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MULTIFRACTAL EIGENFUNCTIONS

FOR A SINGULAR QUANTUM BILLIARD

JONATHAN P. KEATING AND HENRIK UEBERSCHÄR

Abstract. Whereas much work in the mathematical literature on quan-
tum chaos has focused on phenomena such as quantum ergodicity and
scarring, relatively little is known at the rigorous level about the exis-
tence of eigenfunctions whose morphology is more complex.

Quantum systems whose dynamics is intermediate between certain
regimes – for example, at the transition between Anderson localized
and delocalized eigenfunctions, or in systems whose classical dynamics
is intermediate between integrability and chaos – have been conjectured
in the physics literature to have eigenfunctions exhibiting multifractal,
self-similar structure. To-date, no rigorous mathematical results have
been obtained about systems of this kind in the context of quantum
chaos.

We give here the first rigorous proof of the existence of multifrac-
tal eigenfunctions for a widely studied class of intermediate quantum
systems. Specifically, we derive an analytical formula for the Renyi en-

tropy associated with the eigenfunctions of arithmetic S̆eba billiards, in
the semiclassical limit, as the associated eigenvalues tend to infinity.

We also prove multifractality of the ground state for more general,
non-arithmetic billiards and show that the fractal exponent in this regime
satisfies a symmetry relation, similar to the one predicted in the physics
literature, by establishing a connection with the functional equation for
Epstein’s zeta function.

1. Introduction

Following the proof of the quantum ergodicity theorem by Snirelman,
Zelditch and Colin de Verdière [38, 41, 13], one of the central questions
in the quantum chaos literature over the past fourty years has been the
classification of semiclassical measures which may arise in relation to the
eigenfunctions of quantized chaotic systems. Rudnick and Sarnak proposed
their Quantum Unique Ergodicity (QUE) conjecture in 1994, asserting that
the unique semiclassical measure which should arise along the sequence of
Laplace eigenfunctions on manifolds with negative curvature is the Liouville
measure. This conjecture was proved by Lindenstrauss and Soundarara-
jan [25, 39] in the case of arithmetic hyperbolic surfaces. Holowinsky and
Soundararajan proved a holomorphic analogue of QUE for Hecke eigenforms
[17, 18]. Anantharaman [2] generalized this work by ruling out the existence
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2 JONATHAN P. KEATING AND HENRIK UEBERSCHÄR

of semiclassical measures localized on a union of points and geodesic seg-
ments for Anosov manifolds. On the other hand, Hassell showed that the
stadium billiard, although ergodic, does not satisfy QUE [15]. The existence
of scars was proved by Faure, Nonnenmacher and de Bièvre for hyperbolic
toral automorphisms of minimal periods [14].

Another class of systems which has attracted considerable attention in
the quantum chaos literature are those termed pseudointegrable [29]. Such
systems are classically close to integrable, yet their quantum dynamics dis-
plays features similar to those found in chaotic systems. In particular, their
dynamics in phase space is not constrained to tori, but more generally to
handled spheres.

Examples of pseudointegrable billiards are rational polygonal billiards.
More generally, one sometimes includes systems which can be understood
as toy models of pseudointegrable systems, such as quantum star graphs
[19], parabolic toral automorphisms [26] and S̆eba billiards [34]. The latter
is a rectangular billiard with a Dirac mass placed in its interior. This system
can be rigorously studied by means of von Neumann’s theory of self-adjoint
extensions. Over the past twenty years much work has been devoted to the
study of the spectrum and eigenfunctions of such billiards [12, 5, 6, 7, 8, 19,

31, 23, 24, 21, 22]. In particular, arithmetic S̆eba billiards have been shown

to be quantum ergodic [31, 23], whereas diophantine S̆eba billiards possess
scarred semiclassical measures [24, 21].

While phenomena such as quantum ergodicity and scarring have attracted
a good deal of attention in the mathematical literature on quantum chaos, it
is important to point out that many quantum systems possess eigenfunctions
whose morphology is far more complex than is simply characterised by their
being purely localized or ergodic. For example, in a wide range of quantum
systems in which the spectral statistics sit at the transition between Pois-
son and random-matrix, it has been argued that the eigenfunctions should
exhibit multifractal self-similar structure. Pseudointegrable systems are one
such class of examples, because their dynamics is intermediate between in-
tegrability and chaos.

Multifractality is a phenomenon which is observed in many scientific fields
ranging from financial mathematics and biology to quantum physics. It de-
scribes systems whose self-similarity in a certain scaling regime is so complex
that it cannot be described by a single fractal exponent but only by a spec-
trum of exponents. The multifractality of eigenfunctions is one of the most
important phenomena in the theoretical and experimental study of inter-
mediate quantum systems. Physicists have conjectured its existence in a
large of class of systems such as the Anderson model [1, 33, 28], pseudoin-
tegrable systems [9], quantum spin chains [3], quantum maps [27] and in
certain ensembles of random matrices [20, 11], based on heuristic arguments
and extensive numerical investigations. Moreover, they have conjectured
that the fractal exponents Dq should satisfy a symmetry relation [27] with
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respect to the critical parameter value q = 1
4 . For an introduction to the

extensive physics literature on this subject, see [4].
Although multifractality is an extremely active field in physics, and the-

oretical evidence for the multifractality of quantum eigenfunctions has been
provided by many works in the physics literature as well as physical and
numerical experiments, no rigorous mathematical proof is known to date for
any class of intermediate systems.

