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In this paper we study the spontaneous development of symmetries in the early layers of a

Convolutional Neural Network (CNN) during learning on natural images. Our architecture

is built in such a way to mimic some properties of the early stages of biological visual

systems. In particular, it contains a pre-filtering step ℓ0 defined in analogy with the Lateral

Geniculate Nucleus (LGN). Moreover, the first convolutional layer is equipped with lateral

connections defined as a propagation driven by a learned connectivity kernel, in analogy

with the horizontal connectivity of the primary visual cortex (V1). We first show that the ℓ0

filter evolves during the training to reach a radially symmetric pattern well approximated

by a Laplacian of Gaussian (LoG), which is a well-known model of the receptive profiles

of LGN cells. In line with previous works on CNNs, the learned convolutional filters in the

first layer can be approximated by Gabor functions, in agreement with well-established

models for the receptive profiles of V1 simple cells. Here, we focus on the geometric

properties of the learned lateral connectivity kernel of this layer, showing the emergence

of orientation selectivity w.r.t. the tuning of the learned filters. We also examine the

short-range connectivity and association fields induced by this connectivity kernel, and

show qualitative and quantitative comparisons with known group-based models of

V1 horizontal connections. These geometric properties arise spontaneously during the

training of the CNN architecture, analogously to the emergence of symmetries in visual

systems thanks to brain plasticity driven by external stimuli.

Keywords: lie symmetries, CNN-convolutional neural network, primary visual cortex (V1), lateral connection,

lateral geniculate, sub-Riemannian geometries

1. INTRODUCTION

The geometry of the visual system has been widely studied over years, starting from the first
celebrated descriptions given by Hubel and Wiesel (1962) and Hubel (1987) and advancing with
a number of more recent geometrical models of the early stages of the visual pathway, describing
the functional architectures in terms of group invariances (Hoffman, 1989; Citti and Sarti, 2006;
Petitot, 2008). Some works have also focused on reproducing processing mechanisms taking place
in the visual system using these models—e.g., detection of perceptual units in Sarti and Citti (2015),
image completion in Sanguinetti et al. (2008).
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On the other hand, relations between Convolutional Neural
Networks (CNNs) and the human visual system have been
proposed and studied, in order to make CNNs even more
efficient in specific tasks (see e.g., Serre et al., 2007). For instance,
in Yamins et al. (2015) and Yamins and DiCarlo (2016) the
authors have been able to study several cortical layers by focusing
on the encoding and decoding ability of the visual system,
whereas in Girosi et al. (1995), Anselmi et al. (2016), and Poggio
and Anselmi (2016) the authors have studied some invariance
properties of CNNs. A parallel between horizontal connectivity
in the visual cortex and lateral connections in neural networks
has also been proposed in some works (see e.g., Liang and
Hu, 2015; Spoerer et al., 2017; Sherstinsky, 2020). Recently,
other biologically-inspired modifications of the classical CNN
architectures have been introduced (Montobbio et al., 2019;
Bertoni et al., 2022).

In this paper, we combine the viewpoints of these strands
of research by studying the emergence of biologically relevant
geometrical symmetries in the early layers of a CNN architecture.
We focus on drawing a parallel between the patterns learned from
natural images by specific computational blocks of the network,
and the symmetries arising in the functional architecture of
the Lateral Geniculate Nucleus (LGN) and the primary visual
cortex (V1). After recalling in section 2 the main symmetries
of the visual cortex, in section 3 we introduce an architecture
similar to standard CNN models found in the literature, except
for two main modifications. First, we insert a pre-filtering layer
ℓ0 composed of one single filter shifting over the whole input
image—corresponding to a layer of neurons whose receptive
profiles are assumed to have all the same shape. Second, we
introduce convolutional lateral connections acting on the feature
space of the first network layer ℓ1. Such connections are
defined in analogy with aWilson-Cowan-type evolution equation
with a plastic connectivity kernel weighting the strength of
pairwise interactions.

As it is detailed in section 4, the filter learned by layer
ℓ0 has a radially symmetric shape similar to LGN receptive
profiles, extending the results of Bertoni et al. (2022) to a more
complex architecture. section 5 focuses on ℓ1 receptive profiles,
showing Gabor-like shapes as expected from previous work
(Krizhevsky et al., 2009; Zeiler and Fergus, 2014). However,
thanks to the pre-filtering layer ℓ0, our layer ℓ1 only contains
filters sharply tuned for orientation, with no radially symmetric
filters. In addition, by fitting the filters in the first ℓ1 layer
with Gabor functions, we are able to use their parameters
of position and orientation as coordinates for the ℓ1 layer
itself. This provides a basis to study the geometry of ℓ1 lateral
connections in what follows and to compare it with existing
geometric models of the cortical long range connectivity in the
Lie group of rotation and translation (Citti and Sarti, 2006).
Indeed, in section 6 we describe the relationship between the
learned distribution of position and orientation tuning of layer
ℓ1 neurons and, in these new coordinates, the strength of lateral
connectivity between two neurons through a learned kernel K1.
As a consequence, the learned kernels and filters are re-mapped
into the R

2 × S1 feature space. The last part of the section is
devoted to studying the short-range connectivity as a function

of orientation, and association fields induced by the resulting
anisotropic connectivity kernel, comparing them with the curves
of edge co-occurrence of Sanguinetti et al. (2010). In this way
we prove the spontaneous emergence of Lie symmetries in the
proposed biologically inspired CNN, as the symmetries encoded
in the learned weights.

