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Sorbonne Université, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

Following a Gallavotti’s conjecture, stationary states of Navier-Stokes fluids are proposed to be
described equivalently by alternative equations besides the NS equation itself. We discuss a model
system symmetric under time-reversal based on the Navier-Stokes equations constrained to keep
the Enstrophy constant. It is demonstrated through high-resolved numerical experiments that the
reversible model evolves to a stationary state which reproduces quite accurately all statistical ob-
servables relevant for the physics of turbulence extracted by direct numerical simulations at different
Reynolds numbers. The possibility of using reversible models to mimic turbulence dynamics is of
practical importance for coarse-grained version of Navier-Stokes equations, as used in Large-eddy
simulations. Furthermore, the reversible model appears mathematically simpler, since enstrophy
is bounded to be constant for every Reynolds. Finally, the theoretically interest in the context of
statistical mechanics is briefly discussed.

Non-equilibrium macroscopic systems are generally de-
scribed in the framework of irreversible Hydrodynam-
ics [18, 45, 55, 57, 67]. In some cases, the Hydrody-
namic level is obtained from the microscopic molecu-
lar through coarse-graining[16, 50], and the laws that
emerge through the coarse-graining break the funda-
mental time-reversal symmetry inherent to the micro-
scopic laws[7, 18, 20, 59, 83] The foremost physical
example of irreversible process is given by an incom-
pressible fluid which is described by the Navier-Stokes
equations[32, 58, 69]. In this framework, the molecular
effects are represented by the viscosity ν that is also re-
sponsible for the dissipation of energy, and may lead to a
stationary state when energy is injected. In the limit of
vanishing viscosity, the fluid becomes turbulent [32, 65],
and displays the outstanding feature of “anomaly dissipa-
tion”, which means that the mean rate of kinetic energy
dissipation 〈ε〉 remains finite and independent of ν. Thus,
the trace of irreversibility is kept through this singular
limit[31, 84]. The rigorous explanation of such feature
remains an open issue, and is at the basis of the mathe-
matical problem of the existence and smoothness of the
Navier-Stokes solution in three dimensions [8, 23, 36].
Furthermore, non-trivial features of irreversibility have
been found in Lagrangian statistics [88], and such ex-
treme events have been unveiled that they have been re-
lated to possible singularities in Navier-Stokes equations
[28, 78]. A problem of such an approach is the asymptotic
nature of turbulence, which makes difficult to disentangle
in actual experiments Reynolds-number effects from gen-
uine features[48, 49]. An alternative approach was pro-
posed by Gallavotti through the conjecture that the same
system can be described by different yet equivalent mod-
els, notably for fluids [35]. In particular, phenomenolog-
ical irreversible macroscopic systems could be described
by suitable reversible dissipative models, at least in some
respect. This idea was rooted in several developments in

statistical physics, and notably in the use of thermostats
in Molecular Dynamics simulations [30, 46].

The possibility to use a time-reversible model to ob-
tain turbulent features was pioneered in [80], and then
conjectured in a more formal way by Gallavotti [37, 38].
This conjecture has been called of equivalence of dy-
namical ensemble, to clearly point the analogy with en-
sembles in equilibrium statistical mechanics[40]. In this
framework, in the thermodynamic limit, N → ∞ with
ρ = N/V = const, any local observable (i.e. related to
a finite region of the phase space) is equal in all canon-
ical ensembles. Following this picture, it has been pro-
posed to replace the constant viscosity with a fluctuat-
ing one that would make possible to have a new global
invariant for the system. The thermodynamic limit is
obtained in the case 1/ν → ∞. Since in this fully tur-
bulent limit, the system is highly chaotic and exhibits
a random behaviour, it is plausible to conjecture that it
may be described by an invariant distribution, as already
postulated by Kolmogorov [51–53].

The conjecture has been directly tested in small 2D
systems[38, 42, 72], for the Lorenz model [41], in shell
models[10, 11]. Recently, a model obtained by imposing
the constraint that turbulent kinetic energy is conserved
has been analysed in 3D turbulence with a small number
of modes[81]. Parallel tentatives have been made to test
the consequences, namely the fluctuation relations in dif-
ferent systems[4, 22, 79, 89]. Yet, a clear demonstration
of the validity of the Gallavotti’s conjecture still lacks.

