
HAL Id: hal-03457153
https://hal.sorbonne-universite.fr/hal-03457153

Submitted on 30 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronization and Enhanced Catalysis of
Mechanically Coupled Enzymes

Jaime Agudo-Canalejo, Tunrayo Adeleke-Larodo, Pierre Illien, Ramin
Golestanian

To cite this version:
Jaime Agudo-Canalejo, Tunrayo Adeleke-Larodo, Pierre Illien, Ramin Golestanian. Synchronization
and Enhanced Catalysis of Mechanically Coupled Enzymes. Physical Review Letters, 2021, 127 (20),
�10.1103/physrevlett.127.208103�. �hal-03457153�

https://hal.sorbonne-universite.fr/hal-03457153
https://hal.archives-ouvertes.fr


Synchronization and Enhanced Catalysis of Mechanically Coupled Enzymes

Jaime Agudo-Canalejo ,1 Tunrayo Adeleke-Larodo,2 Pierre Illien,3 and Ramin Golestanian 1,2,*

1Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
2Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
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We examine the stochastic dynamics of two enzymes that are mechanically coupled to each other, e.g.,
through an elastic substrate or a fluid medium. The enzymes undergo conformational changes during their
catalytic cycle, which itself is driven by stochastic steps along a biased chemical free energy landscape.
We find conditions under which the enzymes can synchronize their catalytic steps, and discover that the
coupling can lead to a significant enhancement in their overall catalytic rate. Both effects can be understood
as arising from a global bifurcation in the underlying dynamical system at sufficiently strong coupling.
Our findings suggest that, despite their molecular scale, enzymes can be cooperative and improve their
performance in metabolic clusters.
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Introduction.—Since the observation of the sympathy of
two clocks by Christiaan Huygens in 1665, synchronization
phenomena have been observed in a variety of systems, at
different timescales and length scales [1–3]. Generic
theoretical frameworks, in particular the Kuramoto model,
have been widely used to predict the conditions under
which synchronization can occur [4]. However, the indi-
vidual oscillators are usually coupled to each other through
a physical medium, and it is often necessary to include the
microscopic details of the mechanical coupling between
them in order to obtain a useful description. One well-
studied example is the synchronization of periodically
beating flagella and cilia [5,6], for which hydrodynamic
interactions have been shown to play a crucial role [7–12].
Another example is synchronization mediated by elastic
stresses in a solid substrate, known to be important for algal
flagella [13,14] and cardiac cells [15,16]. In these micro-
scale examples, the cyclic motion of each individual
oscillator is driven by a nonvanishing, deterministic driving
force.
At the even smaller nanoscale, however, molecular motors

and enzymes convert chemical energy into mechanical work
following repeated thermodynamic cycles [17–21]. These
processes take place in a noise-activated regime, where
motion only occurs stochastically, in response to barrier-
crossing events along a chemical free energy landscape.

Recently, the relationship between the conformational
changes of enzymes during their catalytic cycle [22,23]
and their translational dynamics has been the subject ofmany
experimental and theoretical studies [24–33]. While these
studies have considered the effect of enzymatic activity on
mechanical motion, how mechanical interactions feed back
into enzymatic activity and whether synchronization of the
catalytic cycles across enzymes is possible are questions that
remain open. These questions are of high biological rel-
evance considering that enzymes are frequently assembled
into clusters [34–39].
In this Letter, we study the dynamics of two enzymes

that undergo conformational changes during their catalytic
cycle and interact with each other mechanically. We show
that this coupling is sufficient to synchronize their stochas-
tic catalytic steps, and moreover leads to a significant
enhancement of their catalytic rate.
Mechanochemical coupling.—We use a minimal model

where each enzyme α is considered to have a single
mechanical degree of freedom Lα, which might represent
for example its elongation [see Figs. 1(a)–1(c)], and a
single chemical degree of freedom or phase ϕα, which is a
reaction coordinate describing the state of the chemical
reaction happening inside the enzyme. Both Lα and ϕα