2. GROUP SYMMETRIES IN THE EARLY
VISUAL PATHWAY

Over the years, the functional architecture of the early visual
pathway has often been modeled in terms of geometric
invariances arising in its organization, e.g., in the spatial
arrangement of cell tuning across retinal locations, or in the
local configuration of single neuron selectivity. Certain classes of
visual cells are shown to act, to a first approximation, as linear
filters on an optic signal: the response of one such cell to a visual
stimulus I, defined as a function on the retina, is given by the
integral of I against a function ψ , called the receptive profile (RP)
of the neuron:

z :=

∫

I(x, y)ψ(x, y)dxdy. (1)

This is the case for cells in the Lateral Geniculate Nucleus
(LGN) and for simple cells in the primary visual cortex (V1)
(see e.g., Citti and Sarti, 2006; Petitot, 2008). Both types of cells
are characterized by locally supported RPs, i.e., they only react
to stimuli situated in a specific retinal region. Each localized
area of the retina is known to be associated with a bank of
similarly tuned cells (see e.g., Hubel and Wiesel, 1977; Sarti and
Citti, 2015), yielding an approximate invariance of their RPs
under translations.

The set of RPs of cells is typically represented by a bank of
linear filters {ψp}p∈G ⊆ L2(R2) (for some references see e.g., Citti
and Sarti, 2006; Petitot, 2008; Sarti et al., 2008). The feature space
G is typically specified as a group of transformations of the plane
{Tp, p ∈ G} under which the whole filter bank is invariant: each
profile ψp can be obtained from any other profile ψq through the
transformation Tp−q. The group G often has the product form
R
2×F , where the parameters (x0, y0) ∈ R

2 determine the retinal
location where each RP is centered, while f ∈ F encodes the
selectivity of the neurons to other local features of the image, such
as orientation and scale.

2.1. Rotational Symmetry in the LGN
A crucial elaboration step for human contrast perception is
represented by the processing of retinal inputs via the radially
symmetric families of cells present in the LGN (Hubel and
Wiesel, 1977; Hubel, 1987). The RPs of such cells can be
approximated by a Laplacian of Gaussian (LoG):

ψLoG(x, y) = −
1

πσ 4

[

1−
x2 + y2

2σ 2

]

e
−

x2+y2

2σ2 , (2)

where σ denotes the standard deviation of the Gaussian function
(see e.g., Petitot, 2008).
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2.2. Roto-Translation Symmetries in V1
Feedforward and Lateral Connectivity
The invariances in the functional architecture of V1 have been
described through a variety of mathematical models. The sharp
orientation tuning of simple cells is the starting point of most
descriptions. This selectivity is not only found in the response
of each neuron to feedforward inputs, but is also reflected in
the horizontal connections taking place between neurons of V1.
These connections show facilitatory influences for cells that are
similarly oriented; moreover, the connections departing from
each neuron spread anisotropically, concentrating along the axis
of its preferred orientation (see e.g., Bosking et al., 1997).

An established model for V1 simple cells is represented by
a bank of Gabor filters {ψx0 ,y0 ,θ ,σ }(x0 ,y0 ,θ ,σ )∈R2×S1×R

2
+

built by

translations T(x0,y0), rotations Rθ and dilations Dσx ,σy of the filter

ψ0,0,0,1(x, y) = Ae−
x2+y2

2 cos(2π fx+ φ), (3)

where A is the amplitude and f is the frequency of the filter and φ
is the phase which indicates if the Gabor filter is even or odd. See
e.g., Daugman (1985) and Lee (1996).

The evolution in time t 7→ h(p, t) of the activity of the neural
population at p ∈ R

2 × F is assumed in Bressloff and Cowan
(2003) to satisfy a Wilson-Cowan equation (Wilson and Cowan,
1972):

∂th(p, t) = −α h(p, t)+ s

(∫

K(p, p′)h(p′, t)dp′ + z(p, t)

)

.

Note that, if K(p, p′) is of the special form K(p − p′), then the
integral in Equation (4) becomes a convolution as follows

∂th(p, t) = −α h(p, t)+ s(K ∗ h+ z). (4)

Here, s is an activation function; α is a decay rate; z is the
feedforward input corresponding to the response of the simple
cells in presence of a visual stimulus, as in Equation (1); and
the kernel K weights the strength of horizontal connections
between p and p′. The form of this connectivity kernel has
been investigated in a number of studies employing differential
geometry tools. A breakthrough idea in this direction has been
that of viewing the feature space as a fiber bundle with basis
R
2 and fiber F . This approach first appeared in the works

of Koenderink and van Doom (1987) and Hoffman (1989). It
was then further developed by Petitot and Tondut (1999) and
Citti and Sarti (2006). In the latter work, the model is specified
as a sub-Riemannian structure on the Lie group R

2 × S1 by
requiring the invariance under roto-translations. Other works
extended this approach by inserting further variables such as
scale, curvature, velocity (see e.g., Sarti et al., 2008; Barbieri et al.,
2014; Abbasi-Sureshjani et al., 2018).

