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ABSTRACT: Convective self-aggregation is among the most striking features emerging from radiative–convective

equilibrium simulations, but its relevance to convective disturbances observed in the real atmosphere remains under de-

bate. This work seeks the observational signals of convective aggregation intrinsic to the life cycle of cloud clusters. To this

end, composite time series of the Simple Convective Aggregation Index (SCAI), a metric of aggregation, and other vari-

ables from satellite measurements are constructed around the temporal maxima of precipitation. All the parameters an-

alyzed are large-scale means over 108 3 108 domains. The composite evolution for heavy precipitation regimes shows that

cloud clusters are gathered into fewer members during a period of612 h as precipitation picks up. The high-cloud cover per

cluster expands as the number of clusters drops, suggesting a transient occurrence of convective aggregation. The sign of the

transient aggregation is less evident or entirely absent in light precipitation regimes.An energy budget analysis is performed

in search of the physical processes underlying the transient aggregation. The columnmoist static energy (MSE) accumulates

before the precipitation peak and dissipates after, accounted for primarily by the horizontal MSE advection. The domain-

averaged column radiative cooling is greater in amore aggregated composite than in a less aggregated one, although the role

of radiative–convective feedback behind this remains unclear.
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1. Introduction

Convective self-aggregation is a form of spontaneous

symmetry breaking that is known to occur under particular

conditions in an idealized atmosphere under radiative–

convective equilibrium (RCE). Unlike traditional con-

vective organization such as the formation of mesoscale

convective systems (Houze 2004, and references therein), self-

aggregation involves a whole set of thermodynamic pro-

cesses involved in the expanding clear-sky environment as

well as the areas of convection being increasingly localized

over time.While pioneering work reporting such phenomena

underscored the roles of moisture for the localization of

convection (Held et al. 1993; Tompkins and Craig 1998;

Tompkins 2001), Bretherton et al. (2005), who first used the

term ‘‘convective self-aggregation’’ in the literature, ana-

lyzed their RCE simulations in light of the atmospheric en-

ergy budget and found radiative feedbacks to be particularly

important in addition to the moisture feedback for convec-

tive self-aggregation. It was confirmed in subsequent studies

that the radiative contrast across the clear and cloudy skies

promotes self-aggregation through, for instance, a muted

longwave cooling by high clouds (Stephens et al. 2008) and

an enhanced lower-atmospheric cooling by low clouds in

dry areas (Muller and Held 2012). Otherwise the physical

processes crucial for convective self-aggregation are not

fully understood. The occurrence or absence of self-

aggregation can be sensitive to numerical model setups

such as the domain size and grid resolution (Muller and

Held 2012; Jeevanjee and Romps 2013). Wing and

Emanuel (2014) found that self-aggregation does not occur

over ocean surfaces colder than 300 K, while signs of con-

vective self-aggregation are evident for a broader range of

SST in other studies (Coppin and Bony 2015; Holloway and

Woolnough 2016; Wing and Cronin 2016) [a thorough re-

view on the sensitivity to SST is provided by Wing (2019)].

Aspects of self-aggregation learned from idealized simu-

lations are confirmed also in numerical runs with realistic

configurations, with a potentially similar magnitude sen-

sitivity to cloud radiative interactions when accounting for

effects of boundary conditions on the limited-area realistic

runs (Holloway 2017). Theoretical models have been de-

veloped to explain convective self-aggregation in terms of

an instability intrinsic to moisture–convection interactions

(Craig and Mack 2013) or inherent in the interplay of ra-

diative cooling with tropospheric water vapor (Emanuel

et al. 2014) and the production of available potential en-

ergy primarily in the boundary layer (Yang 2018). A more

comprehensive review is found in Wing et al. (2017) and

Wing (2019).

Signs of convective aggregation have been sought in obser-

vations to test its relevance to the real atmosphere [see review

by Holloway et al. (2017)]. The atmosphere tends to be drier

and less cloudy, and thus more efficient in longwave radiative

cooling in a more aggregated state (Tobin et al. 2012, 2013),
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where a contraction of cloud cover is pronounced in anvil

clouds, typically associated with deep cumulus towers (Stein

et al. 2017). These studies present evidence that some key

processes essential for simulated convective aggregation are

at work in nature, whereas other aspects of self-aggregation

specific to idealized model setups may not be directly com-

parable to observations. The aggregation time scale is

among the latter, because it takes 15–100 days in RCE sim-

ulations for self-aggregation to develop from a perfectly

disaggregated initial condition, which does not exist in nature

(Holloway et al. 2017). In the real atmosphere, known trop-

ical disturbances with a range of different lifetimes could be

potential candidates for the real-world realization of convective

aggregation, including tropical cyclones (e.g., Bretherton et al.

2005; Nolan et al. 2007; Khairoutdinov and Emanuel 2013)

and the MJO (Arnold and Randall 2015; Khairoutdinov and

Emanuel 2018). More short-lived systems such as cloud clusters,

having a life cycle from subdaily to a few occurrences daily

(Chen et al. 1996), have the tendency to be gregarious (Mapes

1993). It has not been explored in depth, however, towhat extent

such a short-term convective variability could be understood in

the context of self-aggregation.

