratory only treats this WWTP and two close471

cities, which complicates the automatic recalibration of this laboratory with regard to the472

other laboratories as it cannot cover a wide range of the French territory.473
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Figure 12: Relation between the WWI and the incidence rate in log scale learned by the
full mixed effects model (Model 2). Montpellier relation greatly deviates from the average
one. The significant deviation in intercept for Montpellier is probably due to an insufficient
coverage of the French territory by the relative laboratory of this WWTP. The WWTP of Paris
Seine-Amont was used for the comparison with the Grand Paris incidence rate.

The results of models comparisons according to the BIC9 criterion are shown Figure 13.474

9Bayesian Information Criterion
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The lower the BIC, the better the performance of the evaluated model. The universal475

nature of the WWI is validated for the multiplier coefficient (higher performance of Model476

1 compared to Model 2). If, in addition, the Montpellier-Maera sewage plant is excluded,477

comparative ability is greatly improved (performance of the mixed-effects models and478

of the simple linear model are closer), although the difference in performance remains479

significant and in favor of the intercept mixed-effect model (Model 1).480

The (intercept) random effects learned with the selected model (Model 1) after removing481

the Montpellier-Maera WWTP are shown Figure 14. They correspond to the deviation of482

the WWI of the considered WWTPs from the standard relation between the WWIs and the483

city incidence rates. A positive (resp. negative) intercept random effect means the WWI484

should be lowered (resp. increased) in order to reflect the epidemic state in the same way485

that the incidence rate does. The deviations at most shortly exceed 5 units of the WWI: for486

Nancy, Lagny-sur-Marne (negative intercept effects), Marseille, Lyon and Evry (positive487

intercept effects) which is acceptable, the WWI typically ranging from -50 to 150.488

Likelihood ratio tests between the nested models show that the comparative ability is im-489

proved by each stage of the WWI construction. Indeed, the p-values for the comparison of490

the mixed effects model on the intercept (Model 1) with the simple linear model (Model 0)491

(after exclusion of the Montpellier-Maera WWTP) strongly increases as we move from the492

raw data (measurements performed at the WWTP, p-value of 5.10−34) to the data account-493

ing for the inlet volumes and de-noised by the previously described smoother (p-value of494

9.10−12) and to the WWI (p-value of 4.10−6).495
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Figure 13: Comparison of Model 2 (full
mixed effects model), Model 1 (intercept-
only mixed effects model) and Model 0
(simple linear model) according to the
Bayesian Information Criterion (BIC) before
and after excluding one deviating WWTP
(Montpellier-Maera). The lower the BIC is,
the better the corresponding model is. Model
1 is thus selected while Model 2 is excluded.
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Figure 14: Intercept random effects for
Model 1 during the second wave of the epi-
demic for 14 WWTPs. A positive (resp. neg-
ative) intercept effect means the WWI should
be lowered (resp. increased) in order to reflect
the epidemic state in the same way that the
incidence rate does. The deviations at most
shortly exceed 5 units of the WWI: for Nancy,
Lagny-sur-Marne (negative intercept effect),
Marseille, Lyon, and Evry (positive intercept
effects) which is acceptable, the WWI typi-
cally ranging from -50 to 150. The WWTP
of Paris Seine-Amont was used for the com-
parison with the Grand Paris incidence rate.
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4 Discussion496

We have proposed an innovative approach to solve some inherent shortcomings of SARS-497

CoV-2 analysis in WWTP as a tool to evaluate COVID-19 epidemic. The present algorithm498

was used in the context of Obepine, a French national surveillance network that is mon-499

itoring virus load in 168 WWTPs as of 26th August, 2020. The relevance of WBE10 as500

a decision support tool [29, 30] at the highest political level has been concretely demon-501

strated in this project. This algorithm allows reducing the measurement noise and taking502

into account the deviations of quantification between different laboratories. It also makes503

possible to consider the variations of flow at the inlet of the WWTP, among which the ef-504

fects of dilutions due to rainfalls, regardless of the size of the WWTP. The signal resulting505

from this modeling is strongly correlated to the incidence signal in exponential regime,506

