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Abstract. Oceanographic fronts are transitions between ther-
mohaline structures with different characteristics. Such tran-
sitions are ubiquitous, and their locations and properties af-
fect how the ocean operates as part of the global climate
system. In the Southern Ocean, fronts have classically been
defined using a small number of continuous, circumpolar
features in sea surface height or dynamic height. Modern
observational and theoretical developments are challenging
and expanding this traditional framework to accommodate a
more complex view of fronts. Here, we present a comple-
mentary new approach for calculating fronts using an unsu-
pervised classification method called Gaussian mixture mod-
elling (GMM) and a novel inter-class parameter called the
I -metric. The I -metric approach produces a probabilistic
view of front location, emphasising the fact that the bound-
aries between water masses are not uniformly sharp across
the entire Southern Ocean. The I -metric approach uses ther-
mohaline information from a range of depth levels, making
it more general than approaches that only use near-surface
properties. We train the GMM using an observationally con-
strained state estimate in order to have more uniform spa-
tial and temporal data coverage. The probabilistic bound-
aries defined by the I -metric roughly coincide with several
classically defined fronts, offering a novel view of this struc-
ture. The I -metric fronts appear to be relatively sharp in the
open ocean and somewhat diffuse near large topographic fea-
tures, possibly highlighting the importance of topographi-
cally induced mixing. For comparison with a more localised
method, we also use an edge detection approach for identi-
fying fronts. We find a strong correlation between the edge
field of the leading principal component and the zonal veloc-
ity; the edge detection method highlights the presence of jets,

which are supported by thermal wind balance. This more lo-
calised method highlights the complex, multiscale structure
of Southern Ocean fronts, complementing and contrasting
with the more domain-wide view offered by the I -metric.
The Sobel edge detection method may be useful for defining
and tracking smaller-scale fronts and jets in model or reanal-
ysis data. The I -metric approach may prove to be a useful
method for inter-model comparison, as it uses the thermo-
haline structure of those models instead of tracking some-
what ad hoc values of sea surface height and/or dynamic
height, which can vary considerably between models. In ad-
dition, the general I -metric approach allows front definitions
to shift with changing temperature and salinity structures,
which may be useful for characterising fronts in a changing
climate.

1 Introduction

The Southern Ocean (SO) is at the centre of the global ther-
mohaline circulation, joining the Indian, Pacific, and Atlantic
oceans into a single planetary-scale heat and carbon trans-
port system (Marshall and Speer, 2012; Talley, 2013). In
the SO, upwelling and downwelling branches of the over-
turning circulation transport water and tracers (e.g. heat,
carbon) between the surface and subsurface oceans (Sallee
et al., 2010, 2012). The steeply tilted isopycnals associated
with the overturning circulation also support the powerful
Antarctic Circumpolar Current (ACC), with a mean com-
bined barotropic and baroclinic volume transport of roughly
173.3± 10.7 Sv, driven by a combination of the westerly
winds and air–sea buoyancy forcing (Rintoul et al., 2001;
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Morrison et al., 2015; Donohue et al., 2016). In part be-
cause of its unique structure, the SO is a critical regulator
of global climate, having thus far absorbed more than 75 %
of the excess energy and 50 % of the excess carbon added to
the climate system from anthropogenic emissions (Mikaloff-
Fletcher et al., 2006; Frolicher et al., 2015). As such, the
thermohaline structure of the Southern Ocean may be con-
sidered an important climate system parameter, as it affects
how heat and carbon are partitioned between the atmosphere
and ocean.

Through decades of observational and theoretical effort,
the global oceanographic community has curated a detailed
theoretical understanding of the structure of the Southern
Ocean. One of the hallmarks of this view is the presence
of fronts, i.e. transitions in temperature, salinity, and/or bio-
geochemical properties (Deacon, 1937; Orsi et al., 1995).
Although fronts are not identical to the sharp jets found in
the SO, fronts and jets at the mesoscale share a close rela-
tionship partly due to thermal wind balance (Sokolov and
Rintoul, 2002, 2009). Traditionally, oceanographers have de-
fined SO fronts using a small number of continuous, circum-
polar features that follow contours of sea surface height or
dynamic height (Kim and Orsi, 2014). However, satellite al-
timetry shows that the ACC features a braided and meander-
ing structure that is not necessarily reflected in the traditional,
time-averaged view of fronts as continuous property contours
(Chapman, 2017; Mackie, 2018). Using individual property
contours to define fronts, for example, contours of temper-
ature or sea surface height, is somewhat limited by the fact
that such contours do not always line up with the locations of
strong gradients (Thompson et al., 2010; Thompson and Sal-
lée, 2012; Graham et al., 2012; Chapman, 2017). In response
to more detailed SO observations, the global oceanographic
community has been developing a variety of new approaches
for defining and tracking fronts in more application-specific
ways (Chapman et al., 2020). For example, coastal applica-
tions and open-ocean applications may benefit from concep-
tually different treatments of ocean fronts, which are charac-
terised by different spatial and temporal scales. For a histori-
cal view and summary of advances in the area of front defini-
tion and detection, see the recent review article by Chapman
et al. (2020).

In order to help us broaden our view of Southern Ocean
fronts, we look to a branch of machine learning called unsu-
pervised classification (also known as clustering). Broadly
speaking, unsupervised classification attempts to identify
subpopulations in data distributions that have not already
been labelled or sorted. Although such methods have ex-
isted for decades, the amount of SO data has only in re-
cent years become large enough for clustering approaches
to be suitable; the application of unsupervised classification
to oceanographic data is in its infancy. Several recent stud-
ies have used unsupervised classification to identify coher-
ent regimes of thermohaline structure and the transitions be-
tween them, specifically in the North Atlantic (Maze et al.,

2017), Southern Ocean (Jones et al., 2019), and Indian sec-
tor of the Southern Ocean (Rosso et al., 2020). These meth-
ods have also been used to define coherent dynamical and
biogeochemical regimes from depth-averaged ocean struc-
ture (Sonnewald et al., 2019; Le Bras et al., 2019; Jones
and Ito, 2019). Recently, unsupervised classification has been
used to define coherent ecological regimes from physical and
biogeochemical data (Sonnewald et al., 2020). Researchers
are also exploring potential connections between changes in
class properties and large-scale climate phenomena. For ex-
ample, a recent study tied evolution in the longitudinal extent
of an algorithmically defined class to the onset of El Niño,
suggesting that unsupervised classification methods could
complement existing index-based assessments of large-scale
climate modes (Houghton and Wilson, 2020).