The purpose of the present work is precisely to show
to which extent the Gallavotti conjecture is accurate,
using high-resolution numerical experiments at different
Reynolds numbers. Different equivalent models may in
principle be proposed [38], yet considering the physics
of Turbulence the reversible model should be related to
the dissipation anomaly, where the average rate of dis-
sipation is defined as 〈ε〉 ≡ 〈ν|∆u|2〉 = 2νΩ, where
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Ω = 〈ω2〉 is the enstrophy, expressed in terms of the
vorticity ω = ∇ × u [32]. In analogy with statisti-
cal mechanics [47], we consider the irreversible distribu-
tion as the canonical ensemble with ν corresponding to
β = (kBT )−1, and therefore we build the analogous to
the microcanonical ensemble taking the enstrophy Ω as
fixed, and letting ν fluctuating.

Giving evidence of the equivalence of reversible and ir-
reversible NS equations, this work makes a first link be-
tween turbulent fluids and the general framework for non-
equilibrium problems in statistical mechanics[29, 39, 62],
formally based on the chaotic hypothesis [34, 40, 60, 74].
The main difficulty is that the general theory applies only
to time-reversible dynamical systems, whereas NS is not.
However our results show that many non-equilibrium sys-
tems, and most notably turbulent fluids could be con-
sidered in practice as reversible as far as statistical ob-
servables are considered, and therefore Gallavotti-Cohen
theory could be applied to the correct observables. More-
over, multi-scale approach is crucial to tackle complex
systems with decimated models [9], like in climate and
meteorological sciences. In this case, only large-scales
can be simulated and small-scales are modelled often in
an irreversible dissipative way[61, 76]. The present study
aims to give some insights on new possible way to pro-
pose reversible models, since it is known that such mod-
els may better describe the cascade process [63]. Finally,
the conjecture is related to the issue of a rigorous proof of
existence of unique solutions of the Navier-Stokes equa-
tions [24, 36, 85]. Indeed, the reversible model proposed
should admit a smooth solution, since the vorticity re-
mains bounded for any value of the viscosity. While the
original mathematical problem would remain open, the
conjecture should provide an answer at least from the
statistical point of view, since the same statistical results
can be obtained with a well-posed set of equations.

We consider here an incompressible fluid, with con-
stant density ρ = 1, subjected to viscosity and an ex-
ternal forcing term. The motion is described by the NS
equation:

∂tu+(u ·∇)u = −∇p+ν∇2u+f ∇·u = 0 (1)

where ν is the cinematic viscosity, p the pression and
f a forcing term which acts at large scales. Clearly,
the dissipative term breaks up the symmetry for tempo-
ral inversion, i.e the equation is not invariant under the
transformation: T : t → −t;u → −u. The correspond-
ing reversible model is obtained replacing the viscosity
coefficient ν with a time-dependent term which makes
the equation invariant under the symmetry T . Impos-
ing the conservation of enstrophy Ω ≡

∫
V |∇×u|2dx, the

equation (1) becomes the reversible Navier-Stokes (RNS)
∂tu+(u ·∇)u = −∇p+α[u]∇2u+f with the fluctuating

viscosity defined as

α[u] =

∫
V [g · ω + ω · (ω · ∇)u] dx∫

V(∇× ω)2 dx
(2)

where the integrals are defined over the whole volume of
the fluid V; the vorticity ω = ∇× u, and g = ∇× f are
used.

While the stationary states of NS define a nonequilib-
rium ensemble Eν , RNS equation will generate station-
ary states that form a collection of new reversible vis-
cosity ensemble EΩ. Denoting 〈〉ν , 〈〉Ω the averages over
the two corresponding distributions, the content of the
Gallavotti’s Conjecture of equivalence is the following:
for small enough ν, it can be expected that the system
is highly chaotic and α(x) fluctuates wildly leading to a
multi-scale or homogenisation phenomenon[16, 77], that
is a large class of observables have the same statistics in
the two ensembles, provided that 〈α〉Ω = ν or equiva-
lently 〈Ω〉ν = Ω. Some details more about the theory are
given in the Supplemental Material[90].