In this paper we prove the multifractality of the eigenfunctions for S̆eba’s
billiard in the strong coupling regime. We derive an analytical formula for
the fractal exponents Dq. We also prove multifractality of the ground state
and show that the symmetry relation of the fractal exponents around the
critical exponent q = 1

4 is a consequence of the functional equation of the
Epstein zeta function.
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2. Background and statement of the results

2.1. Mathematical formulation of the problem. Denote by (X,µ) a
measure space. In classical multifractal analysis one usually evaluates µ on
a box partition Br of X, where r denotes the side length of the boxes. To
characterise the self-similarity of the measure µ one studies the behaviour
of the moment sum

Mq(r) =
∑

B∈Br

µ(B)q

in the limit as r → 0. One expects a scaling law of the form Mq(r) ∼ rDq ,
where Dq denotes the fractal exponent. A key goal of multifractal analysis
is to determine Dq as a function of q.

Let us consider the Laplace-Beltrami operator −∆ on a two-dimensional
Euclidean compact manifoldM with or without boundary. An eigenfunction
ψλ of −∆, satisfying (∆+ λ)ψλ = 0, may be represented as a superposition
of plane waves

(2.1) ψλ(x) =
∑

ξ∈L

ψ̂λ(ξ)e
iξ·x.

This may be achieved by embedding the Euclidean billiard in a rectangular
enclosure R and representing ψλ with respect to the canonical orthonormal
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basis of complex exponentials eiξ·x, where ξ ∈ L and L is a rectangular
lattice. We note that the choice of rectangle, and therefore of the lattice
L, ought to translate into a scaling factor which will appear in lower order
terms, because, in order to calculate the fractal exponent Dq, one consid-
ers the asymptotic behaviour of logMq(r). A rigorous formulation of the
problem of multifractal eigenfunctions on Euclidean billiards is beyond the
scope of this introduction and will be addressed in a separate article. We
stress that for the case of S̆eba billiards no such ambiguity with respect to
the choice of lattice exists.

Let us introduce the probability measure

µλ(ξ) = |ψ̂λ(ξ)|2

where we assume that ψ is L2-normalized.
We consider the moment sum

(2.2) Mq(λ) =
∑

ξ∈L

µλ(ξ)
q.

To understand how to determine the scaling parameter which plays the
role of r, one must distinguish different regimes. We will focus here first on
the semiclassical regime (λ → +∞). However, one may also study multi-
fractality of the ground state (λ→ 0), which we address in section 2.5.

2.2. Multifractality in the semiclassical regime. To motivate the def-
inition of the fractal exponent associated with the moment sum (2.2), let
us first of all consider the case of a finite-dimensional Hilbert space. Each
eigenstate may be represented by a vector v ∈ C

d, where d denotes the
dimension of the space. Let us normalize such that the largest coordinate
equals 1 (ℓ∞ normalization).

The fractal exponent Dq describes how the moment sum associated with
v scales with respect to the dimension d:

n
∑

k=1

v2qk ∼ dDq .

If v is flat, then all entries equal 1 so that Dq = 1. On the other hand, if v is
maximally localized, meaning that one entry equals 1 and all others vanish,
then Dq = 0.

Often one normalizes with respect to the ℓ2-norm. In this case one ob-
serves a decay of the type ∼ d(1−q)Dq . The fractal exponent Dq may be de-
fined in terms of the Renyi entropy of the probability measure pi = v2i /‖v‖2
in the following way:

Dq =
Hq(v)

log d
, Hq(v) =

1

1− q
log

(

d
∑

i=1

pqi

)

.

Let us generalize this definition to an infinite-dimensional Hilbert space.
The measure µλ(ξ), which we introduced above, must carry most of its mass
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when |ξ|2, the eigenvalue of the plane wave, is close to λ. Geometrically
this means that the measure µλ will concentrate most of its mass inside an
annulus of central radius

√
λ.

Let us consider the case of S̆eba’s billiard (cf. section 3 for an introduc-
tion), a rectangular billiard with a Dirac mass placed in its interior. The
spectrum consists of two parts: old Laplace eigenvalues whose eigenfunc-
tions do not feel the presence of the scatterer, and new eigenvalues whose
eigenfunctions feel its presence. We will study the multifractal properties of
these new eigenfunctions.

Let us denote the old Laplace eigenvalues (counted without multiplicity)
by

0 = n0 < n1 < · · · < nj < · · · → +∞.