Unsupervised classification does not use specific property
contours to define boundaries between thermohaline struc-
tures, so it avoids one of the fundamental limitations of many
traditional front definition approaches. Given the required in-
formation, unsupervised classification methods can use more
detailed thermohaline data from throughout the water col-
umn to define classes and their boundaries. Across a given
front, one might expect to find not only a transition in sur-
face values but also a change in the thermohaline structure,
as indicated by a change of profile class with latitude and/or
longitude. In this work, we use an unsupervised classifica-
tion technique called Gaussian mixture modelling (GMM),
which attempts to represent subpopulations in the data distri-
bution using multidimensional Gaussian functions. Because
GMM is a probabilistic method, in addition to automatically
clustering the thermohaline profiles into classes, it returns a
set of weights across the different classes for each data point.
That is, it returns a probability distribution that can be ex-
ploited to define boundaries between coherent regimes in a
novel way. In this paper, we propose that GMM can be used
to represent the boundaries as “fuzzy” regions, which reflects
the fact that not all transitions in the SO are uniformly sharp.

In Sect. 2, we introduce the observationally constrained
state estimate from which we draw our temperature and
salinity data (Sect. 2.1), discuss principal component analy-
sis (PCA) for dimensionality reduction (Sect. 2.2), and cover
our application of GMM (Sect. 2.3). We then define the inter-
class comparison metric (i.e. the I -metric) that we use to
quantify water mass boundaries (Sect. 3.1). Next, we ap-
ply the I -metric to the reduced-dimension state estimate data
(Sect. 3.2). For comparison, we contrast this method with a
more local front detection approach (Sect. 3.4). Finally, we
discuss some caveats (Sect. 4) and offer our summary and
conclusions (Sect. 5).
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2 State estimate data, PCA, and unsupervised
classification

Our front identification method uses a combination of prin-
cipal component analysis, unsupervised classification, and
a new probabilistic metric to quantify the boundaries be-
tween coherent thermohaline structures. First, we describe
the dataset that we used for developing and training our
method.

2.1 The Southern Ocean State Estimate

We developed our method using the Biogeochemical South-
ern Ocean State Estimate (B-SOSE) (Verdy and Mazloff,
2017). B-SOSE is an observationally constrained numerical
simulation created using MITgcm (https://mitgcm.org/, last
access: 10 August 2021) (Marshall et al., 1997a, b) and a
suite of Southern Ocean observations, including Argo float
data, ship track data, and satellite data. B-SOSE is part of the
Estimating the Circulation and Climate of the Ocean (ECCO)
suite of state estimates (https://www.ecco-group.org/, last ac-
cess: 10 August 2021), which includes a variety of global
and regional products covering a range of multi-year to
multi-decadal time periods. Examples of other state esti-
mates include the physics-only Southern Ocean State Esti-
mate (SOSE) and the global ECCOv4 state estimate (Ma-
zloff et al., 2010; Forget et al., 2015). We chose to develop
our method using a state estimate because such products offer
(1) uniform coverage in latitude, longitude, and time as well
as (2) relatively high fidelity with respect to observations. We
chose B-SOSE, in particular, because it represents the South-
ern Ocean using a spatial resolution of 1/6◦, which is eddy-
permitting in the latitude range of the ACC, enabling a re-
alistic representation of mesoscale eddy structure (Hallberg,
2013). We expect that training our model on the physics-only
SOSE would produce similar results, although we did not at-
tempt that here. In principle, our methods can be readily ap-
plied to any gridded temperature and salinity profile dataset.
It may be possible to apply these methods to in situ data as
well, if the user addresses the problem of non-uniform spa-
tial and temporal sampling. In this paper, we focus only on
applications to gridded datasets.

To construct a state estimate, researchers bring a numeri-
cal simulation into better consistency with an observational
dataset using the 4D-Var method. This method uses adjoint
sensitivities to calculate the required changes in the “con-
trols” (e.g. initial conditions, mixing parameters, boundary
conditions) needed to improve the agreement between the
simulation and the observational dataset (Stammer et al.,
2002; Wunsch and Heimbach, 2007).

The B-SOSE domain extends from the Equator to 78◦ S,
but we only use data south of 30◦ S to focus on the Southern
Ocean and to avoid the model boundary. It uses bathymetry
and coastline based on Amante and Eakins (2009). B-SOSE
solves the heat, salt, and momentum equations using a third-

Table 1. Selected properties of B-SOSE iteration 106. Output fre-
quency refers to the output selected for this study.

Property Value

State estimate iteration number 106
Horizontal resolution 1/6◦

Vertical resolution (variable) 4.2 to 400 m
Number of vertical levels 52
Output frequency Monthly averaged
Horizontal viscosity 10 m2 s−1

Vertical viscosity 10−3 m2 s−1

Horizontal diffusivity 10 m2 s−1

Vertical diffusivity 10−4 m2 s−1

order direct space and time advection scheme with a 1 h
time step. The time-evolving atmospheric boundary condi-
tions use bulk formulae to solve for fluxes of heat, freshwater,
and momentum, with 6-hourly atmospheric state variables as
inputs (Large and Yeager, 2009; Dee et al., 2011). The state
estimation process iteratively adjusts the atmospheric state
variables and oceanic initial conditions to improve model–
data agreement. B-SOSE uses dynamic sea ice (Losch et al.,
2010; Fenty and Heimbach, 2013). For vertical mixing, it
uses the GLL90 mixed layer parameterisation (Gaspar et al.,
1990). It also uses horizontal and vertical viscosity and diffu-
sivity. River runoff comes from the product of Dai and Tren-
berth (2002) augmented with an estimate of Antarctic fresh-
water input from iceberg and ice sheet melting (Hammond
and Jones, 2016). It does not include mesoscale eddy pa-
rameterisation, as this particular configuration falls into the
horizontal resolution range wherein mesoscale parameterisa-
tion may actually worsen the representation of the mesoscale
(Hallberg, 2013). Because we are interested in quantifying
physical, large-scale fronts, we only used monthly mean tem-
perature and salinity data. Also, because we are not interested
in the surface seasonal cycle at present, we only used temper-
ature and salinity data between 300 and 2000 m, following
Rosso et al. (2020). We used the whole period of iteration
106 of this state estimate, which covers January 2008 to De-
cember 2012. Some key properties of B-SOSE iteration 106
are listed in Table 1. For further details, see Verdy and Ma-
zloff (2017).