which is consistent with the results of [1, 9, 12, 25, 26, 27, 28]. Outside this regime, the507

correlation may be weaker, probably because the signal captured by the wastewater anal-508

yses is not limited to the detection of virus carriers by massive testing campaigns. Indeed,509

individual testing is most often restricted to symptomatic and contact cases and may not510

be representative of virus prevalence in people with no or mild symptoms, notably young511

people, as previously pointed out [15]. It has indeed been reported that asymptomatic512

patients may test positive for RT-qPCR in stools [16, 17, 18], thus likely to be detected513

through wastewater analysis. Moreover, some virus carriers tested negative for RT-qPCR514

in nasopharyngeal or oropharyngeal swabs, meaning that they would not have been in-515

10Wastewater-based epidemiology
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cluded in the calculation of incidence cases, had they been tested through contact tracing516

[16, 17].517

Based on the data at our disposal, three days sampling seems to be the optimal cost-518

performance tradeoff to achieve the same kind of results than with an each day sampling519

process. Although results seem already satisfying for twice a week sampling considering520

the same criterion and agrees with the conclusions of [21], one could argue that you could521

still get quite "unlucky" with some two days combinations, whereas this kind of situation522

would not occur with the three days combinations we studied. Thus, if the budget is not523

compatible with three days sampling, option 2’, corresponding to biweekly sampling with524

at least two days without sampling between each sample, might be the best compromise525

(see Figure 10). It is still important to underline that, even if we were to sample 1000526

WWTPs every day of the week, it would only represent 7000 RT-qPCR analyses a week,527

and give a faithful representation of the epidemic. On the other hand, there were, on av-528

erage, more than 300 000 tests a week carried out in the single Île-de-France region from529

13th May, 2020 to 11th June, 2021, according to Santé Publique France figures.530

Qualitative wise, twice-weekly sampling is still satisfactory, but may lead to the failure to531

detect some events and affect short-term trends compared to a full week sampling, which532

is expected as downgrading the sampling frequency reduces the information collected. A533

bias remains in this subsampling study as sampling was not always done every day of the534

week at the Reims WWTP before November. However, the level of virus circulation did535

not vary enough between November 2020 and May 2021 to consider a study starting only536
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from November. In particular, this would not have allowed us to account for the fact of537

detecting none, one or more singular points when the virus becomes quantifiable at a time538

when the level is generally below the quantification threshold of the analyses (during sum-539

mer 2020 in the present study). Moreover, we could not try and replicate this subsampling540

experiment on another WWTP. The same study needs to be replicated on several WWTPs541

in order to generalize those results with certainty.542

The results of lag estimation between the wastewater signal and the incidence rate are in the543

order of magnitude of a couple days during the exponential phase. Some plants show quite544

important lags compared to the others, for example Nancy WWTP where the WWI lags by545

5 days on average and where the intra-experimental variance is more pronounced than in546

the other plants, or Paris Seine-Morée where the WWI is 6 days ahead of the incidence rate547

signal. Several hypotheses seem plausible to explain these shifts. First, biweekly sampling,548

although sufficient to capture the dynamics of the epidemic, may induce an additional549

uncertainty of a few days on the actual peak of excretion in wastewater. Furthermore,550

the signal captured in wastewaters extends beyond simple reported positive cases. The551

propensity of populations to test themselves sometimes differs between agglomerations.552

For two metropolitan areas of similar size, such as Nancy and Mulhouse, the average rate of553

testing during the third wave was more than 1.5 times higher in Nancy. In municipalities554

where people test particularly little or more than the average, the indicator is therefore555

more likely to be ahead or to lag behind the incidence by a few days.556

Finally, the good transposition capacity of the WWI from one WWTP to another, relative to557
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what can be observed on the incidence rate signal, is to be considered. Even though it can558

still be worked upon, our study shows a significant improvement to this property thanks to559

our smoothing and normalization techniques. It should be noted that the more pronounced560

deviations in certain plants can have several interpretations, as can the difference between561

the different lags observed. For example, the incidence rate is only available for the whole562

of the Aix-Marseille agglomeration, which covers a much larger population than the only563

plant we monitor in the network in Marseille. The same applies to regional indicators,564

where the difference in correlation between the two regions could be explained by the565

deviation in surveyed populations. 28 WWTPs, with a nominal waterflow accounting566

for around 58% of the regional population, were followed in the Grand-Est region while567