This paper analyzes satellite infrared measurements in

search of the possible signals of convective aggregation (and

disaggregation) in association with the life cycle of tropical

cloud clusters. In the sections that follow, the term ‘‘self-

aggregation’’ is reserved for the aforementioned physical

phenomena explored in the literature, while temporal changes

in the morphological characteristics of observed cloud clusters

are described merely by aggregation or disaggregation. As

such, the terms self-aggregation and aggregation have different

nuances: the former refers to specific physical processes known

from the literature and the latter is used for a description of

observed features. Different metrics to quantify the degree of

aggregation have been proposed such as the simple convective

aggregation index (SCAI) (Tobin et al. 2012), the organization

index or Iorg (Tompkins and Semie 2017), the convective or-

ganization potential (COP) (White et al. 2018), and the mor-

phological index of convective aggregation (MICA) (Kadoya

and Masunaga 2018). The mutual consistency in performance

among these indices has only very recently begun to be as-

sessed (Pscheidt et al. 2019; Xu et al. 2019). We adopt SCAI in

this study, as SCAI is the oldest of this kind and often regarded

as the ‘‘standard’’ for a newer index to be compared against

(White et al. 2018; Kadoya and Masunaga 2018). The physical

nature of observed aggregation effects is studied from reanalysis-

based energy budget considerations to seek the underlying

physical processes as known for conventional self-aggregation

in idealized simulations.

This article is structured as follows. Following a brief de-

scription of the datasets in section 2, possible signatures of

short-range aggregation are sought in satellite observations

(section 3) and an energy-budget analysis is performed in

search of the key processes behind the observed signatures

FIG. 1. Composite time series of (a) precipitation, (b) SST, (c) CWV, and (d) standard deviation of CWVwithin a

108 3 108 domain. Composite curves separated by differentP0 regimes are plotted in different colors as indicated in

the legend in (b). Time 0 refers to the hour when precipitation reaches a local maximum.
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(section 4). The findings are summarized and discussed in

section 5.

2. Data

The input satellite observations for identifying cloud clusters

are global imagery at a 4-km resolution taken from the NOAA

Climate Prediction Center (CPC) merged IR dataset (Janowiak

et al. 2001). Cloud clusters are identified by a contiguous area

of satellite pixels with window-channel IR brightness tem-

peratures colder than 240K. We use 4-connectivity: this is what

Tobin et al. (2012) used, and they found that results were not

sensitive to using 8-connectivity instead (I. Tobin 2020, per-

sonal communication). Each 108 3 108 domain, at each 3-

hourly snapshot, is treated as if it were an independent scene.

Cloud clusters that touch any domain boundary are counted

the same as clusters that do not touch a boundary, and there is

no attempt to connect clusters from one scene to another. For

more details about the SCAI data (and related data), see sec-

tion 2 of Stein et al. (2017), in which the same SCAI dataset was

analyzed.

Convective area fraction Ac is defined as the fractional area

coverage of all cloud clusters togetherwithin a 108 3 108 domain.

SCAI, originally devised by Tobin et al. (2012), is defined as

SCAI5
N

c

N
max

D
0

L
3 1000, (1)

where the first factor on the rhs is the number of cloud clusters

(Nc) normalized by a prescribed constant (Nmax) to scale the

magnitude of Nc, and the second is the geometrical mean of

the distance between each pair of the cluster centroids (D0),

FIG. 2. As in Fig. 1, but for (a) SCAI, (b) the number of clusters, (c) normalizedD0, (d) convective area fraction,

(e) the area fraction of the largest cluster, and (f) convective area fraction divided by the number of clusters.
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normalized by the domain size (L). As such, SCAI would de-

crease as cloud clusters are merged into fewer clusters (i.e.,

smaller Nc) that are more clumped together (i.e., smaller D0)

and therefore may be considered as an inverse measure of the

degree of convective aggregation; that is, SCAI decreases as

convection becomes more aggregated. In this work, SCAI is

computed for every 108 3 108 domain (hence L 5 108) with

neighboring boxes overlapping each other by 58, and Nmax is

chosen to be the largest possible value of Nc or half the total

pixel number within each box. SCAI is by design insensitive to

some key aspects of convective aggregation that other proposed

metrics explicitly rely on. The properties accounted for by other

indices but not by SCAI include the area of cloud clusters in

COP (White et al. 2018), randomness in the probability distri-

bution of intercloud distance in Iorg (Tompkins and Semie 2017),

and the spatial extent of cloud-free regions in MICA (Kadoya

and Masunaga 2018). We nonetheless adopt SCAI in this study,

taking advantage of its simplicity and hence of the ease of

interpretation.

A variety of atmospheric and surface parameters, all aver-

aged horizontally over the same 108 3 108 domains as done for

SCAI unless otherwise noted, are analyzed together with SCAI

as outlined below. Three-hourly surface precipitation is ob-

tained from the TRMM 3B42 product (Huffman et al. 2007).

The SST data are from the 0.258 TMI/AMSRE ‘‘fusion’’ (op-

timally interpolated) daily data (and the same value is repeated

at each 3-h time during each day). This uses TMI microwave-

based data (Wentz 2000), and since 2002 these data have been

blended with AMSR-E microwave data using the optimal in-

terpolation technique of Reynolds and Smith (1994). Column

water vapor (CWV) is obtained from the ERA-Interim

(ERAI) data (Dee et al. 2011). The ERAI datasets are also

employed to provide a set of the parameters ingested into

energy-budget analysis, that is, air temperature, vapor mixing

ratio, geopotential height, horizontal and vertical winds, radi-

ative heating rate, and surface heat fluxes. GridSat IR images

(Knapp et al. 2011) are used for presenting sequential snap-

shots of cloud clusters in case studies.

