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Abstract—Residue number systems provide efficient techniques
for speeding up calculations and/or protecting against side
channel attacks when used in the context of cryptographic engi-
neering. One of the interests of such systems is their scalability, as
the existence of large bases for some specialized systems is often
an open question. In this paper, we present highly optimized
methods for generating large bases for residue number systems
and, in some cases, the largest possible bases. We show their
efficiency by demonstrating their improvement over the state-
of-the-art bases reported in the literature. This work make it
possible to address the problem of the scalability issue of finding
new bases for a specific system that arises whenever a parameter
changes, and possibly open new application avenues.

Index Terms—Residue Number Systems

I. INTRODUCTION

Scientific Context: The residue number system (RNS)
became popular in computer science in the late 50s [1],
[2]. It is a direct application of the Chinese Remainder
Theorem to represent integers [3], [4]. The main interest of
this approach is to deal with the residue of a value’s modulo
as a set of pairwise coprime numbers representing the RNS
base. In theoretical works, the authors of [5], [6] use RNS to
transfer approximately l-bit calculations to l

log(l) operations
on n ≈ log(l)-bit operators. An intensive use of such systems
was first made in signal processing [7] with small bases of
approximately four elements [8], [9]. Then, in the late 90s
after the emergence of public key cryptography[10], [11]
involving modular arithmetic with large numbers, RNS found
a new area of interest where it could show its efficiency and
robustnes. For these cases, RNS bases need many elements
the size of one of the machine operators [12], [13], [14].

There is a rich literature on RNS for cryptography focused
on conversion algorithms and their integration into the
cryptographic protocols (using different architectures such as
field-programmable gate array (FPGA)) [15], [16], [17], [18]
or fault detections [19], [20] where the choice of the RNS
base is crucial. A frequent challenge is encountered with
implementations on small operator devices, which restricts
the size of the elements of the RNS bases and thus their
numbers[21], [22]. Thus, a question remains: What is the
maximum number of elements we can reach for a certain

operator size?

In [22], the authors propose a brute-force approach of
post-filtering with a search of the maximal clique in the
pairwise coprime graph. Since this problem is known to
be NP-complete [23], [24], they suggest a heuristic method
for massive sizes to obtain a solution close to the optimal one.

Main results: We present two new filtering methods
to efficiently reduce the size of the graph in order to apply
a maximal clique algorithm. These approaches improve
both theoretically and practically upon those of [22] and
consequently improve the maximum known sizes of RNS
bases for several state-of-the-art algorithms, thus expanding
all of their application fields.

Organization of the paper: We first introduce some
background and notations on RNS and then present two
new filtering methods. Then, exhibit new bases for most
relevant cases of moduli families used in state of the art RNS
optimization.

II. BACKGROUND

A. RNS base

Definition 1 (RNS).
A set of pairwise coprime integersM = {m1, ..,md} ∈ (N∗)d
is an RNS base of set size d and product size M =

∏
mi.

For x ∈ Z, we denote 〈x〉M = 〈x1, ..., xd〉 = 〈x
mod m1, ..., x mod md〉 and call the set of xi the residues
of x in M (the RNS base of product size M ).

We tend to use the same notation for bothM and M . Thus,
for each x ∈ Z, there is a unique representative xM = x
mod M where 0 ≤ xM < M and the Chinese remainder
theorem (CRT) tells us that there is a trivial isomorphism
from

∏d
i=1 Zmi

to ZM . In particular, we denote CRT the
function such that given any RNS base of product size M ,
CRT(〈x〉M ) = xM . Note that when we search a “largest”
RNS base, we tend to maximize d rather than M . The reason
is simple: as hardware often have limited capabilities on the
word size n and thus is often bounded as a power of 2 (i.e



2n), the emphasis to increase M is often set on increasing d
to circumvent the issue. In practice, we would like to have
the same size for all residues, to even the load between all
computation units. For example, given M = 42, we could
obtain a base of set size d = 2 and moduli {6, 7} or a base of
set size d = 3 and moduli {2, 3, 7}. The first one is preferred
over the second one as all moduli have the same bit size b,
despite having a lower set size. The preference is then to have
the following: d×2n ≈M with fixed n, where we can assume
n is fixed in a way that optimizes hardware usage.

