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Abstract The behavior of fractures in 2D brittle

disordered materials results from the competition

between the microstructural disorder that rough-

ens cracks and the material elasticity that straight-

ens them. The experimental fracture surfaces left

behind are generally scale invariant and their com-

plex geometry are still largely unexplained. Here,

this issue is addressed numerically using the bound-

ary element method that predicts incrementally

the trajectory followed by cracks in an infinite elas-

tic medium with a heterogeneous field of fracture

energy. The predicted fracture surfaces are charac-

terized using their height-height correlation func-

tions and show scale invariant properties. In partic-

ular, simulated cracks are shown to follow a ran-

dom walk with roughness exponent ζ = 0.5, ir-
respective of the level of microstructural disorder,

indicating that the crack behavior is neither persis-

tent nor anti-persistent, but instead, that the ori-

entation of the next propagation increment is cho-

sen randomly, independently of the past trajectory.

This behavior is then interpreted from fracture me-

chanics calculations that show that the restoring

force emerging from elasticity that generally straight-

ens cracks vanishes in the limit of large specimens

with respect to the characteristic size of the mate-

rial heterogeneity. This result sheds light on some

experimental fracture patterns recently reported

and suggests an explanation for the observation of

two different types of fracture morphologies in 2D

disordered brittle solids.
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1 Introduction

The study of the morphology of fracture surfaces

is a valuable tool for exploring the elementary fail-

ure mechanisms involved in heterogeneous materi-

als, since it reflects the interaction of a crack with

the material microstructure. Over the last three

decades since the pioneering work of Mandelbrot

et al. (1984), new fractographic approaches based

on the statistical analysis of the topography of frac-

ture surfaces have emerged. They have brought

out the remarkable scale invariant properties of

the roughness of cracks that can be described by

scaling exponents that are, to a large extent, inde-

pendent of the material investigated (see Bonamy

and Bouchaud (2011) for a review). These puzzling

findings have motivated the development of models

of crack growth in disordered solids to explain the

universal scaling properties of fracture surfaces (see

Alava et al. (2006) for a review). It ultimately led

to the development of new approaches in Fracture

Mechanics that aim at taking into account the role

of the microstructural disorder on the failure of ma-

terials, beyond the morphology of fracture surfaces,

and in particular the crack growth resistance and

its relationship with the microstructural features

of materials (Patinet et al. (2013); Demery et al.

(2014); Lebihain (2019)). Overall, the statistical in-

vestigation of fracture surfaces has provided new

and rich insights on the elementary mechanisms of

crack growth (see Ponson (2016) for a review). On

top of it, it gave birth to a new engineering tech-

nique, referred to as statistical fractography, that

permits the measurement of the toughness of mate-

rials from the statistical analysis of their fracture

surfaces (Vernède et al. (2015); Srivastava et al.
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(2014); Osovski et al. (2015); Vernède and Ponson

(2015); Barak et al. (2019); Auvray et al. (2019)).

The roughness of fracture surfaces exhibit self-

affine properties: Crack profiles remain statistically

invariant by the transformation h(λx) = λζh(x)

where h(x) is the height of the surface, x is the

coordinate along an axis parallel to the mean frac-

ture plane and λ is a scaling factor. The exponent

ζ is a parameter known as the Hurst or rough-

ness exponent. Its value provides the persistency of

the cracking process, a property that emerges from

the sign of the geometrical perturbations along the

crack path and its correlations: If ζ > 1/2 , the

perturbations of the crack path with respect to

the straight trajectory is more likely to be upward

(resp. downward) if the current propagation direc-

tion is also upward (resp. downward). The crack

trajectory is then said to be persistent, as the crack

tends to propagate along the same direction. On

the contrary, for an anti-persistent crack path for

which ζ < 1/2, the sign of the propagation direc-

tion is more likely to change. A limit case between

both behaviors is the random walk characterized

by ζ = 1/2 for which the probability to propagate

upward and downward are the same, irrespective

of the past trajectory. Note that the random walk

is the only case that does not lead to spatial cor-

relations of the sign of the perturbations along the

crack path.

Fracture experiments performed on 3D materi-

als lead to two-dimensional fracture surfaces. The

roughness can then be analyzed either along the

crack front direction or along the crack propagation

direction. To study the persistency of the crack tra-

jectory, it is then natural to investigate the propa-

gation direction. It has been shown that the scal-

ing behavior of the fracture surface was depending

on the scale of observation (Bonamy et al. (2006);

Vernède et al. (2015)): Beyond a material depen-

dent length scale ξ that provides the characteris-

tic size of the damage and dissipative processes

taking place at the crack tip vicinity, the rough-

ness displays an anti-persistent behavior. For ex-

ample, Millman et al. (1994) found a Hurst ex-

ponent ζ ' 0.4 in tungsten and in graphite. Boffa

et al. (1998) reported an exponent close to ζ ' 0.45

in sandstone. Ponson et al. (2006a) and Cambonie

et al. (2015) investigated the self-affine properties

of fractured sintered ceramics with various com-

binations of porosity and grain size and reported

exponents in the range ζ ' 0.3 − 0.5. Last but

not least, Dalmas et al. (2008) reported a logarith-

mic roughness, reminiscent of a vanishingly small

roughness exponent ζ = 0, in phase-separated glasses.

When investigated at scales much larger than the

dissipative processes localized near the crack tip,

all solids are brittle. The roughness of fracture sur-

faces is then signature of the out-of-plane excur-

sions of the crack front that gets around the tough-

est material regions (Ramanathan et al. (1997);

Bonamy et al. (2006); Ponson (2007); Lebihain et al.

(2020)). The trajectory of brittle cracks are then

anti-persistent, as the crack tends to come back

within the mean fracture plane after any geometri-

cal perturbations resulting from material inhomo-

geneities.

At small scales, i.e. within the process zone,

crack growth proceeds through damage coalescence

so that the crack path is controlled by the pro-

cess of nucleation, growth and coalescence of mi-

crocracks or cavities. At these scales, the scaling

properties of the fracture roughness are then fun-

damentally different from those of brittle cracks.

In particular, the roughness exponent is reported

in the range ζ ' 0.6 − 0.8 for a wide range of

materials, like metallic alloys, mortar, ceramics,

rocks...(Bouchaud et al. (1990); Måløy et al. (1992);

Ponson et al. (2006b); Bonamy et al. (2006); Morel

et al. (2008)), as long as these fracture surfaces are

investigated at scales smaller than the characteris-

tic size of the damage accompanying crack growth.