All oceanic domains, from which any grid box partially

covered with land is excluded, bound between 208S and 208N
are included in the analysis for the 3.5-yr period from July 2006

to December 2009.

3. Temporal evolution

a. Overview of composite time series

The evolution of the atmospheric and surface states is first

studied in terms of time series composited around a local peak

in the Eulerian temporal sequence of precipitation. The local

maxima of 3-hourly precipitation, averaged over a 108 3 108
domain, are identified within a search window of 612 h in or-

der to filter out short-term noise. The results were found in-

sensitive to the window width when it is varied from 66 to

624 h (not shown). The composite samples are broken down

into seven precipitation regimes of P0 , 10, 10–15, 15–20,

20–25, 25–30, 30–35, and.35mmday21, where P0 denotes the

FIG. 3. Composite time series of SCAI stratified by different ranges of underlying SST at t5 0 (SST0) as indicated by

each panel.
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domain-mean precipitation at the hour of the local precipita-

tionmaximum. The size of composite samples is summarized in

appendix A. SCAI is meant to measure the degree of aggre-

gation within each precipitation regime, making distinctions

whether a given amount of precipitation is produced by heavily

clustered clouds (i.e., more aggregated systems) or highly

scattering convection (less aggregated). SCAI is not intended

to be compared across different precipitation regimes.

Composite time series constructed in this simple Eulerian

approach are potentially contaminated with spurious variability

as convective disturbances enter and leave the study domain.

Given that a typical migration speed of tropical cloud clusters is

about 10m s21 (e.g., Nakazawa 1988), it takes roughly one day

for convective disturbances to travel across a 108 3 108 domain.

Precipitation and cloud variability substantially longer than

1 day are likely affected by the appearance and disappearance of

the disturbances through the domain boundaries, while more

quickly varying signals, which are ofmain interest in this work as

will become clear below, are explained mainly by the variability

intrinsic of convective systems.

The composite time series of precipitation, SST, and CWV

are shown for different precipitation regimes in Fig. 1.

Precipitation has a striking peak at t 5 0 by construction, with

its half-width at half maximum being roughly 12h. SST is nearly

constant over time except for a subtle decrease after t5 0 for large

P0 values.CWVhas amaximumat t5 0but the variability around it

is much less sharp than found for precipitation, as may be expected

from the known nonlinear relationships between P and CWV

(Bretherton et al. 2004; Peters and Neelin 2006). The standard

deviation of CWV within a 108 3 108 domain has a modest en-

hancement similar to CWV itself, but a smaller P0 is associated

with a larger magnitude of the intradomain standard deviation of

CWV. This may be because amodest precipitation peak is typically

linked to a dry environment (Fig. 1c) and hence would not occur

without an appreciable CWV variability with highly concentrated

moist spots protecting precipitating clouds. The maximum of the

CWV variability slightly lags the precipitation peak (t5 0). A pos-

sible explanation for this is that the stratiform component of orga-

nized cloud systems, having a tighter correlation with the ambient

moisture than the convective component (Ahmed and Schumacher

2015), develops in a later stage of the convective life cycle.

Figure 2 presents SCAI and the related parameters. SCAI

has a maximum slightly delayed (by 6–12h) behind precipita-

tion. Diurnal modulation is also evident, as discussed later. For

the largest values of P0, SCAI temporarily reduces, showing

signs of increased aggregation, while precipitation rapidly picks

up during ;12h prior to time 0 and then increases back again

until t 5 12 h. A decline of SCAI after its maximum for t . 0 h

may result from the dissipation and/or disappearance of the

disturbances through the observed domain boundaries as argued

above, but the one before the peak is not intuitively obvious.

Because SCAI is constituted ofNc andD0 as shown by (1), these

two parameters are assessed individually in Figs. 2b and 2c. It is

found that Nc primarily accounts for the variability of SCAI

while the role of D0 is secondary, confirming the findings of

Tobin et al. (2012). Convective area fraction, Ac, increases over

time to its peak at t5 0with no trace of a temporaryminimumas

seen for SCAI (Fig. 2d). The evolution ofAc is accounted for by

FIG. 4. The diurnal cycle of (a) SCAI, (b) the number of clusters, (c) normalizedD0, and (d) convective area fraction

for different precipitation regimes.
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the spreading of high clouds around the time of peak convective

activity, but the behavior of SCAI requires another explanation.

The dip of SCAI around t 5 0 for the heaviest precipitation

regime is so shallow that it may not be interpreted with confidence

as a proxy of aggregationwithoutmore supporting evidence. To aid

in understanding this behavior of SCAI, Fig. 2e shows the cloud

cover occupied by the largest cluster, which approaches a level very

close to the total cloud fractionAc at t5 0 (Fig. 2d). The high cloud

cover therefore consists predominantly of a few largest clusters at

the time of peak precipitation. In addition, the temporal change in

the size distribution function of cloud clusters is evaluated in terms

of the mean size of a cluster, that is, Ac divided by Nc. This pa-

rameter represents the ratio of the first moment of the cluster size

distribution function to its zeroth moment:

A
c

N
c

5
n
0

ð
sf (s) ds

n
0

ð
f (s)ds

, (2)

where s refers to the fractional area of clusters relative to the 108 3
108 domain area, and f(s) is thenormalized sizedistribution function

with n0 being its scaling factor. Note thatAc/Nc varies only with the

shape of the distribution function and is independent of n0. Figure 2f

shows that Ac/Nc rises to the maximum at t 5 0 and then drops

during a spell of612h, resembling the behavior of the cloud cover

occupied by the largest cluster. It is implied, given thatAc/Ncwould

increase if f(s) shifts toward large sizes, that small cloud clusters gather

into a few larger clusters as precipitation intensifies. This result appears

tobe in support of thehypothesis that a transient aggregationprocess is

in progress as suggested by the behavior of SCAI.