2.2 Principal component analysis

Each vertical profile in the full B-SOSE dataset is comprised
of temperature and salinity values at multiple depth levels,
at every grid cell and every output month. Values close to
each other in the water column are correlated to some de-
gree. Therefore, we do not necessarily need values of poten-
tial temperature (θ ) and salinity (S) at every depth level to
capture most of the variability, and reducing the dimension-
ality of the data can improve the convergence of the training
process. One specific dimension reduction technique is prin-
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cipal component analysis (PCA), which identifies the func-
tions that capture most of the variability with depth in the
dataset. The result is a representation of the dataset as a linear
combination of eigenfunctions (i.e. principal components),
sometimes called a principal component expansion or princi-
pal component decomposition. Using this procedure, we can
describe each profile using a small set of eigenvalues (i.e. co-
efficients of the principal component expansion) instead of
a full set of temperature and salinity values. In addition to
improving the speed and efficiency of the GMM algorithm,
PCA reveals potential physical structures that may be use-
ful for understanding the stratification of the SO (Pauthenet
et al., 2017). We choose the number of principal components
such that the percentage of variability explained (in a statis-
tical sense) by the PCA expansion is sufficiently high for our
purposes.

Following Rosso et al. (2020), we only keep values be-
tween 300 and 2000 m to exclude most of the surface sea-
sonal variability from the dataset. Because the data are
spaced on an irregular grid in the vertical direction, we first
interpolate the temperature and salinity profiles onto a regu-
lar grid with 10 m cells in the vertical. Following Pauthenet
et al. (2017), at each grid cell and time we concatenate the
temperature and salinity profiles into a single vector. We nor-
malise each depth level for both temperature and salinity sep-
arately: subtracting the mean and dividing by the standard
deviation calculated for all time periods on that particular
depth level and variable. That is, we standardise the temper-
ature values at each level using the distribution of tempera-
tures at that same depth level, and we standardise the salinity
values using the distribution of salinities at that same depth
level. This is a slightly different approach from Pauthenet
et al. (2017), in which the authors standardise across the en-
tire dataset. We found that, for the work shown in this paper,
the choice of normalisation approach does not make a large
difference in the results (not shown). After normalisation, we
carry out PCA expansion. We keep the first three principal
components (PCs), which together statistically explain 98 %
of the variability across the thermohaline dataset. For com-
pleteness, we show the structure of the principal components
in Appendix B.

The coefficients associated with PC1 indicate a broad divi-
sion between polar, high-latitude Southern Ocean waters and
the subtropics (Fig. 1a). The most negative PC1 coefficients
are found in the Weddell Gyre, and we also see the imprints
of the South Pacific Gyre and the ACC (Vernet et al., 2019).
The coefficients of PC2 bear the imprint of the ACC and of
its northward flow along the eastern Pacific Basin (Fig. 1b).
This northward flow is associated with the formation and ex-
port of Subantarctic Mode Water and Antarctic Intermedi-
ate Water (Iudicone et al., 2007; Sallee et al., 2010; Jones
et al., 2016). PC2 also has the imprint of the Agulhas Cur-
rent around South Africa. Finally, PC3 has strong negative
values in the Weddell Gyre and over most of the Pacific, with
a band of circumpolar positive values that somewhat mirrors

the southward drift of the ACC when considered from west
to east. The spatial structure of PC1 and PC2 are largely con-
sistent with those of Pauthenet et al. (2017), but the struc-
ture of PC3 is somewhat different from theirs, particularly in
the subtropics. These differences are possibly a result of our
choice of a different depth range. Given that PC3 explains
a small fraction of the variability (7 % of the variance ex-
plained), we do not expect these differences to impact our
results.

After we perform dimensionality reduction, each monthly
output at each model grid cell in latitude and longitude is
represented using the first three coefficients of the PC ex-
pansion. The three PC values contain combined information
about both temperature and salinity, simplifying our anal-
ysis. This approach defines an abstract three-dimensional
space in which we can perform unsupervised classification.
In typical machine learning terminology, this abstract three-
dimensional space can be called the “feature space”, in which
each PC axis is a “feature”. To be explicit, we can say that
each combined temperature–salinity profile in latitude, lon-
gitude, and time is represented by a three-dimensional vec-
tor of PC values. Each three-dimensional PC vector derived
from B-SOSE is an “observation”. In the next section, we use
unsupervised classification to identify subpopulations in the
three-dimensional distribution of PC values.

2.3 Gaussian mixture modelling

Unsupervised classification attempts to identify subpopula-
tions within a data distribution, without the assistance of any
predefined labels. In our application, we attempt to iden-
tify data subpopulations in the abstract three-dimensional
space defined by the PC coefficients (i.e. the “feature space”).
Here, we use GMM, an algorithm that attempts to fit a set
of multidimensional Gaussian functions to the data by itera-
tively adjusting the means and covariances of the Gaussians
(McLachlan and Basford, 1988; see Appendix C for more
detail). This method has recently been used to classify Argo
temperature profiles in the top 2 km of the North Atlantic
Ocean and the Southern Ocean (Maze et al., 2017; Jones
et al., 2019). GMM is well-suited to ocean applications be-
cause it offers a probabilistic measure of classification in the
form of posterior probabilities, which is useful when work-
ing with a highly correlated dataset. Because GMM-derived
clusters will likely feature some overlap due to the highly
correlated nature of ocean data, such posterior probabilities
offer an important complement to the GMM-derived class la-
bels. In this application, we use the posterior probabilities to
define coherent thermohaline regimes and their boundaries.

The GMM method attempts to represent the underlying
data distribution using a set of K Gaussian functions in D
dimensions (in our case D = 3):

N
(
x;µk,6k

)
=

exp
[
−

1
2

(
x−µk

)T (
6k
−1)(x−µk)]√

(2π)D ‖6k‖
,
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Figure 1. Each combined temperature and salinity profile can be approximated using a three-term PC expansion. Above are monthly mean
coefficients of the PC expansion from June 2011. In order to limit the influence of seasonal variability, we use temperature and salinity
profiles between 300 and 2000 m. The first three PCs explain (a) 75 %, (b) 16 %, and (c) 7 % of the variance respectively, together explaining
a total of 98 % of the variability. The white space represents bathymetry shallower than 2000 m, and its boundary is marked by a grey line.

(1)

where x ∈ RD×1 is a vector in the PC space, µ ∈ RD×1 is the
centre of the Gaussian distribution expressed in vector form,
6k ∈ RD×D is the covariance matrix, and |6k| is its determi-
nant. The covariance matrix determines the orientation of the
Gaussian ellipsoids in PC space. We model the dataset, in the
statistical sense of representing the dataset using a probabil-
ity distribution, as a weighted sum of Gaussians:

P(x)≈
K∑
k=1

λk N
(
x ; µk , 6k

)
, (2)

where λk is the weight associated with the kth Gaussian. The
process of fitting the GMM uses expectation maximisation
(EM), which consists of iteratively adjusting λk , µk , and 6k
to decrease the model–data misfit. For additional details, see
Appendix C.