Such a persistent behavior is reminiscent of the

elementary process of crack growth at these small

scales: Microcrack nucleation is likely to take place

in a region located ahead the current crack propa-

gation direction, as the tensile stress is larger along

this particular direction. As a result, microcracks

tend to align along the current crack orientation.

Owing to the attraction exerted by two neighbor-

ing cracks (Schwaab et al. (2018)), they end up co-

alescing together, letting behind fracture surfaces

with persistent fracture patterns. Various theoreti-

cal models have been proposed to take into account

the key role of damage in the process of roughen-

ing in 3D solids, like for e.g. the one proposed by

Hansen and Schmittbuhl (2003). While they de-

scribe the persistent behavior of fracture surfaces,

they do not fully capture the complexity of the

morphology of fracture surfaces as observed exper-

imentally at small scales (Vernède et al. (2015)).

Overall, fracture surfaces resulting from the fail-

ure of 3D solids observed over a sufficiently large

range of length scales show two different scaling

behaviors: At small scales δx � ξ where ξ is the

characteristic size of the damage coalescence pro-

cess, the crack follows a persistent trajectory with

ζ ' 0.6 − 0.8 while at large scale δx � ξ, the

crack path is anti-persistent displaying either self-
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affine properties with an exponent ζ ' 0.4 or log-

arithmic correlations of heights. And each behav-

ior emerges from the two main elementary mecha-

nisms of crack growth, i.e. damage coalescence vs

brittle crack growth.

When cracks propagate in very thin specimens,

i.e. with a thickness comparable to the size of the

characteristic microstructural feature of the mate-

rial, fracture gives rise to a one-dimensional crack

profile for which the value of the roughness expo-

nent is a priori different than for 3D materials. In-

deed, failure consists of the propagation of a crack

tip in a 2D plane, a geometry that fundamentally

differs from the motion of a crack front in a 3D

material. In 2D, experimental studies have been

largely devoted to paper sheets. Roughness expo-

nent in the range ζ ' 0.6− 0.7 have been reported

by Kertesz et al. (1993); Salminen et al. (2003);

Mallick et al. (2007); Bouchbinder et al. (2006).

This behavior is also reported in 3D materials like

wood by (Engøy et al. (1994)) or in highly textured

metallic alloys by (Morel et al. (2004)). But there,

the material microstructure is essentially invariant

in one direction so that it gives rise to the failure

of an effective 2D solid. These experimentally mea-

sured scaling properties are well captured by mod-

els of crack growth in 2D media where propagation

takes place through the coalescence of one or sev-

eral cavities (Hansen et al. (1991); Zapperi et al.

(2005); Bouchbinder et al. (2004); Ben-Dayan et al.

(2006)). This suggests that in thin sheets too, per-

sistent crack trajectories with ζ > 0.5 are signature

of damage coalescence.

By analogy with the roughening scenario in 3D

solids, it is tempting to conjecture that brittle fail-

ure in thin specimens might result in anti-persistent

(ζ < 0.5) crack trajectories. However, no experi-

mental evidence supports this prediction. On the

contrary, recent theoretical investigations of crack

growth in 2D disordered brittle solids question the

relevance of self-affine concepts to describe crack

paths (Katzav et al. (2007); Katzav and Adda-

Bedia (2013)). Their predictions derived from lin-

ear elastic fracture mechanics even suggest that

crack propagation could lead to an apparent rough-

ness exponent larger than one half, even for per-

fectly brittle solids.

Here, we investigate numerically the roughen-

ing of cracks in 2D disordered brittle solids us-

ing an original approach. We adapt the Displace-

ment Discontinuity Method (DDM), a boundary

element method developed originally for homoge-

neous elastic media (Crouch and Starfield (1983)),

to describe crack growth in materials displaying

spatial variations of fracture toughness. With this

approach, one can then compute crack paths in

elastic media with random failure properties over

a wide range of length scales, as the DDM tech-

niques requires the mesh of the free surfaces of the

crack only. The main result of our simulations is

that, in the limit of large specimens, a self-affine

description of the roughness of cracks is appropri-

ate and that crack paths in brittle materials with

disorder distribution of fracture properties follow a

random walk with an exponent ζ = 1/2. Our numer-

ical experiments complete the roughening scenario

in 2D solids by evidencing a second class of rough-

ness, different from the persistent fracture profiles

with an exponent ζ ' 0.6−07 reported so far. The

transition between both roughening regimes is dis-

cussed and compared with the transition observed

in 3D solids that also gives rise to two different

roughening regimes.

The article is organized as follows: Section 2

recalls the basic principles of the DDM. Section 3

extends the applicability of this technique to dis-

ordered materials. The numerical implementation

of the method is provided in Section 4. The sta-

tistical properties of the computed crack paths are

then determined in Section 5. Finally, our results

and their implications on the roughening mecha-

nism in 2D disordered materials are discussed in

Section 6.

2 Basic principles of the displacement

discontinuity method

The numerical approach used for this study is the

Displacement Discontinuity Method (DDM) which

belongs to boundary elements methods. It has been

initially developed by Crouch and Starfield (1983)

and presents an enormous advantage for the sim-

ulation of crack propagation in elastic media with

respect to classical methods like finite elements or

even other boundary elements methods: elasticity

problems with complex geometry can be solved by

meshing only the domain boundary and disconti-

nuities. Moreover, for large specimens that will be

considered here, there is no need to mesh the do-

main boundary. As a result, brittle crack propaga-

tion does not require remeshing, but calls for ad-

ditional nodes along the new crack segments. This

allows for the investigation of crack propagation

over long distance, up to five orders of magnitude

larger than the mesh size, relevant to investigate

scaling geometrical properties of the crack rough-

ness. This method has been developed in the con-

text of homogeneous elastic solids and has been ap-
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plied to a wide range of fracture problems includ-

ing cracks interaction (Silva and Einstein (2013);

Schwaab et al. (2018)), mixed-mode failure (Meng

et al. (2013)) or interfacial fracture (Ortiz and Cisilino

(2005)), to quote a few. We remind below the sci-

entific background of the approach and illustrate

the methodology through a few simples examples.

2.1 Basic concepts of the method

The displacement discontinuity method is based

on the analytic resolution of the problem of a con-

stant displacement discontinuity over a finite line

segment in the x, y plane of an infinite elastic

solid. The line segment may be chosen to occupy

a certain portion of the x-axis, say the portion

|x| ≤ a, y = 0 (see Fig. 1). If we consider this

segment to be a line crack, we can distinguish its

two surfaces by saying that one surface is on the

positive side of y = 0, denoted y = 0+, and the

other is on the negative side, denoted y = 0−. In

crossing from one side to the other, the displace-

ments undergo a constant specified change in value

Di = (Dx, Dy).

