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Abstract: Bathymetry is a key element in the modeling of river systems for flood mapping, geomor-
phology, or stream habitat characterization. Standard practices rely on the interpolation of in situ
depth measurements obtained with differential GPS or total station surveys, while more advanced
techniques involve bathymetric LiDAR or acoustic soundings. However, these high-resolution active
techniques are not so easily applied over large areas. Alternative methods using passive optical
imagery present an interesting trade-off: they rely on the fact that wavelengths composing solar
radiation are not attenuated at the same rates in water. Under certain assumptions, the logarithm
of the ratio of radiances in two spectral bands is linearly correlated with depth. In this study, we
go beyond these ratio methods in defining a multispectral hue that retains all spectral information.
Given n coregistered bands, this spectral invariant lies on the (n− 2)-sphere embedded in Rn−1,
denoted Sn−2 and tagged ‘hue hypersphere’. It can be seen as a generalization of the RGB ‘color
wheel’ (S1) in higher dimensions. We use this mapping to identify a hue-depth relation in a 35 km
reach of the Garonne River, using high resolution (0.50 m) airborne imagery in four bands and data
from 120 surveyed cross-sections. The distribution of multispectral hue over river pixels is modeled
as a mixture of two components: one component represents the distribution of substrate hue, while
the other represents the distribution of ‘deep water’ hue; parameters are fitted such that membership
probability for the ‘deep’ component correlates with depth.

Keywords: bathymetry; depth; rivers; multispectral hue; spectral invariant; directional statistics;
Fisher–Bingham–Kent distribution; expectation–maximization algorithm

1. Introduction

Characterizing river channel bathymetry by average parameters (e.g., average depth,
cross-section area, hydraulic radius) or sparsely distributed cross-sections may be suffi-
cient for certain applications; however, a precise description is needed for applications in
geomorphology or ecology, where local flow parameters are known to vary at the scale of a
few times the full bank width in the streamwise direction with alternating morphological
units such as pools, runs, and riffles [1,2].

Dense and precise bathymetric survey requires active measurement techniques such
as bathymetric LiDAR using water-penetrating wavelengths in the visible spectrum [3,4],
or acoustic soundings [5]. Unfortunately, these techniques rely on an artificial illuminating
source (either electromagnetic or acoustic) and thus have a high operating cost and are
very difficult to use over large areas.

A very interesting alternative is offered by passive optical methods, which have been
used in marine, coastal, and more recently river settings since the pioneering work of
Lyzenga [6]. Here, natural sunlight is the illuminating source and depth is retrieved by
analyzing the radiance signal received at the sensor. According to Marcus and Fonstad [7],
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this simple method may actually be ‘the only viable method for measuring, monitoring and
mapping a large suite of in-channel river parameters continuously at sub-meter resolution’.

Following this introduction, Section 2 of this paper will provide a quick overview
of the principles behind remotely-sensed estimation of river bathymetry using spectral
ratios between bands in multispectral images. Then, in Section 3, we will temporarily
move away from this specific application and propose a formal definition of a more general
multispectral hue. Our procedure for estimating depth using this multispectral hue will be
the core of Section 4, and results will be presented in Section 5. Then, we will summarize
our findings and propose perspectives in Section 6.

2. Principles of Remotely-Sensed Estimation of River Bathymetry Using Passive
Optical Measurements

As illustrated in Figure 1, the total upwelling spectral radiance (in W·m−2·sr−1) over
water in a given spectral band with central wavelength λ can be split into four components
(e.g., Legleiter et al. [8]):

L↑(λ) = Lb(λ) + Lc(λ) + Ls(λ) + Lp(λ) (1)

• Lb is the radiance originating from the Lambertian (diffuse) reflection from the bed
substrate;

• Lc is the volume radiance of the water column of depth h, which is basically sunlight
that has been backscattered upwards before reaching the bottom;

• Ls is the surface radiance due to specular reflections at the air–water interface. Ls can
make up a large fraction of L↑ for certain geometries or viewing angles (‘sun glints’);

• Lp is a path radiance due to atmospheric scattering.

bed/substrate

water column

surface

atmosphere

Figure 1. Decomposition of total measured radiance over water (adapted from Campbell, 1996 [9]).
E↓ is the downwelling solar irradiance (W·m−2), Lb, Lc, Ls and Lp are the bed, water column, surface
and path radiances, respectively (W·m−2·sr−1).

Providing that we can account for both atmospheric path radiance and surface radi-
ance, Philpot [10] derived the following expression for the total radiance measured at a
given pixel of the sensor:

L↑(x, λ) ≈ Lb(x, λ) + Lc(x, λ)

≈
[(

Rb(x, λ)− Rc,∞(λ)
)
e−K(λ)h(x) + Rc,∞(λ)

]
︸ ︷︷ ︸

Rmix(x,h,λ) ‘mixture’ reflectance

C0Ta(λ) E↓(λ) (2)
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The rightmost term E↓(λ) is the downwelling solar irradiance in the spectral band
(in W·m−2), while the product C0Ta (in sr−1) accounts for both atmospheric and air–water
interface transmission (C0 can be considered roughly independent of wavelength). These
terms are then multiplied by a reflectance term (brackets) which, according to Philpot, can
be written as a mixture between two ‘end-members’:

• The first end-member is the reflectance of bed/substrate, Rb, which depends on both
location x and wavelength λ,

• The second end-member is the reflectance Rc,∞ that would be measured over an
‘infinitely deep’ water column.

The weight of the bed reflectance Rb in the mixture reflectance Rmix is an exponentially
decreasing function of depth, with an attenuation coefficient K(λ), which depends on the
wavelength (Beer–Lambert law).