Once the weights, means, and covariances are fitted, each
data vector x is associated with a posterior probability dis-
tribution across all of the K classes. Although we kept the
random seed used in the initial guess fixed for this paper, our
results are robust to the choice of random seed (not shown).
This distribution is the set of likelihoods that the data vector
belongs to any particular class, and the probabilities sum to
one. GMM assigns each data vector to the class with the max-
imum posterior probability. We will now use this distribution
to define an inter-class metric, which gives us a novel per-
spective on fronts as transitions in thermohaline structures.

3 The inter-class comparison metric (the I -metric)

First, we examine the structure of our profile data in PC
space and introduce the I -metric for identifying boundaries
between coherent hydrographic regimes (Sect. 3.1). Next, we

examine the I -metric in both a monthly averaged and multi-
year averaged view in latitude–longitude space, and we ex-
plore the class structure in more detail by examining the asso-
ciated coherent regions and vertical profile types (Sect. 3.2).
Following that, we compare our results with a local edge de-
tection method (Sect. 3.4).

3.1 Defining the I -metric

For each combined temperature–salinity profile, GMM re-
turns a probability distribution across all of the K classes.
This distribution is called the posterior probability distribu-
tion, and it quantifies the probability that a particular pro-
file is in a particular class. If the posterior probability is
close to 1.0 for class k and very small for the other classes,
then within the context of the Gaussian statistical model (i.e.
GMM), the classification of the profile into class k is unam-
biguous and clear. However, if the posterior probability is
close in value for the two classes with highest probabilities,
then the classification is ambiguous and less clear. With this
in mind, we can use the difference between the highest prob-
ability and the second-highest probability to quantify how
clearly the profile has been classified. If the classification is
unambiguous, then the profile is less likely to be associated
with a boundary between coherent thermohaline regimes. If
the classification is ambiguous, then the profile is more likely
to be associated with a boundary. With this in mind, we pro-
pose a probabilistic inter-class comparison metric of the fol-
lowing form:

I (xn)= 1−
[
P(c = ck)highest−P(c = cl)runner-up

]
, (3)

where xn is the nth profile’s PC values, and P(c = ck)highest is
the highest posterior probability that GMM has assigned the
nth profile as belonging to class k. The term P(c = cl)runner-up
is the second-highest posterior probability belonging to class
l. If the difference between the highest and runner-up poste-

https://doi.org/10.5194/os-17-1545-2021 Ocean Sci., 17, 1545–1562, 2021
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rior probabilities is close to one, then I is small. This would
indicate that the profile is not likely to be associated with
a boundary between thermohaline regimes. If the difference
between the highest and runner-up posterior probabilities
is small, then I is close to one, indicating that the profile
is likely to be associated with a boundary between differ-
ent thermohaline regimes. The I -metric offers an alternative
method for defining boundaries as fuzzy transitions between
coherent regimes. In general, some regions will feature sharp
transitions across boundaries, whereas other regions will fea-
ture more gradual transitions. The relative sharpness of a
transition is influenced by the processes that form, mix, and
destroy water masses. In contrast with approaches that define
fronts as sharp transitions located along property contours or
local gradients, the I -metric approach allows for a wider va-
riety of transition types between regimes.

In our I -metric application, GMM clusters the profiles in
feature space (Fig. 2a). The structure of the data shown in
PC space is broadly consistent with that found in other stud-
ies (e.g. Pauthenet et al., 2017, 2018, 2019). The data dis-
tribution is reasonably well represented by a linear combi-
nation of multidimensional Gaussian functions (Fig. 2). The
I -metric values indicate transition regions between classes,
where the class labelling is relatively ambiguous (Fig. 2b).
We choose K = 5 to represent the general, large-scale pat-
tern of the data; we explore the sensitivity of our results toK
in Sect. 4.4. In the next section, we examine the I -metric and
class structure in physical space.

3.2 Geographic view of the I -metric

The I -metric viewed in latitude–longitude space illustrates
the rich variety of transition types found in the Southern
Ocean (Fig. 3). In all sectors of the SO, we see sharp tran-
sitions where the regions of high I values are narrow and
more gradual transitions where the regions of high I values
are more spread out. Some features are circumpolar, which is
consistent with the view of SO fronts as continuous lines that
encircle Antarctica. However, we also see regions where the
continuity and circumpolar nature of the fronts is not as clear,
suggesting that a broader view may be appropriate (Chapman
et al., 2020). The fronts are not uniformly sharp across all
longitudes; for example, the northernmost transition is broad
and gradual in the Atlantic sector, sharp in the Indian sector,
and relatively broad in the Pacific sector. The southernmost
band of high I -metric values is relatively sharp in the At-
lantic sector, becoming increasingly broad as we follow it
into the Indian and Pacific sectors. In the Pacific sector, it ex-
tends into an especially broad region in the Amundsen Sea,
which is consistent with the intersection of the classically
defined southern boundary (SBdy) with the Antarctic conti-
nent (Kim and Orsi, 2014). Upstream of Kerguelen Plateau,
there is a region where the I -metric is spread-out and diffuse
between classes 2 and 3; this region also features a stand-
ing meander associated with enhanced eddy kinetic energy

Figure 2. (a) The classification analysis takes place in the abstract
PC space. Each point represents a three-dimensional vector of prin-
cipal component values that describe a single combined tempera-
ture and salinity profile. The three axes are the three principal com-
ponents. Class assignments are indicated using colours. (b) The
I -metric highlights transitions between classes in the abstract PC
space. The Gaussian ellipsoids of the GMM are shown in red, and
the I -metric values associated with each point are shown using six
different colour scales. Each colour scale corresponds to a particu-
lar transition between classes. Points with low I -metric values are
not shown. The above is a subset of data taken from 12 months
of monthly averaged B-SOSE data, between August 2011 and
July 2012 inclusively.

(Frenger et al., 2015; Siegelman et al., 2019). The enhanced
mesoscale eddy kinetic energy associated with the meander
is consistent with increased lateral mixing and the spread-
out pattern in the I -metric found in the same region. Closer
to the Antarctic continent, we also see the imprints of both
the Weddell Gyre and the Ross Gyre, in regions of coherent
structures with low I -metric values, in part enforced by the
gyre circulation.

The monthly mean I -metric (Fig. 3a) also highlights indi-
vidual ring-like eddies; although these features are not typ-
ically considered fronts, they are small-scale transition re-
gions between different hydrographic structures. We do ex-
pect the I -metric to be non-zero across these features. The
monthly view also features mesoscale meanders, highlight-
ing the detailed structure of the SO, which is partly a result
of the energetic mesoscale eddy field. The I -metric does fea-
ture some month-to-month variability: in some locations, the
fronts meander in their north–south extent, whereas in oth-
ers, they are relatively stationary, likely due to bathymetric
constraints (see animations in Thomas, 2021, in the “gifs”
directory).

