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A key question in evolution is how likely a mutant is to take over. This depends on natural selection
and on stochastic fluctuations. Population spatial structure can impact mutant fixation probabilities. We
introduce a model for structured populations on graphs that generalizes previous ones by making
migrations independent of birth and death. We demonstrate that by tuning migration asymmetry, the star
graph transitions from amplifying to suppressing natural selection. The results from our model are universal
in the sense that they do not hinge on a modeling choice of microscopic dynamics or update rules. Instead,
they depend on migration asymmetry, which can be experimentally tuned and measured.

DOI: 10.1103/PhysRevLett.127.218102

Introduction.—Classical models of well-mixed, homo-
geneous microbial populations assume that each micro-
organism competes with all others. However, this
simplification holds in few natural situations. For instance,
during an infection, microbial populations are subdivided
between different organs [1,2] and hosts. Any spatial
structure, e.g., that of a Petri dish, implies a stronger
competition between neighbors than between distant indi-
viduals. Even well-agitated liquid suspensions feature devi-
ations compared with idealized well-mixed populations [3].
Spatial structure can have major consequences on evolu-

tion. Remarkably, the fixation probability of a mutant can be
affected, with specific structures amplifying or suppressing
natural selection [4]. Studying these effects requires going
beyond simple structures [5,6] where migration is symmetric
between demes (i.e., subpopulations), since fixation prob-
abilities are unaffected in these cases [7–9], unless extinc-
tions of demes occur [10]. Reference [4] introduced a
seminal model for complex structures, known as evolu-
tionary dynamics on graphs, with one individual at each
node of a graph, and probabilities that their offspring
replaces a neighbor along each edge of the graph.
However, in such models, evolutionary outcomes can
drastically depend on the details of the microscopic dynam-
ics or “update rule,” e.g., whether the individual that divides
or the one that dies is chosen first, even if selection always
acts at division [11–14]. This lack of universality raises

issues for applicability to real populations, where one birth
does not necessarily entail one death and vice versa.
Furthermore, in most microbial populations, individuals
freely compete with their closest neighbors, motivating a
coarse-grained description, with demes rather than individ-
uals on graph nodes [5,6,15–18]. Current experiments with
well-mixed demes at each node of a star graph [19] require
theoretical predictions with realistic microscopic dynamics.
We propose a model for complex spatial population

structures where migrations are independent from birth
and death events. We investigate the fixation probability of
mutants in the rare migration regime. We demonstrate that
migration asymmetry determines whether the star graph
amplifies or suppresses natural selection. We find a map-
ping to the model of Ref. [4] under specific constraints on
migration rates.
Model.—We model a structured population as a directed

graph where each node i ∈ f1;…; Dg contains a well-
mixed deme with carrying capacity K, and migration rates
mij per individual from deme i to deme j ≠ i are specified
along each edge ij. We then address populations including
demes with different carrying capacities [20]. We consider
microorganisms with two types, wild type (W) and mutant
(M), with fitnesses and death rates denoted by fa and ga,
where a ¼ W or a ¼ M. Here, we call fitness the maximal
division rate of microorganisms, reached in exponential
growth. Their division rate in deme i is given by the logistic
function fað1 − Ni=KÞ, where Ni is the number of indi-
viduals in deme i. We take wild-type fitness as a reference,
fW ¼ 1. We address selection on birth, and hence
gM ¼ gW , but our results can be generalized to selection
on death. We focus on the regime where deme sizes Ni
fluctuate weakly around their deterministic steady-state
values, without extinctions [10,26,27].
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We assume that mutations are rare enough for further
mutation events to be neglected while the fate of a given
mutant lineage (taking over or disappearing) is determined.
We consider an initial mutant placed uniformly at random,
which is realistic for spontaneous mutations occurring either
with a fixed rate or with a fixed probability upon division.
Note that in models with one individual per node, uniform
initialization is more appropriate in the first case, while
placing mutants proportionally to the replacement proba-
bility of a node (“temperature initialization”) is more
appropriate in the second one [28]. This distinction vanishes
here, as division rate does not depend on location. Under
uniform initialization, the fixation probability of a neutral
mutant is independent of structure for connected graphs [20].
Compared with the well-mixed population with the same
total size, an amplifier of natural selection features a larger
fixation probability for beneficial mutants (fM > fW), and a
smaller one for deleterious mutants (fM < fW), while a
suppressor has the opposite characteristics [29].
We focus on the rare migration regime [9], where