When the composite SCAI is stratified by SST at t 5 0 or

SST0 (Fig. 3), the major features found in Fig. 2 above are all

present for SST0 . 298C. The SCAI dip at t 5 0 and diurnal

undulations become less clear as SST decreases and disappear

for SST0 values below 278C.
The SCAI value at t 5 0, or hereafter SCAI0, is used to break

down the composite evolution of SCAI for the purpose of high-

lighting differences in convective events with and without a notice-

able signofaggregation.FourSCAI ranges are chosen: SCAI0. 1.5,

1.2# SCAI0# 1.5, 0.9# SCAI0# 1.2, and 0.6# SCAI0# 0.9, with

the sampleswithSCAI0# 0.6 discarded.This choiceof SCAI ranges

preferentially sampleswarmocean surfaces because SCAI generally

exceeds 0.6 for SSTs higher than 288C (Figs. 3a,b) while SCAI often

falls below 0.6 for lower SSTs (Figs. 3c,d). Cold SSTs do not ac-

company the temporary aggregation (or the SCAI dip) are thus not

of interest in the analysis that follows. The two contrasting cases of

SCAI0 . 1.5 and 0.6, SCAI0 # 0.9 are defined as less-aggregated

and more-aggregated cases, respectively, for the energy budget

analysis presented in section 4.

b. Effects of diurnal cycle

A 24-h oscillation is clearly visible in the composite evolu-

tion of SCAI (Fig. 2), suggesting a possible influence of diurnal

forcing. Figures 4a and 4b show that SCAI and the number of

clusters have an intrinsic diurnal cycle with an afternoon peak

as discovered also by Doyle (2018) and Pscheidt et al. (2019).

Its relevance to the diurnal cycle of precipitation is unclear,

given that oceanic rainfall typically has an early-morning

peak (e.g., Gray and Jacobson 1977). The amplitude of the

diurnal cycle, largest for the lowest value of P0, diminishes as

FIG. 5. (a)–(e) Plan views of infrared brightness temperature at selected hours of212,26, 0, 6, and 12 h, respectively, around 1500UTC

11 Jun 2008, at which the largestP0 of 107mmday21 is observed for themore-aggregated (0.6, SCAI0, 0.9) category. (f) The time series

of precipitation averaged over a 108 3 108 domain indicated by the black rectangle in (a)–(e). The three-point runningmean of the original

3-hourly time series is shown in red. (g) As in (f), but for SCAI.
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P0 increases. A possible reason is that heavily precipitating

clouds are likely linked to the synoptic-scale dynamics beyond

the control of the diurnal cycle, making a contrast to weak

precipitation more susceptible to the local diurnal forcing.

Diurnal variability is not pronounced for D0 (Fig. 4c) and Ac

(Fig. 4d), except for a slight reduction ofAc during 18–24 h. The

day–night contrast in cloud-top temperature could potentially

give rise to an artificial diurnal undulation inAc because a fixed

infrared threshold of 240K is applied uniformly over local time

to define cloud clusters. The overall stability of Ac found in

Fig. 4d, however, suggests that this effect does not introduce

any discernible diurnal bias.

Figure 4a suggests that diurnal cycle has little influence on

SCAI for heavily precipitating systems. The transient aggre-

gation within 612 h around a striking precipitation peak is

thus unlikely controlled by the diurnal forcing. When the

FIG. 6. As in Fig. 5, but for the second largest P0 of 103mmday21 (0900 UTC 4 Jun 2009).

FIG. 7. As in Fig. 5, but for the third largest P0 of 101mmday21 (0900 UTC 7 Jun 2008).
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composite SCAI is broken down by different local time at

t5 0 to further confirm this, SCAI, although having a distinct

diurnal cycle that varies in phase among different local times,

agree in that SCAI has a minimum near t 5 0 and hence the

sign of the transient aggregation persists regardless of local

time (see appendix B).

c. Case study

Are the temporary aggregation and the subsequent disaggrega-

tion visually recognized in individual convective events? A case

study is conducted with three events having the first, second, and

third largest values of P0 among the samples with 0.6 , SCAI0 ,
0.9. In the first event (Fig. 5), infrared imagery shows that twomajor

cloud clusters at212h (Fig. 5a) aremerged into a larger cluster 6h

later (Fig. 5b) and then reach very cold cloud tops over a large area

(Fig. 5c) before breaking up into smaller clusters with slightly

warmer cloud tops (Figs. 5d,e). This observation from visual in-

spection may be qualitatively interpreted as a momentary aggre-

gation toward26h, aroundwhich SCAIhits theminimum(Fig. 5g)

despite the fact that precipitation thenpicks up (Fig. 5f). The second

event is relatively stable over time in terms of SCAI (Fig. 6g),

dominated by a single cloud cluster that is already in an aggregated

state at 212h (Fig. 6a), which is slowly dissolved into multiple

clusters by 12h (Fig. 6e). A systematic evolution of SCAI is unclear

within612h in this case although, given that SCAI stays as low as

;0.3–0.6, this particular case as a whole might be viewed as a

prolonged period of an aggregated state. The last event (Fig. 7)

exhibits a merger of multiple clusters into colder, larger, and fewer

FIG. 8. Composite time series of the CMSE budget terms for the more-aggregated case (0.6 , SCAI0 , 0.9):

(a) the Eulerian MSE tendency, (b) latent heat flux (solid) and sensible heat flux (dashed), (c) horizontal MSE

advection, (d) radiative heating rate, (e) vertical MSE advection, and (f) the budget residual.
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clusters until 0h (Fig. 7c), followed by a separation of large cold

clusters into smaller, warmer clusters, similarly to the first event.

