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Abstract. We present a static analysis of endian portability for C pro-
grams. Our analysis can infer that a given program, or two syntactically
close versions thereof, compute the same outputs when run with the same
inputs on platforms with different byte-orders, a.k.a. endiannesses. We
target low-level C programs that abuse C pointers and unions, hence rely
on implementation-specific behaviors undefined in the C standard.
Our method is based on abstract interpretation, and parametric in the
choice of a numerical abstract domain. We first present a novel concrete
collecting semantics, relating the behaviors of two versions of a program,
running on platforms with different endiannesses. We propose a joint
memory abstraction, able to infer equivalence relations between little-
and big-endian memories. We introduce a novel symbolic predicate do-
main to infer relations between individual bytes of the variables in the
two programs, which has near-linear cost, and the right amount of re-
lationality to express (bitwise) arithmetic properties relevant to endian
portability. We implemented a prototype static analyzer, able to scale to
large real-world industrial software, with zero false alarms.
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1 Introduction

There is no consensus on the representation of a multi-byte scalar value in com-
puter memory [10]. Some systems store the least-significant byte at the lowest
address, while others do the opposite. The former are called little-endian, the lat-
ter big-endian. Such systems include processor architectures, network protocols
and data storage formats. For instance, Intel processors are little-endian, while
internet protocols and some legacy processors, such as SPARC, are big-endian.
As a consequence, programs relying on assumptions on the encoding of scalar
types may exhibit different behaviors when run on platforms with different byte-
orders, a.k.a. endiannesses. The case occurs typically with low-level C software,
such as device drivers or embedded software. Indeed, the C standard [20] leaves
the encoding of scalar types partly unspecified. The precise representation of
types is standardized in implementation-specific Application Binary Interfaces
(ABI), such as [3], to ensure the interoperability of compiled programs, libraries,
and operating systems. Although it is possible to write fully portable, ABI-
neutral C code, the vast majority of C programs rely on assumptions on the
ABI of the platform, such as endianness. Therefore, the typical approach used,
when porting a low-level C program to a new platform with opposite endianness,
is to eliminate most of the byte-order-dependent code, and to wrap the remain-
der, if any, in conditional inclusion directives, which results in two syntactically
close endian-specific variants of the same program. A desirable property, which
we call endian portability, is that a program computes the same outputs when
run with the same inputs on the little- and big-endian platforms. By extension,
we also say that a program is endian portable if two endian-specific variants
thereof compute the same outputs when run with the same inputs on their re-
spective platforms. In this paper, we describe a static analysis which aims at
inferring the endian portability of large real-world low-level C programs.

Motivating example. For instance, Example 1 features a snippet of code for
reading network input. The sequence of bytes read from the network is first stored
into integer variable x. Assume variable y has the same type. x is then either
copied, or byte-swapped into y, depending on the endianness of the platform.
Our analysis is able to infer that Example 1 is endian portable, i.e. both endian-
specific variants compute the same value for y, whatever the values of the bytes
read from the network. This property is expressed by the assertion at line 8.

Example 1. Reading input in network byte-order.
1 read_from_network((uint8_t *)&x, sizeof(x));
2 # if __BYTE_ORDER == __LITTLE_ENDIAN
3 uint8_t *px = (uint8_t *)&x, *py = (uint8_t *)&y;
4 for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];
5 # else
6 y = x;
7 # endif
8 assert_sync(y);
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Example 1 abuses pointers to bypass the C type system, a common practice
in low-level programming known as type punning. Alternatively, some imple-
mentations rely on bitwise arithmetics. E.g., if x and y have type uint32_t,
the little-endian case may be rewritten as ((x & 0xff000000) >> 24) | ((x
& 0xff0000) >> 8) | ((x & 0xff00) << 8) | ((x & 0xff) << 24). Other
implementations rely on compiler built-in functions, or assembly code, possibly
using dedicated processor instructions. Examples can be seen in the Linux imple-
mentations of the POSIX htons and htonl functions, converting values between
host and network byte-order. Our analysis is able to analyze all the above C im-
plementations successfully, as well as alternative implementations (with stubs for
assembly code). In the following of the paper, unless otherwise stated, we will
implicitly refer to a version of Example 1 where variables have type uint16_t.

Approach. Low-level programs exhibit different semantics when run on plat-
forms with different endiannesses. We thus model them as so-called double pro-
grams. The little-endian program is called the first (or left, or little-endian)
version of the double program, while the big-endian program is called the sec-
ond (or right, or big-endian) version. Both versions may share the same source
code, or present syntactic differences (if conditional inclusion is used). Our ap-
proach to endian portability is to devise a joint, whole-program static analysis of
a double program able to infer equivalences between the input-output relations
of its versions. To this aim, we define a memory model able to represent a joint
abstraction of their memories. We first parameterize a standard memory domain
for low-level C programs with an explicit endianness parameter. Then, we lift
it to double programs, and tailor it to infer, and represent symbolically, rele-
vant equalities between little- and big-endian memories. We rely on a dedicated
numerical domain based on symbolic predicates, to infer complementarity rela-
tions between individual bytes of program variables, such as those established
by bitwise arithmetic operations. We validate our approach by analyzing large
industrial low-level embedded C programs designed to be endian portable.

Related work. Several approaches to endian portability are developed in the
literature. [31] relies on a source-to-source translation, which is only sound with
respect to annotations provided by the programmer, whereas we require no anno-
tations. [6] extends a compiler to generate code that executes with the opposite
byte order semantics as the underlying architecture, at the cost of a performance
penalty. Annotations are also required for soundness in some cases. [22] relies
on dynamic analysis, which can find portability errors, but cannot prove en-
dian portability formally, unlike our method. The Sparse [7] static analysis tool
used by Linux kernel developers relies on pervasive type annotations to detect
endiannesses issues, but comes with no formal guarantee.

To our knowledge, no prior work uses sound static analysis to infer endian
portability. Yet, our approach leverages prior work. We build on a memory ab-
stract domain [25],[28, Sect. 5.2] developed for run-time error analysis of low-level
C programs able to expose endian-dependent behaviors, and on double program
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semantics developed for patch analysis [15,16]. Our symbolic predicate domain
is based on previous work on predicate domains [27], and symbolic constant
propagation [26]. Our domain is also reminiscent of the Slice domain introduced
in [9,8] for another purpose, and implemented differently.

Contributions. The main contributions of this work are:
– We present a novel concrete collecting semantics, relating the behaviors of

two versions of a program, running on platforms with different endiannesses.
– We propose a joint memory abstraction able to infer equivalence relations

between little- and big-endian memories.
– We introduce a novel symbolic predicate domain to infer relations between

individual bytes of the variables in the two programs, which has near-linear
cost, and the right amount of relationality to express (bitwise) arithmetic
properties relevant to endian portability.

– We implemented our analysis on the Mopsa [30,21] platform. Our prototype
is able to scale to large real-world industrial software, with zero false alarms.

The paper is organised as follows. Section 2 formalizes the concrete collecting
semantics, Sect. 3 describes the memory abstraction, Sect. 4 describes the nu-
merical abstraction and introduces a novel numeric domain, Sect. 5 presents
experimental results with a prototype implementation. Section 6 concludes.