B. Maximum RNS base via maximum clique algorithms

In [22], methods were proposed to find a maximum size
RNS base within an interval of consecutive numbers. Their
approach was based on the resolution of a maximum clique
problem, where every number is represented as a node and
every edge between two nodes represent a coprimality relation.

Example 1. Let S = [2, 13] be a set of 12 consecutive
numbers. On the left is the graph representing every number
of the set connected as described above, and on the right is
a maximum clique of the left graph, i.e., a subgraph of the
largest possible size where every node is connected.
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Note that, while the solution is not unique (for example,
node 2 can be replaced by node 4 or 8 and 3 by 9), a
clique, maximal or not, will always represent a set of pairwise
coprime numbers in this model.

Without reusing the exact same notations as in [22] and
given a known interval I = [Imin, Imax], we denote the
following sets of pairwise coprime numbers:
• E1 a set of prime numbers and powers of a single prime

number within I .
• E2 a maximum size set of products pq of two distinct

primes such that pq ∈ I such that no power of p, q is
within E1.

• Ek a set of integers of k prime factors (powers counted
as multiple) that are not within E1.

Do note that in the work of [22], Imin and Imax are close
enough to make E1 unique: in particular, [22] only considered
the case of pseudo-mersenne numbers within a same bit size.
In most RNS applications, Imin and Imax have the same bit
size, thus ensuring the unicity of E1. The work of [22] proved
that there exists a maximum size (in terms of the number
d of moduli within I) RNS base which include E1 and a
corresponding version of E2 (note that the contrapositive is

false). Thus, after constructing E1 and one version of E2,
one only needs to brute-force search the remaining numbers
of a set S, where S in [22] is initially I\{E1 ∪E2}. In [22],
this brute-force approach was proposed to be tackled using a
maximum clique algorithm: we need to find a subgraph where
every node is connected (i.e, a clique) given a graph, and no
other clique should have more nodes than this subgraph.

The problem is that the maximum clique problem is known
to be NP-complete, which was also pointed out in [22].
Thus, for any reasonably large set, the problem is known
to be computationally unfeasible realistically. To simplify
the computations, [22] also propose to prune successively
after E1, after E2, E3, E4 and so on. This method does not
provide the optimal graph but an approximate of the optimal
solution.

Our methods, while not proven to be able to avoid the
resolution of an NP-complete problem, are sure to provide
an optimal solution. They do simplify the computations by
essentially giving a graph of a much lower size as an input to
the maximum clique algorithm. Interestingly, in many of our
applications, our methods transform our original input into
a graph already corresponding to a clique, thus avoiding the
necessity to call a maximum clique algorithm in the first place.

III. NEW FILTERING

In this section, we improve the theoretical work of [22] in
constructing the maximum RNS base given an integer set by
proposing two new filtering methods to find the largest RNS
base. Similarly to the filtering method of [22] prior to the use
of a graph algorithm, our methods are also proven to generate
a maximum set size RNS base since they rely on the same
proven assumption previously used: picking one optimal factor
at a time. Basically, both algorithms use the same principle as
stated in [22]: in every possible RNS base, any prime factor
can be used at most once. Thus, any choice of a prime has the
consequence of restricting the remaining possibilities. Both
algorithms do not completely discard the utility of a clique
algorithm. However, during our tests, the call for a clique
algorithm was never necessary. Note that those algorithm by
themselves have only one purpose: to obtain a large subset
of pairwise coprime numbers from an entry set. The resulting
RNS base therefore depends entirely on the entry set given as
a parameter. If one wishes to create an RNS base with moduli
of a specific shape, then the entry set should be composed of
numbers having this specific shape (see the pseudo-Mersenne
discussion in Sec IV, the Montgomery-friendly discussion in
Sec VII, etc.).

A. The first method: recomposing by factors

Constructing coprime moduli sets within an interval using
their prime decomposition is the initial idea of [22]. After
constructing E1 and E2, their initial method resorts to the
call of a clique algorithm over all remaining possible numbers.