Note that cloud clusters begin to disperse out of the domain at t5
12h and as a result SCAI, closely related to the number of clusters,

decreases to near zero at t ’ 30h. This case raises a caveat that a

reduction of SCAI should not be interpreted as a sign of aggrega-

tionwhenprecipitation is virtually absent, inwhich case diminishing

SCAI merely signifies the disappearance of clouds from the ob-

served domain. In summary, at least two of the three events show a

hint of aggregation as precipitation intensifies toward the peak, as

may be expected from the composite ensemble. Aggregation is

visible in the infrared imagery of individual events, but (at least for

these cases and this methodology) it is far more modest and tran-

sient than a long-lasting aggregation process as seen in idealized

simulations.

4. Energy budget analysis

a. Temporal evolution

It was found in the current observations that a sign of tran-

sient convective aggregation is present around the peak of

heavy rainfall, although it is far more short-lived and subtle in

magnitude than that seen in previous idealized numerical

studies. Is the transient aggregation an entirely different entity

from the well-known self-aggregation phenomena, or do they

share anymechanisms at the process level? A useful strategy to

pursue such potential similarities in the underlying physics is to

compare the individual components of the moist static energy

(MSE) budget in light of the processes known to be crucial for

the self-aggregation such as moisture, radiation, and surface

heat fluxes (see section 1). To this end, the MSE budget

equation integrated over height,

h›
t
hi52hv � =hi2 hv›

p
hi1LE1S1 hQ

R
i1 «

RA
, (3)

is analyzed, where angle brackets designate the vertical inte-

gral from the bottom to the top of the atmosphere, v is

horizontal wind, h is MSE, L is the specific latent heat of va-

porization, E is the surface evaporation flux, S is the surface

sensible heat flux, QR is the radiative heating rate, and «RA

denotes the budget residual due to the reanalysis errors.

The 108 3 108 domain mean of each term in (3) is first pre-

sented in the composite time series as shown in the previous

section. The evolution for the more-aggregated composite

(0.6 , SCAI0 , 0.9) is shown in Fig. 8. The composite time

series of the column MSE (CMSE) tendency (Fig. 8a)

undergoes a salient diurnal modulation, and otherwise the

tendency mostly stays positive before the precipitation peak

but is negative after the peak. The diurnal modulation is at-

tributed to the solar cycle in the column radiative heating

(Fig. 8d), which is not entirely averaged out in the composite

statistics because of the inhomogeneous diurnal variability

intrinsic to the precipitation-peak samples (Fig. 9). The dy-

namical terms such as the horizontal and vertical MSE ad-

vection, on the contrary, have little trace of the 24-h cycle. The

diurnal component of the MSE tendency is largely accounted

for by the day–night radiative contrast, while the slowly vary-

ing component is almost exclusively attributed to the dynam-

ical processes. The temporal asymmetry as found in the CMSE

tendency is primarily brought about by the horizontal MSE

advection (Fig. 8c) and, to a lesser extent, by unknown sources

in the residual term (Fig. 8f). The horizontal MSE advection is

overall negative except during limited hours prior to the pre-

cipitation peak for P0 . 35mmday21, where the horizontal

advection imports MSE. The horizontal MSE advection begins

to enhance much earlier than precipitation (which sharply rises

to the peak; Fig. 1a), indicating that a horizontal moisture

gradient develops before convection develops. The vertical

MSE advection stays always negative and reaches the mini-

mum slightly after the precipitation peak (Fig. 8e), as expected

from the invigoration of deep convection exporting MSE. The

surface turbulent fluxes (Fig. 8b) are invariant over time and

insensitive to P0.

The less-aggregated composite is very similar to the more-

aggregated case as illustrated above, except that the horizontal

MSE advection enhances only modestly and never exceeds

zero in the more-aggregated case even at its maximum

(not shown).

b. Internal variability

Next examined is the horizontal variability of the MSE

budget parameters. The budget terms, computed on the

0.758 3 0.758 ERAI grid, are ordered by the magnitude of the

column MSE within an encompassing large-scale (108 3 108)
domain. This procedure is repeated for all large-scale do-

mains and averaged into the composite statistics sorted by

the column MSE rank, following a convention of numerical

work (Bretherton et al. 2005; Muller and Held 2012; Wing

and Emanuel 2014; Muller and Bony 2015; Holloway and

Woolnough 2016). Wing and Emanuel (2014) demonstrated

the utility of variance-based MSE budget analysis for diag-

nosing the processes essential for convective aggregation, but

this approach is not explored here because high-resolution

data necessary to compute such variance are unavailable

from the ERAI data.