By averaging the 4 years worth of monthly means, we ob-
tain a map of the climatological I -metric, which is averaged
over many eddy lifetimes (Fig. 3b). Comparing an example
monthly field with the climatological field, we can examine
the imprint of eddy spatial variability and the meandering of
the fronts on the I -metric pattern. Most of our observations
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about the metric are unchanged by this averaging; we iden-
tify three roughly circumpolar bands of high I -metric val-
ues, with significant spatial variability and some overlap. The
three bands are fairly distinct in the Atlantic sector, with the
northernmost transition being the broadest. Upstream of Ker-
guelen Plateau, the two northernmost bands become some-
what hard to distinguish. This is possibly a consequence
of the eddy mixing and upwelling hotspot in that region,
which tends to spread out hydrographic features in latitude–
longitude space, increasing the degree of spatial correlation
found there. Upstream of Kerguelen Plateau, the Polar Front
features strong seasonal variability (Pauthenet et al., 2018).
Note that the I -metric band aligned roughly with the Polar
Front only passes south of the plateau (e.g. south of Heard Is-
land), which is consistent with other studies of the subsurface
component of the Polar Front (e.g. Pauthenet et al., 2018).

The three bands of higher I -metric values are distinct
downstream of the Kerguelen Plateau in the Indian sector;
notably, the southernmost band features especially high I -
metric values in this sector. This pattern is associated with
the transition between the Antarctic Circumpolar Current and
the Antarctic Slope Current (ASC), which tend to flow in op-
posite directions (Thompson et al., 2018; Pauthenet et al.,
2021). In the Pacific sector, we see the southernmost band
turn into the Amundsen Sea and intersect with the Antarc-
tic continental slope, spreading out in a diffuse region that
is consistent with the behaviour of the southernmost ex-
tent of the ACC, the eastern boundary of the Ross Gyre,
and the eastward shelf circulation along the West Antarctic
Peninsula (Nakayama et al., 2018). In this same sector, two
large regions of low I -metric values spatially correspond to
export pathways of Subantarctic Mode Water and Antarc-
tic Intermediate Water (Iudicone et al., 2007; Sallee et al.,
2010, 2012; Jones et al., 2016). The higher I-metric val-
ues delimit the edges of these more coherent thermohaline
regimes (Fig. 3b), which are influenced by basin-scale strati-
fication and the structure of the South Pacific Gyre.

3.3 Properties of the thermohaline regimes

In order to better understand the coherent thermohaline
regimes underlying our I -metric results, we examine their
lateral extents and their vertical properties. Despite not be-
ing given any latitude or longitude information, the under-
lying GMM captures several coherent, large-scale features
of Southern Ocean thermohaline structure (Fig. 4a). Class
1 contains the coldest waters in the SO, covering both the
Weddell and Ross gyres near Antarctica. The mean profile
in this class features cold temperatures that are nearly uni-
form with depth; in general, they are salt stratified in that the
near-surface waters are fresher than the subsurface waters,
ensuring that the density profile is stable overall (Fig. 5). The
boundary between class 1 and class 2 broadly lies between
the classically defined southern ACC Front (SACCF) and the
southern boundary (SBDY) (Kim and Orsi, 2014), including

Figure 3. The magnitude of the I -metric highlights transitions be-
tween coherent thermohaline regimes. Panel (a) is the I -metric for
a single month (April 2012), and panel (b) is for the time aver-
age of the B-SOSE iteration 106 dataset (60 months). Latitude lines
are shown between 80 and 40◦ S every 10◦, and longitude lines
are shown every 60◦. Animations showing month-to-month and in-
terannual variability are available in the software release (Thomas,
2021).

the turn of the SBDY towards almost being perpendicular
with the Antarctic continent in the Pacific sector of the SO.
Class 2 is circumpolar, with excursions into the Amundsen
Sea and the area just south of Kerguelen Plateau. It features
salt stabilisation, with a fresh layer near 300 m (Fig. 5). Class
3 is also circumpolar, with a northward excursion in the At-
lantic sector. The boundary between classes 2 and 3 roughly
follows the Polar Front (PF), separating the colder, fresher
Antarctic waters from the warmer, saltier subtropical waters
further north. Finally, there are two subtropical classes: class
4 represents the Atlantic and Indian sectors of the subtropics,
and class 5 represents the large-scale South Pacific Gyre. The
boundary between classes 3 and 4 roughly aligns with the
Subantarctic Front (SAF), particularly over large portions of
the Indian and Pacific sectors (Fig. 4). The mean of class 5
has a salinity minimum around 700 m, corresponding to the
presence of the Antarctic Intermediate Water layer (Iudicone
et al., 2007).

3.4 An edge detection approach towards identifying
fronts

For comparison with the GMM method, which uses proper-
ties of an entire training dataset to detect changes in thermo-
haline structure, we use a more local front detection method
implemented by Hjelmervik and Hjelmervik (2019) in the
North Atlantic. This method, called the Sobel method, di-
rectly examines spatial gradients in the principal component
fields using a Sobel operator (Duda and Hart, 1973). To do
this, the PCs of each grid point are placed onto a rectangular
grid with the same spacing as the data sampling, where points
without data are masked. The strength of an edge at a point
is found by the two dimensional convolution (represented by
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Figure 4. (a) The cluster assignments with K = 5 and (b) the I -
metric for all present class transitions. This view highlights the tran-
sitions between specific classes. The transitions in panel (b) have
some similarities to the altimetric fronts from Kim and Orsi (2014).
These fronts are shown overlain on panel (b): SBDY – southern
boundary; SACCF – southern ACC Front; PF – Polar Front; SAF
– Subantarctic Front. Data are from June 2011 as a representative
month.

Figure 5. Profiles of the five GMM clusters between 300 and
1800 m in (a) temperature and (b) salinity. This is calculated from
the profiles classified using the statistical model fitted on the train-
ing data itself. The central line is the mean, and the envelope on
either side indicates 1 standard deviation.