We perform numerical simulations of the 3D NS and
the 3D RNS Eqs. by using the code Basilisk[66]. The
velocity field u is solved inside a cubic domain of side 2π,
and is prescribed to be triply-periodic. The NS runs are
initiated from the Taylor-Green velocity field[15]; then
RNS runs are initiated from the final velocity field of
the corresponding NS run. In both cases, we inject en-
ergy in the system by using the Taylor-Green forcing[14].
The results are independent from the choice of the ini-
tial and forcing conditions, provided forcing is at large
scales, and it has been verified that numerical dissipa-
tion is negligible. Furthermore, we have verified that the
RNS generates the same dynamics even if initialised with
the Taylor-Green velocity and not a steady NS field. As
usual in isotropic turbulence, we characterise the flow
by using the dimensionless Reynolds number based on
the Taylor length [32] Rλ = urmsλ/ν; in the reversible
model Rλ = urmsλ/〈α〉, where 〈α〉 is the mean value of
the fluctuating viscosity. We have performed three NS
simulations at Rλ = 30, 100, 300, using the same initial
conditions for the velocity field but varying the viscosity
coefficient. All simulations are carried out so that the
smallest scale η is very well resolved (∆x/η . 1 in all
cases), and the corresponding number of points used are
N = 256, 512, 1024. More numerical details are given in
the Supplementary Material[90].

In figure 1 the phenomenology of both models is illus-
trated by displaying the dynamics of the dissipation-rate
and of the Enstrophy at different Reynolds numbers. It
is seen from Fig. 1a that the reversible model at high
Reynolds numbers shows wild fluctuations in ε = 2αΩ
because of the behaviour of the fluctuating viscosity α.
At more moderate Reynolds the behaviour is practically
indistinguishable between NS and RNS. It is worth not-
ing some sporadic negative events in dissipation at high



3

0 0.5 1 1.5 2
Time

0

0.01

0.02

0.03
ε

NS R
λ
=300

RNS R
λ
=300

NS R
λ
=30

RNS R
λ
=30

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

0 1 2
Time

0.5

1

1.5

2

Ω
/<
Ω
>

NS R
λ
=300

RNS R
λ
=300

0 50 100 150 200 250 300
R
λ

0.9

1

1.1

<α
>/
ν

ν

(a)
<latexit sha1_base64="sOjZUoNK33Nc8nqmGB8ygq4L+xA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWULvZDYZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TRVmDxiJW7QA1E1yyhuFGsHaiGEaBYK1gdDvzW09MaR7LRzNOmB/hQPKQUzRWeijjea9YcivuHGSVeBkpQYZ6r/jV7cc0jZg0VKDWHc9NjD9BZTgVbFroppolSEc4YB1LJUZM+5P5qVNyZpU+CWNlSxoyV39PTDDSehwFtjNCM9TL3kz8z+ukJrz2J1wmqWGSLhaFqSAmJrO/SZ8rRo0YW4JUcXsroUNUSI1Np2BD8JZfXiXNasW7qFTvL0u1myyOPJzAKZTBgyuowR3UoQEUBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AifmNTg==</latexit>

(b)
<latexit sha1_base64="7tVg+AhPeiaMnY5qvG8kDXGmdb0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVI44T7kd0oEQoGEUrPZSD816x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqa1Yp3UaneX5ZqN1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4Ai36NTw==</latexit>

(c)
<latexit sha1_base64="umaC7xGr7wMcJYdnZRQjIMmSLkc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlhzI77xVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNasW7qFTvL0u1myyOPJzAKZTBgyuowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AjQONUA==</latexit>

FIG. 1: Time-dynamics of some observables in the irreversible NS and then switched in the Reversible model. (a)
Comparison between the time evolution of dissipation rate ε in the irreversible NS and the reversible RNS model for
different Reynolds numbers. Time is normalised with the large-scale (integral) characteristic time-scale. The case at

Rλ = 100 is very similar to the Rλ = 30 one and is not shown for the sake of clarity. (b) Time-dynamics of
Enstrophy Ω normalized by its average value at the highest Rλ. In the reversible model the enstrophy is kept

constant. In the inset, 〈α〉 normalised by the constant viscosity value is show at different Reynolds numbers. (c)
Visualisation of the vorticity field for the NS (left panel) and RNS right panel. The 3D are obtained with the λ2

criterion. The snapshots are the vorticity field at a given time at the centre of the cube.