We will define the displacement discontinuity

Di as the difference in displacement between the

two sides of the segment as follows:

Di = ui(x1, 0−)− ui(x1, 0+)

Dx = ux(x, 0−)− ux(x, 0+)

Dy = uy(x, 0−)− uy(x, 0+)

Fig. 1 Components of the discontinuity Dx and Dy.

The solution of this problem is given by Crouch

(1976), based on the use of Neuber-Papkovitch po-

tentials.

2.2 Generalization to complex crack paths

In this section, we briefly describe how to imple-

ment the DDM for general problems with complex

crack geometries. This numerical procedure is de-

picted in Fig. 2. In this case, the crack is curved,

Fig. 2 Representation of a curved crack in an infinite
medium by N elements.

but it is discretized with sufficient accuracy by N

straight lines joined end to end. The tangential and

normal components of displacement discontinuities

vector, assumed constant on each segment, are de-

fined with respect to the local coordinates s and n

as indicated on the figure:

j

Ds =
j
u
−

s −
j
u
+

s

j

Dn =
j
u
−

n −
j
u
+

n

Thus, the effects of a single elementary displace-

ment discontinuity on the displacements and stresses

field in the infinite solid can then be computed pro-

vided a suitable transformation of the equations

to account for the position and orientation of the

line segment in question is done. In particular, the

shear and normal stresses at the midpoint of the

ith element in figure can be expressed in terms of

the displacement discontinuity components at the

jth element as follows:

i
σs =

ij

Ass
j

Ds +
ij

Asn
j

Dn

i
σn =

ij

Ans
j

Ds +
ij

Ann
j

Dn

 i = 1, N (1)

where
ij

Ass, etc.., are the influence coefficients for

the stresses. The coefficient
ij

Ans, for example, gives

the contribution to the normal stress at the mid-

point of the ith element (i.e.
i
σn) due to a constant

unit shear displacement discontinuity over the jth

element.
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By superposition, the stresses
i
σs and

i
σn at the

ith element induced by the displacements disconti-

nuities of the N elements can be deduced as

i
σs =

N∑
j=1

ij

Ass
j

Ds +

N∑
j=1

ij

Asn
j

Dn − σext
s

i
σn =

N∑
j=1

ij

Ans
j

Ds +

N∑
j=1

ij

Ann
j

Dn − σext
n


i = 1, N

(2)

The values of the stresses
i
σs and

i
σn being specified

by the boundary conditions for each element of the

crack, Eqs. (2) provide a system of 2N linear equa-

tions with 2N unknowns, namely the displacement

discontinuities
i

Ds and
i

Dn for i = 1 to N . Since

only free surfaces are considered here, these bound-

ary conditions on the crack read as
i
σs =

i
σn = 0∀ i.

The values of the σext
s and σext

n are prescribed by

the imposed stress conditions at infinity, in shear

and tension, respectively.

This linear system of equations can be solved

for
j

Dy, j = 1 to N , by standard numerical meth-

ods. Again, from the knowledge of the
j

Dy’s, one

can calculate the stress and displacement field in

the whole system by summing the contributions

of each element (see Crouch and Starfield (1983)).

One can also compute the elastic energy release

rate at the tip of the crack, as detailed in Sec. 3.1.

3 Extension to the propagation of cracks in

heterogeneous media

We adapt now the DDM method to investigate

crack propagation, notably in materials with het-

erogeneous fracture properties.

3.1 Criterion on the propagation direction

To predict the crack trajectory, we first need a

criterion on the propagation direction. Classically,

crack path criteria can be chosen among the prin-

ciple of local symmetry proposed by Cotterell and

Rice (1980) and Gol’dstein and Salganik (1974),

the maximum tangential stress criterion proposed

by Erdogan and Sih (1963) and the maximum strain

energy release rate proposed by Hussain et al. (1974).

We use here the maximum strain energy release

rate criterion, as it can be naturally extended to

heterogeneous materials, as done by Chambolle et al.

(2009) and Hakim and Karma (2009). In homo-

geneous media, it predicts that crack propagates

along the direction θc which maximizes the elas-

tic energy release rate, i.e. G(θc) = Max
θ

[G(θ)].

Following Shen and Stephansson (1994), we imple-

ment this criterion by computing G(θ) within the

DDM: The strain energy release rate that corre-

sponds the variation of elastic energy of the frac-

turing body for a crack growth over a unit length

is obtained from the computation of the elastic en-

ergy for two subsequent crack configurations. The

elastic energy, W , in a 2D linear elastic body S
follows

W =
1

2

∫ ∫
S
σijεijdV

where σij and εij are the stress and strain ten-

sors, and V is the volume of the body. As a result,

the elastic energy can also be calculated from the

stresses and displacements along its boundary C
using Green’s theorem

W =
1

2

∫
C

σsus + σnunds.

Applying this equation in the case of an infinity

body with far-field stresses σext
s and σext

n , the strain

energy, W , reads

W =
1

2

∫ a

0

(σs − σext
s ) + (σn − σext

n )unds. (3)

Owing the displacement discontinuity on the crack

face, this expression leads to:

W ≈ 1

2

∑
i

(ai(σis−σext
s )Di

s+ai(σin−σext
n )Di

n) (4)

That sum can be calculated from the Di’s deter-

mined by the DDM. Where {σis = 0, σin = 0} are

given by the boundary conditions on the crack sur-

faces and {σext
n = σ∞, σ

ext
s = 0} corresponds to

pure tensile loading conditions considered in the

following. The elastic energy release rate can then

be estimated from

G(θ) = −∂W
∂a
≈ [W (a)−W (a+∆a)]

∆a

where W (a) is the elastic energy corresponding to

the original crack configuration, while W (a+∆a)

is the elastic energy of the original crack, a, ex-

tended by ∆a along the direction θ as illustrated

in Fig. 3. The elastic energy rate is then evaluated

in the range [−45◦ ≤ θ ≤ 45◦] by step of one de-

gree to identify the propagation direction θc that

maximizes G(θ).
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θc G(θc)
DDM (This study) −54◦ 388 J.m−2

DDM (Shen and Stephansson (1994)) −55◦ 390 J.m−2

Maximum tensile stress criterion (Hussain et al. (1974)) −57◦ 390 J.m−2

Melin’s results, crack kink (Melin (1985)) −55◦ 384 J.m−2

Table 1 Comparison of the kink angle θc and the elastic energy release rate G(θc) as obtained from our method
with results of the literature for the test case of a crack with inclination α = 45◦ illustrated in Fig. 4(a).