evolve together according to the potential UðLα;ϕαÞ ¼
ðk=2Þ½Lα − LðϕαÞ�2 þ VðϕαÞ. Here, the first term describes
conformational changes of the enzyme during the catalytic
cycle, with LðϕαÞ being the rest length of the enzyme as a
function of the reaction coordinate and k the stiffness of the
enzyme, while the second term represents the free energy of
the reaction, described by a biased potential VðϕαÞ that
drives the phase forward [17,18] [see Fig. 1(d)]. Assuming
that the overdamped medium surrounding the enzymes
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couples forces to velocities linearly, the dynamics of the
elongation of enzyme α will be governed by _Lα ¼
μðfα þ hfβÞ, where μ is the mobility associated to the
elongation, and h is the (dimensionless) mechanical cou-
pling between the two enzymes α and β ≠ α. As an
example, for enzymes directly coupled into a complex as
in Fig. 1(a) the coupling constant h can be easily calculated
and is found to be negative with 0 > h > −1 [40]. The
internal forces (force-dipoles) fα and fβ generated
by the corresponding enzymes can be calculated as
fα ¼ −∂Lα

UðLα;ϕαÞ ¼ −k½Lα − LðϕαÞ�. In turn, the

phase dynamics are given by _ϕα¼−μϕ∂ϕα
UðLα;ϕαÞ¼

−μϕf−k½Lα−LðϕαÞ�L0ðϕαÞþV 0ðϕαÞg, where μϕ is the
mobility along the chemical reaction coordinate.
Phase equations.—The coupled dynamics of length and

phase can be simplified further by projecting the dynamics
of the lengths, assumed fast, onto the slow manifold of the
configuration space defined by the phases ϕα [40]. Staying
to lowest order in Aα ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðμϕ=μÞ
p

L0ðϕαÞ, which corre-
sponds to the assumption that phase changes rather than
conformational changes constitute the bottleneck in the
dynamics of the enzyme [41], the deterministic dynamics
for the phases reads as

_ϕαðtÞ ¼ ωðϕαÞ þ
hAαAβ

1 − h2
ωðϕβÞ ð1Þ

with ωðϕαÞ≡ −μϕV 0ðϕαÞ. This shows that the reaction
dynamics of two enzymes that undergo conformational
changes during catalysis are coupled through the mechani-
cal interaction. We note that, in contrast to usual models of
synchronization, the interaction term is proportional to the
driving force ωðϕαÞ. In fact, whereas in other models the

coupling term can be understood as coming from the
gradient of a potential [e.g., a term proportional to
− cosðϕα − ϕβÞ in the Kuramoto model], such a description
is not possible here: the velocity field corresponding to the
right-hand side of Eq. (1) has nonzero curl when h ≠ 0.
Moreover, while in typical descriptions of synchronization
the driving force ωðϕαÞ is either a constant or a positive-
definite function of the phase that can be mapped onto a
constant using a gauge transformation [4], in our system
ωðϕαÞ vanishes and changes sign twice through a complete
catalytic cycle, because of the energy barrier in VðϕÞ. This
highlights that catalysis is an activated process that can only
occur in the presence of noise.
Stochastic dynamics.—Thermal noise can be systemati-

cally added to the deterministic dynamics in Eq. (1) [40],
resulting in the stochastic dynamics