Reynolds, meaning that there is sometime injection of en-
ergy by viscosity. The first prediction of the conjecture is
the reciprocity property which states that if enstrophy is
taken fixed ΩRNS = 〈Ω〉NS , then ν = 〈α〉. This is a pre-
requisite for the conjecture of equivalence. In Fig. 1b it is
shown that this is true within the numerical errors (about
1%) at all Reynolds. From a more qualitative point of
view, Fig 1c shows that also the geometrical features of
the turbulent flow are practically indistinguishable in the
reversible and irreversible dynamics. The stringent test
of the conjecture is about the equivalence of statistical
properties of local observables (where locality is intended
in momentum space). Since dissipation takes place at
small scales, the observables are local if they reside at
large scale only. We compare in Fig. 2a the second and
fourth statistical moment of the the velocity field. We
have computed them both from the whole field, that is
containing all the wave-modes, and from the large scales
only. While the instantaneous value wildly oscillate, the
mean values converge rapidly to the irreversible value.
Key for the dynamic of turbulence are the two-point sta-
tistical observables [32, 54, 65]. We show both velocity
time-correlation and one-dimensional Energy spectrum
in Fig. 2b. An excellent agreement between irreversible
and reversible models is found at all scales. The analysis
of the one-point PDF is consistent with these results (see
Supplemental[90]).

Even more important is the scale-by-scale flux of en-
ergy, which describes the cascade of energy [1]. We com-
pute the scale-by-scale flux from the coarse-graining of
the Navier-Stokes equation (1) as [31, 43]

Π`(x) ≡ −(
∂ui
∂xj

)τij , with (τ`)i,j = (uiuj)`−(u`)i(u`)j ,

(3)

where the dynamic velocity field u is spatially (low-pass)
filtered over a scale ` to obtained a filtered value: ũ`(x) =∫
d3r G`(r)u(x + r) where G` is a smooth filtering func-

tion, spatially localized and such that G`(~r) = `−3G(~r/`)
and G satisfies

∫
d~r G(~r) = 1, and

∫
d~r |~r|2G(~r) = O(1).

The results of the flux for the different numerical exper-
iments are displayed in Fig 3a up to scale ` = 2π/256.
The global behaviour is the same as obtained in anal-
ogous pseudo-spectral simulations [2, 19], but what is
important is that the fluxes of the reversible and irre-
versible model are the same at all scales, and at all Rλ.
A small discrepancy is present at Rλ = 300 in the in-
ertial range, which is probably due to different statisti-
cal convergence. These results show unambiguously that
the mechanics of turbulence is the same with both irre-
versible and reversible model. To complete the analysis,
we have considered the higher-order structure functions
Sp(r) = 〈|u(x + r)− u(x)|p〉 and their scaling exponents
Sp(r) ∼ rζp , which are the relevant observables for inter-
mittency [3, 12, 32, 68]. Although these kinds of observ-
ables are not included in the conjecture, the agreement
displayed in Fig. 3b is striking. Interestingly, our DNS
results are in remarkable agreement with those obtained
with shell models [27].
Finally, we analyse the statistics of the time-fluctuating

viscosity α, shown in Fig. 4. With respect to the equiva-
lence conjecture, the sole crucial feature is that 〈α〉 = ν,
as shown in Fig. 1. The statistics of α are interesting
per se in connection with the symmetry of fluctuations
given by the Fluctuation relations for time-reversible dy-
namical systems[37, 62]. Indeed, α is related to the en-
tropy production in the time-reversible model [38]. We
plot the PDF of α computed using formula (2) during
the reversible dynamics as well as that computed in the
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FIG. 2: Test of equivalence: (a): running average of the
ratio between the second statistical moment and fourth

moment of the reversible model with respect to the
irreversible one at Rλ = 300. In the left inset,

comparison of the same moments for NS (closed
symbols) and RNS (open symbols) as a function of the