FIG. 9. A 3-hourly histogram of the precipitation peaks of P0 .
35mmday21 as a function of local time for the more-aggregated

case (0.6, SCAI0, 0.9; in black) and less-aggregated case (SCAI0
. 1.5; in red).
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Figure 10 presents the MSE budget breakdown for selected

hours from the more aggregated (0.6 , SCAI0 , 0.9) com-

posite time series. The CMSE tendency at t5 0 (black curve in

Fig. 10a) is negative for the lower half while positive for the

upper half. Care must be taken, however, because the budget

residual (Fig. 10f) implies a similar systematic bias of compa-

rable magnitude and hence the CMSE tendency may be af-

fected by reanalysis errors to a certain degree. The horizontal

advection (Fig. 10c) is relatively homogeneous across the do-

main. The vertical advection (Fig. 10e) exports CMSE as seen

earlier but sharply turns to positive in very moist columns. The

latent heat flux (Fig. 10b) stays above 100Wm22 with a slight

decreases as CMSE increases. The sensible heat flux is minimal

across all CMSE ranks. The radiative cooling becomes weaker

(or approaches zero) with increasing MSE, likely because

of increasing water vapor and high cloud cover from dry to

moist columns. It is reminded that some of these features may

be affected by systematic reanalysis errors as found in the

residual bias.

The less-aggregated case is subtracted from the more-

aggregated case next (Fig. 11) in order to focus on the differ-

ence between the two cases. It is also anticipated that «RA will

be canceled out in the difference plots, assuming that the re-

analysis errors are not correlated with the degree of convective

aggregation. Figure 11 shows that, although the difference is

overall small in magnitude (note that the vertical range spans

6100Wm22 here and 6300Wm22 in Fig. 10), the more-

aggregated and less-aggregated composites are not entirely

identical. The more-aggregated case is more efficient in col-

umn radiative cooling by more than 30Wm22 at t 5 0. The

CMSE tendency difference is overall attributable to the hori-

zontal advection difference except for t 5 0 and t 5 218 h, at

FIG. 10. The CMSE budget terms at selected hours, as indicated in the legend in (d), from the more-aggregated

(0.6 , SCAI0 , 0.9) composite time series for P0 . 35mmday21: (a) the Eulerian MSE tendency, (b) latent heat

flux (solid) and sensible heat flux (dashed), (c) horizontal MSE advection, (d) radiative heating rate, (e) vertical

MSE advection, and (f) the budget residual. The abscissa is the rank of columnMSE ordered from the lowest to the

highest.
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which time a positive difference in the horizontal advection is

largely offset by a negative difference in QR and hence the

CMSE tendency difference stays near zero. A closer exami-

nation reveals that the CMSE tendency difference at t 5 0

(black) has a slight positive gradient extending from almost the

lowest MSE rank to the highest. This gradient, accounted for

by the vertical advection difference, implies that the columns

with low CMSEs continue to lose further CMSE while the

high-CMSE columns maintain or even gain more CMSE. Such

an upgradient transport of CMSE works somewhat more effi-

ciently in more-aggregated events than in less-aggregated

events, although the difference is so subtle that this remains

speculative without further evidence. The difference in «RA

suffers little systematic bias, so the more-aggregated versus

less-aggregated differences turn out to be less subject to the

reanalysis errors than each individual composite.

5. Discussion and summary

In this paper, possible signs of convective aggregation are

explored in satellite observations and reanalysis datasets. The

time scales of present interest are a few days or shorter instead

of 15–100 days as seen in RCE simulations in order to seek the

aggregation signatures intrinsic to the life cycle of organized

convective systems. The composite time series of various

parameters, all averaged over 108 3 108 domains, are built

around a local maximum of precipitation (P0) as a statistical

representative of the convective life cycle. The composite

samples are stratified by seven precipitation regimes from

the lightest (5 , P0 # 10mmday21) to the heaviest (P0 .
35mmday21) categories.

The composite evolution exhibits a momentary decline of

SCAI as precipitation picks up and the high-cloud cover

FIG. 11. As in Fig. 10, but for the difference between the more-aggregated case (0.6 , SCAI0 , 0.9) minus the

less-aggregated (SCAI0. 1.5). Thick solid lines are the five-point runningmean applied to the original curves (thin

dashed). Only three time slices at 612 and 0 h are shown for visual clarity.
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expands to their peak. This decrease of SCAI accompanies a

modest shift in the histogram of cloud clusters so that small

cloud clusters are merged into fewer and larger clusters,

suggesting a transient occurrence of convective aggregation.

The duration time of this aggregation effect is 1 day or shorter,

and the degree to which aggregation proceeds, as visually

recognized from a case study, is rather limited. The sign of the

transient aggregation in the composite evolution of SCAI is

salient in the heaviest precipitation regime, but becomes

fainter as P0 decreases.

The time scale of the observed transient aggregation process

is substantially smaller than the known time scales of 15–

100 days from idealized simulations (Wing et al. 2017). The

discrepancy in time scale, however, may not necessarily imply

that the short-term aggregation in the current observations is

entirely irrelevant to what we have learned from past numer-

ical simulations. The key feedback processes crucial for ag-

gregation as identified in idealized simulations are at work in

more realistic simulations as well (Holloway 2017), while the

aggregation time scales in RCE simulations initiated with a

homogeneous field have little direct relevance to the real

world (Holloway et al. 2017). The real atmosphere never

experiences a uniform, disaggregated state to start with, and a

108 3 108 domain in nature is exposed constantly to external

synoptic-scale disturbances, potentially destroying an envi-

ronment favorable for the continuous development of aggre-

gation. On the other hand, this transient aggregation may

possibly be relevant to the gregarious nature of tropical cloud

clusters as found in satellite imagery by Mapes (1993), who

proposed a theory that the gravity wave propagation triggered

by initial convection generates a thermodynamic state favor-

able for subsequent convection in close vicinity. The time scale

of this mechanism is several hours, comparable to the aggre-

gation time found in this work.