2 Syntax and concrete semantics

Following the standard approach to abstract interpretation [11], we develop a
concrete collecting semantics for a C-like language for double programs. The ‖
operator may occur anywhere in the parse tree to denote syntactic differences
between the left (little-endian) and right (big-endian) versions of a double pro-
gram. However, ‖ operators cannot be nested: a double program only describes
a pair of programs. Given double program P with variables in V, we call its left
(resp. right) version P1 = π1(P ) (resp. P2 = π2(P )), where π1 (resp. π2) is a
version extraction operator, defined by induction on the syntax, keeping only the
left (resp. right) side of ‖ symbols. For instance, π1(x ← 1 ‖ y ← 0) = x ← 1,
and π2(x← 1 ‖ y ← 0) = y ← 0, while π1(z ← 0) = z ← 0 = π2(z ← 0). Recall
that syntactic differences between P1 and P2 may be distinct from semantic dif-
ferences. Syntactically different statements may exhibit the same semantics in
P1 and P2, like in Example 1, while syntactically equal statements may exhibit
different semantics, like with the C statement *((char*)&x)=1, when integer
variable x is such that sizeof (x) > 1.

2.1 Syntax

Simple programs P1 and P2 enjoy a standard, C-like syntax presented in Fig. 1.
Statements stat are built on top of expressions expr and Boolean conditions
cond. The syntax of double statements dstat includes specific assume_sync and
assert_sync statements, used for specifications. The former is used to express
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scalar-type ::= int-sign int-type | ptr
type ::= scalar-type | . . .

int-sign ::= signed | unsigned
int-type ::= char | short | int | long | long long

◦ ::= - |˜ | (scalar-type)
� ::= + | - | * | / | % | & | | | ^ | >> | <<

stat ::= ∗scalar-type expr ← expr
| if cond then stat else stat
| . . .

expr ::= ∗scalar-type expr
| &V
| [c1, c2] c1, c2 ∈ Z
| ◦ expr
| expr � expr

dstat ::= stat
| stat ‖ stat
| spec
| if dcond then dstat else dstat
| . . .

cond ::= expr ./ 0 ./ ∈ {≤,≥,=, 6=, <,>}
spec ::= assume_sync(expr)

| assert_sync(expr)
dcond ::= cond

| cond ‖ cond

Fig. 1. Syntax of simple and double programs.

assumptions on program inputs, while the latter is used to express assertions on
program outputs: assume_sync(e) introduces the assumption that expression
e evaluates to the same value in double program versions P1 and P2, while
assert_sync(e) checks that the value of e is identical in both versions, and
fails otherwise. Expression [c1, c2] chooses a value non-deterministically between
constants c1 and c2. The double statement x ← [c1, c2] may assign different
values to variable x in the two program versions. In contrast, the sequence x←
[c1, c2]; assume_sync(x) ensures that x holds the same non-deterministic value
in both versions.

Expressions rely on a C-like type-system. Integer and pointer types are col-
lectively referred to as scalar types. Expressions support pointer arithmetic,
expressed as byte-level offset arithmetic. All left-values are assumed to be pre-
processed to dereferences ∗τ e (i.e. *((τ*)e) in C) where τ is a scalar type, and
e is a pointer expression. Note that dereferences are limited to scalar types, and
the dereferenced type is explicit in the syntax.

2.2 Semantics of low-level simple C programs

The semantics of simple programs is parameterized by an ABI. In this paper,
we assume program versions have the same ABIs, but for endianness. Let A ,
{L,B } denote the possible endiannesses (little- and big-endian). The sizes of
types, in contrast, are the same for both program versions. We thus assume a
unique function sizeof ∈ type → N given, which provides these sizes (in bytes).

Pointer values are modeled as (semi-)symbolic addresses of the form 〈V, i〉 ∈
Addr , V × Z, which indicate an offset of i bytes from the first byte of V .
Special pointer values are defined for C’s NULL and dangling pointers: Ptr ,
Addr ∪ {NULL, invalid}.

Let B , [0, 255] ∪ (Ptr × N) describe the possible numeric byte values and
symbolic pointer bytes. We keep pointer values symbolic as their precise numeric
values depend on memory allocation strategies outside the scope of the analysis.
〈p, i〉 ∈ B denotes the i−th byte in the memory representation of the pointer
value p. Expressions manipulate scalar values, which may be numeric (machine
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EJ ∗τ e Kαρ , { v | 〈V, o〉 ∈ EJ e Kαρ ∧ 0 ≤ o ≤ sizeof (V )− sizeof (τ)
∧ v ∈ bdecτ,α(ρ〈V, o〉, . . . , ρ〈V, o+ sizeof (τ)− 1〉) }

SJ ∗τ e1 ← e2 KαR ,⋃
ρ∈R{ ρ[∀i < sizeof (τ) : 〈V, o+ i〉 7→ bi] | 〈V, o〉 ∈ EJ e1 Kαρ

∧ 0 ≤ o ≤ sizeof (V )− sizeof (τ) ∧ (b0, . . . , bsizeof (τ)−1) ∈ bencτ,α(EJ e2 Kαρ) }

Fig. 2. Concrete semantics of memory reads and writes.

integers) or pointer values. We denote the set of values as V , Z∪Ptr. The defini-
tion of the most concrete semantics requires a family of representation functions
bencτ,α ∈ V → P(B∗), that convert a scalar value of given type τ ∈ scalar-type
and endianness α ∈ A into a sequence of sizeof (t) byte values. We denote as
bdecτ,α ∈ B∗ → P(V) the converse operation. For instance, on a 32-bit plat-
form, bencunsigned int,L(1) = { (1, 0, 0, 0) }, bdecunsigned short,B(0, 1) = { 1 }, and
bencptr,L(p) = { (〈p, 0〉, 〈p, 1〉, 〈p, 2〉, 〈p, 3〉) }. This seemingly trivial encoding al-
lows modeling copying pointer values byte per byte, as done e.g. by memcpy. Note
that the bencτ,α and bdecτ,α functions return a set of possible values. For in-
stance, reinterpreting a pointer value as an integer, as in bdecint,L ◦ bencptr,L(p),
returns the full range of type int. We do not detail the definitions of these func-
tions here, for the sake of conciseness. An example may be found in [28, Sec.
5.2].

Environments are elements of E , Addr ⇀ B. The semantics EJ expr K ∈
A → E → P(V) and SJ stat K ∈ A → P(E) → P(E) for simple expressions
and statements is defined by standard induction on the syntax. We therefore
only show, on Fig. 2, the semantics EJ ∗τ e Kα and SJ ∗τ e1 ← e2 Kα for memory
reads and writes, given endianness α ∈ A. Bytes are fetched and decoded with
bdecτ,α when reading from memory in expression ∗τ e, while values computed by
expression e2 are encoded into bytes with bencτ,α when writing to memory in
assignment ∗τ e1 ← e2. Note that illegal memory accesses are silently omitted
to simplify the presentation.

2.3 Semantics of double programs

We now lift simple program semantics S to double program semantics D. As
both simple program versions Pk = πk(P ) have concrete states in E , the double
program P has concrete states inD , E×E . The semantics of Pk is parameterized
by its endianness αk ∈ A. We assume, without loss of generality, that P1 is the
little-endian version, and P2 the big-endian one.

DJ s K ∈ P(D) → P(D) describes the relation between input and output
states of s, which are pairs of states of simple programs. The definition for DJ s K
is shown on Fig. 3. D leverages previous work on patch analysis [15,16]. It is
defined by induction on the syntax, so as to allow for a modular definition and
joint analyses of double programs. Note that D is parametric in S.