Here, the first method we present is a direct upgrade over
their initial method: we thin the leftover primes, thus lowering
the possible combinations. As our terminology is slightly
different than the one of [22], we present below our method
to compute E1 with algorithm 1, keeping information about
the primes not being used for E1 as those are necessary for
the construction of E2.

Algorithm 1 FirstStep, build E1 and the initial set of primes
Input: Imin, Imax the interval range
Output: E1 a base part and P the unused remaining primes.

1: E1 ← {}, P ← {}
2: for a ∈ [Imin, Imax] do
3: if a is prime then E1 ← E1 ∪ {a}
4: for (a ∈ [2, b

√
Imaxc]) and (a is prime) do

5: if ∃k > 1 s.t ak ∈ [Imin, Imax] then
6: E1 ← E1 ∪ {ak}
7: else
8: P ← P ∪ {a}
9: return E1,P

We then construct E2, but we wish to keep information on
the primes we pick for E2 and those we will not pick. This is
done by using algorithm 2. Let us call U the set of the leftover
primes for I after the construction of E2: by construction,
this set is unique, as it represents the primes that cannot be
included in any version of E1 ∪E2. Let s be the lowest value
among U , and let k the smallest value such that sk > Imax.
We define R = {p ∈ U |s2p < Imax}.

Algorithm 2 SecondStep, build E2 and thin down primes
Input: Imin, Imax the interval range, and P a set of primes
Output: E2 a base part and R a set of leftover primes.

1: E2 ← {}, R← {}
2: for a ∈ P do
3: b← NextPrime(b Imin

a c) . Get smallest larger prime
4: x← a× b
5: if x ∈ [Imin, Imax] then
6: E2 ← E2 ∪ {x}
7: P ← P\a
8: else
9: s← a2 . Smallest unused prime squared

10: Break the loop
11: for a ∈ P do
12: P ← P\a
13: b← NextPrime(b Imin

a c)
14: x← a× b
15: if x ∈ [Imin, Imax] then
16: E2 ← E2 ∪ {x}
17: else if s× a ≤ Imax then
18: R← R ∪ {a}
19: return E2,R

Now, instead of looking for combinations among U , we
only need to look at combinations over R of at most k

elements. The number of combinations to try is then of at
most |R|k to obtain the final input to the clique algorithm.

The reason why searching over combinations of R is
sufficient is since the powers pk of a prime p are already
included in E1 and the product of two distinct primes p, q in
E2, and the only possible factorizations left are the ones that
include at least 3 primes with at least 2 distinct primes, such
as p2q. Since s is the smallest prime and s2p becomes the
smallest possible product divisible by p, any possible valid
integer left within I must exclusively use factors within R.
This final step of the filtering process is done by algorithm 3
below.

Algorithm 3 ThirdStep, a recursive procedure
Input: Imin, Imax the interval range, R a list of leftover

primes, K the currently saved product, and RES a list
of saved candidates.

Output: RES contains the remaining clique candidates.
1: if K ≤ Imax then
2: if K ≥ Imin then
3: RES← RES ∪K
4: else if |R| ≥ 1 then
5: p← R[1]
6: Rp ← R\p . Test all lists without p
7: while K ≤ Imax do
8: RES ← ThirdStep(Imin, Imax,Rp,K,RES)
9: K ← K × p . Test all powers of p

10: return RES

Note this does not theoretically guarantee a set of pairwise
coprime integers since a = p× q× z and b = p×x×w could
be valid integers within I . While this scenario has never
occurred in our tests, we do not have any proof showing its
impossibility. Thus, in theory, a maximum clique algorithm
could still be needed.

The entire process is thus the concatenation of the three
above algorithms, described in algorithm 4.

Algorithm 4 FactorFilter
Input: Imin, Imax the interval range.
Output: C a set of pairwise coprime numbers, RES potential

additions to grow C
1: C1, P ← FirstStep(Imin, Imax)
2: C2, R← SecondStep(Imin, Imax, P )
3: C ← C1 ∪ C2

4: RES← {}
5: RES← ThirdStep(Imin, Imax, R, 1,RES)
6: return C,RES . If RES is empty, then C is maximal

Do note that in the algorithm 4, if R is empty, then C is a
maximum clique and ThirdStep would actually do nothing.