fixation of a type (W or M) in a deme is much faster than
migration timescales. Then, the state of the population can
be described in a coarse-grained way by whether each deme
is mutant or wild type. Its evolution is a Markov process
where elementary steps are migration events, which change
the state of the system if fixation ensues. In this regime, a
mutant first needs to fix in the deme where it appeared,
before mutants can spread to other demes. Since fixation in
a homogeneous deme is well-known, we study the second
stage, starting from one fully mutant deme.
Link with models with one individual per node.—A

formal mapping can be made between our model and that
of Ref. [4], if the same graph is considered, with a deme per
node in our model and with one individual per node in
Ref. [4] (see Ref. [20]). The probability Pi→j that, upon a
migration event resulting into fixation, an individual from
deme i takes over in deme j in our model maps to the

probability P½4�
i→j that, upon a division, the offspring from

node i replaces the individual on node j in the model of
Ref. [4]:

Pi→j ¼
mijNiρiP
k;lmklNkρk

↔ P½4�
i→j ¼

wijfiP
k;lwklfk

: ð1Þ

In this mapping, the product Niρi of deme size Ni and
fixation probability ρi of an organism from deme i in our
model plays the part of fitness fi of the individual on node i
in Ref. [4], while the migration rate mij plays the part of
the replacement probability wij that the offspring of the
individual in i replaces that in j. However, an important
constraint in the “Birth-death” model of Ref. [4] (also
known as biased invasion process [11]) is

P
j wij ¼ 1 for

all i, because replacement includes birth, migration, and
death at once, and population size is constant. By contrast,
migration rates mij in our model are all independent.

A generalized circulation theorem holds for our model
[20], in the spirit of Ref. [4]. Specifically, a population ofD
demes on a graph has the same mutant fixation probability
as the clique if and only if, for all nodes of the graph, the
total outgoing migration rate is equal to the total incoming
migration rate.
Thus, we expect fixation probabilities in our model to

map to those of Ref. [4] for circulations or if
P

j mij is
independent of i, but to potentially differ otherwise. We
now consider specific graphs with strong symmetries.
Clique and cycle.—In the clique (or island model [5,6]),

all demes are equivalent and connected to all others with
identical migration rates m per individual (Fig. 1, upper
inset). Starting from one fully mutant deme andD − 1 fully
wild-type demes, the fixation probability Φclique

1 of the
mutant reads [20] (proof inspired by Refs. [9,30])

Φclique
1 ¼ 1 − γ

1 − γD
; ð2Þ

with

γ ¼ NWρW
NMρM

; ð3Þ

FIG. 1. Fixation probability Φ1 of the mutant type versus
mutant fitness fM, for the clique (see upper inset), and for the
cycle (see lower inset) with different migration rate asymmetries
α ¼ mA=mC, starting with one fully mutant deme. Data for the
well-mixed population is shown as reference, with same total
population size and initial number of mutants. Markers are
computed over 103 stochastic simulation realizations. Curves
represent analytical predictions, Eq. (2) for the cycle and the
clique, and Eq. (S15) in the Supplemental Material [20] for the
well-mixed population [31,32]. Vertical dash-dotted lines indi-
cate the neutral case fM ¼ fW , and horizontal dash-dotted lines
represent the neutral fixation probability. Parameter values are
D ¼ 5, K ¼ 100, fW ¼ 1, gW ¼ gM ¼ 0.1 in both panels. In
simulations, for the clique, m ¼ 10−6; for the cycle, from top to
bottom, ðmA;mCÞ × 106 ¼ ð1; 5Þ, (1,2), (1,1), (2,1), (5,1).
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where NW (respectively NM) is the deterministic steady-
state size of a wild-type (respectively mutant) deme and
ρW (respectively ρM) is the fixation probability of a wild-
type (respectively mutant) microbe in a mutant (respec-
tively wild-type) deme. This result is independent of
migration rate m, and Eq. (2) has the exact same form
as the fixation probability of a single mutant in a well-
mixed population of fixed size D in the Moran model
[31,32], but with γ playing the role of the ratio fW=fM,
consistently with the formal mapping [Eq. (1)] between
our model and that of Ref. [4] where Nρ plays
the part of fitness. Φclique