_ϕαðtÞ ¼ Mαβ½−μϕV 0ðϕβÞ� þ kBTμϕΣαν∂βΣβν

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTμϕ
q

ΣαβξβðtÞ; ð2Þ

where the mobility tensor is defined asM11 ¼ M22 ¼ 1, and
M12 ¼ M21 ¼ hA1A2=ð1 − h2Þ; the square root of the
mobility tensor Σ is defined via Mαβ ¼ ΣανΣβν [40]; and
the Einstein summation convention for repeated indices is
used. Equation (2) is to be interpreted in the Stratonovich
sense. The first term is identical to thedeterministic dynamics
in Eq. (1), the last term is a (multiplicative) noise where ξ
satisfies hξαðtÞξβðt0Þi ¼ δαβδðt − t0Þ, and the second term is
the spurious drift associated with this multiplicative noise.
These dynamics are constructed such that they correspond to
the Fokker-Planck equation ∂tP ¼ ∂αf½Mαβμϕ½V 0ðϕβÞP þ
kBT∂βP�g for the probability distribution Pðϕ1;ϕ2; tÞ,
which ensures equilibration to the Boltzmann distribution
Pðϕ1;ϕ2Þ ∝ expf−½Vðϕ1Þ þ Vðϕ2Þ�=kBTg, independently
of the value of h, whenever the system allows equilibration,
e.g., when the potential VðϕÞ is unbiased or the range of ϕ1,
ϕ2 is bounded. Equation (2) highlights that the forces on the
phases are actually conservative, with associated potential
Vðϕ1Þ þ Vðϕ2Þ, but are connected to the phase velocities via
a nondiagonal mobility matrix, with the coupling constant h
setting the magnitude of the off diagonal terms, which
become important when the system is out of equilibrium.
As a side note, we believe that these physically suggestive
properties make Eq. (2) stand out in the context of synchro-
nization (as an unexplored class of dynamical systems), not
just in the particular form of the off diagonal terms that we
have derived here from mechanical coupling, but in its full
generality [43].
Brownian dynamics simulations.—In what follows, we

model the reaction free energy using a washboard potential
VðϕÞ ¼ −Fϕ − v cos ½ϕþ arcsinðF=vÞ�, which has min-
ima at ϕ ¼ 2πn for all n ∈ Z when F=v < 1. Here, F
and v determine the height of the free energy barrier Eba
and the free energy difference of the chemical reaction E�

(a)
(d)

(b)

(c)

FIG. 1. Examples of mechanical interactions: (a) Two enzymes
bound to each other forming a complex. Each enzyme has
elongation Lα and experiences an internal force fα. (b) Two
enzymes interact with each other hydrodynamically through the
surrounding viscous fluid medium. (c) Two enzymes embedded
in a lipid membrane interact elastically. (d) The catalytic cycle of
each enzyme is represented by a phase ϕα evolving in a biased
free energy landscape VðϕαÞ (solid blue). The enzyme elongation
Lα tries to adapt to a phase-dependent rest length LðϕαÞ
(dotted red).

PHYSICAL REVIEW LETTERS 127, 208103 (2021)

208103-2



[see Fig. 1(c)] through Eba ¼ f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðF=vÞ2
p

−
ðF=vÞ½π − 2 arcsinðF=vÞ�gv and E� ¼ 2πF. The wash-
board potential thus represents an unending sequence of
substrate-to-product transformation reactions, assuming
that substrate is abundant and that the binding and
unbinding of substrate and product in between each
reaction happen very fast compared with all other proc-
esses. The conformational changes of the enzyme mimic
the washboard potential, with the rest length given by
LðϕÞ ¼ L0 þ l cos ½ϕþ arcsinðF=vÞ�, so that the extrema
of V 0ðϕÞ coincide with those of L0ðϕÞ. Here, l represents
the amplitude of the conformational changes and may be
positive or negative depending on whether the enzyme
expands or contracts during catalysis. The synchronization
dynamics, however, is independent of the sign of l, as
the equations of motion are invariant under changes of
this sign. Defining dimensionless time as τ≡ tμϕv, the
system depends only on three dimensionless parameters:
the rescaled coupling constant h̄≡ hμϕl2=½μð1 − h2Þ�, the
bias of the free energy landscape as determined by Eba=E�,
and the noise strength kBT=Eba.
Results of the Brownian dynamics simulations of Eq. (2)

are shown in Fig. 2 and Fig. S1 in the Supplemental
Material [40]. As expected, the enzymes undergo stochas-
tic, quasidiscrete steps. While for low or positive coupling

h̄ the two enzymes mostly do individual catalytic steps, for
sufficiently negative h̄ the two enzymes tend to step in
synchrony; see Figs. 2(a) and 2(b). Remarkably, for
sufficiently low noise (kBT=Eba ≪ 1), we observe long
synchronized runs, in which the two enzymes undergo a
large number of joint catalytic steps after a thermal
fluctuation kicks them out of a local free energy minimum
(and before falling back into a minimum). An example of a
five-step run can be seen between the two black arrows for
the red trajectory in Fig. 2(a).
As a quantitative measure of synchronization, we use the