While the solar irradiance E↓(λ) depends on the time of the day and on cloudiness,
taking the ratio of solar irradiances in two different spectral bands cancels these variations.
Hence, it is convenient to take the ratio:

L↑(x, λi)

L↑(x, λj)
=

[ (
Rb(x, λi)− Rc,∞(λi)

)
e−K(λi)h(x) + Rc,∞(λi)(

Rb(x, λj)− Rc,∞(λj)
)
e−K(λj)h(x) + Rc,∞(λj)

]
C0Ta(λi) E↓(λi)

C0Ta(λj) E↓(λj)
(3)

Two common assumptions are then made to proceed with this expression:

1. First, the reflectance Rc,∞ of deep water is assumed to be small compared to the bed
reflectance Rb (for any substrate and any wavelength). Deep water reflectance is
certainly low if the water is clear, but this assumption breaks down in the presence
of sediment, dissolved organic matter, algae, etc. Furthermore, the bed might have
a very low reflectance. Quartz sand might be highly reflective, but mud and rocks
(especially rocks coated with a microbial film) can be quite dark;

2. Second, the ratio of bed reflectances at wavelengths λi and λj,
Rb(x,λi)
Rb(x,λj)

is approximated

as uniform in space.

With these assumptions, Equation (3) can be simplified and boils down to a linear
relationship between depth and the logarithm of the spectral ratio:

Xij = ln
L↑(x, λi)

L↑(x, λj)
≈
(
K(λj)− K(λi)

)︸ ︷︷ ︸
slope(λi ,λj)

h + ln

(
Rb(λi)

Rb(λj)

)
+ ln

C0Ta(λi) E↓(λi)

C0Ta(λj) E↓(λj)︸ ︷︷ ︸
intercept(λi ,λj)

(4)

Slope and intercept depend on optical properties of the atmosphere, water, and sub-
strate at each wavelength but, if they can be considered invariant across the image,
Equation (4) provides a predictor for depth. It has been used in numerous studies (see
Shah et al. [11] for a recent review), either with the calibration of slope and intercept against
in situ depth measurement, or without calibration; in the latter case, attenuation coefficients
K(λ) have to be modeled physically [12,13].

For a multispectral image with n coregistered bands, n(n− 1) spectral ratios can be
computed, but only (n− 1) are independent (keeping those between adjacent bands for
instance) since

Xik = ln
L↑(λi)

L↑(λk)
= ln

(
L↑(λi)

L↑(λj)

L↑(λj)

L↑(λk)

)
= Xij + Xjk (5)

Hence, a ratio–depth relation can be obtained by identifying a single, optimal pair of
bands [8], or using several log-transformed ratios given by several pairs [14]. The use of
multiple ratios (or other predictors) will increase model flexibility, though attention must
be paid to multicollinearity [15]. In fact, retaining all spectral information from the (n− 1)
independent ratios amounts to defining a multispectral ‘hue’, or ‘pure color’, independent
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of illumination conditions. The definition of such a spectral invariant is presented in
Section 3.

3. Beyond Spectral Ratios: A Definition of Multispectral Hue
3.1. Rationale for the Definition of Multispectral Hue
3.1.1. RGB Case: The Color Wheel

Let us start with an example that will be familiar to many: many computer programs
offer a color definition tool that relies on the kind of ‘color wheel’ shown in Figure 2. In this
tool, a hue or ‘pure color’ can be selected along a circle, with an angle ranging between 0
and 360o. Two other operations can then be performed to obtain the final red, green and
blue components:

1. The pure color can be partially desaturated, i.e., mixed with a white component. Such
a mixing can occur for example with specular reflections, which will appear nearly
white under white illumination if the refractive index of the material is slowly varying
with wavelength (this is the case for water, or for an object coated with varnish).

2. The overall brightness or value of the color can be decreased. Physically speaking,
this other operation is similar to either reducing the intensity of the light source,
or changing the orientation of an object’s surface normals so that less light is diffused
towards the sensor (‘shaded face’ effect).

hue angle
= 1 DoF

(2)

(1)

(1) desaturate = mix hue with gray
without changing overall brightness
~ add specular (white) reflection

(2) decrease brightness (value)
~ reduce energy received (reduce 
illumination, change orientation, etc.)

Figure 2. Screenshot of the color wheel tool in QGIS. The hue or ‘pure color’ is selected along the
circle with a single angular degree of freedom (DoF). The two other operations that can be performed
are (1) desaturation or (2) decrease in brightness/value.

3.1.2. Notations

In this section and the following ones, we will use bold symbols to denote points,
vectors or matrices in a multidimensional space. Denoting vT the transpose of v, [1, 1, 1]
denotes a row vector while [1, 1, 1]T denotes a column vector.

3.1.3. The Reason Why Multispectral Hue Should Have (n− 2) Degrees of Freedom with
n Bands

Defining the multispectral hue of a pixel rigorously amounts to reversing the two
operations described above, that is, resaturating the color and enhancing/normalizing its
brightness. Because of these two steps, multispectral hue should have only (n− 2) degrees
of freedom. This property is obviously verified with n = 3 bands and the resulting color
wheel, which provides only one angular degree of freedom (n− 2 = 1).
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We start our general definition of multispectral hue with the rationale of Mon-
toliu et al. [16]. Given a pixel whose values in the n available bands form a vector
C = [C1, C2, . . . , Cn]T of digital counts, they first define a vector c with entries

ci = Ci −min{C1, C2, . . . , Cn} = Ci −mink{Ck} (6)

This operation removes the same value from all bands: in fact, it amounts to removing
the largest possible white component at each pixel while preserving the positivity of all digital
counts. In an image taken under natural sunlight, it will help to remove highlights or
‘sun glints’, even though they are not strictly white due to the wavelength dependency
of refractive indices and variations in solar radiation [17]. The second step is actually a
brightness normalization: the vector c is divided by the sum of its entries, yielding a vector
invariant L(M) with entries:

L(M)
i =

ci

∑n
j=1 cj

=
Ci −mink{Ck}

∑n
j=1
(
Cj −mink{Ck}

) (7)

In order to illustrate the effect of these operations, we apply them to the RGB image
displayed in Figure 3: it shows a set of plain color wooden toys with different shapes,
under natural sunlight. The shapes are fitted so as to cast shadows on each other, each hue
is then seen with a great variety of illuminations due to the varied orientations of surface
normals as well as casted shadows.