The semantics for the empty program is the identity function. The semantics
DJ s1 ‖ s2 K for the composition of two syntactically different statements reverts
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DJ dstat K ∈ P(D)→ P(D)

DJ skip K , λX.X

DJ s1 ‖ s2 KX ,
⋃

(ρ1,ρ2)∈X

∏
k∈{ 1,2 }

SJ sk Kαk { ρk }

DJ l← e K , DJ l← e ‖ l← e K

DJ assume_sync(e) KX , { (ρ1, ρ2) ∈ X | ∃v ∈ V : ∀k ∈ { 1, 2 } : EJ e Kαkρk = { v } }
DJ s ; t K , DJ t K ◦ DJ s K

DJ if e1 ./ 0 ‖ e2 ./ 0 then s else t K , DJ s K ◦ FJ e1 ./ 0 ‖ e2 ./ 0 K
∪̇ DJπ1(s) ‖ π2(t) K ◦ FJ e1 ./ 0 ‖ e2 6./ 0 K
∪̇ DJπ1(t) ‖ π2(s) K ◦ FJ e1 6./ 0 ‖ e2 ./ 0 K
∪̇ DJ t K ◦ FJ e1 6./ 0 ‖ e2 6./ 0 K

DJ if c then s else t K , DJ if c ‖ c then s else t K

DJ while e1 ./ 0 ‖ e2 ./ 0 do s KX , FJ e1 6./ 0 ‖ e2 6./ 0 K(lfp H)
DJ while c do s K , DJ while c ‖ c do s K

where FJ e1 ./ 0 ‖ e2 ./ 0 KX , { (ρ1, ρ2) ∈ X | ∀k ∈ { 1, 2 } : ∃vk ∈ EJ ek Kαkρk : vk ./ 0 }

and H(I) , X
∪̇ DJ s K ◦ FJ e1 ./ 0 ‖ e2 ./ 0 KI
∪̇ DJπ1(s) ‖ skip K ◦ FJ e1 ./ 0 ‖ e2 6./ 0 KI
∪̇ DJ skip ‖ π2(s) K ◦ FJ e1 6./ 0 ‖ e2 ./ 0 KI

Fig. 3. Denotational concrete semantics of double programs.

to the pairing of the simple program semantics of individual simple statements
s1 and s2. The semantics for assignments is defined with this construct. The
semantics of assume_sync and assert_sync statements filters away environ-
ments where the left and right versions of a double program may disagree on
the value of expression e. In addition, assert_sync raises an alarm if e may
evaluate to different values in P1 and P2. We omit alarms from the semantics
for conciseness. The semantics for the sequential composition of statements boils
down to the composition of the semantics of individual statements. The seman-
tics for selection statements relies on the filter FJ e1 ./ 0 ‖ e2 ./ 0 K to distinguish
between cases where both versions agree on the value of the controlling expres-
sion, and cases where they do not (a.k.a. unstable tests). There are two stable
and two unstable test cases, according to the evaluations of the two conditions.
The semantics for stable test cases is standard. The semantics for unstable test
cases is defined by the composition of left version of the then branch, filtered
by the condition, and of the right version of the else branch, filtered by the
negation of the condition (and the dual case). The semantics for (possibly un-
bounded) iteration statements is defined using the least fixpoint of a function
defined similarly.

2.4 Properties of Interest

We wish to prove the functional equivalence between the left and right versions of
a given double program P ∈ dstat, restricted to a set of distinguished outputs,
specified with the assert_sync primitive. Let x0 ∈ D be an initial double-
program state. The set of states reachable by P is DJP K {x0 }. Let Ω be a set
of output left-values of program P . The property of interest is that π1(P ) and
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x0
1 x1

1

x

y0
1 y1

1

y1

y

(a) Program 1

x0
2 x1

2

x2

x

y2

y

(b) Program 2

Fig. 4. Memory cells of Example 1: = b0, = b1, = b0 × 28 + b1.

π2(P ) compute equal values for all outputs:

∀l ∈ Ω : ∀〈ρ1, ρ2〉 ∈ DJP K {x0 } : ∃v ∈ V : ∀k ∈ { 1, 2 } : EJ l Kαkρk = { v } .

For instance, let S denote the set of reachable states of Example 1, before line 8:
S = { 〈[xo1 7→ bo, y

o
1 7→ b1−o], [xo2 7→ bo, y

o
2 7→ bo]〉 | o ∈ {0, 1}, (b0, b1) ∈ [0, 255]2 },

where b0 and b1 denote the values of bytes read from the network, and we write
xoi and yoi for 〈x, o〉 and 〈y, o〉 in program version i. The portability property
expressed at line 8 is y0

1 + 28y1
1 = 28y0

2 + y1
2 , which can be proved from S.

Our concrete collecting semantics D is not computable in general. We will
thus rely on computable abstractions, to infer this property by static analysis.
Note that the use of assume_sync and assert_sync in specifications allows
for both whole-program analysis, and separate analyses of program parts.

3 Memory abstraction

Though we aim at designing a computable abstract semantics in Sect. 4, we
first tailor a (non computable) abstraction of our memory model. We rely on
the Cells memory abstraction of simple programs [25],[28, Sect. 5.2]. In order to
handle C programs computing with machine integers of multiple sizes, with byte-
level access to their encoding through type-punning, this domain represents the
memory as a dynamic collection of scalar variables, termed cells, holding values
for the scalar memory dereferences discovered during the analysis. It maintains
a consistent abstract state despite the introduction of overlapping cells by type-
punning. We lift this memory abstraction to double programs, and we extend it
for representing equalities between cells symbolically.

3.1 Cells

We first consider the finite universe Cell , V × N × scalar-type × A of cells of
one program. A cell 〈V, o, τ, α〉 ∈ Cell is denoted as a variable V , an offset o, and
information specifying the encoding of values: a scalar type τ and endianness α.
To account for both programs, we introduce projected cells as C̃ell , Cell×{ 1, 2 },
where 1 (resp. 2) denotes a cell in the memory of P1 (resp. P2).

For instance, consider the program in Example 1. We show in Fig. 4 the cells
synthesized at the end of the program. Let xk , 〈x, 0,u16, αk, k〉 denote 2-byte



Static Analysis of Endian Portability by Abstract Interpretation 9

cells for x in Program k ∈ { 1, 2 }, where α1 = L and α2 = B. 1-byte cells are
denoted as xok , 〈x, o,u8, αk, k〉 where o ∈ { 0, 1 }. The cells for y are defined in a
similar way. Both program versions first call function read_from_network, which
reads a stream of bytes from an external source, and writes it into a buffer. The
same stream is read by both program versions. A stub for read_from_network
is shown in Fig. 5. After completion of the call, we have x0

1 = b0 = x0
2 and

void read_from_network(u8 buf[], u32 size) {
for (int i=0; i<size; i++) {

buf[i] = [0,255];
assume_sync( buf[i] );

}
}

Fig. 5. Stub for read_from_network function.

x1
1 = b1 = x1

2, where b0 and b1 are the first and second bytes read from the
network, respectively. Then, Program 1 swaps the bytes of x into those of y:
x0