As described in Bosking et al. (1997) the cells connected
with the same retinal region and with different preferred
orientations form hypercolumnar modules, organized in
“pinwheel” arrangements. At each retinal location the most
excited cell is selected, leading to the so-called non-maximal

suppression principle. This behavior is the result of a short-
range connectivity that induces excitation between cells with
close orientation and inhibition between cells with different
orientation. This kind of connectivity has been modeled as a
“Mexican hat”-like function in Bressloff and Cowan (2003).

On the other hand, the long-range horizontal connections
of V1 allow cells belonging to different hypercolumns, but with
similar orientation, to interact with each other. As a result,
propagation of the visual signal along long-range horizontal can
justify contour completion, i.e., the ability to group local edge
items into extended curves. This perceptual phenomenon has
been described through association fields (Field et al., 1993),
characterizing the geometry of the mutual influences between
oriented local elements. See Figure 1A from the experiment of
Field, Heyes and Hess. Association fields have been characterized
in Citti and Sarti (2006) as families of integral curves of the two
vector fields

EX1 = (cos θ , sin θ , 0), EX2 = (0, 0, 1) (5)

generating the sub-Riemannian structure on R
2 × S1. Figure 1B

shows the 3-D constant coefficients integral curves of the
vector fields (Equation 5) and Figure 1C their 2-D projection.
These integral curves are the solution of the following ordinary
differential equation:

γ ′(t) = X1(γ (t))+ kX2(γ (t)).

The curves starting from (0, 0, 0) can be rewritten explicitly in the
following way:

x =
1

k
sin(kt), y =

1

k
(1− cos(kt)), θ = kt. (6)

while integral curves starting from a general point (x0, y0, θ0)
can be generated from equations (6) by translations T(x0 ,y0)

and rotations Rθ .
The probability of reaching a point (x, y, θ) starting from

the origin and moving along the stochastic counterpart of these
curves can be described as the fundamental solution of a second
order differential operator expressed in terms of the vector
fields EX1, EX2. This is why the fundamental solution of the sub-
Riemannian heat kernel or Fokker Planck (FP) kernel have
been proposed as alternative models of the cortical connectivity.
This perspective based on connectivity kernels was further
exploited in Montobbio et al. (2020): the model of the cortex
was rephrased in terms of metric spaces, and the long range
connectivity kernel directly expressed in terms of the cells RPs:
in this way a strong link was established between the geometry
of long range and feedforward cortical connectivity. Finally, in
Sanguinetti et al. (2010) a strong relation between these models
of cortical connectivity and statistics of edge co-occurrence in
natural images was proved: the FP fundamental solution is
indeed a good model also for the natural image statistics. In
addition, starting from a connectivity kernel parameterized in
terms of position and orientation, in Sanguinetti et al. (2010) they
obtained the 2-D vector field represented in red in Figure 1D,
whose integral curves (depicted in blue) provide an alternative
model of association fields, learned from images.
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FIGURE 1 | (A) Association fields from the experiment of Field, Hayes and Hess (Field et al., 1993). (B) 3D representation of the association field with contact planes

of integral curves of the fields (Equation 5) with varying values of the parameter k, from Citti and Sarti (2006). (C) Integral curves of the fields (Equation 5) with varying k,

from Citti and Sarti (2006). (D) The vector field of unitary vectors oriented with the maximal edge co-occurrence probability (red) with superimposed its integral curves

(blue), from Sanguinetti et al. (2010).

3. THE UNDERLYING STRUCTURE: A
CONVOLUTIONAL NEURAL NETWORK
ARCHITECTURE

In this section we introduce the network model that will
constitute the fundamental structure at the basis of all
subsequent analyses. The main architecture consists of a typical
Convolutional Neural Network (CNN) for image classification
(see e.g., Lawrence et al., 1997; LeCun et al., 1998). CNNs
were originally designed in analogy with information processing
in biological visual systems. In addition to the hierarchical
organization typical of deep architectures, translation invariance
is enforced in CNNs by local convolutional windows shifting
over the spatial domain. This structure was inspired by the
localized receptive profiles of neurons in the early visual areas,
and by the approximate translation invariance in their tuning.
We inserted twomainmodifications to the standard model. First,
we added a pre-filtering step that mimics the behavior of the
LGN cells prior to the cortical processing. Second, we equipped

the first convolutional layer with lateral connections defined by
a diffusion law via a learned connectivity kernel, in analogy with
the horizontal connectivity of V1. We focused on the CIFAR-10
dataset (Krizhevsky et al., 2009), since it contains natural images
with a large statistics of orientations and shapes (see e.g., Ernst
et al., 2007). We expected to find a strict similarity between the
connectivity associated with this kernel and the one observed by
Sanguinetti et al. (2010), since they are both learned from the
statistics of natural images.