1 is plotted versus fM in
Fig. 1, showing excellent agreement between Eq. (2)
and our stochastic simulation results. Moreover, this
fixation probability is very close to that in a well-mixed
population. We show [20] that the clique is a slight
suppressor of selection, but that modeling migrations as
exchanges of individuals and assuming NM ¼ NW exactly
recovers the well-mixed result, consistent with results on
symmetric migrations [7,8].
Another graph where all demes are equivalent is the

cycle. Clockwise and anticlockwise migrations can have
different rates, denoted respectively by mC and mA (Fig. 1,
lower inset). The cycle resembles the circular stepping-
stone model [7], but can feature asymmetric migrations. We
show [20] that the fixation probability Φcycle

1 is the same as
for the clique [Eq. (2)], as corroborated by our simulations
(see Fig. 1). Indeed, the cycle is a circulation. In particular,
migration rates do not impact Φcycle

1 .
Star.—In the star, a central node is connected to all

others, called leaves. An individual can migrate from a leaf
to the center with migration ratemI and vice versa with rate
mO (Fig. 2, inset). The mutant fixation probability can be

expressed exactly as a function of D, α ¼ mI=mO and γ
defined in Eq. (3) (proof in the Supplemental Material [20]
inspired by Ref. [33]):

Φstar
1 ¼ ð1 − γ2Þ½γ þ αDþ γα2ðD − 1Þ�

Dðαþ γÞ½1þ αγ − γDðαþ γÞ2−Dð1þ αγÞD−1� :

ð4Þ

Figure 2(a) shows the fixation probability Φstar
1 of the

mutant type for different values of migration asymmetry
α ¼ mI=mO, with very good agreement between Eq. (4)
and our simulations. If α < 1, the star suppresses selection
compared with the clique, while for α > 1 it slightly
amplifies selection in some range of mutant fitness fM
[20]. For α ¼ 1, Φstar

1 reduces to the fixation probability
of the clique [Eq. (2)] [20]. Consistently, the star is a
circulation for α ¼ 1. Stronger amplification for α > 1 is
obtained for large D [Fig. 2(b)]. Qualitatively, for large D,
mutants very likely start in a leaf. If α is large, they often
spread to the center, which helps the fit mutants take over.
Conversely, if α is small, the center often invades the leaves,
thus preventing any mutant originating in a leaf from fixing.
Results with mutants starting in a specific deme are also
shown in Ref. [20].
Imposing that

P
j mij is independent of i amounts to

imposing α ¼ D − 1 in the star [20]. Then, Eq. (4) reduces
to the formula [33] obtained in the model of Ref. [4], with γ
in Eq. (3) playing the role of fW=fM [20], as per our general
mapping [Eq. (1)]. The celebrated amplification property of
the star in the large D limit [4,34] is thus exactly recovered
in our model for α ¼ D − 1.
While the star is an amplifier for large D in the model of

Ref. [4], it can either suppress or an amplify selection,

(a) (b)

FIG. 2. Fixation probability Φstar
1 of the mutant type in a star graph versus mutant fitness fM, starting with one fully mutant deme

chosen uniformly at random, for different migration rate asymmetries α ¼ mI=mO. Number of demes:D ¼ 5 (a) andD ¼ 100 (b). Data
for the well-mixed population is shown as reference, with same total population size and initial number of mutants. Markers are
computed over 2 × 103 stochastic simulation realizations. Curves represent analytical predictions in Eq. (4). Vertical dash-dotted lines
indicate the neutral case fW ¼ fM. Parameter values are K ¼ 100, fW ¼ 1, gW ¼ gM ¼ 0.1. Panel (a): from top to bottom,
ðmI;mOÞ × 106 ¼ ð5; 1Þ, (2,1), (1,1), (1,2), (1,5) in simulations.
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depending on α, in our model where D and α are two
independent parameters. Figure 3 shows that restricting to
α ¼ D − 1 yields amplification. In models with one indi-
vidual per node, the star is an amplifier for large D for the
Birth-death dynamics (“update rule”), where one individual
is chosen to divide, and its offspring replaces one of its
neighbors [4], but a suppressor for the death-Birth dynam-
ics (or biased voter model [11]), where one individual is
chosen to die and is replaced by the offspring of one of its
neighbors (selection being on division rates in both cases,
as denoted by the uppercase “Birth” [13], and resulting in
global selection in the Birth-death case and local selection
in the death-Birth case) [13,29,35,36]. Consistently, the
latter dynamics would yield α ¼ 1=ðD − 1Þ.
Comparison to Ref. [16].—Amodel generalizing Ref. [4]