Figure 3. Katell’s wooden toys under natural sunlight. Note the specular reflection on the front edge
of the orange cube, for example, which appears almost white.

Figure 4 shows both the image resulting from the transformation and the location
of transformed pixel values in the RGB space. It can be seen that the spectral invariant
L(M) always lies on a triangle-shaped ‘wire-frame’, consisting of three connected rods:
the frame is three-dimensional but, just as the color wheel, it basically provides only one
degree of freedom. This rather complicated shape results from the choice of substracting
the pixel-wise minimum of all bands in the first step: L(M) has always at least one entry
equal to zero, but it is not always the same. As a result, it always lies on one of the faces of
the unit cube. The normalization step yields another property: the entries sum to 1. If we
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define the ‘white’ vector w = [1, 1, . . . , 1]T having all entries equal to 1, the normalization
can be written as a scalar product:

∑
j

L(M)
j = 1⇐⇒ L(M) ·w = 1 = constant (8)

Figure 4. Spectral invariant proposed by Montoliu et al., computed on the image of Figure 3. (Left panel): location of
transformed pixel values in the RGB unit cube, invariant L(M) is constrained in a plane orthogonal to the white vector
w = [1, 1, 1]T . (Right panel): transformed RGB image. Note how light reflected from the yellow oval toy produces a yellow
hue on the white floor and also alters the hue on the rightmost side of the purple pentagon toy.

Hence, L(M) is in a subspace (here, a plane) orthogonal to the ‘white’ direction. If we
rotate this ‘white’ axis in order to align it onto the last Cartesian axis [0, 0, 1]T , the triangle
lies in the plane R2 and each side can be mapped linearly onto a 120o arc of a circle: the
popular RGB color wheel is actually built in the exact same way (Hue–Saturation–Value
model).

Obviously, the invariant cannot be computed for gray pixels having the same digital
count in all bands, since we would have:

L(M)
i =

ci

∑n
j=1 cj

=
Ci −mink{Ck}

∑n
j=1
(
Cj −mink{Ck}

) =
0
0

(9)

In practice, we remove all ‘nearly gray’ pixels, such that

0 ≤
(

∑n
j=1 cj

)
< ε (10)

It is worth noting that this will produce gaps in the image.

3.2. Multispectral Hue as a Directional Variable

The definition of the multispectral invariant L(M) given by Montoliu et al. [16] essen-
tially spells out the two basic steps needed to define a multispectral hue. Even though we
can interpret these two steps in terms of resaturation and brightness normalization, they
are essentially a way of reducing the dimensionality of the problem and minimizing the
degrees of freedom for hue analysis. The only drawback of the definition is the topology of
the subset in which the invariant lies. Therefore, we propose an alternate definition, which
will yield a much smoother topology.
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3.2.1. Mathematical Definition

In the resaturation step, we choose to remove the pixel-wise mean of all bands, instead
of the minimum. We obtain the vector c′ with entries:

c′i = Ci −
1
n

n

∑
j=1

Cj (11)

Then, instead of normalizing with the sum of the resulting entries, we simply normal-
ize this vector with its Euclidean norm, yielding the vector invariant U:

U =
c′∥∥c′
∥∥ (12)

The entries of this vector read explicitely:

Ui =
c′i√

∑n
j=1 c′j

2
=

Ci − 1
n ∑n

j=1 Cj√(
∑n

j=1 C2
j

)
− 1

n

(
∑n

j=1 Cj

)2
=

Ci −Meanj
{

Cj
}

√
n− 1 StDevj

{
Cj
} (13)

3.2.2. Illustration with the RGB Image

Just as we did for the invariant L(M) of Montoliu et al. [16], in Figure 5 we show the
resulting transformed image and the location of transformed pixel values in the invariant
space. It is worth noting that the transformation does not preserve the positivity of entries
Ui. However, since U has unit norm, it lies in the [−1, 1]× [−1, 1]× . . .× [−1, 1] cube and
Ui+1

2 will remain inside the positive-valued unit cube; we use these values to reconstruct
the R, G, and B components.

Figure 5. Illustration of multispectral hue U computed on the RGB image of Figure 3. (Left panel): location of transformed
pixel values on a great circle in a plane orthogonal to white vector w = [1, 1, 1]T . (Right panel): transformed RGB image.

This time, it is the resaturation condition that must be interpreted as a scalar product.
Centering the values implies:

∑
j

Uj = 0⇐⇒ U ·w = 0 (14)

Again, the invariant lies in a subspace (a plane in R3) orthogonal to the ‘white’ vector
w. Moreover, it has unit norm by virtue of the normalization step: as a result, it directy lies
on a great circle (‘tilted’ equator). Rotating the white axis onto the last Cartesian axis will
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again allow us to discard this last coordinate: we are left with a circle that can be described
with only two Cartesian coordinates and only one angular coordinate.

This property will extend in any dimension: the multispectral hue U will always
belong to a subset homeomorphic to Sn−2 the unit (n − 2)-sphere embedded in Rn−1,
provided that we perform a final rotation that aligns the ‘white’ direction w onto the ‘North
Pole’ n = [0, 0, . . . , 0, 1]T of Rn. The general expression of the corresponding rotation matrix
is given in Appendix A.

3.2.3. Summary of the Section

In this section, we defined a multispectral hue, which is an extension of the classical
RGB hue to a higher number of bands: it allows us to resaturate and normalize the
brightness of each pixel, whatever the number of bands. [7]. This multispectral hue
denoted U is a direction (unit vector) in a (n− 1) dimensional Euclidean space, and it has
(n− 2) angular degrees of freedom:

• With n = 3 bands, U is on S1 the unit circle in the Euclidean plane R2: it is closely
related to the ‘color wheel’;

• With n = 4 bands, U is on S2 the ‘usual’ unit sphere in the Euclidean space R3. It has
two degrees of freedom, we might call them ‘color latitude’ and ‘color longitude’ as
will be seen later;

• With n > 4 bands, the hypersphere Sn−2 cannot be pictured out. However, it is still
a smooth Riemannian manifold, and all familiar properties on S1 and S2 (geodesic
distance, Euler angles, rotation group, etc.) can be extended to any dimension.