1 = y1
1 and x1

1 = y0
1 . Program 2, in contrast, assigns x to y. x is thus read as

a 2-byte cell, while only 1-byte cells are present. Therefore, the Cells domain
synthesizes x2 by adding the constraint x2 = 28x0

2 + x1
2, following big-endian

byte-order, before performing the assignment y2 ← x2. To sum up, we obtain
the following constraints:

x0
1 = x0

2 = y1
1 x1

1 = x1
2 = y0

1 y2 = x2

In addition to the cell constraints on x and y:
x1 = x0

1 + 28x1
1 y1 = y0

1 + 28y1
1 x2 = 28x0

2 + x1
2 y2 = 28y0

2 + y1
2

Our goal is to prove that y1 = y2 given such constraints. To do so, we want
to leverage numerical domains to abstract the values of cells. However, such
constraints require an expressive domain, such as polyhedra or linear equalities,
that can hamper the scalability of the analysis. In addition, we note that we need
to infer many equalities, most of them between the left and right versions of the
same cells. This is no surprise as we expect most variables to hold equal values in
the little- and big-endian memories most of the time, with only local differences.
Rather than relying completely on the expressiveness of the underlying numeric
domain, we first optimize our memory model for this common case, introducing
the concept of shared bi-cells, which act as a symbolic representation of cells
equality.

3.2 Shared bi-cells
We denote as Bicell , C̃ell ∪ (C̃ell × C̃ell) the set of bi-cells. A bi-cell is either a
projected cell in C̃ell, or a pair of such cells in C̃ell × C̃ell assumed to hold equal
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value, called a shared bi-cell. Bi-cell sharing allows a single representation, in the
memory environment, for two projected cells from different program versions at
the same memory location and holding equal values. Abstract memory states of
double programs are modeled as a choice of a set of bi-cells C ⊆ Bicell, and a
set of scalar environments on C. Let D[ ,

⋃
C⊆Bicell{ 〈C,R〉 |R ∈ P(C → V) }

be the associated abstract domain. An abstract state represents a set of concrete
byte-level memories in D = E × E . The values of the bytes of these memories
must satisfy all the numeric constraints on bi-cells implied by the environments:
γBicell〈C,R〉 , { (µ1, µ2) ∈ D | ∃ρ ∈ R : ∀ck = 〈V, o, τ, α, k〉 ∈ C̃ell :

∀c ∈ occ(ck, C) : ∃(b0, . . . , bsizeof (τ)−1) ∈ bencτ,α(ρ(c)) :
∀0 ≤ i < sizeof (τ) : µk〈V, o+ i〉 = bi }

where occ ∈ C̃ell×P(Bicell)→ P(Bicell) records occurrences of a projected cell
among bi-cells: occ(c, C) , { c′ ∈ C | c′ = c ∨ ∃c′′ : c′ = 〈c, c′′〉 ∨ c′ = 〈c′′, c〉 }.

〈x0
1, x

0
2〉 〈x1

1, x
1
2〉

x2

x

y0
1 y1

1

y2

〈y1, y2〉

y

Fig. 6. Shared bi-cells of Example 1.

In Fig. 6, we depict the bi-cells ob-
tained after analyzing the program shown
in Example 1. For variable x, since
read_from_network writes the same
value to x0

1 and x0
2, we can synthesize

the shared bi-cell 〈x0
1, x

0
2〉 to represent the

equality x0
1 = x0

2. In a similar way, we syn-
thesize the shared bi-cell 〈x1

1, x
1
2〉. There-

fore, as opposed to the separate represen-
tation of the memories of Programs 1 and
2 in Fig. 4, the joint representation in-

duced by bi-cell sharing allows reducing the burden on numeric domains. In
the following, we describe more involved cell synthesis operations that allow us
to realize 〈y1, y2〉, and thus to infer that y1 = y2.

3.3 Cell synthesis

A cornerstone of our memory model is bi-cell synthesis. In order to read or write
a scalar value to a given location of memory, we must create a suitable bi-cell,
or retrieve an existing one from the environment. To guarantee the soundness
of the analysis when adding a new bi-cell, it is necessary to ensure that values
assigned to it are consistent with those of existing overlapping bi-cells. Our
memory domain first attempts to synthesize shared bi-cells if an equality can be
inferred from the environment, by pattern-matching. In case of failure, it safely
defaults to a pair of projected bi-cells, the values of which are set according to
those of existing overlapping bi-cells.

We have already used shared bi-cell synthesis implicitly on Fig. 6. When
reading variable y at the end of Example 1, the memory domain attempts to
synthesize 〈y1, y2〉, as a proof of y1 = y2. To this aim, it searches, among possible
patterns, for an existing cell, equal to both y1 and y2. x2 is a candidate, assuming
equality x2 = y2 is recorded in (an abstraction of) the environment. Then the
domain looks for 1-byte bi-cells for y1 and x2, and finds the four blue and red
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φ[〈V, o, τ〉〈C,R〉 ,
〈c1, c2〉 if equal(c1, c2, α1, α2)〈C,R〉 where ci = 〈V, o, τ, αi, i〉,
〈c∗1, c2〉 else if equal(c1, c2, α2, α2)〈C,R〉 c∗i = 〈V, o, τ, α3−i, i〉,
〈c1, c

∗
2〉 else if equal(c1, c2, α1, α1)〈C,R〉 α1 = L, and

> otherwise α2 = B.

Fig. 7. Shared bi-cell synthesize function.

cells from Fig. 6. As y1 and x2 have opposite endian encodings, it queries the
environment for equalities y0

1 = 〈x1
1, x

1
2〉 and y1

1 = 〈x0
1, x

0
2〉. The success of the

synthesis relies on pattern-matching, and three equalities which may be inferred
by a numerical domain implementing simple symbolic propagation.

Shared bi-cell synthesis. More generally, function φ[ formalizes the pat-
terns matched attempting to synthesize a shared bi-cell for a given dereference
c ∈ Cell0 , V × N × scalar-type. An implementation is proposed in Fig. 7.
Firstly, it returns 〈c1, c2〉 if c1 = c2 may be inferred from the environment,
where ci = 〈c, αi, i〉 are projected versions of c, with the native endiannesses of
their respective platforms. Otherwise, it returns 〈c∗1, c2〉, where c∗1 is a big-endian
projected bi-cell of Program 1, if c∗1 = c2 holds. For instance, 〈x∗1, x2〉 will be
synthesized if variable x is read after the end of Example 1. Otherwise, it returns
〈c1, c

∗
2〉, where c∗2 is a little-endian projected bi-cell of Program 2, if c1 = c∗2 holds.

Finally, if all fails, it returns an error >. φ[ ∈ Cell0 → D[ → C̃ell
2
∪{>} relies on

predicate equal to compare two projected bi-cells of the same type, with specified
endianness encodings. An implementation is shown on Fig. 8. equal returns true
when compared cells are part of a shared bi-cell, or when equality is ensured by
the environment. Otherwise, it compares individual 1-byte bi-cells of the same
weights 28w, at endianness-dependent offsets: offset(w, s, α) , w if α = L, and
s − w − 1 otherwise. Otherwise, equal searches for candidate projected bi-cells
in the environment, equal to both c and c′. In the formula, we denote the set of
projected bi-cells in the environment as flatten(C) , { c ∈ C̃ell | c ∈ C ∨∃c′ ∈ C :
〈c, c′〉 ∈ C ∨ 〈c′, c〉 ∈ C }. equal returns true in case of success, false otherwise.