∗) of the gridded PCs and the following two matrices. In the
x direction the Sobel operator is

Gx =

 1 0 −1
2 0 −2
1 0 −1

 , (4)

and in the y direction the Sobel operator is

Gy =

 1 2 1
0 0 0
−1 −2 −1

 . (5)

The effect of this operator is similar to a gradient operator
with some smoothing. There is a correlation coefficient of
0.99 between Gy ∗PC1 and the y gradient, and there is a

correlation coefficient of 0.999 between Gx ∗PC1 and the
x gradient of PC1. The motivation for using the Sobel op-
erator rather than the gradient operator is principally that
it can reduce the noise in data, as shown by application to
photographs (Vincent and Folorunso, 2009). Hjelmervik and
Hjelmervik (2019) used the magnitude of the x and y Sobel
operators, which approximates the magnitude of the gradi-
ent, to examine fronts in the Arctic and North Atlantic. They
show that the magnitude of the Sobel gradient can be thresh-
olded to highlight features such as the Gulf Stream.

Rather than working with the gradient magnitude, Fig. 6
showsGy ∗PC1,Gy ∗PC2, andGy ∗PC3 alone. This is more
interpretable, as the Gy ∗PC1 component is strongly corre-
lated with the zonal velocity U (r = 0.85). Hjelmervik and
Hjelmervik (2019) use a threshold value to define fronts, but
we plot the gradient directly as a colourmap for each PC in-
stead, which is useful as it does not obscure any informa-
tion about the fronts themselves. Appendix A shows that the
correlation between the Sobel Gy gradient of PC1 and the
meridional velocity, V , and the correlation betweenGx∗PC1
and zonal velocity U increase for roughly the first 2 years of
B-SOSE iteration 106, suggesting that the model is still spin-
ning up to geostrophic balance.

The GMM and Sobel methods are complementary. GMM
reveals the large-scale temperature and salinity structure as-
sociated with changes in stratification, which has tradition-
ally been used to define the fronts, whereas edge detection
methods like the Sobel method used here reveals the smaller-
scale structure of multiple jets, which can merge and sepa-
rate. As such, both approaches may be useful ways of char-
acterising ocean structure without making ad hoc assump-
tions related to particular property values or strict require-
ments that the structures be circumpolar and continuous. The
present proliferation of front definition and analysis methods
is driven by the need to expand how the oceanographic com-
munity deals with ocean structure across a wide variety of
spatial and temporal scales (Chapman et al., 2020).

4 Discussion

In this section, we discuss the sensitivity of our results to our
choice of dataset (Sect. 4.1), touch on the temporal variability
in our results (Sect. 4.2), discuss a possible connection with
the Antarctic Slope Current (Sect. 4.3), examine the sensi-
tivity of the results to the choice of the number of classes K
(Sect. 4.4), and discuss the interpretation of posterior proba-
bilities (Sect. 4.5).

4.1 Sensitivity to choice of dataset

We chose to use B-SOSE data for this study in order to
(1) work with a dataset that features relatively uniform
latitude–longitude coverage and (2) to allow us to examine
temporal variability as well as spatial variability. B-SOSE is
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Figure 6.Gy Sobel edge operator convolved in two dimensions (*) with the principal component coefficient fields for the month of June 2011.
The correlation coefficient between panel (a) for PC1 and the zonal velocity U for the same month in B-SOSE iteration 106 is 0.85, showing
that the structure it highlights is substantially similar to the ACC. Panels (b) and (c) for PC2 and PC3 are also related to the ACC, (correlation
coefficients of 0.18 and −0.18 respectively). The grey line is the 2000 m isobath.

an observationally constrained estimate of the hydrographic
structure of the Southern Ocean, so it accurately captures
many features of large-scale and mesoscale structure (Verdy
and Mazloff, 2017). However, because B-SOSE is a numeri-
cal model run, it will no doubt have some biases with respect
to observations, particularly on smaller scales. We expect
that our results would not change dramatically on basin-wide
scales across different state estimate and reanalysis products.

To examine the differences of this bias on the class struc-
ture and the structure of the inter-class comparison met-
ric, this study could be repeated with a purely observational
dataset such as Argo. One trade-off for such a study would
be the fact that observational datasets are relatively sparse in
terms of both spatial and temporal coverage relative to a state
estimate or other numerical model run. One could attempt to
use the same GMM trained on B-SOSE with Argo data, but
possible biases between B-SOSE and the Argo dataset could
make this challenging. It might be possible to adjust for those
biases in the data cleaning and preparation step of the analy-
sis; the standardisation process, which is already a part of the
analysis presented here, is a step towards this bias removal
and correction that may facilitate comparisons between mod-
els and observations. Alternatively, one could attempt to re-
train the GMM using Argo data alone. This has been done in
other studies, so it should be possible in principle (e.g. Maze
et al., 2017; Jones et al., 2019; Rosso et al., 2020).

4.2 Temporal variability of the fronts

We found that the class structure and boundary positions did
not feature large temporal variability with respect to the mean
state, but much more work could be done to examine this
variability and its connection to the processes that determine
thermohaline structure (e.g. surface forcing, subsurface mix-
ing, and advection). This is outside the scope of the present
study, which is focused on proposing a new metric for iden-
tifying and tracking boundaries in Southern Ocean structure.

4.3 The Antarctic Slope Current

The Antarctic Slope Current (ASC) that separates warmer
open-ocean waters from the colder waters on the Antarctic
continental shelf is an important component of heat trans-
port in the Southern Ocean. It acts to control the flow of
warm water onto the continental shelf and eventually under
the floating ice shelves. In a recent paper, Thompson et al.
(2020) suggest that if the source of the Antarctic Slope Cur-
rent (ASC) intersects with the ACC in the Bellingshausen
Sea, then the ASC source would be considered a major com-
ponent of the overturning circulation. In our study, we found
a diffuse boundary between classes in the Bellingshausen Sea
region, which may be relevant for the physical context of the
ASC, which is still under investigation (Fig. 4b).

4.4 Sensitivity to the maximum number of classes

In this study, we choseK = 5 as the number of classes based
on sensitivity tests and also based on a priori knowledge.
Specifically, previous studies used a front structure with five
broad regions, delineated by four fronts, so we might expect
a value of around K = 5 based on this (e.g. Orsi et al., 1995;
Pollard et al., 2002; Kim and Orsi, 2014).

Generally, the choice of the maximum number of classes
K can be thought of as a way to select models of varying
degrees of complexity. Statistical models with lower K val-
ues are potentially easier to interpret, only capturing the most
dominant structures in the dataset. For example, the prob-
abilistic boundary between the two classes in a K = 2 sta-
tistical model roughly separates colder, fresher Antarctic wa-
ters from the warmer, saltier subtropical waters (Fig. 7a). No-
tably, in this case, the magnitude of the I -metric appears to
largely decrease as we follow it from the Atlantic and Indian
basins and into the Pacific Basin, indicating that the bound-
ary becomes less sharp with longitude. This possibly reflects
the fact that the Pacific Basin hosts some of the dominant
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northward export pathways of Subantarctic Mode Water and
Antarctic Intermediate Water, consistent with a less sharp
transition between polar and subtropical waters (Iudicone
et al., 2007; Herraiz-Borreguero and Rintoul, 2011; Jones
et al., 2016). A statistical model with K = 4 retains most of
the features of our analysis with K = 5, but the transition re-
gion closest to Antarctica in K = 5 is no longer present.