We can then use directional statistics to analyze hue distributions in any dimension.

3.3. Mixture Models for the Analysis of Multispectral Hue Distribution

The distribution of multispectral hues in a given image can be rather complicated.
For this reason, it may be convenient to model the probability density function of this
directional variable as a mixture of simpler distributions. On the color wheel S1 for the RGB
image displayed in Figure 3, we can use the Von Mises distribution as a basic component;
its density reads:

f (ϕ | µ, κ) =
eκ cos(ϕ−µ)

2π I0(κ)
(15)

where ϕ is the hue angle, µ the mean angle, κ a concentration parameter and I0 the modified
Bessel function of order 0 for normalization. This density can also be written with vectors;
noting

U =

[
cos ϕ
sin ϕ

]
vm =

[
cos µ
sin µ

]
(16)

then

f (U | vm, κ) =
eκvm ·U

2π I0(κ)
(17)

where vm is now the mean (vector) direction.

3.3.1. Mixture Density

Having chosen the elementary component, the mixture density is simply a weighted
sum of m components:

f (ϕ) =
m

∑
j=1

πj f j(ϕ | µj, κj) (18)

The resulting density still has to sum to unity on the circle, so the weights must sum
to 1: ∫

S
f (U) dS =

∫ 2π

0
f (ϕ) dϕ = 1 =⇒

m

∑
j=1

πj = 1 (19)
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Figure 6 (left) shows the modeled density of hue in our RGB image: we use a
five-component model, one for each wooden shape.

Figure 6. (Left panel) Hue distribution on the ‘wooden toys’ image (the density is the black dashed line), and its mod-
eling with a mixture of 5 Von Mises distributions. We can check that πorange + πyellow + πgreen + πblue + πpurple =

1. (Right panel) shows the posterior membership probability πij (given by Bayes formula) that pixel i comes from
component j.

3.3.2. Parameter Estimation Using Expectation–Maximization Algorithm

It is necessary to present briefly how the parameters {µj, κj, πj}j=1... m of the mixture
density are estimated, because we will use a variant of this procedure for depth estimation.
The procedure used is the iterative expectation–maximization (EM) algorithm [18]:

• E-step (Expectation): at each iteration (r), we start with current parameter estimates{
µ
(r)
j ; κ

(r)
j ; π

(r)
j

}
j=1... m

and we define updated membership probabilities using Bayes

formula:

π
(r+1)
ij =

π
(r)
j f j

(
ϕi
∣∣ µ

(r)
j , κ

(r)
j

)
∑m

j′=1 π
(r)
j′ f j′

(
ϕi
∣∣ µ

(r)
j′ , κ

(r)
j′

) (20)

where π
(r+1)
ij is the estimated probability that pixel i with hue angle ϕi comes from

component j, with ∑m
j=1 π

(r+1)
ij = 1 for each pixel;

• M-step (Maximization): given these membership probabilities, the parameters of each
component are re-estimated using a slightly modified maximum likelihood method
based on the maximization of:

`j
(
µj, κj

)
=

Npix

∑
i=1

π
(r+1)
ij log f j

(
ϕi
∣∣ µj, κj

)
(21)
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We see that the weights in this log-likelihood are the membership probabilities, instead
of just 1. `j

(
µj, κj

)
can be maximized for each component j independently, leading to

updated parameters
(

µ
(r+1)
j , κ

(r+1)
j

)
and

π
(r+1)
j =

Npix

∑
i=1

π
(r+1)
ij (22)

4. Using Multispectral Hue as a Predictor for Depth

In this section, we test our newly-defined multispectral hue as a predictor for depth
on a 35-km reach of the Garonne River between Toulouse and Verdun-sur-Garonne (see
Figure 7 left). This reach has a rather natural morphology with few embankments past
Toulouse, and many wetlands (it is dubbed the “Garonne débordante”, which means
“overflowing Garonne” in French). The average channel width is about 150 m and the max-
imum depth about 5-6 m at low flow. The channel is mainly bedrock, with typical sculpted
molassic forms [19] and several major knickpoints with very shallow flow (depth < 1 m).

(a) (b)

Figure 7. Location of the reach of the Garonne river investigated in this study. (a) Location of the reach in the whole Garonne
catchment, between Toulouse and Verdun-sur-Garonne; (b) in situ cross-section data used for calibration.

This site has been widely used in the French remote sensing community to test
discharge estimation algorithms using water surface elevation measurements such as
the ones that will be produced by the joint NASA and CNES ‘Surface Water and Ocean
Topography’ (SWOT) mission [20–22]. As our study contributes to these developments, we
needed to produce a detailed bathymetric map on this specific reach, and we present the
results in this section. As it will be shown further on, the dataset used has some flaws that
prevent us from drawing very general conclusions regarding the advantages of the method.
A full qualification of the method is needed and will be the object of a future publication
using other publicly available datasets [23].

4.1. Dataset
4.1.1. High-Resolution Airborne Imagery

Our study is based on the BD ORTHOr database provided by the IGN (French
National Geographic Institute). This nationwide dataset consists of RGB and Infrared
Color (IRC) ortho-rectified and radiometrically corrected airborne images [24,25] with a
resolution of 0.50 m. For our area of interest, we use images acquired during the period
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17–30 July, 2016. This dataset provides us with four coregistered spectral bands, namely
near-infrared (NIR), red, green, and blue.

4.1.2. In Situ Depth Measurements

As mentioned in Section 2, the relationship between hue and depth can be determined
either physically (using radiative modeling) or empirically, using calibration against in situ
data. In this study, we use the latter approach: the relationship is calibrated against in situ
bathymetric data collected at 120 cross-sections along the reach (about 1 section every
400 m). These data were collected during surveys in the period 1987–2002: hence, this
end-of-20th-century bathymetry may differ substantially from present bathymetry locally,
even for a bedrock channel (this point will be discussed at the end of the paper).