Projected bi-cell synthesis. If all attempts to synthesize a shared bi-cell
〈c1, c2〉, 〈c∗1, c2〉, or 〈c1, c

∗
2〉 fail, our memory domain creates the pair of pro-

jected bi-cells c1 and c2 instead. To set their values soundly, it calls φ1(c1)(C)
and φ2(c2)(C), where φi(ci)(C) returns a syntactic expression denoting (an ab-
straction of) the value of ci as a function of cells existing in C. For instance,
φ1(〈y, 0,u16,B, 1〉)(C) = 28y0

1 + y1
1 at the end of Example 1 (see Fig. 6).

To define the synthesize functions φ1 and φ2 ∈ C̃ell → P(Bicell) → expr
for projected bi-cells, we first need to define a generic cell synthesize function
φ ∈ Cell → P(Cell) → expr , such that φ(c)(C) returns a syntactic expression
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equal(〈V, o, τ,−, k〉, 〈V ′, o′, τ,−, k′〉, α, α′)〈C,R〉 ,
let c = 〈V, o, τ, α, k〉 and c′ = 〈V ′, o′, τ, α′, k′〉 and s = sizeof (τ) in
〈c, c′〉 ∈ C ∨ 〈c′, c〉 ∈ C ∨
(∃(x, x′) ∈ occ(c, C)× occ(c′, C) : ∀ρ ∈ R : ρ(x) = ρ(x′)) ∨(
∀0 ≤ w < s : equal(coffset(w,s,α), c′ offset(w,s,α′), α, α′)〈C,R〉

)
∨

(∃x ∈ flatten(C) \ { c, c′ } : equal(c, x, α, αx)〈C,R〉 ∧ equal(c′, x, α′, αx)〈C,R〉)

where cp denotes the 1-byte bi-cell 〈V, o+ p,u8, α, k〉 (and respectively for c′p),
and αx denotes the endianness encoding of x.

Fig. 8. Equality test between projected bi-cells.

φ〈V, o, t, e〉(C) ,

〈V, o, t, e〉 if 〈V, o, t, e〉 ∈ C
wrap(〈V, o, t′, e〉, range(t)) else if 〈V, o, t′, e〉 ∈ C ∧ t, t′ ∈ int-type ∧ sizeof (t) = sizeof (t′)
byte(〈V, o− b, t′, e′〉,w(e′, b, sizeof (t′)))

else if 〈V, o− b, t′, e′〉 ∈ C ∧ t = u8 ∧ t′ ∈ int-type ∧ b < sizeof (t′)
wrap(

∑sizeof (t)−1
i=0 28×w(e,i,sizeof (t)) × 〈V, o+ i,u8, ei〉, range(t))

else if ∀0 ≤ i < sizeof (t) : 〈V, o+ i,u8, ei〉 ∈ C ∧ t ∈ int-type
range(t) else if t ∈ scalar-type
invalid else if t = ptr

Fig. 9. Generic cell synthesize function.

denoting (an abstraction of) the value of the cell c as a function of cells in C. φ
is designed as an extension to multiple endianness encodings of the cell synthesize
function originally proposed in [28, sec. 5.2].

An example implementation is proposed in Fig. 9. Firstly, if the cell already
exists (c ∈ C), it is directly returned by φ. Otherwise, φ looks for integer cells of
the same size and different signedness, and converts them using function wrap to
model wrap-around, and function range for the range of the type: wrap(v, [l, h]) ,
min { v′ | v′ ≥ l ∧ ∃k ∈ Z : v = v′ + k(h− l + 1) }, and range(t) , [0, 28s − 1] if t
is unsigned, and [−28s−1, 28s−1−1] if t is signed, where s = sizeof (t). Thirdly, φ
extracts unsigned bytes from integers. Fourthly, φ aggregates unsigned bytes into
integers. Function w ∈ A×N2 → N is used to model the endianness-dependent
weight of bytes in integers: w(L, b, s) , b and w(B, b, s) , s − b − 1. The value
of the byte of weight 28w in integer x is: byte(x,w) = bx/28wc mod 28. When
all fails, φ returns the full range of the type (or invalid, for a pointer). Many
definitions are possible for φ, e.g. adding cases to support floats, or to synthesize
integer cells from cells of opposite endianness.

To define φ1 and φ2, we project bi-cells of the appropriate side onto cells,
apply φ, and lift the resulting cell expression back to a bi-cell expression. More
precisely, to compute φ1〈c, 1〉(C), we first project the bi-cell set C to the cells
of program version 1 : C1 , {x | 〈x, 1〉 ∈ C ∨ ∃y : 〈〈x, 1〉, 〈y, 2〉〉 ∈ C }.
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Then, we retrieve the constraints on cell c by applying the generic cell synthesize
function: e1 , φ(c)(C1). Finally, φ1〈c, 1〉(C) is obtained by substituting every
cell x occurring in e1 with an element of occ(〈x, 1〉, C). Note that e1 is a syntactic
expression over cells in C1, and occ(〈x, 1〉, C) 6= ∅ for all x ∈ C1. The definition
of φ2〈c, 2〉(C) is analogue.

Cell addition. Cell addition, add-cell[ ∈ Cell0 → D[ → D[, then simply adds
the cell(s) and initializes their value(s).

add-cell[(c)〈C,R〉 ,
if φ[(c)〈C,R〉 = 〈x1, x2〉 then
〈C ∪ { 〈x1, x2〉 } , { ρ[〈x1, x2〉 7→ v] | ρ ∈ R, v ∈ EJφ1(x1)(C) Kα1ρ }〉

else
〈C ∪ {c1, c2}, { ρ[∀i : ci 7→ vi] | ρ ∈ R, ∀i : vi ∈ EJφi(ci)(C) Kαiρ }〉

where c1 = 〈c,L, 1〉 and c2 = 〈c,B, 2〉.

3.4 Abstract join

The abstract join must merge environment sets defined on heterogeneous bi-
cell sets. We therefore define a unification function unify ∈ (D[)2 → (D[)2.
unify(〈C1, R1〉, 〈C2, R2〉) adds, with add-cell[, any missing cells to 〈C1, R1〉 and
〈C2, R2〉: respectively C2 \ C1 and C1 \ C2. Let 〈C ′1, R′1〉 and 〈C ′2, R′2〉 be the
resulting abstract states. C ′1 and C ′2 may include both projected and shared
bi-cells. A shared bi-cell that does not occur in both C ′1 and C ′2 cannot be
soundly included in the unified state, as it conveys equality information that
holds for one abstract state only. All such cells are thus removed before unifica-
tion. Formally, unify(〈C1, R1〉, 〈C2, R2〉) = (〈C12, R

′′
1 〉, 〈C12, R

′′
2 〉), where C12 =

(C ′1 ∪ C ′2) \ (((C ′1 ∪ C ′2) \ C̃ell) \ (C ′1 ∩ C ′2)), and R′′k = { ρ|C12 | ρ ∈ R′k }. The
abstract join may now be defined as: 〈C1, R1〉 t 〈C2, R2〉 , 〈C12, R

′′
1 ∪R′′2 〉.