B. The second method: a more generic filter

The second method does not rely on any properties on the
set it is used on: this makes this particular filtering process
the only other choice for any set of integers that is not an
interval of consecutive numbers and is also best suited for
small sets. It tries to build a set by looking at the factorization
of the members of the set and thinning candidates within this
set. We will refer to it as generic filtering. To the best of our
knowledge, there is no generic method for generating a RNS
base of maximal size from a generic set of moduli.

The algorithm is simple: only pick up numbers that are
coprime with every other number (i.e., as a substitute for E1)
and numbers that admit only one common divisor with others
(i.e., as a substitute for E2), and thinning the entry set every
time a number is picked by discarding every integer that is
not coprime with the chosen integer. Repeat until the entry set
is empty or cannot decrease. The full process is described by
algorithm 5. Note that this filter can also be applied after the
previous filter since the output is also a set. After this filtering
algorithm, to further increase the set size of B, we would need
to call a maximum clique algorithm over Mr, the leftover of
M : however, in our experiments, Mr is mostly empty, leaving
B as the final base.

Algorithm 5 Generic Filtering
Input: M = {mi} a set of integers
Output: B ⊂M a RNS base, and leftovers Mr

1: B ← {}
2: Mr ←M
3: while Mr decreases in size do
4: for m ∈Mr do
5: f ← m . Initial common divisors
6: for m′ ∈Mr\m do
7: d← gcd(m,m′)
8: if d 6= 1 then . Test divisor unicity
9: f ← gcd(d, f)

10: if f = 1 then Break . #divisors ≥ 2

11: if f 6= 1 then . #divisors < 2
12: B ← B ∪ {m}
13: Mr ← {m′ ∈Mr|gcd(m,m′) = 1}
14: return B,Mr

IV. BASE OF PSEUDO-MERSENNE

A. Set [2n − 2n/2, 2n]

Pseudo-Mersenne numbers are of the form 2n − c, where
c is a relatively small constant, and have been proposed for
practical use in [25]. They were always considered important
for efficiency since modular reductions can be done faster and
avoid the use of Barrett’s multiplication’s algorithm [26]. We
are continuing the work of [22] for pseudo-Mersenne integers
within

In = [2n − 2n/2, 2n] where n is even

We can generalize our work over the case where n is odd or
when the lower bound is actually larger, as in [22]; however,
for simplicity, we keep n even to have a simple computation
of 2n/2 and the lower bound. We construct a largest RNS base
consisting of integers of those intervals. We experimentally
restrict ourselves to the case of n ∈ [16, 64] and show that
in this range, there is no need to resort to an expensive
maximum clique algorithm: the factor recomposition filtering
is enough.

The only problem is the size of Un, the unused primes
to try. Let us apply the method we described previously to
thin Un into a smaller set Rn. We list the size of Rn in the
function of n in table I. As we can see, the size of Rn is low
enough for us to use a brute-force approach on the remaining
numbers, which is no more than |Rn|3 in our tests. Note that
sometimes Rn = 0, and we stress this is not an error: this
occurs anytime s3 > 2n.

n 16 18 20 22 24 26 28 30 32 34 36 38 40 to 64
Rn 7 0 10 60 6 21 19 13 1 283 0 1 0

Table I
SIZE OF Rn

Surprisingly, it seems as if most of the time, E1 and E2

are all that is needed to create the maximum RNS base of
numbers within In, i.e., the third step of our filtering process
described in algorithm 3 gives us an empty output. We list
below the only few exceptions where algorithm 3 did not give
us an empty output:
• I16: 65453 = 29× 37× 61
• I20: 1048207 = 73× 83× 173
• I22: 4193923 = 732 × 787 and 4193993 = 1092 × 353

In the above cases, calling a graph algorithm is clearly
unnecessary. Observing that Rn = 0 for n > 38, it would
be tempting to conjecture further results: as n increases, the
smallest unused prime would increase p since there would be
more possibilities for q (as in generating pq ∈ E2 ⊂ In).
However, the density of prime numbers is also vanishing. We
present in table II the set size of E1 and E2 for our tests, and
the maximum size d of the RNS base we computed.