3.1. LGN in a CNN
As described in Bertoni et al. (2022), since the LGN pre-processes
the visual stimulus before it reaches V1, we aim to introduce a
“layer 0” that mimics this behavior. To this end, a convolutional
layer ℓ0 composed by a single filter 90 of size s0 × s0, a ReLU
function and a batch normalization step is added at the beginning
of the CNN architecture. If ℓ0 behaves similarly to the LGN,
then 90 should eventually attain a rotational invariant pattern,
approximating the classical Laplacian-of-Gaussian (LoG) model
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for the RPs of LGN cells. In such a scenario, the rotational
symmetry should emerge spontaneously during the learning
process induced by the statistics of natural images, in analogy
with the plasticity of the brain. In section 5 we will display the
filter 90 obtained after the training of the network and test its
invariance under rotations.

3.2. Horizontal Connectivity of V1 in a CNN
Although the analogy with biological vision is strong, the
feedforward mechanism implemented in CNNs is a simplified
one, overlooking many of the processes contributing toward the
interpretation of a visual scene. Our aim is to insert a simple
mechanism of horizontal propagation defined by entirely learned
connectivity kernels, and to analyze the invariance patterns, if
any, arising as a result of learning from natural images.

Horizontal connections of convolutional type have been
introduced in previous work through a recurrent formula,
describing an evolution in time (Liang and Hu, 2015; Spoerer
et al., 2017). However, the lateral kernels employed in these
works are very localized, so that the connectivity kernel applied
at each step only captures the connections between neurons very
close-by in space. Obtaining a reconstruction of the long-range
connectivity matrix resulting from the iteration of this procedure
is not straightforward, since each step is followed by a nonlinear
activation function. Here, we propose a formula defined as a
simplified version of Equation (4), where the neural activity
is updated through convolution with a connectivity kernel K1

with a wider support.The output h̃1 is defined by averaging
between the purely feedforward activation h1 = ReLU(z1) and
the propagated activation K1 ∗ h1, so that our update rule reads:

h̃1 =
1

2

(

h1 + K1 ∗ h1
)

. (7)

Up to constants, this can be written as a discretization of a
particular case of Equation (4), where the activation function s
is linear.

The connectivity kernel K1 is a 4-dimensional tensor
parameterized by 2-D spatial coordinates (i, j) and by the indices
(f , g) corresponding to all pairs of ℓ1 filters. For fixed f and g,
the function

(i, j) 7→ K1(i, j, f , g) (8)

represents the strength of connectivity between the filters 9f

and 9g , where the spatial coordinates indicate the displacement
in space between the two filters. The intuitive idea is that K1

behaves like a “transition kernel” on the feature space of the first
layer, modifying the feedforward output according to the learned
connectivity between filters: the activation of a filter encourages
the activation of other filters strongly connected with it.

3.3. Description of the Architecture and
Training Parameters
In this section we give a detailed overview of our CNN
architecture, as well as the data and training scheme employed.

The architecture is composed by 11 convolutional layers, each
one followed by a ReLU function and a batch normalization layer,

and by three fully-connected layers. Appropriate zero padding
was applied in order to keep the spatial dimensions unchanged
after each convolutional layer.The layers composing the network
architecture are displayed in Figure 2 and listed below.
Convolutional layers are denoted by ℓ1, . . . , ℓ10, whereas fully
connected layers are denoted by FC1, FC2, FC3. For simplicity we
omit the ReLU function and the batch normalization layer.

ℓ0 LGN layer: a single filter 90 of size 11× 11;

ℓ1 64 filters of size 7× 7;

lateral connectivity kernel K1 of size 13× 13× 64× 64;

max pooling of square size 2;

ℓ2 64 filters of size 5× 5× 64;

ℓ3, ℓ4 64 filters of size 3× 3× 64;

max pooling of square size 2;

ℓ5, ℓ6 64 filters of size 3× 3× 64;

ℓ7 128 filters of size 3× 3× 64;

max pooling of square size 2;

ℓ8, ℓ9, ℓ10 128 filters of size 3× 3× 128;

max pooling of square size 2;

FC1, FC2, FC3 1,000, 200, and 10 output units respectively.

Since we wanted a gray scale image to be the input of our neural
network, we transformed the CIFAR-10 dataset into gray scale
images. All the parameters except the kernels K1 were first pre-
trained in the absence of lateral connections for a maximum of
800 epochs, with early stopping when validation accuracy failed
to increase for 80 consecutive epochs. We then inserted lateral
connections in layer ℓ1, thus employing the full update rule in
Equation (7), and implemented a further training stage: we re-
updated the whole architecture including the lateral kernels K1

for a maximum of 800 epochs with early stopping as in the first
phase. The initial purely feedforward training phase was intended
both to obtain more stable learning of the receptive profiles,
and to simulate the pre-existing orientation tuning of receptive
profiles in V1 prior to the development of horizontal connections
(Espinosa and Stryker, 2012). We stress however that, after this
“initialization” stage, all the network weights were trained jointly:
this allows for feedforward weights to possibly readjust in the
presence of lateral connections.