3.5 Semantics of simple statements

Before defining the semantics for double statements in this domain, we first define
the semantics E[kJ ∗t e K ∈ D[ → P(V) and S[kJ ∗t e1 ← e2 K ∈ P(D[) → P(D[)
for simple memory reads and writes, in program version k ∈ { 1, 2 }.

Evaluations. To compute E[kJ ∗t e K 〈C,R〉, we first resolve ∗t e into a set L of
projected bi-cells on side k, by evaluating e into a set of pointer values, and
gathering projected bi-cells corresponding to valid pointers:

L , { 〈V, o, t, αk, k〉 | 〈V, o〉 ∈ EJ e Kαkρ, ρ ∈ R, 0 ≤ o ≤ sizeof (V )− sizeof (t) }

Then, we call add-cell[ to ensure that all the target cells in L are in the ab-
stract environment, which updates 〈C,R〉 to 〈C0, R0〉. Finally: E[kJ ∗t e K 〈C,R〉 =
{ ρ(c) | ρ ∈ R0, c ∈ L }.
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Assignments. The semantics of assignments S[kJ ∗t e1 ← e2 K 〈C,R〉 involves
more steps. Like for evaluations, we start with resolving ∗t e1 into a set L of
projected bi-cells on side k. Then, we realize the cells in L using add-cell[: let
〈C0, R0〉 be the updated environment. Some of the projected bi-cells in L may
have been realized into shared bi-cells. Let S , (C0 \ C) ∩ C̃ell

2
be the set of

such shared bi-cells. Elements of S represent equalities between bi-cells projected
on side k, and on side opposite to k. Such equalities may no longer hold, after
assignment on side k. Therefore, we split shared bi-cells of S into their left and
right projections, in a copy-on-write strategy. The updated environment is:

〈C′0, R′0〉 = 〈C0 ∪
⋃
〈c,c′〉∈S { c, c

′ } , { c 7→
{
ρ(x) if ∃x ∈ occ(c, S) 6= ∅
ρ(c) otherwise

| ρ ∈ R0 }〉

Finally, we update the environment for the projected bi-cells written (elements
of L), with the possible values of e2. However, this is not sufficient: it is also nec-
essary to update the environment for any overlapping bi-cells, including shared
bi-cells that have been split into pairs of projected cells. A sound and efficient
(though possibly coarse) solution is to simply remove them. Indeed, removing
any bi-cell is always sound in our memory model: it amounts to losing infor-
mation, as we loose constraints on the byte-representation of the memory. Let
Ω ⊆ C′0 \ L be the set of such bi-cells: elements of Ω are shared bi-cells and
projected bi-cells on side k, with offsets and sizes such that they overlap some
element of L. The updated environment is:
S
[
kJ ∗t e1 ← e2 K 〈C,R〉 = 〈C′0 \Ω,

{ ρ|C′
0\Ω

[∀c ∈ L : c 7→ v] | ρ ∈ R′0, v ∈ E[kJ e2 K 〈C′0, R′0〉 }〉

3.6 Semantics of double statements

We are now ready to define the semantics D[J dstat K ∈ D[ → D[ of double
statements in this domain. Like D, D[ is defined by induction on the syntax. We
focus on base cases, as inductive cases are unchanged.

The semantics D[J s1 ‖ s2 K for two syntactically different statements com-
poses simple programs semantics: D[J s1 ‖ s2 K , S[2J s2 K ◦ S[1J s1 K . The se-
mantics for assume_sync, assert_sync, and F[J e1 ./ 0 ‖ e2 ./ 0 K are mostly
unchanged, but for symbolic simplifications taking advantage of symbolic repre-
sentations of equalities in our domain, for improved efficiency and precision. In
particular, when e is a deterministic expression containing a single dereference,
then D[J assume_sync(e) K adds a shared bi-cell for this dereference to the
abstract environment. Consistently, D[J assert_sync(e) K first tests whether e
is deterministic, and its dereferences evaluate to shared bi-cells. In this case,
D[J assert_sync(e) K raises no alarm. Otherwise, the semantics uses environ-
ment functions ρ to test equalities of bi-cell values, like for D. A similar sym-
bolic simplification is used for the F[J · K filter: F[J e ./ 0 ‖ e 6./ 0 K〈C,R〉 = ∅
(hence the test is stable) when e is deterministic and all dereferences evalu-
ate to shared bi-cells, which is the common case. For instance, when evaluating
DJ if (x < y) then s else t K, if the dereferences for variable x and y evaluate to
shared bi-cells, the two unstable tests cases are ⊥.
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Assignments. In an assignment D[J ∗t e1 ← e2 K 〈C,R〉, although both pro-
grams execute the same syntactic assignment, their semantics are different, as
are their endiannesses. In addition, available bi-cells may be different. By de-
fault, double assignments are straightforward extensions of simple assignments:
D[J ∗t e1 ← e2 K = S[2J ∗t e1 ← e2 K ◦ S[1J ∗t e1 ← e2 K . We introduce two preci-
sion optimizations, taking advantage of implicit equalities represented by shared
bi-cells. We first transform ∗t e1 and the dereferences in e2 into sets of bi-cells L
and R, respectively. R may be empty, as e2 may be a constant expression. Then,
we realize the cells in L and R, using add-cell[. Let 〈C0, R0〉 be the updated
environment. Two optimizations are possible, depending on e1, e2, L, and R.

Optimization 1: Assignment of shared bi-cells. If e1 and e2 are deterministic
expressions, and if they evaluate to bi-cells that are all shared (L ∪ R ⊆ C̃ell

2
),

then Programs 1 and 2 write the same value to the same destination. We thus
update shared destination bi-cells (in L), and remove any overlapping bi-cells.
Formally:
D
[J ∗t e1 ← e2 K 〈C,R〉 = 〈C0 \Ω,

{ ρ|C0\Ω [∀c ∈ L : c 7→ v] | ρ ∈ R0, v ∈ E[1J e2 K 〈C0, R0〉 }〉,
where Ω ⊆ C0 \L is the set of (shared or projected) bi-cells overlapping elements
of L. The choice of evaluating E[1J e2 K (rather than E[2J e2 K ) is arbitrary, as they
are equal. Indeed, endianness α1 = L is not used by E[1J e2 K , as all the necessary
cells are materialized before evaluating expression e2.

Optimization 2: Copy assignment. If the conditions for optimization 1 are sat-
isfied, and if, in addition, e2 = ∗t e′2, and both ∗t e1 and ∗t e′2 evaluate to single
bi-cells (|L| = |R| = 1), then we are dealing with a copy assignment. We may
thus soundly copy a memory information from the source {l} = L to the desti-
nation {r} = R, so as to further improve precision. We therefore create a copy
of r, and any smaller bi-cell for the same bytes, to a corresponding bi-cell for
the bytes of l. Newly created destination bi-cells have the sides and endiannesses
of their sources. The environment is updated accordingly, to reflect equalities
between sources and destinations.