4.1.3. LiDAR Data in the Floodplain

In order to better constrain the estimation of river depth, we use LiDAR elevation
data available in the floodplain. These data come from the BDORTHOr database also
provided by IGN. Even though raster tiles are without gaps, elevation data in the river
channel must be ignored: the value at a pixel located in the channel is simply the result
of an interpolation between nearby bank pixels. In order to filter out interpolated pixels,
the BDORTHOr elevation rasters come with useful ancillary DST (dist) rasters, which
indicate the distance of each pixel to the nearest valid LiDAR point (see Figure 8 right).

(a) (b)

Figure 8. Sample of the IGN BDORTHOr database covering the floodplain. (a) Elevation raster at 1-meter planar resolution;
(b) DST raster indicating the distance to the nearest valid LiDAR point for each pixel.

4.2. Hue Sphere S2 for n = 4 Bands

According to the approach presented in Section 3, with n = 4 the invariant U does
not lie on the circle (1-sphere S1) but on the (n− 2)-sphere, i.e., the classical sphere S2. In
Appendix B, we give the computational detail of the mapping of a 4-band pixel (C ∈ R4)
onto the unit sphere U on S2. Here is the final mapping of the four ‘monochromatic’ points,
in Cartesian coordinates of R3:
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CNIR = [1, 0, 0, 0]T −→ UNIR =
1

3
√

3
[5,−1,−1]T

CRed = [0, 1, 0, 0]T −→ URed =
1

3
√

3
[−1, 5,−1]T

CGreen = [0, 0, 1, 0]T −→ UGreen =
1

3
√

3
[−1,−1, 5]T

CBlue = [0, 0, 0, 1]T −→ UBlue =
1

3
√

3
[−3,−3,−3]T

In order to illustrate how the hue (hyper)sphere works, we show in Figure 9 where two
patches will map, along with the four ‘monochromatic’ points mentioned above. The first
patch (A) is composed of water pixels: as absorption is much stronger in IR than in any of
the visible bands, it is no surprise that these pixels will map close to the ‘anti-NIR’ hue,
corresponding to the multispectral hue of a pixel with digital counts [0, 1, 1, 1]T . Conversely,
a patch of vegetation (B) will map close to the pure NIR hue, as absorption is not the same
in all visible bands but still much stronger than in the NIR.

pure Red
pure NIR
(back of

the sphere)

anti-NIR
(complementary)

pure Green

pure Blue

A (water)

B (leaves)

A

B

Figure 9. Representation of multispectral hue on the sphere S2 for two terrain patches: a patch of water pixels (A) and
a patch of vegetation pixels (B). Due to the low absorption in the visible bands and high absorption in the IR for water,
and the opposite behavior for chlorophyll, the two patches map at the antipode of each other (close to the anti-NIR hue for
water, and close to pure NIR hue for vegetation). The image displayed on the right is a NIR-R-G composite.

4.3. Masks

In order to reduce the extent of the area investigated and to narrow the spread of hue
distributions, several boolean masks are applied on the raw images in order to retain only
river pixels, as illustrated in Figure 10:

• Riparian vegetation as well as floating algae are masked using the classical Normalized
Difference Vegetation Index (NDVI) [26], which indicates high chlorophyll content.
In practice, the rather low threshold selected (NDVI> −0.3) excludes more than just
vegetation pixels: all surfaces with any non-negligible reflectance in the IR will be
masked;

• Very dark areas are thoroughly removed: they mainly consist of water pixels in the
shadow of riparian vegetation; as these pixels are difficult to characterize spectrally
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(light has traveled through both leaves and water), the criterion used is simply the
mean of the four bands;

• A filter is designed to remove whitewater/white wakes in riffle areas: as these pixels
appear in light gray in the visible bands (almost hueless in RGB) but with substantial
absorption in the IR (typical digital counts are [0.2 0.6 0.6 0.6]), they are removed on
the basis of their low saturation and high brightness in the RGB space along with a
threshold in the NIR (CNIR < 0.3). Note that they have nothing to do with specular
reflections: the surface of water appears white there for any viewing angle, because of
the scattering from the bubbles/air pockets, not from surface reflection;

• A mask for man-made features crossing the river, such as bridges or power lines
as well as their casted shadows, is built manually (some of these pixels are already
masked by the previous filters, but not all).

Once all these masks are combined, a final topological erosion of the resulting mask
is performed.

algae

Gagnac
pedestrian

bridge

white
wakes

tree shadows
over water

mask vegetation
NDVI > −0.3

mask shadows
(NIR+R+G+B)/4 < 0.15

mask white wakes mask man-made features
(manual)

fusion of masks + 2-pixel erosion => remaining river pixels

Figure 10. Illustration of the four masks applied to multispectral images in order to retain only river pixels. The image
displayed is a NIR-R-G composite.

4.4. Hue–Depth Visual Correlation on S2

We now focus on river pixels with a valid multispectral hue. We can first look at
the projection onto the sphere of all pixels located at depth measurement points. What
we see first in Figure 11 is that they are located close to the anti-NIR hue, as already
mentioned above. However, if we plot them with measured depth as color, we see that
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‘deep’ pixels tend to concentrate close to a single pole of the sphere. This result is perfectly
consistent with Philpot’s Equation (2): as depth increases, the weight of bed reflectance Rb
in the mixture reflectance vanishes to zero and the digital counts of river pixels, which are
basically reflectances, should tend to the limit vector

Cc,∞ ∼


Rc,∞(λNIR)
Rc,∞(λRed)
Rc,∞(λGreen)
Rc,∞(λBlue)


The hue associated with Cc,∞ is thus some point Uc,∞ on S2, that we can roughly

locate visually. Here, ‘infinitely’ deep means about 5 to 6 m deep.

measured
depth (m)

  0

−1

−2

−3

−4

−5  

pure Green

anti-NIR

hue concentrates
near a single pole

Figure 11. Representation of multispectral hue on S2 for the pixels located at depth measurement
points. As depth increases, hue tends to concentrate near a single pole corresponding to the hue of a
very deep water column, denoted Uc,∞.