phase-difference diffusion coefficient DΔ, calculated from
the relation hðϕ1 − ϕ2Þ2i ∼ 2DΔt. This can be compared to
the single-phase diffusion coefficient Dϕ calculated from
hðϕα − hϕαiÞ2i ∼ 2Dϕt. If ϕ1 and ϕ2 were independent
variables, we would expect DΔ=Dϕ ¼ 2, as we observe for
h̄ ¼ 0. However, negative values of h̄ lead to DΔ=Dϕ < 2,
implying that synchronous steps are favored; see Figs. 2(c)
and 2(e). Synchronization is most pronounced for strong
bias (Eba=E� ≪ 1) and low noise (kBT=Eba ≪ 1). For
positive h̄ we find predominantly DΔ=Dϕ ≳ 2, implying
in this case that synchronous steps are inhibited. We then
consider the total catalytic activity, i.e., the number of
catalytic steps per enzyme per unit time over the whole
time of the simulation Ω≡ ½ϕ1ðτtotÞ þ ϕ2ðτtotÞ�=ð4πτtotÞ;

(a) (b) (c) (d)

(e) (f)

FIG. 2. (a) Trajectories of the system in ðϕ1;ϕ2Þ space for different values of h̄, with Eba=E� ¼ 10−2 and kBT=Eba ¼ 1 (except where
noted). The gray grid marks integer values of ϕ1;2=ð2πÞ. Trajectories for zero or positive coupling show mostly horizontal and vertical
segments, implying single-enzyme steps, whereas those for negative coupling (h̄ ¼ −0.8) are diagonal, implying synchronized two-
enzyme steps. For h̄ ¼ −0.8 and low noise, multistep diagonal runs are observed (red line, between the two arrows). The inset shows
magnified segments of the same trajectories (same colors) overlayed onto a contour map of the chemical free energy landscape
Vðϕ1Þ þ Vðϕ2Þ. The green circle, red circle, and two blue circles represent the stable fixed point, unstable fixed point, and two saddle
points of the landscape, respectively. Notice how the trajectories for negative coupling avoid the stable fixed point, while those for zero
or positive coupling do spend a significant amount of time around it. (b) Probability distribution Pðϕ1;ϕ2Þ, with phases modulo 2π, for
the same trajectories as in (a). Note the diagonal stripes for h̄ ¼ −0.8. (c)–(f) Heatmaps for the phase-difference diffusion coefficientDΔ
(c),(e) and the catalytic rate Ω (d),(f), as a function of Eba=E� and h̄ for fixed kBT=Eba ¼ 1 (c),(d), and of kBT=Eba and h̄ for fixed
Eba=E� ¼ 10−2 (e),(f). The dashed lines in (c)–(f) correspond to the synchronization boundary based on the deterministic phase
portraits; see Fig. 3.
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see Figs. 2(d) and 2(f).We find that mechanical coupling can
enhance catalytic activity, particularly for strongly synchron-
ized cases (with strong bias, low noise, and negative h̄), in
which case enhancements as large as 200% are seen, a
remarkable observation for just two coupled enzymes.
Phase portrait.—The fact that synchronization and

enhanced catalysis are strongest at low noise suggests that
their emergence may be understood from the phase
portraits of the underlying deterministic dynamical system
[Eq. (1)]. Indeed, the dynamical system, which is defined
on the torus, undergoes a global bifurcation for sufficiently
strong negative coupling h̄; see Figs. 3(a) and 3(b). For
h̄ > h̄�, the phase space is divided into four basins of
attraction, separated by four heteroclinic orbits. At a critical
value h̄ ¼ h̄�, the heteroclinic orbits change topology, and
for h̄ < h̄� two of the heteroclinic orbits become two
homoclinic orbits, between which a running band of
periodic orbits emerges.
This topological bifurcation has important conse-

quences. Whereas for h̄ > h̄� thermal fluctuations will
typically kick a system that is initially at (0,0) into either
of the basins of attraction ð2π; 0Þ or ð0; 2πÞ corresponding
to a single-enzyme step, for h̄ < h̄� the system is instead
kicked into either the basin of attraction ð2π; 2πÞ corre-
sponding to a synchronized two-enzyme step, or into the