4 Value abstraction

Connecting to numerical domains. We now rely on numeric abstractions
to abstract further D[ into a computable abstract semantics D], resulting in an
effective static analysis. Like [28, Sec. 5.2], our memory domain translates mem-
ory reads and writes into purely numerical operations on synthetic bi-cells, that
are oblivious to the double semantics of double programs: each bi-cell is viewed
as an independent numeric variable, and each numeric operation is carried out
on a single bi-cell store, as if emanated from a single program. In particular,
we notice that the transfer function for simple assignments S[kJ ∗t e1 ← e2 K de-
scribed in Sect. 3.5 has the form of that of an assignment in a purely numeric
language, where bi-cells play the roles of the numeric variables. This property is
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a key motivation for the Cell domain and the extension presented in this paper.
Bi-cells may thus be fed, as variables, to a numerical abstract domain for envi-
ronment abstraction. Any standard numerical domain, such as polyhedra [12],
may be used. Yet, as we aim at scaling to large programs, we restrict ourselves to
combinations of efficient non-relational domains, intervals and congruences [18],
together with a dedicated symbolic predicate domain.

We thus assume an abstract domain D]C given, with concretization γC , for
each bi-cell set C ⊆ Bicell. It abstracts P(C → Z) ' P(Z|C|), i.e., sets of
points in a |C|−dimensional vector space. A cell of integer type naturally cor-
responds to a dimension in an abstract element. We also associate a distinct
dimension to each cell with pointer type; it corresponds to the offset o of a sym-
bolic pointer 〈V, o〉 ∈ Ptr. In order to abstract fully pointer values, we enrich
the abstract numeric environment with a map P associating to each pointer
cell the set of variables it may point to. Hence, the abstract domain becomes:
D] , { 〈C,R], P 〉 |C ⊆ Cell, R] ∈ D]C , P ∈ PC → P(V ∪ {NULL, invalid }) },
where PC ⊆ C is the subset of bi-cells of pointer type. We refer to [28, Sec. 5.2]
for a formal presentation of the concretization and the abstract operators.

Introducing a dedicated symbolic predicate domain. Recall Example 1
from Sect. 1. Various implementations are possible for the byte-swaps enforcing
endian portability of software. Though Example 1 shows an implementation re-
lying on type-punning, implementations relying on bitwise arithmetics are also
commonplace. In addition, system-level software, such as [32], often rely on com-
binations of type-punning and bitwise arithmetics. Example 2 is a simplified
instance of such programming idioms: as y has type unsigned char, y|0xff00
and (y<<8)|0xff represent the same 16-bit word in different endiannesses.

Example 2. Byte-wise equal memories in different endiannesses.

1 u16 x; u8 y = rand_u8(), *p = &x;
2 assume_sync(y);
3 # if __BYTE_ORDER == __LITTLE_ENDIAN
4 x = y | 0xff00;
5 # else
6 x = (y << 8) | 0xff;
7 # endif
8 assert_sync(p[0]); assert_sync(p[1]);

For a successful analysis of Example 2, the numerical domain must interpret
bitwise arithmetic expressions precisely, and infer relations such as: the low-
order (respectively high-order) byte of the little-endian (respectively big-endian)
version of integer x is equal to y. Then, the interpretation of dereferences of p by
the memory domain introduces similar relations between cells, thanks to the bi-
cell synthesize function. In this example, it infers that the little-endian version of
the low-address (respectively high-address) byte cell in x is equal to the low-order
(respectively high-order) byte of x – and the converse for big-endian.
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Predicate abstract domain. We use a domain based on pattern matching of ex-
pressions to detect arithmetic manipulations of byte values commonly imple-
mented as bitwise arithmetics. It is not sufficient to match each expression inde-
pendently, as computations are generally spread across sequences of statements.
We need, in addition, to maintain some state that retains and propagates in-
formation between statements. We maintain this state in a predicate domain
Pred] , C → Bits, which maps each bi-cell c ∈ C ⊆ Bicell to a syntactic
expression e in a language Bits, as a symbolic representation of predicate c = e.

Bits ::= > | Slice
Slice ::= n | c |

−−−→
c[i, j)

k
| (Slice | Slice) (n ∈ Z, c ∈ C, i, j, k ∈ N)

> denotes the absence of information. Otherwise, a syntactic predicate expres-
sion may be either a bit-slice, or a bitwise OR of bit-slices. A bit-slice may be
an integer constant n, a bi-cell c, or a slice expression

−−−→
c[i, j)

k
denoting the value

obtained by shifting the bits of c between i and j− 1 to position k:
−−−→
c[i, j)

k
, b(c

mod 2j)/2ic × 2k. Each term of a bitwise OR of bit-slices represents a interval
of bits, e.g. [k, k + j − i) for a term

−−−→
c[i, j)

k
. We assume that bit-intervals do

not overlap: each bit from the result comes from a single cell or constant. The
ordering is flat, based on syntactic predicate equality:

X] v] Y ] 4⇐⇒ ∀c ∈ C : X](c) = Y ](c) ∨ Y ](c) = >
An abstract element X] ∈ Pred] denotes the set of environments that satisfy
all the predicates in X], where predicates are evaluated as expressions:

γPred(X]) , { ρ ∈ C → V | ∀c ∈ C : X](c) = > ∨ ρ(c) ∈ EJX](c) Kρ }
We do not present the abstract operators in this paper. Like that of the related
symbolic constant domain [26], they are based on symbolic propagation, and
implement simple algebraic simplifications. They exhibit similar, near-linear time
cost in our experiments.

Analysis of Example 2. Before line 8, three cells are synthesized by the memory
domain: C8 = {x1, x2, y12 }, where x1 = 〈x, 0,u16,L, 1〉 is the little-endian
projected bi-cell of variable x, x2 = 〈x, 0,u16,B, 2〉 is the big-endian one, and
y12 = 〈〈y, 0,u8,L, 1〉, 〈y, 0,u8,B, 2〉〉 is a shared bi-cell.
– y12 is created at line 2, and represents the fact that variable y has the same
value in the little- and big-endian versions.

– The transfer function for assignment of the symbolic predicate domain infers
invariants x1 = y12 | 65280 from line 4, and x2 = 255 |

−−−−−→
y12[0, 8)

8
from line 6.

– Then, the dereferences of pointer p at line 8 are interpreted by the memory
domain. Four more cells {xok | (k, o) ∈ { 1, 2 } × { 0, 1 } } are added to the
abstract environment, to denote the bytes of variable x in the little- and big-
endian programs. More precisely, xo1 = 〈x, o,u8,L, 1〉, and xo2 = 〈x, o,u8,B, 2〉,
at offsets o ∈ { 0, 1 }. Following the bi-cell synthesize functions φ1 and φ2,
these new bi-cells are added together with assumptions on their values. In
practice, these assumptions are four tests, used by the memory domain to
filter the abstract environment. These tests are xo1 = byte(x1, o), and xo2 =
byte(x1, 1 − o), for offsets o ∈ { 0, 1 }, with byte(n, k) = bn/28kc mod 28.
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These tests are then interpreted by the numerical domain, and the symbolic
predicate domain in particular, as xo1 = byte′(x1, o), and xo2 = byte′(x2, 1− o),
with byte′(n, k) =

−−−−−−−−−→
n[8k, 8k + 8)

0
.

– Finally, the assertion line 8 is interpreted as tests x0
1 = x0

2 and x1
1 = x1

2 by
the memory domain. The transfer function for tests in the symbolic predicate
domain replaces all bi-cells with the symbolic expressions bound to them,

if any. The tests are thus
−−−−−−−−−−−−→
(y12 | 65280) [0, 8)

0
=
−−−−−−−−−−−−−−−−−→(

255 |
−−−−−→
y12[0, 8)

8
)

[8, 16)
0

and

−−−−−−−−−−−−−→
(y12 | 65280) [8, 16)

0
=
−−−−−−−−−−−−−−−−→(

255 |
−−−−−→
y12[0, 8)

8
)

[0, 8)
0

. Both tests evaluate to true, us-

ing symbolic simplifications (and integer arithmetic computations) supported
by the transfer function.