In order to enhance the generalization ability of the network,
along with the weight regularization and the batch normalization
layers, we applied dropout with dropping probability equal to
0.5 after convolutional layer ℓ10. Dropout applied after the
convolutional part of the network was intended to reduce
overfitting in the final classification layers by weakening the
reciprocal dependencies between weights of the same layer: this
yields a more stable selection of the features relevant for image
classification (Srivastava et al., 2014). We also applied dropout
with dropping probability 0.2 when applying the kernel K1 (see
also Semeniuta et al., 2016). Randomly dropping 20% lateral
connections at each weight update had the purpose of avoiding
co-adaptation of the connectivity weights, thus reinforcing
their dependency on the intrinsic geometric properties of the
receptive profiles. Applying dropout increased the performance

Frontiers in Computational Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 694505

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Bertoni et al. Emergence of Lie Symmetries

FIGURE 2 | Schematic of the CNN architecture used for the analyses throughout the paper. Convolutional layers are numbered from ℓ0 to ℓ10, fully connected

classification layers are denoted as FC1, FC2, FC3. Horizontal connections governed by the connectivity kernel K1 are represented as an operator acting on the feature

space associated with layer ℓ1.

on the test set from 72.24 to 80.28%. The network architecture
and optimization procedure were coded using Pytorch (Paszke
et al., 2017). The performance of the network was quantified
as accuracy (fraction of correctly predicted examples) on the
CIFAR-10 testing dataset.

We compared the performances of a classical CNN, an LGN-
CNN with ℓ0 filtering and an LGN-CNN with ℓ0 filtering and
the kernel K1. The comparison is aimed to understand the role
of each of these layers in the accuracy of image recognition. We
trained several CNNs for each of the previous configurations,
varying the number of layers and units of the main CNN
structure. Figure 3 summarizes the observed behavior of the
mean testing accuracy. Figure 3A plots the accuracy against the
number of standard convolutional layers (i.e., not counting ℓ0 or
lateral connections). Figure 3B compares the mean performance
of the model detailed above with architectures including only
25 and 50% the number of convolutional filters in each layer
(e.g., each curve shows accuracy values for models that have
16, 32, and 64 filters in ℓ1, respectively). It is interesting to
note that in each of these tests the performances of LGN-
CNN with lateral connectivity and ℓ0 layer were better than the
performances of LGN-CNN with only ℓ0 layer, and better than
the classical CNN (without ℓ0 layer, or kernel K1). In particular,
the role of the ℓ0 filter seems to be particularly interesting while
testing accuracy w.r.t. the number of units (Figure 3B). Indeed,
in this case the behavior of LGN-CNN with or without lateral
connectivity kernel seems comparable, but both outperform
the classical CNN. On the other hand the presence of the K1

kernel seems to be important to increase performances while
testing accuracy w.r.t. the number of layers (Figure 3A). As
expected, increasing the number of convolutional layers led to
better performance for all three configurations (see Figure 3A).
The same happens when varying the number of units of each
convolutional layer (see Figure 3B). For the analyses described

in the following, we selected the architecture that reached the
best mean performances (80.28%± 0.17 over 20 trained instances
of the model), i.e., the one detailed above and marked by a red
asterisk in both plots.

We want to outline that, since we were interested in
the emergence of symmetries, we did not focus on reaching
state-of-the-art performances on classifying the CIFAR-10
dataset. However, our architecture reaches fair performances
that can be increased by adding further convolutional layers
and/or increasing the number of units. We prefer to keep
a “simple enough” network structure allowing for short
training times, even though the increase in performance
did not reach a plateau in terms of number of layers and
units.We stress that all the architectures examined showed
a comparable behavior as regards the invariance properties
of the convolutional layers ℓ0 and ℓ1 and the connectivity
kernel K1. Therefore, it would be reasonable to expect a
similar behavior also when further increasing the complexity of
the model.

4. EMERGENCE OF ROTATIONAL
SYMMETRY IN THE LGN LAYER

As described in Bertoni et al. (2022) the introduction of a
convolutional layer ℓ0 containing a single filter 90 mimics the
role of the LGN that pre-filters the input visual stimulus before it
reaches the V1 cells. The authors have shown that a rotational
invariant pattern is attained by 90 for a specific architecture,
suggesting that it should happen also for deeper and more
complex architectures.

Figure 4A shows the filter 90 obtained after the training
phase. As expected it has a radially symmetric pattern and
its maximum absolute value is attained in the center. Thus,
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FIGURE 3 | Behavior of the mean testing accuracy w.r.t. the number of layers (A) and units (B). We compare the classical CNNs (without ℓ0 and K1 - blue line) with

the LGN-CNN (with ℓ0 but without K1 - red line and with the LGN-CNN with lateral connections (as well as ℓ0 - yellow line). Error bars represent the standard error of

the mean over 20 trainings. The selected model used throughout the paper is the one marked by a red star in both plots. (A) The x-axis represents the number of

“standard” convolutional layers. (B) The x-axis represents the number of filters in each convolutional layer, expressed as a percentage w.r.t. the number of filters in the

selected model.

it can be approximated by the classical LoG model for
the RP of an LGN cell by finding the optimal value for
the parameter σ in Equation (2). We used the built-in
function optimize.curve_fit from the Python library SciPy.
Figure 4B shows this approximation with σ = 0.184.
Applying the built-in function corrcoef from the Python library
NumPy, it turns out that the two functions have a high
correlation of 93.67%.