The transient form of convective aggregation is detectable

only over warm oceans (SST. 288C), which appears to confirm
some existing numerical studies (Wing and Emanuel 2014)

although the sensitivity to SST is still in dispute (Coppin and

Bony 2015; Wing and Cronin 2016; Holloway and Woolnough

2016). SST tends to be higher for a larger P0 but somewhat

decreases with time as precipitation decays after its peak, as-

cribable to multiple possibilities including the high-cloud

shielding of insolation (Wall et al. 2018) and the enhanced

surface heat flux following a spell of active convection (Young

et al. 1995). This also resembles the evolution of convective

aggregation in a coupled model where convection chases

after a warmer ocean until it finds itself over the warmest spot

and eventually dies out (Coppin and Bony 2017).

Diurnal modulation is evident in the temporal evolution of

SCAI because the SCAI itself has a diurnal variation and the

composite samples are not entirely homogeneously distributed

over local time. The diurnal peak of SCAI lies in the afternoon,

nearly half a day out of phase from the diurnal cycle of precip-

itation for unknown reasons over tropical oceans. Precipitation

and SCAI, on the contrary, are nearly in phase over tropical

continents, both having a distinct afternoon peak (Doyle 2018).

It is noted that the diurnal cycle of cold cloud fraction varies

with the infrared threshold, where the local time of the peak

moves forward from around noon to 0600 or earlier as the

threshold is lowered from 235 to 215K (Janowiak et al. 1994).

The afternoon maximum of SCAI therefore may be peculiar

to a relatively warm threshold of 240K as currently chosen,

and a colder threshold could make the diurnal peak shift closer

to that of precipitation. In any case, the transient aggregation is

not merely an aliasing effect of the diurnal cycle, given that the

temporal minimum of SCAI around t5 0 persists regardless of

local time when the composite time series are subsampled by

different local hours.

There is no evidence indicating that the latent and sensible

heat fluxes make any significant contribution to the transient

aggregation, given that the more-aggregated (0.3 , SCAI0 #

0.6) and less-aggregated (SCAI0 . 1.5) composites are nearly

FIG. 12. The 108 3 108 mean (a) v and (b) MSE as a function of

the MSE rank from the more aggregated (0.6 , SCAI0 , 0.9)

composite at t 5 0 for P0 . 35mmday21. The height of the max-

imum ascent and theminimumMSE is traced in gray in (a) and (b),

respectively.

TABLE A1. The number of samples (at t 5 0) stratified by precip-

itation. The unit is mmday21 for precipitation.

Precipitation No. of peaks

35 , P 6217

30 , P # 35 4505

25 , P # 30 7423

20 , P # 25 12 145

15 , P # 20 19 348

10 , P # 15 31 930

5 , P # 10 56 247
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identical in the surface fluxes (Fig. 11b). This is consistent with

previous idealized studies showing that, while surface fluxes can

be important for initiation of self-aggregation, they are not im-

portant for its maintenance (Holloway and Woolnough 2016).

The diurnal cycle of radiative cooling is similar in magnitude

but not identical in phase between the more-aggregated

and the less-aggregated composites. As a result, the more-

aggregated case has a radiative cooling that is more than

30Wm22 stronger at t 5 0 than the less-aggregated case. It

follows that the large-scale atmosphere including a developing

convective system may experience a distinct radiative cooling

during the transient aggregation. It is unclear, however, to

what extent this enhanced radiative cooling corroborates the

convective-radiative feedback important for convective self-

aggregation in idealized numerical simulations (Wing et al.

2017, and references therein). The difference in QR between

the more- and less-aggregated composites has little systematic

dependence on the column MSE (Fig. 11). A potential radia-

tive feedback implied by theQR dependence on CMSE for the

more-aggregated composite (Fig. 10d) is hence not discernibly

stronger than for the less-aggregated case. The lack of evidence

for any distinct effect of QR on the aggregation may be un-

derstood in the context of the scale dependence of the aggre-

gation processes. Beucler and Cronin (2019) and Beucler

et al. (2019) showed that the longwave effects favor a growth

of large-scale aggregation with horizontal wavelengths of

;1000 km or larger, which exceeds the typical size of cloud

clusters studied in the current analysis. Shortwave radiation, on

the other hand, has the effect of shrinking the aggregation to

smaller scales (500–2000 km) (Beucler and Cronin 2019). This

has a possible link to the diurnal maximum of disaggregation at

afternoon hours (Fig. 4a).