Hence, the assertions line 8 are proved correct: at the end of the program, the
memories for variable x are byte-wise equal in the little and big-endian versions.

5 Evaluation

We implemented our analysis into the Mopsa platform [30,21] designed to sup-
port modular developments of precise static analyses for multiple languages and
multiple properties. Our prototype is composed of 3,000 lines of OCaml: 45%
for the memory abstraction, 36% for the symbolic predicate domain, and 19%
for double program management and iterators. It leverages 31,000 lines (exclud-
ing parsers) of elementary functions of Mopsa: framework and utilities (64%),
generic iterators and numeric domains for analyses of all languages (11%), spe-
cific iterators and memory domains for the C language (25%). We have exper-
imented our prototype on small idiomatic examples, open source software, and
large industrial software. The analyses were run on a 3.4 GHz Intel® Xeon® CPU.

5.1 Idiomatic examples

We first check the precision and robustness of our analysis against a collection
of small double C programs (between 20 and 100 LOC), inspired by various
implementations of byte-swaps in Linux drivers, POSIX htonl functions, and
industrial software.

A set of 9 programs illustrate network data processing. These programs are
similar to Example 1 of Sect. 1. They receive an integer from the network,
increment it, and send over the result. Necessary byte-swaps are implemented
for little-endian versions of these programs. Each example program implements
a different byte-swapping technique on a 2, 4, or 8-byte integer: type-punning
with pointer casts (like in Example 1), unions, or bitwise arithmetics. Refer
to Examples 4, 5, and 6 in artifact [17] for the source codes. We also analyze
Example 2 from Sect. 4 to demonstrate the efficiency of our symbolic predicate
domain.
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Our prototype also handles floating-point data, which was omitted in the
paper for the sake of conciseness. We developed small floating-point examples
representative of industrial use-cases of Sect. 5.3. They include byte-swappings
of simple or double precision floating-point numbers sent to or received from
the network, on architectures where integers and floats are guaranteed to have
the same byte-order. Type-punning is used to reinterpret floats as integers of the
same size, which are byte-swapped using bitwise arithmetics. Also, a combination
of type-punning and byte-swapping is used to extract exponents from double
precision floats. The source codes of these Examples 8 and 9 is available in
artifact [17]. All analyses run in less than 200 ms and report no false alarm.

5.2 Open source benchmarks

We then check the soundness, precision, and modularity of our analysis on three
benchmarks based on open source software available on GitHub, with multiple
commits for bug-fixes related to endianness portability. Refer to Examples 10, 11,
and 12 in artifact [17] for relevant source codes excerpts. We analyze slices be-
tween 100 and 250 LOC, using primitives assume_sync and assert_sync for
modular specifications of program parts.

Our first benchmark is an implementation of a tunneling driver [32] based
on the Geneve [19] encapsulation network protocol, which uses big-endian inte-
gers as tunnel identifiers. The driver was introduced in the Linux kernel, and
patched several times for endianness-related issues detected by Sparse [7]. Then,
a performance optimization introduced a new endianness portability bug, which
Sparse failed to detect. It was fixed a year later. Our analysis soundly reports
this bug, as well as previous issues detected by Sparse. It reports no alarm
on the fixed code. Our second benchmark is a core library of the mlx5 Linux
driver [24] for ethernet and RDMA net devices [23]. We analyze a slice related to
a patch, committed to fix an endianness bug introduced 3 years earlier, and un-
detected by Sparse despite the use of relevant annotations. The fix turned out
to be incomplete, and was updated 6 months later. Our analysis soundly reports
bugs on the two first versions, and no alarm on the third. Our third benchmark
is extracted from a version of Squashfs [35], a compressed read-only filesystem
for Linux, included in the LineageOS [34] alternative Android distribution. We
analyze a slice related to a patch, committed to fix an endianness bug undetected
by Sparse due to a lack of type annotations. Our analysis soundly reports the
bug, and no alarm on the fixed version. All the analyses run within 1 second.

5.3 Industrial case study

We analyzed two components of a prototype avionics application, developed
at Airbus for a civil aircraft. This application is written in C, and primarily
targets an embedded big-endian processor. Nonetheless, it must be portable to
little-endian commodity hardware, as its source code is reused as part of a sim-
ulator used for functional verification of SCADE [4] models. The supplement to
the applicable aeronautical standard [1] related to model-based development [2]
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mandates, in this case, that “an analysis should provide compelling evidence that
the simulation approach provides equivalent defect detection and removal as test-
ing of the Executable Object Code”. Airbus, known to rely on formal methods
for other verification objectives [13,33,14,29,5], is currently considering the use
of static analysis to verify this portability property.

Endianness is the main difference between the ABIs of the embedded com-
puter and the simulator. We thus experimented our prototype analyzer on the
modules of the application integrated to the simulator, to which we refer as A and
S. Modules A and S are data-intensive reactive software, processing thousands
of global variables, with very flat call graphs. Module A is in charge of acquiring
and emitting data through aircraft buses. It is composed of about 1 million LOC,
most of which generated automatically from a description of the avionics net-
work. It handles integers, Booleans, single and double precision floats. The code
features bounded loops, memcpys, pointer arithmetics, and type-punning with
unions and pointer casts. It also uses bitwise arithmetics, among which several
thousand byte-swaps related to endianness portability. Module S is in charge of
the main applicative functions. It is composed of about 300,000 LOC, most of
which generated automatically from SCADE models. It handles mostly Booleans
and double precision floats. It features bounded loops and bitwise arithmetics,
but no type-punning. The target application is required to meet its specifica-
tions for long missions. Analysis entry points contain loops with several million
iterations to emulate this execution context.

Both analyses run in 5 abstract iterations. The analysis of A runs in 20.4
hours and uses 5.5 GB RAM. The analysis of S runs in 9.7 hours and uses 2.7 GB
RAM. We worked with the development and simulation teams to analyze early
prototypes, and incorporate findings into the development cycle. On current
versions of both modules, both analyses report zero alarm related to endianness.

6 Conclusion

We presented a sound static analysis of endian portability for low-level C pro-
grams. Our method is based on abstract interpretation, and parametric in the
choice of a numerical abstract domain. We first presented a novel concrete col-
lecting semantics, relating the behaviors of two versions of a program, running
on platforms with different endiannesses. Then we proposed a joint memory
abstraction, able to infer equivalence relations between little- and big-endian
memories. We introduced a novel symbolic predicate domain to infer relations
between individual bytes of the variables in the two programs, which has near-
linear cost. We implemented a prototype static analyzer, able to scale to large
real-world industrial software, with zero false alarms.

In future work, we aim at extending our analysis to further ABI-related
properties, such as portability between different layouts of C types, or sizes of
machine integers. We also anticipate that our bi-cell sharing approach will benefit
the analysis of patches [15,16] modifying C data-types, even if the two versions
run under the same ABI. Finally, we are considering an industrial deployment
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of our endian portability analysis, as a means to address avionics certification
objectives related to simulation fidelity, as mentioned in Sect. 5.3.
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