B. Set [2n − 256, 2n]

Here, we focus on the sets [2n − c, 2n] where c holds in a
single byte, since some applications rely on c being extremely
small to perform efficient operations: the smaller c is, the
more efficient is the associated fast modular reduction. Table
III shows the results given by the generic algorithm. While
the set is indeed a set of consecutive numbers, the generic
algorithm still works well as the set that has only 256 elements
for each value of n. Thus, we can avoid the issue of generating
consecutive primes for large values of n.

V. BASE OF SOLINAS NUMBERS

The selection of the elements of the bases in an RNS
modular multiplication method is crucial and has a great



n E1\{2n} E2 max size
16 21 25 48
18 38 45 84
20 70 65 137
22 129 117 249
24 251 198 450
26 477 340 818
28 871 571 1443
30 1578 1027 2606
32 2931 1851 4783
34 5667 3324 8992
36 10413 5971 16385
38 19799 10884 30684
40 37798 19856 57655
42 71805 36315 108121
44 137313 66828 204142
46 263004 122472 385477
48 504634 226507 731142
50 969072 419895 1388968
52 1863100 783247 2646348
54 3586713 1460078 5046792
56 6920100 2724323 9644424
58 13351601 5126172 18477774
60 25818361 9636792 35455154
62 49975064 18153932 68128997
64 96798093 34267158 131065252

Table II
SET SIZE OF E1 , E2 , AND max RNS SET SIZE d FOR EVEN n ∈ [16, 64]

n 16 18 20 22 24 26 28 30 32 34 36 38 40
d 48 52 45 46 50 50 46 48 49 50 47 52 47

n 42 44 46 48 50 52 54 56 58 60 62 64
d 48 50 50 50 48 48 50 49 48 46 49 46

Table III
MAXIMUM SET SIZE d FOR mi ∈ [2n − 28, 2n] FOR EVEN n ∈ [16, 64]

impact in the overall performance. [27] proposes specific
sets of optimal RNS moduli with elements of Hamming
weight of three whose inverses used in the mixed radix
system (MRS) reconstruction have a very small Hamming
weight. This property was exploited in RNS base conversions
to completely remove and replace the products by few
additions/subtractions and shifts, reducing the time complexity
of modular multiplication. These bases were specially crafted
to perform computations with operands of sizes 256 or more
and are suitable for cryptographic applications such as the
elliptic curve cryptography (ECC) protocols. The numbers
proposed were Solinas numbers.

Solinas numbers were first introduced in the area of fast
computations in [28] to counter the patent of Crandall [25]
and focused on the sparsity of the moduli for fast modular

reduction without the need of a multiplication or division.

Let us consider numbers in signed base 2, i.e., x =
∑
xi2

i

where xi ∈ {−1, 0, 1}. While the representation of each
number is not unique, we say that the number x > 0
is a Solinas of Hamming weight w when there exists a
representation of x such that the amount of xi 6= 0 is less or
equal to w. For example, for w = 1, x is a power of 2. Let
us denote dw the maximum size of a set of pairwise coprime
Solinas numbers of Hamming weight w.

As pointed in [27], one of the main advantages of RNS is
that the large prime typically used in ECC can be modified
even if the RNS base is fixed. However, the product size of
the RNS needs to be large enough, and the set size might
have to be increased further than 6 (which is the largest size
given in [27]). We thus apply our methods to determine the
largest set size RNS bases for each moduli size of fixed
Hamming weight. This allow us to determine to what extent
the approach of [27] can be exploited.

The set of Solinas numbers is by no means a set of
consecutive numbers; thus, the only reasonable filtering we
apply here is the generic filtering. Unsurprisingly, we can
obtain a largest set size almost instantaneously, and we list
here the results for numbers within In (as defined in section
IV).

n 16 18 20 22 24 26 28 30 32
d3 11 12 13 12 17 16 15 18 20
d4 24 37 40 48 55 65 72 92 90

n 34 36 38 40 42 44 46 48
d3 18 21 22 21 23 27 23 29
d4 113 133 126 140 172 163 193 178

n 50 52 54 56 58 60 62 64
d3 29 24 28 31 28 33 31 30
d4 210 240 262 244 291 294 314 325

n 128 256 512 1024
d3 62 81 180 281

Table IV
MAXIMUM SIZES OF d3, d4 ∈ In FOR EVEN n ∈ [16, 64]