4.5. Mixture Models on S2 and Higher Dimension, and Depth Predictor

Our last step is to find a quantitative predictor for depth. The two principles are
the following:

• We assume that the probability density function of multispectral hue in river pixels can
be modeled by a two-component mixture density: the first component will represent
the statistical distribution of substrate hue, while the second component will represent
the statistical distribution of ‘deep water’ hue;

• We will estimate the parameters of the two components so that the membership
probability to ‘deep’ component correlates with depth: the probability πi,deep that
pixel i with hue Ui comes from the ‘deep’ component will be the predictor for depth
hi at pixel i.

The elementary component used on the unit circle S1 in Section 3 is the Von Mises
distribution (‘circular normal distribution’). On the unit sphere S2 and higher dimension,
we need an extension of this distribution, similar to a multivariate normal distribution
wrapped on the (hyper)sphere. Such an extension is the Fisher–Bingham–Kent (FBK)
distribution [27]; for the sake of clarity, basic details about this family of distributions are
provided in Appendix C. For U ∈ Sn−2, the density reads:

f
(
U |
{

vj
}

, κ, β
)
=

1
C(κ, β)

exp
{

κ v1 ·U + ∑n−1
j=2 β j(vj ·U)2

}
(23)
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The (n− 1) vectors
{

vj
}

for 1 ≤ j ≤ (n− 1) form an orthonormal basis in which the
first vector v1 is the mean direction of the distribution, as f is maximum when v1 ·U = 1.
The normalization constant C(κ, β) does not have a closed form, but it can be evaluated
numerically [28,29]. The number of degrees of freedom increases almost quadratically with
the number of bands (∼ 1

2 n2).
Figure 12 illustrates the decomposition of a given density on S2 into two FBK compo-

nents. In our case, the two components will be the distributions fbed of bed substrate hue
and fdeep of deep water hue, respectively; for the sake of concision, we denote Θbed and
Θdeep the parameter set describing each component, so that the mixture density reads:

f (U) = πdeep fdeep
(
U|Θdeep

)
+ (1− πdeep) fbed

(
U|Θbed

)

Figure 12. The probability density function f (U) of a hue distribution on the sphere (left) can
be modeled with a mixture of two or more Fisher–Bingham–Kent distributions (right). For the
distribution of hue over river pixels, we used two components denoted fbed and fdeep with respective
parameters sets Θbed and Θdeep: v1,bed and v1,deep to denote the mean direction of each component.

4.6. Modified EM Algorithm for Depth Estimation

The goal of the calibration process is, in the end, to be able to correlate depth hi
at an ‘unmeasured’ pixel i having multispectral hue Ui, with the posterior membership
probability to the deep component:

πi,deep =
πdeep fdeep

(
Ui
∣∣Θdeep

)
πdeep fdeep

(
Ui
∣∣Θdeep

)
+
(

1− πdeep

)
fbed
(
Ui
∣∣Θbed

)
Recall that the ‘posterior’ term means ‘after we get the additional information of pixel

hue’. In contrast, πdeep is the ‘prior’, general probability that a randomly choosen pixel
comes from the deep component (it is a constant, corresponding to the weight of the deep
component in the mixture distribution): once we obtain the multispectral hue Ui for a
particular pixel i, we can update the prior membership probability using Bayes formula to
obtain the individual posterior membership probability πi,deep.

In order for this posterior probability to be correlated with depth, we use a slightly
modified version of the expectation–maximization algorithm presented in Section 3, where
we first estimated membership probabilities for each pixel (expectation E-step) and then
updated the parameters of each component independently using the updated membership
probabilities (maximization M-step). Here, we will add an intermediate regression (R-step)
between these two steps: instead of feeding the maximization algorithm directly with the
membership probabilities π

(r+1)
i,deep for each pixel, we will regress the π

(r+1)
i,deep against measured



Remote Sens. 2021, 13, 4435 16 of 24

depth hi and feed the maximization algorithm with regressed membership probabilities
π̂
(r+1)
i,deep(hi). Here is the workflow performed at each iteration:

• E-step (Expectation): given current parameter estimates
{

π
(r)
deep; Θ

(r)
deep; Θ

(r)
bed

}
of the

mixture at iteration (r), compute the updated probability that pixel i with multispectral
hue Ui comes from a deep component:

π
(r+1)
i,deep =

π
(r)
deep fdeep

(
Ui
∣∣Θ

(r)
deep

)
π
(r)
deep fdeep

(
Ui
∣∣Θ

(r)
deep

)
+
(

1− π
(r)
deep

)
fbed

(
Ui
∣∣Θ

(r)
bed

)
• R-step (Regression): regress deep membership probability as a power law function of

measured depth so that

π̂
(r+1)
i,deep = a(r+1)(hi

)b(r+1)

• M-step (Maximization): independently maximize the log-likelihood for each component



`deep
(
Θdeep

)
=

Ndepth

∑
i=1

π̂
(r+1)
i,deep log fdeep

(
Ui
∣∣Θdeep

)
=⇒ updated Θ

(r+1)
deep

`bed(Θbed) =

Ndepth

∑
i=1

(
1− π̂

(r+1)
i,deep

)
log fbed

(
Ui
∣∣Θbed

)
=⇒ updated Θ

(r+1)
bed

Finally, we update the prior membership probability πdeep (weight of the deep compo-
nent in the mixture), which is the mathematical expectation of individual (posterior)
membership probabilities:

π
(r+1)
deep =

1
Ndepth

Ndepth

∑
i=1

π̂
(r+1)
i,deep

where Ndepth is the total number of in situ depth measurement points. Then we iterate
back at E-step and so on until convergence is reached.