Fig. 3 Extension of the original crack of length a of an
elementary increment ∆a.

5 Numerical predictions of the scaling properties of crack trajectories in 2D
disordered media

In this section, we characterize the geometrical properties of the crack
trajectories calculated for an elastic medium with randomly distributed
toughness. Crack propagation is investigated in an infinite sample with an
initial straight notch of length a0 = 20 ⇠ located in |x|  10 ⇠. The specimen
is submitted to a tensile loading, as shown in Fig. 9(a), with a prescribed
imposed value �ext equals to unity. As we are only interested in the crack
geometry, we do not adapt the external loading so that G = Gc at each
incremental time step. Instead, we keep the loading constant and at each
time step, we impose a crack growth along the direction that maximizes
G/Gc.

(a)

(b)

The sample geometry leads to the propagation of two symmetrical cracks in
opposite directions. We impose a constant growth velocity on both sides of
the crack, corresponding to an advance by the same incremental length �a
at each iteration of the calculation at both crack tips. Calculations allow-
ing propagation on one side of the crack only give crack trajectories with
similar statistical properties, suggesting that both crack tips do no interact
with each other. Simulations are run for incremental steps of crack advance
much smaller than the heterogeneity size, in the range �a = 0.01 ⇠� 0.1 ⇠.
A typical crack pattern is shown in Fig. 9. Our approach allows for crack
propagation over distances larger than 10.000�a, corresponding typically
to 500 ⇠. The two symmetrical cracks follow di↵erent trajectories, but they
share common statistical features, since they emerge from the interaction
of a tensile crack under similar loading conditions with a heterogeneous
material with similar properties. As a result, they can both be used indif-
ferently to investigate the geometrical properties of crack trajectory.

5.1 Numerical results

On a general manner, the interaction of a brittle crack with a disorder mi-
crostructure produces scale invariant patterns as long as there is a clear sep-
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6.4 Comparison with experimental observations

The output of our numerical experiments showing self-a�ne fracture pro-
files with ⇣ = 1/2 is clear: In the limit d ⌧ L where L = Min{L1, L1},

is the smallest structural length in the problem, the crack roughness is
dominated by the microstructural disorder while elasticity does not play
a significant role. How to reconcile this prediction with the experimental
observations ?

A central hypothesis in our approach is the

↵

7 Conclusion

La conclusion à écrire de manière plus fluide. Seules les grandes idées sont
listées ici.

• Crack path in brittle disordered media as a random walk. This represents
a reference for comparison with experiments.

• Similar predictions from two independent approaches: hight level of con-
fidence in this theoretical predictions.

• However, di↵erence between predictions of both approaches: for the sim-
ulations, roughness amplitude is independent of the level of the mi-
crostructural disorder, while roughness amplitude increases with the ma-
terial disorder in the theorety. Di↵erence comes from the di↵erent way
the material microstructure is described in each approach: heterogeneous
field of Gc for the numerics and local kII perturbations for the theory.
This suggests that the relevant approach in order to describe roughning
in brittle materials is to describe the microstructure by local anistropic
fracture properties or local weak planes oriented randomly. Describing
heterogeneous media by an heterogeneous field of fracture energy seems
to produce only a limited description of the process of failure in brittle
materials with a microstructure.

• This results suggest a broader scenario for crack path in thin sheets:
(i) for brittle materials, we expect a random walk with ⇣ = 0.5; for
damage accompanied failure where microcracking and cavitation plays a
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files with ⇣ = 1/2 is clear: In the limit d ⌧ L where L = Min{L1, L1},
is the smallest structural length in the problem, the crack roughness is
dominated by the microstructural disorder while elasticity does not play
a significant role. How to reconcile this prediction with the experimental
observations ?

A central hypothesis in our approach is the

↵

✓

(b)

7 Conclusion

La conclusion à écrire de manière plus fluide. Seules les grandes idées sont
listées ici.

• Crack path in brittle disordered media as a random walk. This represents
a reference for comparison with experiments.

• Similar predictions from two independent approaches: hight level of con-
fidence in this theoretical predictions.

• However, di↵erence between predictions of both approaches: for the sim-
ulations, roughness amplitude is independent of the level of the mi-
crostructural disorder, while roughness amplitude increases with the ma-
terial disorder in the theorety. Di↵erence comes from the di↵erent way
the material microstructure is described in each approach: heterogeneous
field of Gc for the numerics and local kII perturbations for the theory.
This suggests that the relevant approach in order to describe roughning
in brittle materials is to describe the microstructure by local anistropic
fracture properties or local weak planes oriented randomly. Describing
heterogeneous media by an heterogeneous field of fracture energy seems
to produce only a limited description of the process of failure in brittle
materials with a microstructure.
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Fig. 4 Validation of the proposed numerical approach
on a test case: (a) Inclined crack in an infinite homo-
geneous medium under traction. The imposed stress is
σ∞ = 10 MPa while the elastic properties of the mate-
rial are E = 6.2 GPa and ν = 0.28. (b) Comparison of
the computed kink angle |θ| with other numerical results
of the literature for α = 45◦ and with the analytical pre-
diction of Eq. (5) valid in the limit of slightly inclined
cracks

3.2 Preliminary validation of the model:

Prediction of the kink angle of an inclined tensile

crack

To test the numerical procedure described previ-

ously, we compare its predictions with available

results in the literature on a test case. A homoge-

neous infinite medium submitted to a tensile stress

with a crack of inclination α is considered (see

Fig. 4(a)). We are interested by the kink angle

θc and the corresponding value of the elastic en-

ergy release rate G(θc). Table 1 compares the re-

sults of our simulations with numerical findings of

other studies like the ones of Shen and Stephansson

(1994), Hussain et al. (1974) and Melin (1985) for

α = 45◦. The predictions of the boundary element

method is then compared in Fig. 4(b) with theo-

retical predictions derived in the limit of slightly

inclined cracks. The propagation direction follows

θ = −2 kII/kI where kI and kII are the local stress

intensity factors in mode I and II before the kink,

as predicted by Amestoy and Leblond (1992). Us-

ing the expressions kI = σext cos2 α and kII = σext cosα sinα

of the stress intensity factors at the tip of a slightly

inclined tensile crack, one then obtains

θc ' −2α. (5)

Our numerical results are consistent with this pre-

diction for slightly inclined crack (see Fig. 4(b)),

confirming the ability of the numerical approach

to predict accurately crack propagation direction.