7 were studied in the Île-de-France region (accounting for around 33% of the regional568

population), leading to a less accurate mesh.569

Despite satisfying results, there is still room for improvement. About the inter-laboratory570

variability assessment, nothing would quite match the possibility to assess the different571

laboratories on large scale ILA with samples covering a wide range of values in log-572

scale. Yet, in view of the urgency of the epidemic situation in France from January 2021573

and the need to quickly obtain models to help decision-making at the highest political574

level, the project moved into an action research phase. Monitored sewage plants and575

analysis laboratories doubled in no less than two months, with analysis reports having to576

be processed at least once a week. As such ILA results were not available at that time,577

with some laboratories having no prior history between June 2020 and January 2021, the578
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proposed modelisation was considered as our best option. It shows a great improvement579

in reducing inter-laboratories variability as shown in Figure 4. Yet, this normalization580

is not as effective as scaling from ILA results, notably because it is asymmetrical. The581

problem is that it was not possible to set Cm as a minimum concentration value specific to582

each laboratory as the true minimum values are censored by quantification and detection583

thresholds specific to each laboratory. Moreover, Cm was originally designed to be the584

specific quantification threshold of each laboratory, so that the 0 level would correspond585

to this quantification threshold for each WWTP. However, one of the laboratory joining586

late still has a quantification threshold of 40 times the 1000 GU/L limit we are using587

for Cm as of 19th June, 2021. Using a specifc Cm in the normalization step of the WWI588

would then have had greatly underestimated the epidemic situation for his related WWTPs.589

Finally, SARS-CoV-2 circulation level was high in France when we were asked to start590

communicating our results, hence why we chose a normalization technique that would be591

more accurate for higher values, yet could still be improved for lower ones.592

About the regional indicator, we chose not to use a simple average of the WWI to account593

for cases where very small WWTP would then have a disproportionate weight in the594

regional signal. The downside of it is that it accounts less for geographical diversity. For595

example, if two WWTPs are monitored in a region, with one in the north being really596

large and one in the south being quite small, the regional WWI will mostly reflect the597

northern status. An alternative to cope with this problem without extra cost would have598

been to cluster the clinical signals at city level and associate them with the WWI signals599
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they had a strong correlation with in the same region. Then, the weighted average could600

have been computed not only with the populations connected to each plant, but with the601

sum of the populations of the cities which clinical signals had a strong correlation with602

an WWI. Unfortunately, clinical signals not being openly available at a local level, such a603

modelisation was not deemed possible.604

5 Conclusion605

The underlying signal in wastewater measurements of SARS-CoV-2 faithfully reflects the606

dynamics of the epidemic and has the advantage of being unbiased by test availability,607

willingness of populations to be tested, and population movements. In certain periods,608

the WWI is also more faithful to the true epidemic situation than the incidence rate,609

which is obtained as a rolling week average and is therefore very sensitive to holidays610

(uncharacteristic collapse of the epidemic situation at the peak of the third wave of the611

pandemic on the incidence rate signal). Moreover, the measurement of this epidemic signal612

in wastewater proves to be much less costly than massive individual testing. Indeed, it613

allows obtaining a signal strongly correlated to the more usual epidemic indicators by614

requiring a single analysis to reflect the average epidemic situation of thousands of people.615

Finally, this indicator provides an unbiased survey of the infected population, as it also616

accounts for the contribution of asymptomatic infected persons, which is only partially617

reflected in the positive test reports, and of unreported infection cases to be recovered. The618
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signal that emerges from these analyses is strongly correlated with the incidence rate and619

we consider it to be a credible alternative to the latter as its relevance could decline in a620

few months with the advance of the vaccination campaign and therefore a likely reduction621

in the quantity of tests carried out to monitor the epidemic.622
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