These results show that 90 spontaneously evolves into a
radially symmetric pattern during the training phase, and more
specifically its shape approximates the typical geometry of the
RPs of LGN cells.

5. EMERGENCE OF GABOR-LIKE FILTERS
IN THE FIRST LAYER

As introduced in section 2.2, the RPs of V1 simple cells can
be modeled as Gabor functions by Equation (3). Moreover, the
first convolutional layer of a CNN architecture usually shows
Gabor-like filters (see e.g., Serre et al., 2007), assuming a role
analogous to V1 orientation-selective cells. In this section, we first
approximate the filters of ℓ1 as a bank of Gabor filters, in order
to obtain a parameterization in terms of position (x0, y0) and
orientation θ . This will provide a suitable set of coordinates for
studying the corresponding lateral kernel in theR2 × S1 domain,
see section 6.

5.1. Approximation of the Filters as Gabor
Functions
After the training phase, Gabor-like filters emerge in ℓ1 as
expected (see Figure 5A). The filters in ℓ1 were approximated by
the Gabor function in Equation (3), where all the parameters were

found using the built-in function optimize.curve_fit from the
Python library SciPy. The mean Pearson’s correlation coefficient
(obtained using the built-in function pearsonr from the Python
library SciPy) between the filters and their Gabor approximations
was 89.14%. All correlation values were statistically significant
(p < .001).Thanks to the introduction of the pre-filtering ℓ0,
our layer ℓ1 only contains filters sharply tuned for orientation,
with no Gaussian-like filters. Indeed, by removing ℓ0, the
two types of filters are mixed up in the same layer. See
Figure 5B, showing the ℓ1 filters of a trained CNN with the
same architecture, but without ℓ0. However, we can note
from Figure 5A that some filters have more complex shapes
that are neither Gaussian-, nor Gabor-like; indeed, since we
have not introduced other geometric structures on following
layers, it is reasonable to observe the emergence of more
complex patterns.

We then split the filter bank w.r.t. the parity of their
approximation, indicated by the parameter φ, that was forced
to be between −π and π . Specifically, we labeled a filter as
odd if π

4 < |φ| < 3π
4 , as even if 0 < |φ| < π

4 or
3π
4 < |φ| < π . Figures 6, 7 show the odd and even filters
rearranged w.r.t. the orientation θ . For the sake of visualization,
those even filters whose central lobe had negative values were
multiplied by -1. The orientation values are quite evenly sampled,
allowing the neural network to detect even small orientation
differences. Most of the filters have high frequencies, allowing
them to detect thin boundaries, but some low-frequency filters
are still present. The interest of the organization in odd and even
filters comes from comparison with neurophysiological data.
Indeed, it is well known that the RPs of simple cells are organized
in odd and even profiles, with different functionality. The odd
ones are responsible for boundary detection, the even ones for
the interior.
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FIGURE 4 | (A) The learned filter 90 of the current architecture. (B) Its approximation as a LoG, with optimal σ = 0.184, yielding a correlation of 93.67% with the

learned filter.

6. EMERGENCE OF
ORIENTATION-SPECIFIC CONNECTIVITY
IN THE HORIZONTAL KERNEL

In this section, we will study the learned connectivity kernel
K1, to investigate whether it shows any invariances compatible
with the known properties of the lateral connectivity of V1. The
connectivity kernel was re-parameterized as a function of relative
position and orientation of the profiles. In the following, we
first give details on this coordinate change. We then examine
the short-range connectivity (see e.g., Bressloff and Cowan,
2003) defined by the learned interactions between learned
profiles with different preferred orientations belonging to the
same hypercolumn (i.e., sharing the same retinal position) as a
function of the relative orientation between the filters. We finally
study the learned pattern of connectivity across both spatial
positions and orientations, modeling the interaction between
different hypercolumns.

6.1. Re-parameterization of the
Connectivity Kernel Using the First Layer
Approximation
In order to study the selectivity of the connectivity kernel to the
tuning properties of ℓ1 filters, we first rearranged it based on the
set of coordinates inR2×S1 induced by the Gabor approximation
of the filters.

We first split the kernel w.r.t. the parity of ℓ1 filters, resulting
in two separate connectivity kernels for even and odd filters. We
then adjusted the spatial coordinates of each kernel using the
estimated Gabor filter centers (x0, y0). Specifically, for each f , g
in {1, . . . , n}, we shifted the kernel K1(·, ·, f , g) of Equation (8) so
that a displacement of (i, j) = (0, 0) corresponds to the situation
where the centers of the filters 9f and 9g coincide. Then, the
original ordering of f , g in {1, . . . , n} has no geometric meaning.
However, each filter 9f is now associated with an orientation
θf obtained from the Gabor approximation. Therefore, we

rearranged the slices of K1 so that the f and g coordinates were
ordered by the corresponding orientations θf and θg . By fixing
one filter9f , we then obtained a 3-D kernel

(i, j, g) 7→ K1(i, j, f , g) (9)

defined on R
2 × S1, describing the connectivity between 9f and

all the other ℓ1 filters, each shifted by a set of local displacements
(i, j) ∈ {−6, . . . , 6} × {−6, . . . , 6}.