The rate of convergence of our method is pro-

vided in Fig. 5 that shows the error on the com-

puted value of the elastic energy release rate G(θc)

along the propagation direction θc for the strongly

inclined crack α = 45◦ as a function of the el-

ement size ∆a. The precision of our calculation

is inversely proportional to the number of nodes

N used to mesh the initial crack, as it evolves as

|G−Gconv|/Gconv ∼ 1/N .

101 102
10-3

10-2

10-1

Fig. 5 Convergence rate towards the critical value of the
elastic energy release rate G(θc)conv = 388 J.m−2 along
the propagation direction θc = −54◦ as a function of the
number of nodes for the kink problems represented on
Fig. 4 for α = 45o.
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3.3 Modeling of the disordered failure properties

To investigate the effect of microstructural disorder

on crack path, we consider a solid with a hetero-

geneous field of fracture energy Gc(x, y) with the

following properties:

– The field of fracture energy is described by a

matrix of size (Nx + 1)× (Ny + 1) = 1001× 51

providing the values of Gc at the discrete loca-

tions {xi = i d, yj = j d}−Nx/2≤i≤Nx/2,−Ny/2≤j≤Ny/2

on a regular square network. Each node is sep-

arated by a distance ξ along both directions, so

that the region of interest is of size (Nx d,Ny d).

It turns out that the out-of-plane perturbations

of the crack are small enough so that the crack

always remain in this domain. The fracture en-

ergy for any material point (x,y) is obtained

from a linear interpolation from the value of

fracture energy of the four nearest nodes.

– d is a material length scale. It provides the spa-

tial extent of the toughness heterogeneities in

the material. It can be interpreted as the char-

acteristic size of the dominant microstructural

feature, like e.g. the grain diameter.

– To model microstructural disorder, the value

of Gc at each node is taken from a uniform

distribution with average value 〈Gc〉 = 1 and

variance σGc
=
√
< G2

c > − < Gc >2. σGc
is

a measure of the amplitude of the microstruc-

tural disorder in the material.

We now need to extend the criterion of maxi-

mum energy release rate adapted to homogeneous

media to the case of a material with a heteroge-
neous distribution of toughness. Following Cham-

bolle et al. (2009) and Hakim and Karma (2009),

a crack located initially in M is then expected to

propagates until the point M’ (see Fig. 4) along the

direction θc that satisfies

G(θc)

Gc(θc)
= Max

θ

[
G(θ)

Gc(θ)

]
. (6)

Here, Gc(θ) is defined as the average fracture en-

ergy along the crack path

Gc(θ) =
1

∆a

∫ M ′

M

Gc(s)ds. (7)

∆a is the distance between M and M’, correspond-

ing to the elementary propagation distance of the

crack at each step. In the following, we take ∆a�
ξ. The linear interpolation of Gc used in our simu-

lations to describe the field of fracture energy at

any location results in the simplified expression

Gc(θ) =
Gc(M

′) +Gc(M)

2
.

4 Numerical implementation with

adaptative meshing

The numerical method is based on the incremental

calculation of the crack evolution. For a given crack

configuration, we compute first the elastic energy

W (a) stored in the body by solving the system of

Eqs. (2) that provides the displacement disconti-

nuities. They are then inserted in the expression

of the energy given in Eq. (4). An element is then

added at the crack tip along the direction θ as illus-

trated in Fig 3, and the new energy W (a+∆a) is

computed, after computing new values of displace-

ments discontinuities. This allows the calculation

of the elastic energy released rate G(θ) along this

direction. The procedure is repeated for various di-

rections, in order to determine the variations of the

function G(θ). The maximum energy release crite-

rion of Eq. (6) is then applied and a crack incre-

ment along the predicted direction θc that maxi-

mizes the function G/Gc(θ) is added at the crack

tip. The procedure is repeated from this new crack

configuration, which is the new initial conditions

for the next time step. The full numerical proce-

dure is summarized on the flowchart of Fig. 6.

We focus here on the scale invariant properties

of the crack path, requiring crack propagation dis-

tances several orders of magnitude larger than the

characteristic material length scale d. In our sim-

ulation, the elementary step ∆a of crack growth

used in the incremental calculation of the crack

evolution is equal to ∆a = d/20. To compute the

scaling properties of the crack profiles, we need to

achieve propagation over a distance of about 500 d.

It then requires up to 104 time steps during which a

system of 2N linear equations must be solved. Here

N is the number of nodes along the crack path that

can be as large as 104 when a new element is added

at each time step. To speed up the computations,

the crack path is remeshed during the simulation so

that the total number of elements used to describe

the crack geometry is limited to a few thousands.

Our remeshing strategy is the following: The mesh

is separated in two sub-domains. For the part of

the crack path close to the crack tip, in a region

of length ' 20 d, the mesh structure is kept un-

changed with a mesh size ∆a = d/20. The mesh

in the region far from the tip is changed. The ele-

ment density is progressively decreased, so that the

mesh is less and less refined as we go further away

from the crack tip. This approach builds on the

theoretical framework of perturbed crack paths in

2D elastic media déveloped by Cotterell and Rice

(1980) who showed that the impact of geometri-
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Fig. 6 Flowchart of the numerical scheme used to pre-
dict the crack trajectory.

cal perturbations on the value of the stress inten-

sity factors and the resulting elastic energy release

rate decreases as a power law with the distance to

the tip. The differences between crack paths pre-

dicted by both approaches are found to be negligi-

ble. However, the computational time is drastically

reduced with the remeshing methodology. Indeed,

with this new procedure, the computational time

for each iteration is relatively constant, while it in-

creases exponentially without remeshing since the

number of elements increases at each time step.

Note also that we did vary the value of the incre-

ment size in the range d/20 ≤ ∆a ≤ d/10 and did

not observe any noticeable change in the geomet-

rical properties of the computed crack profiles.

5 Numerical predictions of the scaling

properties of crack trajectories in 2D

disordered media

In this section, we characterize the geometrical prop-

erties of the crack trajectories as computed for

an elastic medium with random fracture proper-

ties. Crack propagation is investigated in an infi-

nite sample with an initial straight notch of length

a0 = 20 d located in |x| ≤ 10 d. The specimen is

submitted to a tensile loading, as shown in Fig. 7(a),

with a prescribed imposed value σext equals to unity.

As we are only interested in the crack geometry, we

do not adapt the external loading so that G = Gc

at each incremental time step. Instead, we keep the

loading constant and at each time step, we impose

a crack growth along the direction that maximizes

G/Gc.

The sample geometry leads to the propagation

of two symmetrical cracks in opposite directions.