5. Results
5.1. Error Statistics

The modified expectation–maximization algorithm has several outputs after conver-
gence: the final parameters

{
πdeep; Θdeep; Θbed

}
of the mixture, but also the regression

parameters (a, b) such that for each pixel i

π̂i,deep = a hb
i

This output curve is shown in Figure 13, left panel. Taking hmax = a−1/b, this relation
can be reversed in order to express depth as a function of (known) posterior membership
probability:

ĥi = hmax π1/b
i,deep

Since πi,deep ranges between 0 and 1, estimated depth cannot exceed the ‘saturation’
value hmax, which is found to be about 4.9 m. In other words, when hue is close to the
maximum of the density of the ‘deep’ component, all we can say is that depth is at least hmax,
but could be much larger. This is a reasonable behavior: the model will never extrapolate to
unbounded values. Figure 13, right panel, shows the resulting scatter plot for estimated vs.
measured depth: the RMSE is about 0.59 m and the determination coefficient is r2 = 0.55.
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Figure 13. (Left panel): ‘depth’ vs. ‘deep membership probability’ regression as outputted by the modified expectation–
maximization. This relation is of course meant to be used in the reverse direction in predictive mode (right panel): given
the posterior membership probability πi,deep computed at pixel i with multispectral hue Ui, we can estimate depth hi

at this pixel.

In Figure 14, we plot the correlation between measured depth and the log of all spectral
ratios that can be defined with four bands. Obviously, no single pair of bands exhibits a
correlation stronger than the one identified on the hue hypersphere. Most noticeably, none
of the spectral ratios is able to identify large depths unambiguously.

A simple benchmark is provided by a Multiple Linear (ML) regression using all
independent log-ratios (i.e., ratios between pairs of adjacent bands). It is a specific type of
MODPA analysis [15] and the resulting optimal combination of predictors reads:

hML = 2.60 log
(

Red
NIR

)
+ 11.48 log

(
Green
Red

)
− 7.31 log

(
Blue

Green

)
− 7.39 (24)

The result is shown in Figure 15: the model yields an RMSE of 0.58 m, roughly similar
to our procedure. However, the correlation is substantially lower: due to the least-square
nature of the model, the variance of estimated depth is lower than the variance of measured
depth and the model is not able to yield depths larger than 2.5 m. In contrast, the mixture
model on the hypersphere yields depths as large as 4 m.
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Figure 14. Correlation between measured depth and the log of the six different spectral ratios that can be defined with
four-band imagery.

Figure 15. Result of a Multiple Linear (ML) regression against all three independent log-ratios.
Negative predicted values have been set to zero before the computation of RMSE and r2.
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5.2. Focus on Some Cross-Sections

In Figure 16, we show measured and simulated depth at two representative cross-
sections. This illustrates how the method is able to identify localized bed features and
high-frequency variations in bathymetry, which are typical of the bedrock channel of the
Garonne Toulousaine [19].

measured

simulated

measured

simulated

de
pt

h 
(m

)
de

pt
h 

(m
)

BLA07

BLA06

Figure 16. Comparison between measured and simulated depth along two surveyed cross-sections. The method is able to
capture high-frequency variations in water depth: a typical example is the crescent-shaped feature visible at the bottom of
the image, which is intersected by profile BLA06.
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6. Discussion
6.1. Sources of Error
6.1.1. Radiometric Inhomogeneity

The BDORTHOr images used in this study form a nationwide dataset covering
all 101 French departments. In practice, these images are radiometrically equalized in
order to provide a seamless mosaic at the scale of each department [24,25]. There remain
some variations in radiometric aspects inside the mosaic, and especially at the border
between two departments. As the investigated reach spans two departments, namely
Haute-Garonne (31) and Tarn-et-Garonne (82), the dataset is clearly not radiometrically
homogeneous, and this increases the variability in both substrate and deep water hue. This
additional variability reduces the precision of the hue—depth relation, but since the method
is designed to deal with a dispersion in the distribution of both components through
parameter sets Θbed and Θdeep of the Fisher–Bingham–Kent distributions, the radiometric
inhomogeneity can be statistically treated together with the natural variations. The key
parameter acting as a quantification of non-uniformity is the concentration parameter κbed
of the bed hue distribution. This is an important advantage of the method over log-ratio
methods, which rely on the assumption that reflectance ratios Rb(x,λi)

Rb(x,λj)
are rather uniform

spatially (see Section 2).

6.1.2. Age and Planar Precision of In Situ Data

As mentioned in Section 4.1.2, the bathymetric data used in this study were collected
during surveys in the period 1987–2002. This end-of-twentieth-century bathymetry may
differ substantially from present bathymetry locally, even for a bedrock channel. Moreover,
a precise positioning of profile with GPS was not always available: errors up to several
meters on the transverse position of cross-section points were obvious for a few of them,
and likely for many. Profiles were manually repositioned where it was possible, but the
remaining uncertainty is an important source of error.

6.1.3. Water Surface Elevation

The airborne images were taken at low flow during the month of July, 2016. However,
we do not have a corresponding water surface profile of the reach for the same period; as in
situ data consists of absolute bed elevation zb (in meters a.s.l) and not depth, we needed an
estimated map of water surface elevation zws at low flow, which we derived from a mean
of two estimates:

1. The first estimate was simply given by the lowest valid elevation at each cross-
section in the LiDAR DEM of the floodplain (which also covers the channel through
interpolation between the banks). Indeed, the LiDAR survey was conducted during
the 2012 low flow period, in hydraulic conditions that we assumed roughly similar to
those of the 2016 images;

2. The second estimate is the elevation that yields the same width as the one observed in
the 2016 images (as defined by the NDWI mask), for each surveyed profile. We then
interpolate linearly between the surveyed cross-sections.

We then corrected the values so that our estimated low flow surface elevation profile has
strictly monotonically decreasing values. Even if the estimated water surface profile seems
reasonable, the uncertainty in water surface elevation, and hence in field estimate of water
depth h = zws − zb, may be several tens of centimeters locally. As large depths drive the
parameter estimation, it does not hinder the possibility to identify a robust hue–depth
relation, though.