VI. BASE OF QUADRATIC RESIDUES

Recently, [18] proposed two new RNS Montgomery
reduction algorithms: one is a single-level Montgomery,
namely, sQ-RNS, and the other one a double-level
Montgomery, namely, dQ-RNS, which are derived by
posing quadratic residuosity requirements on RNS bases.
They obtain fewer numbers of unit multiplications than
all previously proposed algorithms and confirmed their
improvement over the R-RNS algorithm of Gandino et al.
[29] with an FPGA implementation. Since their proposed



algorithms have more regularity and symmetry than do
conventional ones, they suggested it might be worth studying
software implementations for multicore processors. Another
topic they suggested for future study was the improvement to
the two base search algorithms proposed in this paper.

We mostly focus on the latter, by improving their base
search algorithms. In doing so, we have the choice of which
results to improve: the moduli quality for a fixed-size moduli
n and fixed set size d of an RNS base or an improvement
over the set size of the RNS basis. Incidentally, those results
also expand the scope of future applications for multicore
processors by lowering the size of ci in moduli of the form
2n − ci for a fixed set size d of an RNS base or improving
the maximum known set size of an RNS base given a fixed
bound k > ci for numbers with moduli of the form 2n − ci.

A. Q-RNS Definitions

sQ-RNS uses one base of size M , 〈m1, ...,md〉, while dQ-
RNS needs a supplementary base of size M ′, 〈m′1, ...,m′d〉,
but both use a ”QR” function:

Definition 2 (QR function).
Let a,m ∈ N∗ and gcd(a,m) = 1.
Then, QR(a,m) = 1 ⇐⇒ ∃x s.t. x2 = a mod m.
Otherwise, QR(a,m) = 0.
Whenever QR(a,m) = 1, we say that a is a quadratic residue
mod m.

Note that this relation is not reflexive: every odd number
is a quadratic residue mod 2, but the reverse is not true. This
notation is heavily reminiscent of the Jacobi symbol. However,
valuing nonquadratic residues to 0 instead of −1 as in the
Jacobi symbol allows them to simplify base conditions with
one-liner formulas. Those conditions are the following: given
a prime p that is the cardinal of the ring of integers we want
to represent in RNS form:
• sQ-RNS:∏

i 6=j QR(mj ,mi)QR(m′j ,m
′
i)×∏

∀i QR(p,mi)
∏
∀i,j QR(mj ,m

′
i) = 1.

• dQ-RNS:
∏
∀i QR(p,mi) = 1

mi,m
′
i are squared numbers over Z.

and for each basis, moduli take the form of
• mi = 2n − ci with ci < 2k for M
• m′i = 2n − c′i with c′i < 2k

′
for M ′

where k, k′ have to be as small as possible.

We will first propose our method for generating sQ-RNS
bases and then follow up with the case of dQ-RNS bases.
In the following discussions, we always assume p is given in
advance. We say that a base or number is valid for dQ-RNS or
sQ-RNS whenever it respects the above criteria given a known
prime p.

B. sQ-RNS

The problem of finding a valid sQ-RNS base is not trivial.
Let us summarize the properties required.

a) Two coprime bases of size M and M ′ are required.
b) ∀m of the base of size M , QR(m,M/m) = 1.
c) ∀m′ of the base of size M ′, QR(m′,M ′/m′) = 1
d) QR(M ′,M) = 1, but QR(M,M ′) = 1 is unneeded.
e) QR(p,M) = 1, but QR(p,M ′) = 1 is unneeded.

In short, the choice of p limits the choice of M , but the
choice of M limits the choice of M ′. In practice, the prime
p is given first since it is often a fixed parameter of a
cryptosystem. Note that, by application of the CRT, the
conditions QR(m′j ,m

′
i) and QR(mj ,mi) as listed by [18]

are equivalent to conditions b), c).