The horizontal MSE advection is overall negative, suggesting

that the domain of interest may be incessantly exposed to an in-

trusion of relatively dry ambient air. This hypothesis is not

unrealistic, given that the composite time series are constructed

around a precipitation maximum and hence the domain of in-

terest is likelymoister than the surroundings. The horizontalMSE

advection exhibits a positive anomaly hours before the peak

precipitation and a negative anomaly after with their amplitude

more pronounced for more intense precipitation. This pair of

anomalies with opposite signs implies the development of a hor-

izontal moisture gradient prior to the intensification of convection

and the dissipation of themoisture gradient as the convection dies

out. The positive anomaly prior to the rainfall peak is a primary

driver of the enhanced CMSE tendency, especially for the more-

aggregated case. It is suggested that the horizontal advection has

the potential to help the moist air further moisten with the pos-

sibility to boost a new convective burst. This effect, if it exists, may

be related to themoisture-memory feedback as often discussed in

attempt to interpret convective self-aggregation in numerical

simulations (Held et al. 1993; Tompkins 2001; Muller and Bony

2015). The importance of the advection term in theCMSEbudget

is in line with Bretherton and Khairoutdinov (2015), who showed

that the advection accounts for the rapid (,4 days) growth of

MSE at the earliest stage of aggregation, although at odds with

Beucler et al. (2019), who found that the advection damps the

MSE variance at all spatial scales.

The vertical MSE advection sharply rises to above zero for

columns with the largest MSEs. The reason for this is illus-

trated in Fig. 12a, where the vertical structure of v transitions

abruptly from a top-heavy profile to a bottom-heavy one at

around the 150th rank (out of the;170 columns in total). This

feature in theory activates an upgradient transport of CMSE,

an element known as critical for aggregation (Bretherton et al.

2005; Muller and Held 2012; Muller and Bony 2015), since a

bottom-heavy updraft imports lower-tropospheric MSE more

than it exports MSE at higher levels and hence enhances

CMSE. One should bear inmind thatv profiles from reanalysis

data may be sensitive to the parameterization uncertainties,

TABLE A2. The number of samples (at t 5 0) stratified by precipitation and SST. The unit is mmday21 for P and 8C for SST.

Precipitation 29 , SST 28 , SST # 29 27 , SST # 28 26 , SST # 27

35 , P 2479 1828 718 348

30 , P # 35 1602 1471 693 237

25 , P # 30 2327 2458 1333 465

20 , P # 25 3472 3925 2421 930

15 , P # 20 4735 6006 4311 1887

10 , P # 15 6833 9458 7494 3848

5 , P # 10 9713 15 381 13 520 8249

TABLE A3. The number of samples (at t 5 0) stratified by precipitation and SCAI. The unit is mmday21 for precipitation.

Precipitation 1.5 , SCAI 1.2 , SCAI # 1.5 0.9 , SCAI # 1.2 0.6 , SCAI # 0.9

35 , P 810 782 1185 1519

30 , P # 35 683 552 861 1036

25 , P # 30 1022 869 1277 1616

20 , P # 25 1442 1188 1950 2679

15 , P # 20 1663 1539 2697 4151

10 , P # 15 1899 1797 3265 6042

5 , P # 10 1491 1642 3394 6997
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and the robustness of this result has yet to be confirmed. The

minimum in the vertical MSE profiles is somewhat low in al-

titude for the lowest-CMSE columns, while it stays invariant

across the highest-CMSE columns (Fig. 12b). The sudden

transition in the vertical MSE advection for the moistest col-

umns is therefore solely ascribed to the aforementioned

change in the vertical structure of v.

The transience of the aggregation processes in the obser-

vations may be partly due to limitations of the present analysis

strategy. The composite time series by design represent the

Eulerian evolution within a 108 3 108 domain. This practically

limits the time scale of interest because convective distur-

bances rarely stay at the same location over an extended period

of time beyond ;1 day. The utility of the Lagrangian analysis

would be worth pursuing in future work to overcome the cur-

rent technical limitations, although a Lagrangian analysis

with a cloud tracking algorithm has its own technical challenges

including how to deal with the merging and splitting of cloud

clusters. The Eulerian and Lagrangian approaches each have

strengths and drawbacks that are complementary by nature.

Slowly evolving convective aggregation, if it exists in nature,

should be sought in a significantly larger domain than we cur-

rently analyzed. It is noted, on the other hand, that past nu-

merical work found convective self-aggregation to occur in a

computational domain with a size comparable to or even

smaller than a 108 3 108 square. Signs of the transient aggre-

gation might emerge in numerical simulations as well when the

long-term variability is filtered out, although this has so far not

received much attention to in the literature.
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APPENDIX A

Sample Size in the Composite Statistics

Tables A1–A3 provide the size of composite samples. The

sample size declines with increasing precipitation, except for

the P . 35mmday21 category owing to its broader bin size

than other P classes. Higher SSTs are preferred by heavy

precipitation while moderate SSTs are most sampled for lower

precipitation rates (Table A2). Lower SCAIs have a larger

sample size particularly for light precipitation (Table A3).

FIG. B1. As in Fig. 2, but broken down by local time at t5 0 into four 12-h windows (with 6-h overlaps). All curves

are conditioned by P0 . 35mmday21.
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APPENDIX B

Composite Time Series Stratified by Local Time

To quantify the effects of diurnal variation on the composite

evolution SCAI, Fig. B1 presents the breakdown by different

local times at t5 0 forP0. 35mmday21. Local time is sampled

at 0, 6, 12, and 18 h with a half-day window, allowing 6-h

overlaps to maximize the sample size for statistical robustness.

SCAI and the number of clusters have a distinct diurnal cycle

that varies in phase among different local times. All curves,

nevertheless, agree in that SCAI has a minimum near t5 0 and

hence the sign of the transient aggregation persists regardless

of local time. The diurnal undulation is somewhat magnified in

amplitude for the night and morning curves (1800–0500 and

0000–1100 LT) immediately after t 5 0. Diurnal modulation is

minimal in D0 and Ac as expected from the results above.
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