The K = 5 statistical model that we used in this work
captures near-Antarctic and circumpolar structure, as well
as some subtropical structure. A more complex statistical
model with higher K would capture more of the subtropi-
cal structure (not shown). This is consistent with sensitivity
studies using temperature-only Argo data, where increasing
K added details to the subtropical class structure while leav-
ing the circumpolar class structure largely unchanged (Jones
et al., 2019). Statistical models with much higher K values
may capture more structure in the data, but increasing K
also risks overfitting. That is, if we tune the GMM statis-
tical model to match an increasing number of structures in
PC space, we risk losing generality; the goal is to represent
the dominant structures of the dataset without overfitting ev-
ery small variation, some of which could represent noise in
the data. This has a direct analogue with overfitting in terms
of simple statistical models; it is unwise to use a 10th-order
polynomial when a quadratic captures the dominant features
of the dataset, because the higher-order polynomial is less
likely to generalise to other similar datasets. In addition, sta-
tistical models with very high K values are increasingly dif-
ficult to interpret in terms of our current physical and bio-
geochemical understanding. Note that regional studies, such
as those carried out in specific sectors of the SO, may find
it useful to increase K based on local structure (e.g. Rosso
et al., 2020). This is consistent with the suggestion by Chap-
man et al. (2020) that front definitions may need to be more
flexible and region-specific, as opposed to expecting a par-
ticular definition to apply globally (or even across a single
ocean basin).

4.5 Interpreting posterior probabilities

The posterior probabilities returned by a Gaussian mixture
model are affected by our choice of K . We should be care-
ful not to over-interpret the posterior probabilities as con-
fidences in the correctness of the assigned labels. Notably,
GMM does not indicate the probability that a given profile
belongs to none of the classes in a given statistical model.
With that in mind, we can interpret the posterior probabil-
ity as a measure of unambiguity in the context of a given
statistical model. When one probability is larger than all oth-
ers with some margin, the profile is unambiguously classi-
fied, while probabilities of similar magnitude indicate that
the profile cannot be unambiguously classified in the current
statistical model with the specified number of classes. In this
study, we used the posterior probability distribution to iden-

Figure 7. DecreasingK removes details from the statistical descrip-
tion of Southern Ocean thermohaline structure. Shown is the GMM-
derived I -metric, using (a) K = 2 and (b) K = 4, for a monthly
average over June 2011. The grey line is 2000 m isobath.

tify boundaries between coherent thermohaline regimes, tak-
ing advantage of this property of GMM.

5 Conclusions

In this study, we proposed a new metric for defining and
identifying boundaries between coherent regimes of temper-
ature and salinity structure. Our method uses Gaussian mix-
ture modelling, a type of unsupervised machine learning, to
establish a statistical model of thermohaline structure that is
intended to capture the large-scale features of the dataset in
both PC space and in geographic space. We developed our
method in the Southern Ocean due to the presence of circum-
polar structures and relatively clear fronts, but our approach
could be applied to other regions or even to the global ocean
as a whole. The I -metric provides a flexible, probabilis-
tic method to define and identify boundaries in an oceano-
graphic dataset without using ad hoc property contours; the
boundaries are derived in a generalised method that reflects
the structure of the dataset. The I -metric has potential as a
method for comparing different observational and numerical
modelling datasets in a robust, algorithmic way that is not
heavily affected by biases in the mean state between datasets.
It features a parameter K that allows users to increase and
decrease the level of complexity of the statistical model; the
optimal value ofK will vary between applications. The Sobel
edge detection method may be useful for defining and track-
ing smaller-scale fronts and jets in model or reanalysis data.
As discussed in Chapman et al. (2020), the field of oceanog-
raphy needs to consider fronts and boundaries in a more gen-
eral, application-specific way, due in part to the richness of
ocean structure on different spatial scales. The I -metric was
designed with this problem in mind; it is intended to be a
complementary addition to the oceanographic toolbox as op-
posed to a replacement for any particular method.
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Appendix A: The relation between edge detection and
the velocity field

Figure A1. A comparison between the Gx ∗PC1 Sobel edge detection field and the zonal velocity, U , at 2 m. Panels (a) and (b) are from the
monthly mean over June 2011, whereas panels (c) and (d) are the mean over all of the monthly means in the dataset.

Figure A2. The correlation between Gx ∗PC1 and the zonal velocity, U , at 2 m for each monthly mean in the B-SOSE iteration 106 dataset.
The increase in the correlation over the first 2 years could be interpreted as the spin-up.

Figure A3. A comparison between the Gy ∗PC1 Sobel edge detection field and the meridional velocity, V , at 2 m. Panels (a) and (b) are
from the monthly mean over June 2011, whereas panels (c) and (d) are the mean over all of the monthly means in the dataset.
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Figure A4. The correlation between theGy ∗PC1 and the meridional velocity, V , at 2 m for each monthly mean in the B-SOSE iteration 106
dataset. The increase in the correlation coefficient over the first 2 years could be interpreted as the spin-up, as in Fig. A2

Figures A1 and A3 illustrate the spatial resemblance be-
tweenGy ∗PC1 and U and betweenGx ∗PC1 and V respec-
tively, compared over June 2011 or as an average over the full
B-SOSE period. The domain-averaged correlation is shown
quantitatively in Figs. A2 and A4, where there is an espe-
cially high correlation between the two in the last couple of
years of the reanalysis product. That Figs. A2 and A4 show
opposite signs in the correlation is equivalent to the reversal
in sign that we would expect (Cushman-Roisin and Beck-
ers, 2011, chap. 15 and 18). Those figures also show that the
magnitude of the correlation between the respective variables
increases during the first 2 years of the dataset before flatten-
ing off. This is suggestive of the model spinning up towards
geostrophic balance. As the first principal component statis-
tically explains the first-order structure in the ocean, it pri-
marily represents the density contrast produced by the ther-
mohaline structure from the tropics to the poles.
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Appendix B: Principal component structure

In this work, we use principal component expansion for di-
mension reduction and to examine the structure of the South-
ern Ocean. In this appendix, we display the principal com-
ponents (i.e. eigenvectors) used in this expansion. First, we
examine the means of the temperature and salinity structure
across the entire dataset (Fig. B1). The temperature decreases
with depth, whilst the salinity has a minimum around 750 m,
in part associated with the presence of Antarctic Bottom Wa-
ter (AAIW).