To solve the problem using a classical maximum clique
problem, the graph generated has to be nonoriented, which
is not the case here since moduli relations are not reflexive.
Our approach decomposes the problem into two subproblems.
We first construct M with the smallest k possible for d, P
fixed with the following conditions:

1) ∀i, QR(P, 2n − ci) = 1, ci < 2k

2) ∀i 6= j, QR(2n − ci, 2n − cj) = 1
3) At least d different values

We iterate the process increasing k until we find a solution:
the first step is a prefiltering process over parameters P, k,
the second step is an application of a clique algorithm with
generic filtering, and the third step is to verify we gather
enough integers. After obtaining M , the computation of M ′

is done in the same manner, searching for the lowest k′ given
M,d fixed:

4) ∀i, QR(M, 2n − c′i) = 1, c′i < 2k
′

5) ∀i 6= j, QR(2n − c′i, 2n − c′j) = 1
6) At least d different values

After those steps are done, we obtain a valid sQ-RNS base.
Our given solution is not provably optimal; however, we show
in table V that our results significantly improve the ones
reported in [18]: we managed to find either a larger set size d
for each moduli size n. Table 1 in section 4.4 of [18] presented
an example for d = 4. We present in table VI an example
obtained by our algorithms. Note that the original table of
[18] did not list k but only k′ and used a nonintegral value
that we round to the highest integer. By diminishing the bound
k, we obtain pseudo-Mersenne moduli of size n that are closer
to 2n, leading to more efficient arithmetic.

C. dQ-RNS

The difference between sQ-RNS and dQ-RNS lies in the fact
that a less restrictive requirement allow [18] to use squared
numbers for moduli mi,m

′
i. Thus, the previous conditions

noted b), c), d) in section VI-B are always verified. This should
allow for an easier basis search. [18] requires that the moduli
mi takes the form of mi = σ2

i where

σi = (2n/2 − ci)2 = 2n − ci2n/2+1 + c2i

and thus, a simple improvement to [18]’s base search algorithm
for dQ-RNS would be to reuse our algorithms for sQ-RNS by
adding the extra conditions



P
d = 4 d = 5 d = 6 d = 7

n k k′ n k k′ n k k′ n k k′

NIST P-192 50 4 10 40 6 11 34 7 12 - - -
NIST P-224 58 4 8 47 6 13 39 7 13 34 7 12
NIST P-256 65 6 7 52 6 12 44 6 13 38 8 11
NIST P-384 98 4 9 79 7 8 66 7 12 56 8 13
NIST P-521 132 6 7 106 6 8 88 7 12 76 8 15
Curve25519 65 5 8 52 7 11 44 7 11 38 8 15

P
d = 8 d = 9 d = 10 d = 11

n k k′ n k k′ n k k′ n k k′

NIST P-256 33 9 14 - - - - - - - - -
NIST P-384 49 9 15 44 10 18 - - - - - -
NIST P-521 66 8 16 59 9 16 53 9 20 48 10 22

Table V
RESULTS FOR MAXIMUM SIZE FOUND FOR SQ-RNS BASES

P ci = 2n −mi c′i = 2n −m′i k k’

19
2 5 7 11 15 255 663 689 863 4 10

27 117 351 951 1153 2567 2855 8543 10 13

22
4 5 7 11 15 63 111 159 227 4 8

57 63 147 447 27 731 3807 7403 9 13

25
6 55 31 43 63 23 79 91 103 6 7

535 751 3219 8031 49 979 2191 11,335 13 14

38
4 5 7 11 15 35 135 215 447 4 9

51 855 4343 52,155 117 831 1571 1827 16 11

52
1 47 51 55 63 15 39 65 87 6 7

347 363 527 38,835 725 5547 11,535 38,679 16 16

C
29 3 9 19 23 31 85 211 231 5 8

535 2191 3219 8031 49 751 979 11,335 13 14

Table VI
VALUES ci, c

′
i AND THEIR SIZE k FOR SQ-RNS WITH d = 4 AND SAME n.