to graphs where each node contains a deme with fixed
population size was introduced in Ref. [16] (see also
Refs. [15,18,37]). In this model, as in Ref. [4], each
elementary event comprises a birth in one deme and a death
in another one, yielding Birth-death and death-Birth models
that give different results. Rare migrations in our model
correspond to strong self-loops (migrations to the original
deme) in the model of Ref. [16]. For the star [28], we show
[20] that bymatchingmigration-to-division rate ratios in each
deme, bothmodels yield similar simulation results. However,
even then, a difference is that the death rate (respectively birth
rate) is not homogeneous across demes in the Birth-death
(respectively death-Birth) models of Ref. [16], unless migra-
tions are symmetric. Ourmodel allowsmore realistic choices.

Discussion.—We developed a model of spatially struc-
tured microbial populations on graphs where migration,
birth, and death are independent events. We showed that
for rare migrations, the star graph continuously transitions
between amplifying and suppressing natural selection as
migration rate asymmetry is varied. This elucidates the
apparent paradox in existing models, where the star, like
many random graphs [13], is an amplifier in the Birth-death
dynamics and a suppressor in the death-Birth dynamics
[13,29,35,36]. We found a mapping between our model and
that of Ref. [4], under a constraint onmigration rates. Models
with one individual per node require making specific choices
on the microscopic dynamics (“update rule”), which con-
strain migration rates. By lifting this constraint, our model
reconciles and generalizes previous results, showing that
migration rate asymmetry is key to whether a given
population structure amplifies or suppresses natural selec-
tion. This crucial role of migration asymmetry is consistent
with the fact that structures with symmetric migrations do
not affect fixation probabilities [7,8].
Birth-death dynamics may be realistic for extreme

resource limitation, such that one birth causes one death,
while death-Birth dynamics may better model cases where
death frees resources, e.g., light for plants [35,38].
However, in general, in a microbial population, population
size is not strictly fixed, and the order of birth and death
events is not set. In our more universal model, the results do
not hinge on a modeling choice made for microscopic
dynamics. Instead, they depend on a quantity that can be
directly set or measured in experiments, namely migration
rate asymmetry. The differences between Birth-death and
death-Birth dynamics are major for mutant fixation prob-
abilities, but also in evolutionary game theory, where
spatial structure can promote the evolution of cooperation
in the latter case, but not in the former [39–41]. Previous
efforts were made to generalize beyond these dynamics by
allowing both types of update to occur in given proportions
[42,43]. Interestingly, it was recently shown that no general
amplification of selection can occur when even a small
proportion of death-Birth events occurs [43], in contrast
with the Birth-death case. Conversely, in our model, the
amplification property of the star graph in the large-size
limit is preserved, but for sufficient migration asymmetry.
While our focus was on mutant fixation probabilities,

our model can be employed to investigate fixation times
and evolution rate [18,44–50]. It can also address more
complex population structures [29,51], e.g., motivated by
within-host or between-host pathogen dynamics [52].
Our study can be extended beyond the regime of rare
migrations [53], and to models of evolutionary game theory,
as well as to diploid organisms [10,26,27,54,55]. Finally, our
work allows direct comparisons with quantitative experi-
ments [19]. Other experiments could be performed using,
e.g., microfluidic devices allowing one to control the flow
between different populations [56], or microtiter plates

FIG. 3. Amplification and suppression properties for the star.
Heat map of the ratio of the fixation probabilityΦstar

1 of the mutant
type in a star graph to that Φwell-mixed

1 in a well-mixed population
with same total population size and initial number of mutants,
versus number D of demes and migration rate asymmetry
α ¼ mI=mO. The star is initialized with one fully mutant deme
chosen uniformly at random. Data are from the analytical formula
in Eq. (4) for the star, and in Eq. (S15) in the Supplemental
Material [20] for the well-mixed population. Parameter values are
K ¼ 100, fW ¼ 1, fM ¼ 1.001, gW ¼ gM ¼ 0.1.
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where dilutions and migrations can be performed via a
liquid-handling robot [57–59]. Applications in biotechnol-
ogy could be envisioned, e.g., amplifying in vivo selection in
the directed evolution of biomolecules [60].
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