The structure of the first three principal components
(i.e. eigenvectors) reflects small variations on the mean struc-
ture (Fig. B2). The mean profiles are similar, but the variation
associated with an increase or decrease in the principal com-
ponent value changes with depth. The first principal com-
ponent (PC1) explains 76 % of the variability in the dataset,
notably consisting of variations throughout the mid-range of
the profiles in temperature and throughout nearly the entire
depth range in salinity. The second principal component ex-
plains 16 % of the variability and consists of larger changes
in the upper part of the profile, above roughly 1000 m. The
third principal component (PC3) explains 7 % of the vari-
ance and exhibits variations above and below a somewhat
fixed mid-point. After principal component expansion is ap-
plied, each profile is represented by just three numbers, i.e.
the eigenvalues of the principal component expansion.

Figure B1. The means and standard deviation of samples taken
from B-SOSE iteration 106.

Figure B2. The temperature and salinity components of the three
retained principal components that were used in this work. Specif-
ically, they are PC1 (left column), PC2 (middle column), and PC3
(right column). Shown are the mean structures (black lines) with the
effect of adding (red line) or removing (blue line) one unit of a prin-
cipal component as a deviation from the mean profile, after Fig. 4
in Pauthenet et al. (2017). When compared to Fig. 1 we can see that
PC1 corresponds to the hot–cold north–south contrast.
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Appendix C: Gaussian mixture modelling

A Gaussian mixture model (GMM) attempts to repre-
sent a dataset using a linear combination of multidimen-
sional Gaussian distributions. A multidimensional Gaussian
(Eq. C1) is a simple generalisation of a Gaussian to D di-
mensions.

N
(
xn;µk,6k

)
=

exp
[
−

1
2

(
xn−µk

)T (
6−1
k

)(
xn−µk

)]√
(2π)D ‖6k‖

, (C1)

where k is the index for the kth cluster of K clusters, n is the
index for the nth data point of N data points, and D corre-
sponds to the three principal components of the data.

We make the assumption that the probability distribution
that generated the dataset can be approximated by a set of
multivariate Gaussians (Eq. C2):

P̃(xn)' P(xn)=
K∑
k=1

λk N
(
xn ; µk , 6k

)
. (C2)

Any probability distribution function (PDF) could be de-
scribed by an arbitrarily large number of Gaussians (Eq. C3),
but to be a good method of describing the data, this should
be a manageable number.

P̃(xn)= lim
K→∞

K∑
k=1

λk N
(
xn ; µk , 6k

)
(C3)

In this paper, we showed that our Southern Ocean thermo-
haline dataset can be fairly represented as a series of plateau-
like regions in PC variable space; thus, it can be approxi-
mated by a PDF made from a set of multivariate Gaussians,
where the boundaries between these Gaussians correspond to
the fronts (Fig. 2).

C1 Expectation maximisation

To initialise the method, the first K clusters are created
randomly. Next, the set of Gaussians is iteratively adjusted
(Eqs. C4, C5, and C6) until it reaches a local minimum in the
cost function (Maze et al., 2017). It is generally expected that
reducing the number of dimensions in the preprocessing step
helps improve the convergence. The following section draws
heavily from Maze et al. (2017).

The expectation of the model given the data is increased by
updating the weights λk , means µk , and covariance matrices

6k in the following way:
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where cn is the classification of the nth cluster which could
be any one of the K clusters. This is repeated until the pa-
rameters of the model have converged.

C2 Information criterion

GMM needs an input hyperparameterK that sets the number
of clusters that will be fitted to the data. GMM is relatively
cheap to run, and so it is reasonable to run it with a large
range ofK and choose theK which best describes them. The
commonly used criterions are the Bayesian information cri-
terion (BIC) (Eq. C7) and the Akaike information criterion
(AIC) (Eq. C8). They both essentially contain a term that
measures the agreement of the model to the data, and they
have a penalty term for the number of parameters that have
been used to achieve this (related to K). Thus, we are look-
ing for minima in AIC/BIC to guide our choice of K . There
is no clear minimum for this dataset in K for 2≤K ≤ 100,
which is typical of oceanographic applications due in part to
the highly correlated nature of the data (e.g. Sonnewald et al.,
2019; Jones et al., 2019). Because K is weakly constrained,
we are able to select a lower value ofK for ease of interpreta-
tion, having verified that it captures the large-scale structure
of the data in PC space, which is suitable for our purposes.
BIC and AIC take the following forms:

BIC=−2L(K)+ ηf (k) log(N), (C7)

with ηf =K − 1+KD+
KD(D− 1)

2
, and

AIC= 2K − 2L, (C8)

where the log-likelihood is expressed as

L= log[P(X)] =
N−1∑
n=0

log

(
K∑
k=1

λk N
(
xn ; λk , µk , 6k

))
. (C9)

C3 Labelling the dataset

Each data point is assigned a posterior probability distribu-
tion across the K clusters (Eq. C10). This uncertainty infor-
mation is one of the useful features of GMM. The probability
takes the following form:

P
(
cn = k | xn ; λk , µk , 6k

)
=

λk N
(
xn ; µk ,

∑
k

)∑K
k=1λk N

(
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) . (C10)
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To label a dataset, each data point is assigned a label from
the cluster that it would be the most likely to be generated by,
in a statistical sense (Eq. C11).

C = argmax
k

(
P
(
cn = k | xn ; λk , µk , 6k

)
, 1 : k

)
(C11)

Code and data availability. B-SOSE iteration 106 state estimate
data are available from the Scripps Institution of Oceanog-
raphy (http://sose.ucsd.edu/BSOSE6_iter106_solution.html, Verdy
and Mazloff, 2021). The MITgcm source code that was used
to create B-SOSE is available on GitHub (https://github.com/
MITgcm/MITgcm/tree/checkpoint67z, last access: 16 June 2021,
https://doi.org/10.5281/zenodo.4968496, Campin et al., 2021).
Original climatological front positions from Kim and Orsi
(2014) are available on ResearchGate (https://www.researchgate.
net/publication/338420242_ACC_fronts, Kim, 2021). The code
used to carry out the analysis and figure creation for this pa-
per is available via Zenodo (Thomas, 2021) (up-to-date reposi-
tory: https://github.com/so-wise/so-fronts, last access: 4 May 2021,
https://doi.org/10.5281/zenodo.5500666, Thomas, 2021). This soft-
ware uses scikit-learn (Pedregosa et al., 2011) and pyxpcm (Maze,
2020) as foundations. We used Cartopy for mapping (Met Office,
2010–2021).
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