Reynolds number. Right inset: Same moments of a
velocity field component pertaining to the large scales,

only the k = 3 mode of the Fourier transform of the
field is taken. (b) Time-average of the energy spectrum

E(k, t) ≡ 1/2
∑

k
¯
|u(k

¯
, t)|2, at different Reynolds

number for the irreversible and reversible models. In
the inset the normalised auto-correlation in time of the

velocity for both NS and RNS
ρ(t) = 〈u(t0)u(t0 + t)〉/σu, at Rλ = 300.

irreversible one at different Reynolds numbers. In the
reversible dynamics, α fluctuates around the “canonical”
value ν, and the variance increases with the Reynolds
number. At low and moderate Reynolds numbers no
negative event is recorded. Instead some are found at
Rλ = 300, when distribution turns out to be much more
flatter. As discussed in recent works [10, 81], the limit
Rλ → ∞ and N → ∞ is singular and the different
behaviour of the PDF reflects that. Furthermore, our
results show that in the cascade regime analysed here,
it is difficult to observe extreme events on a reasonable
observation-time, notably at small Rλ. As expected for
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FIG. 3: (a) Scale-by-scale flux of energy normalised by
the mean dissipation-rate. (b) Scaling exponents

extracted through ESS procedure [6] of the structure
functions up to order 6 (Details in the

Supplemental[90]). Data obtained for shell models from
[27] are also shown. ISM corresponds to NS, and RSM

to RSN. Inset: example of comparison for the 4-th
order.

the 3D case [35], the statistics of α of the reversible and
irreversible dynamics are qualitatively different. The en-
tropy production should be the same in both dynamical
ensembles, but in fact α is related to entropy only in the
reversible model, whereas it bears no connection with it
in the irreversible one. Our results confirm this picture
with α fluctuating little in the irreversible model and not
around ν, as found for the reversible model.

Conclusions We have shown through high-resolved
numerical simulations that the Gallavotti’s conjecture of
dynamical ensemble equivalence is correct. We observe
that no matter the Reynolds number, provided sufficient
resolution is kept, not only the basic requirements of the
conjecture are fulfilled, but all the relevant statistical ob-
servables are found indistinguishable in the irreversible
and reversible dynamical system. Furthermore, the scale-
by-scale analysis of the kinetic energy flux shows negli-
gible difference between the two models up to the dissi-
pation range, far beyond the original formal conjecture
proposition. Wild fluctuations of the reversible viscos-
ity are encountered and at high-Re numbers, even neg-
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FIG. 4: Probability density function of α. As in the
previous figures, filled symbols are for NS and void
symbols for RNS. The insets on the left show the

corresponding typical time evolutions of α at Rλ = 300.

ative values are recorded, which point out to local anti-
dissipative phenomena. However, these negative events
remain extremely rare. Our results confirm preliminary
results obtained in simplified dynamical models of tur-
bulence [10].
Our results give empirical evidence that the chaotic hy-
pothesis from which the conjecture is originally derived
can be considered morally applicable to turbulent fluids.
That means in turn that non-equilibrium statistical me-
chanics [73–75], and notably fluctuation relations should
apply in some sense also to turbulent fluids. Further-
more, it is shown that turbulence is unaffected by the
precise mechanism of dissipation. This corroborates the
idea that scales larger than the forcing are governed by
Euler, as recently proposed [25, 26, 64]. On the other
hand, it paves the way to the use of whatever phenomeno-
logical model in coarse-grained approaches, provided the
correct amount of average rate of dissipation is enforced.
Some issues remain to be answered, while the reversible
system appears mathematically simpler because of the
constraint on the enstrophy, the presence of negative
events in viscosity makes it not well-posed, shifting but
not solving the question of global existence of the solu-
tion. Rigorous analysis lacks. The possibility to compute
non-equilibrium entropy and its behaviour is appealing
but the needed statistics to make predictions seems over-
whelming in 3D. More notably, to exploit the new frame-
work to get new insights on turbulence problem remains
an unexplored route.
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