6.2. Non-maximal Suppression Within
Orientation Hypercolumns
The re-parameterized connectivity kernel K1 describes the
strength of interaction as a function of relative displacement and
relative orientation of the profiles. In this section, we restrict
ourselves to the case of a displacement (i, j) = (0, 0), i.e., the case
of profiles belonging to the same hypercolumn of orientation.We
thus study, for fixed f , the function

θg 7→ K1(0, 0, f , g) = K1(0, 0, θf , θg). (10)

This function, plotted in Figure 8, describes the learned pattern
of excitation and inhibition between the profiles 9f and 9g

as a function of the orientation θg . Notably, the resulting
interaction profile showed a “Mexican hat”-like shape, indicating
an enhancement of the response to the optimal orientation and
a suppression of the response to non-optimal orientations. This
type of profile has been shown to yield a sharpening of the
orientation tuning (Bressloff and Cowan, 2003).

6.3. Association Fields Induced by the
Connectivity Kernel
In this section, we will show the anisotropic distribution
of learned connectivity weight w.r.t. spatial position and
orientation. The interaction between profiles centered at different
points of the retinal space models the connectivity linking
distinct hypercolumns of orientation. This has been described
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FIGURE 5 | (A) Learned filters of ℓ1 of our CNN architecture. (B) Learned filters of ℓ1 of the same CNN architecture, but without ℓ0.

FIGURE 6 | (A) The learned filters of ℓ1 with odd parity, ordered w.r.t. the orientation θ obtained from the Gabor approximation. (B) The approximating odd Gabor

filters, labeled by their orientation.
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FIGURE 7 | (A) The learned filters of ℓ1 with even parity, ordered w.r.t. the orientation θ obtained from the Gabor approximation. (B) The approximating even Gabor

filters, labeled by their orientation.

FIGURE 8 | Behavior of learned short-range intracortical connections w.r.t. the

relative orientation. The curve displays the strength of interaction between the

filter 9f with orientation θf =
2π
5 and the other filters 9g centered at the same

point [i.e., with relative displacement = (0, 0)] as a function of their orientation

θg. The curve has been smoothed using the MatLab built-in function

smoothdata.

geometrically in previous work as illustrated in section 2.2. In
the following, we will compare the properties of our learned
connectivity with some existing models.

Starting from the re-parameterized kernel centered around
a filter 9f as in Equation (9), we used the θ-coordinates
to construct a 2-D association field as in Sanguinetti et al.
(2010). We first defined a 2-D vector field by projecting down
the orientation coordinates weighted by the kernel values.
Specifically, for each spatial location (i, j), we defined

V(i, j) := max
g

K1(i, j, f , g) ·

∑n
g=1 K

1(i, j, f , g)vg

‖
∑n

g=1 K
1(i, j, f , g)vg‖

, (11)

where vg ∈ R
2 is a unitary vector with orientation θg . This

yields for each point (i, j) a vector whose orientation is essentially
determined by the leading θ values in the fiber, i.e., the ones
were the kernel has the highest values. The norm of the vector

is determined by the maximum kernel value over (i, j). Finally,
we defined the association field as the integral curves of the so-
obtained vector field V starting from points along the trans-axial
direction in a neighborhood of (0, 0).

Figure 9B shows the association field obtained from the kernel
computed around the filter 9f in Figure 9A, with orientation

θf =
3π
10 . The vector fieldV was plotted using theMatlab function

quiver, and the integral curves were computed using the Matlab
function streamline. The vectors and curves are plotted over a 2-
D projection of the kernel obtained as follows. The kernel was
first resized by a factor of 10 using the built-in Matlab function
imresize for better visualization, and then projected down on
the spatial coordinates by taking the maximum over g. Note
that around (0, 0) the field is aligned with the orientation of the
starting filter9f , while it starts to rotate when it moves away from
the center – consistently with the typical shape of psychophysical
association fields, see section 2.2.

We also outline the similarity with the integral curves of
Sanguinetti et al. (2010), see Figure 1D. However, in our case the
rotation is less evident since the spatial displacement encoded
in the kernel K1 is more localized than the edge co-occurrence
kernel constructed in Sanguinetti et al. (2010).

Figure 9C shows in red the approximation of each integral
curve as a circular arc, obtained by fitting the parameter k of
Equation (6) to minimize the distance between the two curves.
The empirical curves induced by the learned connectivity kernel
were very close to the theoretical curves, with a mean Euclidean
distance of 0.0036.

7. DISCUSSION

In this work, we showed how approximate group invariances
arise in the early layers of a biologically inspired CNN
architecture during learning on natural images, and we
established a parallel with the architecture and plasticity of the
early visual pathway.