OUR WORK IS IN BOLD, [18] IN ITALIC

• 2n − ci is a square number in Z with ci < 2k

• 2n − c′i is a square number in Z with c′i < 2k
′

and removing the following conditions as they become always
verified

• Condition 2) in the construction of M
• Condition 4) and 5) in the construction of M ′

We note that the approach used for dQ-RNS by [18]
suggested to use square numbers to make their technique
simpler to apply and their base search easier. From our
understanding, taking square numbers is not a requirement to
make use of their algorithms: it might be possible to use our
methods for sQ-RNS to find valid bases for their dQ-RNS
algorithms without requiring square numbers. In particular,
the main difference between their base search algorithm for
dQ-RNS and sQ-RNS is their number pool. As we showed
we can find pools of maximal size in an efficient manner, we
can assume our proposition can improve the work of [18].

It might also be possible to construct simultaneously M
and M ′ in the case of dQ-RNS: as the relationship between
M and M ′ becomes always true, for two RNS base size of d,
we could:

• Construct one large RNS base M ′′ of size > 2d com-
posed of squared pseudo-Mersenne numbers of size n.

• Extract if possible one base M out of M ′′ of size d which
verifies QR(P,M) = 1.

• Extract a base M ′ of size d from M ′′/M regardless of
its relationship with the prime P .

Both methods should be able to extend the application
scope of [18] through larger RNS bases. As their work
is already complex, we prefer to leave further research
concerning that matter for further work.

VII. BASE OF MONTGOMERY-FRIENDLY NUMBERS

In this section, we apply generic filtering to the family of
“Montgomery-friendly” numbers designed for the modular
reduction algorithm of Montgomery. They were introduced
in [30], [31], [32] for applications on elliptic or hyperelliptic
curves and are considered an alternative to pseudo-Mersenne
primes as long as the Montgomery reduction is used. In
those numbers, the high part of their binary decomposition is
similar to a pseudo-Mersenne number, while the low part is
determined by ±1.

Recently, [33] exhibited a large family of Montgomery-
friendly primes that gave rise to efficient modular reduction
algorithms. [33] develop two main uses. The first one
is dedicated directly to cryptography, in particular to
isogeny-based approaches and more generally to ECC:
[33] suggest more appropriate finite fields and curves in
terms of complexity for the recommended security levels
for both isogeny-based cryptography and ECC. The second
use is purely arithmetic, and the authors of [33] propose
families of alternative RNS bases; they show that, for
dedicated architectures with word operators, they can reach,
for a similar or better complexity, larger RNS bases with
Montgomery-friendly pairwise coprimes than the RNS
bases generally used in the literature with pseudo-Mersenne
numbers. This is particularly interesting for modular arithmetic
used in cryptography.

We focused solely on the latter : numbers of n-bits of
the form mi = 2n/2(2n/2 − c) ± 1, where 0 < ci < 2n/2

(including ci = 0 for mi = 2n − 1), and try to obtain the
largest possible set size d of an RNS base while conserving
the parameters of section 5.3 of [33].

In regard to specific implementations, the moduli size is
usually fixed: thus, the larger the set size d is for a fixed
moduli size, the wider the application scope is. In table VII,
we present results achieved by our techniques which are at
least equivalent, mostly better and up to two times better in
some cases than those in section 5.3 of [33].

VIII. CONCLUSION

This work expands the scope of possibilities over research
on the usage of RNS bases, their efficiency and security
applications in two ways: firstly, by presenting more effective
methods to obtain larger bases over any set; and secondly, by
improving the bases exhibited in the recent literature using the
aforementioned methods. We have explained our processes and



n 32 32 32 64 64 64 64 64 64
k 8 9 10 4 6 8 10 11 12
t 20 20 20 56 56 56 56 56 56

Our d 70 122 122 8 21 64 214 255 255
[33]’s d 68 - 89 8 20 62 127 - 127

n 16 16 32 32 32 64 64 64 64
k 4 4 4 6 8 10 12 13 14
t 10 7 24 24 24 48 48 48 48

Our d 8 8 7 22 70 214 705 1319 2401
[33]’s d 7 - 7 21 65 205 688 1295 2365

Table VII
MAXIMUM SIZE OF MONTGOMERY-FRIENDLY RNS BASES.

BOLD NUMBERS SHOW WHERE WE IMPROVE UPON [33]

left open further research on improving the aforementioned
methods, pointing out directions toward basic number theory:
in particular, our examples show the filtering process has
similarities to sieving algorithms.
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