We impose a constant growth velocity on both sides

of the crack, corresponding to an advance by the

same incremental length∆a at each iteration of the

calculation at both crack tips. Calculations allow-

ing propagation on one side of the crack only give

crack trajectories with similar statistical proper-

ties, suggesting that both crack tips do no interact

with each other. Simulations are run for incremen-

tal steps of crack advance much smaller than the

heterogeneity size, typically ∆a = 0.01 − 0.1 d. A

typical crack pattern is shown in Fig. 7. Our ap-

proach allows for crack propagation over distances

larger than 500 d corresponding to tenths of thou-

sand of time steps. The two symmetrical cracks fol-

low different trajectories, but they share common

statistical features, since they emerge from the in-

teraction of a tensile crack under similar loading

conditions with a heterogeneous material with sim-

ilar properties. As a result, they can both be used

indifferently to investigate the geometrical proper-

ties of crack trajectory.

5.1 Numerical results

On a general manner, the interaction of a brittle

crack with a disorder microstructure produces scale

invariant patterns as long as there is a clear separa-

tion between the characteristic heterogeneity size

d and any structural length, here the total crack

length. To characterize quantitatively these scale

invariant properties, it is convenient to compute

the correlation function of height variations along

the crack trajectory that is defined as

∆h(δx) =
√
〈(h(x+ δx)− h(x))2〉x (8)

where h(x) describes the deviations of the crack

path from straightness as illustrated in Fig. 7. The

function ∆h provides the typical height variation

between two points separated by the distance δx

along the mean crack plane. It also provides the

roughness amplitude at a given observation scale
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Fig. 7 (a) Geometry of the fracture test used in the calculation. The infinite notched specimen is submitted to
pure tensile loading conditions. The crack length priori to initiation is a0 = 20 d. (b) Typical crack path in a brittle
disordered solid obtained by the incremental boundary element method developed in this study.

δx. As a result, the larger δx, the larger the rough-

ness ∆h. For a self-affine crack profile, i.e. for a

trajectory statistically invariant by the transfor-

mation h(x) → λζh(λx), the correlation function

follows the scaling relation

∆h(δx) ∼ δxζ (9)

where ζ is the roughness exponent that describes

how the roughness ∆h varies with the observation

scale δx.

The correlation function is computed on the

crack profiles obtained by the boundary element

method and is shown in Fig. 8 . In order to obtain

such smooth variations of the correlation function,

∆h is averaged over twelve statistically equivalent

crack trajectories corresponding to the same level

σGc of material disorder, but different realizations

of the disorder. For a given simulation, left and
right cracks are analyzed separately after the sub-

traction of the initial straight notch. We could not

evidence any transient roughening of the crack pro-

file close to initiation.

The correlation function of Fig. 8 shows two

seemingly self-affine regimes, corresponding to both

straight lines in this logarithmic representation:

(i) At length scales δx smaller than the hetero-

geneity size d, the correlation function follows

an apparent power law with exponent ζ0 ' 0.9,

as shown by the blue straight line shown for

δx < d in Fig. 8.

(ii) At length scales δx larger than d up to a cut-off

length Lc ' 100 d, the correlation function also

follows a power law, but with a smaller expo-

nent ζ ' 0.5 as shown by the red straight line

fitting the data for δx > d. Such a behavior

is reminiscent of a random walk, i.e. a process

during which the propagation direction (up or

down) is independent of the previous propaga-

tion directions. Such a feature is confirmed in

10-2 10-1 100 101 102
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Fig. 8 Height-height correlation function computed for
σGc = 0.01, Both axis have been normalized by the het-
erogeneity size d. The fit of ∆h for scales δx < d leads to
an apparent roughness exponent ζ ' 0.9 (blue line) while
ζ ' 0.5 is obtained at larger scales δx > d (red line). The
inset shows the correlation function C(δx) of the local
slopes along the crack path (See Eq. (10)). The slopes
are not correlated at large scales δx > d, as expected for
a random walk (ζ = 1/2).

the inset of Fig. 8 that provides the correlation

function of the local slopes

C(δx) =

〈
dh

dx

∣∣∣∣
x

dh

dx

∣∣∣∣
x+δx

〉
x

. (10)

We see here that the slopes along the crack

path are effectively not correlated in the regime

δx� d, as expected for a random walk. In ad-

dition to this property, we explored the scaling

behavior of the moments ∆hq(δx) = 〈(h(x +

δx) − h(x))q〉1/qx in the range 0 ≤ q ≤ 3, thus

extending the investigation of the correlation

of height fluctuations beyond the case q = 2

shown in Fig. 8. We do observe the same be-

havior ∆hq(δx) ' δxζ with ζ ' 0.50. This

behavior, also referred to as mono-affine, con-
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firms that a single exponent ζ = 1/2 is sufficient

to describe the self-invariant properties of the

fracture profile.

As shown on Fig. 9, the value of these both

exponents is actually robust, as it does not depend

on the level σGc of the microstructural disorder,

leading to{
ζ0 = 0.88± 0.01 for δx� d

ζ = 0.51± 0.01 for δx� d.
(11)

10-2 10-1 100
0

0.2
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1

Fig. 9 Variations of the roughness exponents character-
izing the scaling behavior of the crack roughness with the
amplitude of the material microstructural disorder. ζ0 is
extracted from the power law variations of the correla-
tion function at small scales δx/ξ < 1 while ζ is extracted
from its variations at large scales δx/ξ > 1. Dotted lines
represent the average value with ζ0 = 0.88 and ζ = 0.51.

The scaling properties of the fracture profile

provide insights on the behavior of tensile cracks in

disordered materials. Self-affine profiles with rough-

ness exponent ζ > 0.5 indicates a persistent behav-

ior while ζ < 0.5 indicates an anti-persistent be-

havior: For a positive local slope dh/dx(x) in x, a

persistent behavior means a probability larger than

1/2 to find a positive local slope dh/dx(x+δx) > 0

at the next elementary step in x + δx. On the

contrary, an anti-persistent behavior means that

a negative local slope dh/dx(x + δx) < 0 is more

likely. Here, at scales larger than the heterogene-

ity size d, the roughness exponent ζ ' 0.5 indi-

cates that the crack follows a random walk, with

no persistency in the sign of the slope dh/dx: The

probability for the crack to propagate upward, i.e.

towards the positive values of h, is equal to the

probability to propagate downward, i.e. towards

the negative values of h, whatever the considered

position x along the crack path, and irrespective

of the previous propagation directions. At smaller

scales δx < a, the behavior of the crack is clearly

different, characterized by an exponent ζ ' 0.9

characteristic of a persistent behavior. As shown

in the next section, this behavior is reminiscent of

the propagation of a crack within a heterogeneity,

where the local toughness is slowly varying.