In standard CNN architectures, the LGN processing stage
is incorporated into the modeled early cortical processing,
thus making it impossible to disjointedly analyzes the different
symmetries arising in these two stages. In our work, we were
interested in decomposing the first network layer transformation
in order to separately model the LGN analysis, which is a
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FIGURE 9 | (A) The 7× 7 even filter 9f , with orientation θf = 138◦. (B) Projection on the (x, y) plane of the connectivity kernel computed around the filter 9f displayed

in (A). The projection is obtained by maximizing the 3-D kernel of Equation (9) over the variable g, and the values are color-coded from white (low) to black (high). For

better visualization, the kernel has been upsampled by a factor of 10 using the built-in Matlab function imresize. The vector field V and its integral curves forming the

induced association field are shown in blue over the intensity values. (C) The association field induced by the kernel of even filters around 9f (blue), and its

approximation using the integral curves defined in Equation (6) (red)—displayed over the kernel projection.

crucial step in the processing of a visual input. Indeed, it is
well established (see e.g., Levine and Cleland, 2001; Uglesich
et al., 2009) that the average firing rate of the retinal ganglion
cells is much higher than that of LGN cells. This difference of
firing rate could probably be related to the structure of synaptic
connection between RGB and LGN, and its study would require
a further decomposition of the architecture of the CNN, which
could be object of studies in a future work. As pointed out
in Rathbun et al. (2010), retinogeniculate processing increases
sparseness in the neural code by selecting the most informative
spikes to the visual cortex, thus providing a resampled map of
visual space (Martinez et al., 2014). The subsequent partial loss of
information can be partly reconstructed via lateral connections.
From a biological point of view, this information compression
is necessary due to the limited size of the nerves that carry the
impulse from the LGN to V1. Therefore, the role of the LGN
in perception reaches beyond that of a mere relay area, and
it is worth individual attention. Notably, the pre-filtering stage
ℓ0 inserted in our architecture developed during the network
training to give rise to a LoG-shaped filter, closely resembling
the typical radially symmetric LGN receptive profile (see also
Bertoni et al., 2022). In addition, the presence of ℓ0 enhanced
the orientation tuning of the filters in the first convolutional layer
ℓ1. The emergence of orientation-selective first-layer profiles was
consistent with the results of previous studies analyzing feature
selectivity in CNN layers; the separation of the image elaboration
into two steps that may be roughly associated with sub-cortical
and early cortical processing had the effect of sharpening their
orientation tuning.

Receptive profiles in CNNs are modeled to be translation-
invariant, essentially implementing an “ice-cube” representation
of the hypercolumnar structure. Despite their limitations, CNNs
provide a powerful abstraction, since even in such a simplified
setting we observe the emergence of biologically relevant
symmetries. As a future direction, it would be interesting to

expand the current study to include the learning of feature maps.
This may be done by restricting the layer response to a (learned)
lower-dimensional space, thus allowing to observe data-driven
feature maps and investigate on other phenomena such as the
development of a radial bias (see e.g., Philips and Chakravarthy,
2017).

Further, the introduction of plastic lateral kernels in the
first network layer allowed us to investigate how the (initially
random) connectivity evolved during the training to optimize
image recognition. Our lateral connections take the form of a
linear diffusion step governed by a convolutional kernel K1.
We were mainly interested in studying the relation between the
learned weights K1, expressing the connectivity between filters,
and the relative tuning of the corresponding filters. The Gabor
approximation of first layer receptive profiles provided us with
a set of coordinates to re-map the kernel K1 into the R

2 × S1

feature space, thus allowing to express the connectivity strength
directly in terms of relative positions and orientations of the
filters. The learned short-range connections between cells sharing
the same spatial position but different orientation revealed
a “Mexican hat”-like interaction profile. This arrangement of
excitation and inhibition suppressing the response to non-
optimal orientations has been shown to yield a sharpening of
the orientation tuning (Bressloff and Cowan, 2003). We then
analyzed the learned pattern of connectivity across both spatial
positions and orientations, modeling the interaction between
different hypercolumns.From the distribution of kernel values
over orientations, we constructed association fields induced by
the learned connectivity as a vector field on R

2. The integral
curves of the vector field turned out to link preferentially
those pairs of neurons whose relative position and orientation
tuning formed a collinear or co-circular pattern.Strikingly, our
association fields bear a close resemblance to those obtained
from edge co-occurrence in natural images by Sanguinetti
et al. (2010). We stress that such geometric properties arose
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spontaneously during the training of the CNN architecture
on a dataset of natural images, the only constraint being the
translation-invariance imposed by the convolutional structure of
the network.

The learned connectivity kernel K1 describes the strength of
interactions between receptive profiles shifted by up to 6 pixels
w.r.t. one another in each direction. A wider connectivity may
be modeled by taking further propagation steps. Thanks to the
linearity, this composition would be equivalent to taking one step
of propagation with the long-range kernel 2K1+K1∗K1, obtained
via “self-replication” from K1 through convolution against itself.
Indeed, iteration of the update rule yields:

1

2

(

h̃1 + K1 ∗ h̃1
)

=
1

4

(

h1 + 2K1 ∗ h1 + K1 ∗ K1 ∗ h1
)

.

Therefore, a promising direction for future work could be to
consider larger natural images and examine wider horizontal
connectivity obtained via multiple diffusion steps—as well as to
compare the propagated long-range connectivity kernels with
theoretical kernels.

As other future perspectives, we would like to extend our
study by considering a wider range of features—possibly leading
to a finer characterization of the geometry of first layer filters,
including more complex types of receptive profiles. Finally,
another direction could be to extend our model by comparing the

properties of deeper network layers to the processing in higher
cortices of the visual system.
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