6.2. Perspectives

This work is a proof-of-concept that large-scale identification of river bathymetry is
possible using publicly available nationwide datasets. The bathymetric map of the Garonne
River produced in this study will be used as an input for reach-scale hydraulic modeling
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and the analysis of reach-scale hydraulic geometry relationships following [2], with a
spatial resolution that could never have been achieved on the sole basis of existing in situ
data. However, the shortcomings of the Garonne dataset, listed in Section 6.1, make it
necessary to continue the work using higher-quality data.
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Appendix A. General Expression of the Rotation Matrix Needed for Computing the
Multispectral Hue in Any Dimension

Let w and n be two unit vectors of vectors of Rn (i.e., two points of Sn−1). The
n-dimensional rotation matrix sending w on n can be obtained as follows [30]. Noting

α = arccos(w · n) = arccos
(
wTn

)
q =

w− n cos α

‖w− n cos α‖
A = n q− q n

where n q = n qT is the outer (dyadic) product, the desired rotation matrix is

M = I + (sin α)A +
(
(cos α)− 1

)(
n n + q q

)
The rotation matrix allowing the transition from Sn−1 to Sn−2 in the last step of hue

computations is the one sending the ‘unit white vector’ w = 1√
n [1, 1, . . . , 1, 1]T of Rn to the

‘North Pole’ n = [0, 0, . . . , 0, 1]T of Rn.
In R4, this matrix reads:

M =
1
6


5 −1 −1 −3
−1 5 −1 −3
−1 −1 5 −3

3 3 3 3

 with M−1 = MT ⇔ MTM = I, and det(M) = +1

Appendix B. Computational Example of the Mapping from R4 to S2 with Four Bands

In this Appendix, we detail the computations mapping a ‘pure green’ pixel CGreen
= [0, 0, 1, 0]T onto the unit hue sphere S2.

• We first remove the mean of all bands to each band in order to obtain the vector c′,
and then we normalize it:

https://geoservices.ign.fr/documentation/diffusion/telechargement-donnees-libres.html
https://geoservices.ign.fr/documentation/diffusion/telechargement-donnees-libres.html
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c′Green =


−1/4
−1/4
+3/4
−1/4

 =⇒
c′Green∥∥c′Green

∥∥ =
2√
3


−1/4
−1/4
+3/4
−1/4

 =
1

2
√

3


−1
−1
+3
−1


• The latter vector is already on a two-sphere, but this sphere is embedded in a three-

dimensional subspace of R4 whose axes do not coincide with a triplet of axes of the
initial basis (this three-dimensional subspace is orthogonal to the unit ‘white’ vector
w = 1

2 [1, 1, 1, 1]T). In order to drop one Cartesian coordinate (e.g., the last one), we
rotate w to the ’North Pole’ n = [0, 0, 0, 1]T of R4, with the 4D rotation matrix M such
that:

M w = M


1/2
1/2
1/2
1/2

 =


0
0
0
1

 = n

Performing this final rotation and discarding the last, the zero coordinate yields:

UGreen = M
c′Green∥∥c′Green

∥∥ =
1

12
√

3


−4
−4
20

0

 ∼ 1
3
√

3

 −1
−1

5

 ∈ R3

• Here we express U in Cartesian coordinates of Rn−1, but we can check that it is indeed
in Sn−2:

‖UGreen‖ =
1

3
√

3

√
(−1)2 + (−1)2 + 52 =

1
3
√

3

√
27 = 1

It is often easier to manipulate the invariant in Cartesian coordinates of Rn−1, instead
of (n− 2) Euler angles: one reason is that computations on a hypersphere involve many
scalar products which are straightforwardly evaluated in Cartesian coordinates. However,
we must always recall that the invariant has only (n− 2) degrees of freedom.

Appendix C. Overview of the Fisher–Bingham–Kent (FBK) Distribution

In this appendix, we provide a quick overview of the properties of the Fisher–Bingham–
Kent distribution for a random vector x on the (p− 1)-sphere Sp−1 embedded in Rp. We
remind that in the paper, p = n − 1 where n is the number of bands. The probability
density function reads:

f (x;
{

vj
}

, κ, β) =
1

C(κ, β)
exp

{
κ v1 · x + ∑

p
j=2 β j(vj · x)2

}
(A1)


∑

p
j=2 β j = 0

0 <
∣∣β j
∣∣ ≤ κ

2

vi · vj = vi
Tvj = δij vectors form an orthonormal basis

κ > 0 is a concentration parameter controlling the dispersion around the mean
direction v1: indeed, the term (κ v1 · x) is maximum when the scalar product is 1, for x = v1,
and minimum when the scalar product is −1, in x = −v1 (antipode of v1). Constants β j
and vectors

{
vj
}

j=2...p determine the asymetry of the distribution in the (p− 1) directions
orthogonal to v1.

The Fisher–Bingham–Kent distribution thus has N = (p−1)(p+2)
2 degrees of freedom,

distributed in:
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• Degrees of freedom corresponding to the minimum number of rotations (aside from
degenerated cases) allowing the change-of-basis from the canonical basis of Rp to the
orthonormal basis defined by the

{
vj
}

; there are as many such rotations as indepen-
dent rotation planes in Rp, that is, the number of combinations of two orthogonal
directions chosen from among p :(

p
2

)
= C2

p =
p!

(p− 2)! 2!
= 1

2 p(p− 1)

• p degrees of freedom corresponding to the concentration parameter κ and the (p− 1)
asymetry parameters β j, 2 ≤ j ≤ p,

• 1 degree of freedom removed due to the condition on the β j

p

∑
j=2

β j = 0

Table A1 below summarizes the number of parameters of the FBK distribution de-
pending on the number of bands (n) or dimension of the corresponding Euclidean space
p = n− 1 (U ∈ Sn−2 ⊂ Rn−1).

Table A1. Number N of degrees of freedom for the Fisher–Bingham–Kent distribution as a function of the dimension p of
the initial space.

n Number of Bands p = n − 1 Euclidean Space Hypersphere N =
(p−1)(p+2)

2 Remark

3 2 R2 S1 (circle) 2 Von Mises distribution
4 3 R3 S2 (sphere) 5 classical Fisher–Bingham “FB5”
5 4 R4 S3 9
10 9 R9 S8 44
50 49 R49 S48 1224
100 99 R99 S98 4949
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