6 Interpretation of the scaling properties of

the computed crack profiles

6.1 Interpretation of the small scale scaling regime

Let us first discuss the small scale regime charac-

terized by the seemingly roughness exponent ζ0 '
0.9. This behavior is observed at scales smaller

than the heterogeneity size d, suggesting that it

does not emerge from the disordered distribution of

fracture energy. Effectively, it is reminiscent of the

trajectory of a crack propagating in a monotonously

varying toughness field, as at scales δx � d, the

fracture energy landscape is determined from a lin-

ear interpolation of the toughness between two neigh-

boring heterogeneities (see Sec. 3.3). This suggests

that at small scales δx < d, the crack trajectory

is smooth and can be approximated by a straight

segment of typical length d. Considering a linear

variation h(x) ∼ δx of height in the expression (9)

of the correlation function leads to a linear varia-

tion ∆h ∼ δx that accounts for the observations

made in the small scale regime δx < d, with an ap-

parent roughness exponent ζ0 ' 0.9. As a result,

the power law behavior of the correlation function

(with an exponent close to unity) is not reminiscent

of scale invariance, a feature that is also observed

experimentally when brittle fracture surfaces are

investigated at scales smaller than the grain size

(see for example Ponson et al. (2006a)).

6.2 Interpretation of the large scale scaling regime

The regime with exponent ζ ' 1/2 observed at

large scales δx � d is more interesting. It results

from the scale invariant fracture pattern shown in

Fig. 7 that displays geometrical perturbations over

a broad range of length scales, from δx = Lc '
100 d (see for example the large scale perturbation

located in −200 d ≤ x ≤ −100 d in Fig. 7) down

to small scale features of size δx ' d. Here, the

most interesting property of the computed crack

profiles lies in the value of the roughness exponent

ζ ' 0.5 that is signature of a pure random process,

i.e. a propagation direction at each time indepen-

dent of the past trajectory. This is at odd with

the experimental observations made in 2D spec-

imens like for example sheets of papers (Kertesz
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et al. (1993); Salminen et al. (2003); Mallick et al.

(2007); Bouchbinder et al. (2006)) that report rough-

ness exponents in the range ζ ' 0.6− 0.7 reminis-

cent of a persistent behavior. It should be empha-

sized that elasticity does lead to long-range inter-

actions between different regions of a crack (see

for example Cotterell and Rice (1980)) so that a

pure random behavior is a priori unexpected, even

though the distribution of toughness in the medium

is purely random.

To explain such a counter-intuitive behavior,

we derive the path equation of a crack in a 2D

linear elastic medium with randomly distributed

fracture properties. The detailed calculation is pro-

vided in Ponson et al. (2021). It takes inspiration

from the work of Katzav et al. (2007), but considers

only variations in fracture energy, excluding elastic

heterogeneities. The final path equation reads

dh

dx
= − 1√L1

∫ x

0

dh
dx |u√
x− udu−

h(x)

L2
+ η(x) (12)

where η(x) is a stochastic noise of average value

〈η〉x = 0 that describes the out-of-plane perturba-

tions resulting from the presence of toughness het-

erogeneities and L1 and L1 are structural lengths

emerging from the geometry of the specimen and

the applied loading conditions. They can be ex-

pressed as the ratio of the amplitude of the second

and third order terms in the Williams (1952)’ ex-

pansion of the stress field near the crack tip (like

e.g. the T-stress) over the macroscopically applied

stress intensity factor KI = σ∞
√
πa/2 (see Ponson

et al. (2021) for details). For the geometry consid-

ered here in Fig. 7, both lengths are of the order of

the total crack length a as there is no other struc-

tural length scale in the problem.

In absence of material disorder, i.e. η = 0,

the path equation (12) predicts that any geomet-

rical perturbations rapidly vanish so the crack fol-

lows a straight trajectory. In particular, the local

term (proportional to −h(x)) and the non-local

term (also referred as the memory term, as it im-

plies that the crack propagation direction in x de-

pends on the slope dh/dx(u) of the crack profile

for u ≤ x) both contribute to flatten the crack

profile and maintain it close to the mean fracture

plane. In presence of disorder, the noise η tends to

roughen the fracture profile, thus competing with

these both terms.

It turns out that in the limit d� a, these both

terms can be neglected (see Ponson et al. (2021)

for the rigorous proof), leading to the simplified

path equation

dh

dx
= η(x) (13)

that is nothing but the governing equation of a ran-

dom walk. Indeed, the correlator C(δx) of the local

slopes defined in Eq. (10) can be computed directly

from Eq. (13), leading to C(δx) = 〈η(x) η(x +

δx)〉x. As the quenched noise η(x) describes the

effect on the local crack propagation direction of

the random distribution of toughness of the ma-

terial, it displays short-range correlations, with a

correlation length d given by the heterogeneity size.

Consequently, the local slopes along the crack pro-

file do not display any correlations at scales larger

than d, defining thus a random walk.

This interpretation is tested in the inset of Fig. 8

that shows the correlations of local slopes along

the crack path. Correlations vanish for δx� d, in

line with the predictions of Eq. (13). According to

this equation, the correlator of the local slopes is

a direct measurement of the correlations of η(x), a

quenched noise with no correlation beyond δx > d.

Interestingly, we notice a slight anti-correlation,

C(δx ' 3/2 d) < 0, a phenomenon that is observed

irrespective of the amplitude of the material dis-

order. This effect may result from the two terms

of Eq. (12) that has been neglected in the sim-

plified path equation (13). These terms, that pro-

mote anti-persistency, i.e. a downward deviation

after the crack has been deviated upward, may not

be fully negligible even at the scale δx ' d.

In the case considered here where L1 � d and

L2 � d, the effect of the material elasticity on

the crack roughening process is rather marginal.

Note however that its contribution dominates over

the disorder at large scales δx comparable to the

total crack length a, thus setting the cut-off length

Lc ' 100 d of the self-affine regime that we see in

Fig. 8.