running band. In the latter case, the system will perform
multiple synchronized steps until noise kicks it out of the
band once again. The critical value h̄� decreases with
increasing Eba=E�, as seen in Fig. 3(c), and appears to be
well described by h̄� ≃ −2ðEba=E�Þ1=4. This value is plotted
as the dashed line inFigs. 2(c)–2(f), and correctly predicts the
regions with enhanced catalysis and synchronization.
Discussion.—Using a minimal model, we have shown

that enzymes that undergo conformational changes during
their catalytic cycle can synchronize with each other
through mechanical interactions, which moreover can
significantly enhance their overall catalytic rate. These
effects are favored for negative mechanical coupling h < 0,
which implies that the contraction of one enzyme favors the
expansion of the other, and vice versa. A negative coupling
is guaranteed for complexed enzymes as in Fig. 1(a) [40],
and should be expected in similar configurations, such as
the one in Fig. 1(c). Here, synchronization arises as an
entrainment of the inherently stochastic, noise-activated
catalytic steps of the two enzymes. While synchronization
in excitable systems has been described before [44],
particularly in the context of FitzHugh-Nagumo oscillators
[45–47], the coupling in these systems was by means of an
added coupling force (diffusive or Kuramoto-like) and
resulted in a synchronization transition mediated by

(a)

(b) (c)

FIG. 3. (a) Phase portraits for Eba=E� ¼ 0.02 and h̄ ¼ 0;−0.71;−0.75;−0.9, corresponding to the points A–D in the phase diagram in
(c). Independently of the value of h̄, the system always has a stable fixed point at (0,0) [green circle], an unstable fixed point at ðϕ�;ϕ�Þ
where ϕ� ≡ π − 2 arcsin ðF=vÞ corresponds to the location of the maximum of VðϕÞ [red circle], and two saddle points at ðϕ�; 0Þ and
ð0;ϕ�Þ [blue circles]. The colored regions labeled (0,0), ð0; 2πÞ, ð2π; 0Þ, and ð2π; 2πÞ represent four different basins of attraction, all of
which go to the stable fixed point (0,0), but with trajectories that wind differently around the torus on the way there. Notice the
topological transition occurring between B and C, where a running band of periodic orbits emerges (in yellow). (b) The transition can be
understood as a global bifurcation of the dynamical system on the torus with decreasing h. At h ¼ h�, two pairs of heteroclinic orbits
connecting the unstable point to the saddle points collide. For h < h�, two homoclinic orbits arise, with the running band between them.
(c) Phase diagram based on the topology of the deterministic phase portraits.
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standard Hopf or saddle-node bifurcations. In contrast, in
our system we find a novel form of coupling which arises
from off diagonal terms in the mobility matrix that connects
forces to velocities, and thus leaves the equilibrium
probability distribution of the system intact while intro-
ducing nontrivial effects in an out-of-equilibrium setting.
The resulting transition is mediated by a global bifurcation
which gives not only synchronization but also enhanced
catalysis. We note that the mechanism for enhanced
catalysis that we observe is also distinct from recent
proposals for activated barrier crossing [48–50] which rely
on colored noise.
Biological enzymes often form dense assemblies where

mechanical interactions should be expected. These range
from large-scale, three-dimensional clusters such as “metab-
olons” [34] and bacterial microcompartments [35], to
ordered filaments such as the cytoophidium [36], to oligo-
meric complexes of just a few enzymes [37]. While the
functional benefit of these structures is not yet clear, it has
been proposed that proximity favors channeling of reaction
intermediates among different enzymes in the same catalytic
pathway [34]. Our result of enhanced catalysis provides a
possible additional advantage to close proximity between
enzymes. In fact, many enzymes that are functional in their
monomeric form but also assemble into homooligomeric
forms [see Fig. 1(a)] are more catalytically active in the
oligomeric form [37], a behavior which could be explained
by mechanical coupling as proposed here. Moreover, syn-
chronization effects could be particularly relevant in the
context of rapid and robust signaling by membrane ion
channels, which also operate in clusters [38,39]. Future
experiments may also test our predictions in a controlled
in vitro setting, by creating enzyme assemblieswith designed
geometry [51–53], or using single-molecule techniques that
allow for the measurement of individual catalytic events and
conformational changes [54–57].
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