6.3 Random walk like crack path in materials

reinforced by tough inclusions

Building on the better understanding of the origin

of the random walk like fractures obtained in our

simulations, we can now propose, as an illustra-

tion, an example of realistic material microstruc-

ture that leads to such a behavior. In Figure 10,

one considers the case of a 2D brittle solid of tough-

ness Gmat
c reinforced by tough circular inclusions of

toughness Ginc
c > Gmat

c with the following hypoth-

esis:

(i) The matrix and the inclusions share the same

elastic properties. Under these conditions, the

interaction between the crack and an inclusion

is local as the crack cannot feel the presence
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Fig. 10 Crack path in a homogeneously elastic brittle
material reinforced by tough circular inclusions. Under
the assumptions of large toughness ratio Ginc

c /Gmat
c >

3.85 and scale separation between the inclusion size and
the specimen dimension, d� L, the crack by-passes each
inclusion randomly by the top or by the bottom, letting
behind a random walk like fracture profile, in agreement
with our numerical predictions.

of the heterogeneities before it lands on the

matrix-inclusion interface.

(ii) The toughness ratio between the inclusion and

the matrix is larger than the critical ratio
(
Ginc

c /Gmat
c

)
c
'

3.85 beyond which the inclusions are systemat-

ically by-passed by the crack. This critical ra-

tio, obtained from the theoretical formulae of

Amestoy and Leblond (1992), corresponds to

the minimal toughness ratio for which a crack,

after landing on the equatorial plane of the cir-

cular inclusion, will still kink with an angle

θ = 90◦ to by-pass the inclusion (Lebihain et al.

(2020)). Note that we do not consider here the

case where the inclusion-matrix interface has

different fracture properties than the inclusion

itself.

(iii) The inclusion diameter d is much lower than

any structural length scales (e.g. any specimen

dimension), so that the elastic restoring terms

in the path equation (12) can be neglected.

Under these conditions, the crack trajectory within

the matrix or within the inclusions is straight, per-

pendicular to the axis of application of the tensile

loading, as represented in Fig. 10. The deviations

from straightness arise only from inclusion by-pass.

This mechanism has been investigated by Faber

and Evans (1983) and then by Lebihain (2019) for

different inclusion geometries and properties: The

inclusions considered here are by-passed either by

the top or by the bottom, the landing height of the

crack on the inclusion selecting one or the other

mechanism. If the crack lands on the upper half,

the inclusion is by-passed by the top while a crack

landing on the lower half leads to a bypass by the

bottom so that the probability for each mechanism

is the same.

The emergence of random walk like fracture

profiles is now clear in this example. The crack is

deviated along the upper or lower direction with

the same probability, irrespective of the previous

crack trajectory, as expected for a random walk. It

should be emphasized that the out-of-plane devia-

tions of the crack emerge here from the discontinu-

ities in the toughness field at the matrix-inclusion

interface. This type of modeling based on a realistic

description of the material microstructure captures

the properties of scale invariance of the fracture

profile, but also the amplitude of the roughness,

that can be related to the size and density of in-

clusions (see for example Lebihain et al. (2020)).

Our approach, despite its ability to predict the

scale invariant properties of crack profiles, is not

adapted to investigate the effect of microstructural

parameters on the amplitude of the crack out-of-

plane deviations as the roughness amplitude does

not converge to a finite value in the limit ∆a→ 0.1

7 Conclusion and comparison with

experimental observations

The scale invariant properties of cracks in 2D elas-

tic materials with disordered fracture properties

have been investigated by the DDM method that

allows for the fast calculation of crack profiles over

sufficiently long distances. Our numerical observa-

tions suggest that cracks follow random walks (ζ

= 1/2), as long as fracture profiles are observed at

scales larger than the characteristic heterogeneity

size and smaller than any structural length scale.

This result represents a reference case for compar-

ison with experiments.

How, then, can one reconcile our numerical pre-

dictions (supported by theoretical arguments) with

the experimental investigations of crack roughen-

ing in 2D disordered materials that report per-

sistent crack profiles with roughness exponents in

the range ζ = 0.6 − 0.7 ? Our fracture mechan-

ics based method assumes that all the dissipative

mechanisms that take place at the crack tip vicin-

ity during propagation are confined in a zone of

size `pz smaller than the incremental propagation

distance ∆a, and, as a consequence, smaller than

the heterogeneity size d� ∆a. This assumption is

in contradiction with most experimental situations

investigated so far. For example, in paper sheets

that have been largely used in experiments, dam-

age may be observed at the millimeter scale ahead

1 The development of G(θ)/Gc(θ) ' 1 − cos2(θ) +
∆a/d f(θ) around small angles θ � 1 for a continuous

variation of Gc shows that the limit ∆a/d → 0 corre-
sponds to a straight path as the crack propagation di-
rection along which this ratio is maximal converges then
to θmax → 0.
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of the crack tip, leading to `pz ' 1 mm while the

heterogeneities are of the order of the fiber size,

i.e. d ' 100µm, suggesting that crack trajectory

is controlled by the process of damage coalescence

in paper sheet.

This observation, together with our numerical

work, suggests a unified scenario for crack paths in

thin sheets:

(i) When the assumption of brittle failure of dis-

ordered material is enforced, namely `pz � d

where d is the size of the characteristic mi-

crostructural features, one may expect a ran-

dom walk behavior with ζ = 1/2, under the con-

ditions that crack profiles are investigated in

the range d < δx < L;

(ii) when the fracture process zone is larger than

the heterogeneity size, `pz > d, crack path is

controlled by damage coalescence as shown by Hansen

et al. (1991), Zapperi et al. (2005), Bouchbinder

et al. (2004) and Ben-Dayan et al. (2006). We

then expect persistent fracture profiles with rough-

ness exponent ζ ' 0.6− 0.7.

In addition to this difference in the value of the

roughness exponent, we may notice that brittle

failure leads to mono-affine fracture profiles, like in

the present study, while damage coalescence leads

to multi-affine scaling properties, in line with the

observations made on fracture surfaces of 3D solids

by Vernède et al. (2015).

This proposed scenario is supported by the ex-

perimental study of Ramos et al. (2013) where large

heterogeneities, in the millimeter range, were in-

serted artificially in a sheet of paper. By upscal-

ing the heterogeneity size above the characteristic

size of the damage processes, the crack path was

shown to crossover from a persistent behavior to a

random walk like geometry with roughness expo-

nent ζ ' 0.49± 0.03. A very recent study by Pon-

son et al. (2021) combining an experimental and

numerical investigation of crack profiles in 2D con-

solidated granular solids comes also to support this

scenario. We believe that these ideas could be fur-

ther tested and consolidated by investigating frac-

ture profiles in architectured materials with tun-

able microstructures where the ratio `pz/d can be

continuously varied, using for example 3D printed

techniques in the spirit of recent works of Wang

and Xia (2017) and Albertini et al. (2020).

The authors would like to thank their colleague

and friend Jean-Baptiste Leblond for the uncount-
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of crack growth in heterogeneous solids, and more

generally, for his contagious enthusiasm and end-

less curiosity.
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