The set Λ = {λj}j≥0 of new eigenvalues forms an interlacing sequence with
(nj)j≥0. We denote by ∆j = minm∈N |m− λj| = |ñj − λj | the distance of a
new eigenvalue λj to the closest neighbouring Laplace eigenvalue, which we
denote by ñj. If two such eigenvalues exist we denote by ñj the smaller of
the two.

Moreover, let us introduce the mean distance

〈∆j〉x =
1

#{k | λk ≤ x}
∑

λk≤x

∆k.

We distinguish two quantizations of S̆eba’s billiard:

(i) weak coupling: 〈∆j〉x = O((log x)−1/2)

(ii) strong coupling: 〈∆j〉x = (log x)α+o(1), α = α(Λ) ∈ (−1
2 ,

1
2 ].

Whereas the eigenvalues of the weak coupling quantization arise from self-
adjoint extension theory, a renormalization of the extension parameter gives
rise to the strong coupling quantization condition. For any given α ∈
(−1

2 ,
1
2 ], there exists a suitable renormalization to render the correspond-

ing quantization. We refer the reader to section 3 for a detailed discussion.

Remark 1. Note, if α(Λ) < 1
2 , this does not preclude the mean spacing

〈δj〉x, where δj = nj − λj , from being of the same order as the mean spac-

ing of the Laplace eigenvalues: 〈δj〉x ≍ √
log x1. It simply means that the

locations of the new eigenvalues fluctuate rather than remaining close to the
intermediate values n̄j =

1
2(nj+1 + nj).

Let us return to the moment sum (2.2). In the case of S̆eba’s billiard we
have the following explicit formula for the probability measure µλ on the
lattice Z

2:

µλ(ξ) = (|ξ|2 − λ)−2





∑

ξ∈Z2

(|ξ|2 − λ)−2





−1

1Note that the mean spacing of the Laplace eigenvalues nj is of order
√
log x as a

consequence of Landau’s Theorem on the representation of integers as a sum of two squares
which states that #{nj ≤ X} ∼ Bx/

√
log x.
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which allows for a precise analysis.
Firstly, let us determine the scaling parameter. Since we are dealing

with an infinite-dimensional space, the dimension must be replaced with the
number of important components N in the sum (2.2). N will be defined in
terms of the average number of lattice points in the annulus which supports
most of the mass of the measure µλ; in particular N will depend on λ.

In the case of S̆eba’s billiard, the moment sum (2.2) is of the form

(2.3) Mq(λj) =
ζλj

(2q)

ζλj
(2)q

where we introduce the zeta function

(2.4) ζλ(s) =
∑

m∈N

rQ(m)(m− λ)−s, Re s > 1,

and rQ(n) denotes the representation number of the quadratic form defined
byQ(ξ1, ξ2) = |ξ|2 for ξ = (ξ1, ξ2) ∈ L, whereasN denotes the set of numbers
which is representable as a value of Q for some ξ ∈ L. In the following we
will consider the arithmetic case, when L = Z

2 and rQ(n) = r2(n).

2.3. A first example: weak coupling. In the case of the weak coupling
quantization we have 〈∆j〉n = O(1/

√
log n). In section 5.2 we will show that

for a generic new eigenvalue only the lattice points on a circle of radius
√
n

contribute, i.e. the number of important terms in the sum (2.2) is r2(n).
In fact, the moment sum can be rewritten as

Mq(λj) =
ζλj

(2q)

ζλj
(2)q

=
mq(λj)

m1(λj)q

where

(2.5) mq(λj) = r2(ñj) + ∆2q
j

∑

m6=ñj

r2(m)(m− λj)
−2q

and, because ∆j is typically small, only the term r2(ñj) contributes in the
numerator and denominator respectively. In particular, we will show that,
along a full density subsequence of eigenvalues,

Mq(λj) ∼ r2(ñj)
1−q.

For a full density subsequence of n ∈ N we have

r2(n) = (log n)
1
2 log 2+o(1)

because r2(n) is close to its logarithmic normal order. Therefore, we define
the scaling parameter as the logarithmic normal order of r2(ñj):

N = (log ñj)
1
2 log 2

We define the semiclassical fractal exponent, associated with a sequence
of eigenvalues, as follows.
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Definition 2.1. Let q > 1
2 . Let Λ be a sequence of eigenvalues which ac-

cumulates at infinity. We define the general entropy associated with the
eigenfunction ψλ as

(2.6) hq(ψλ) = logmq(λ).

For q 6= 1 the Renyi entropy associated with the probability measure µλ
on lattice L may then be defined as

(2.7) Hq(µλ) =
hq(ψλ)− qh1(ψλ)

1− q
=

1

1− q
log





∑

ξ∈L

µλ(ξ)
q



 .

The fractal exponents associated with Λ are defined as

dΛq = lim sup
λ∈Λ→+∞

hq(ψλ)

logN
with respect to the ℓ∞-normalization,(2.8)

DΛ
q = lim sup

λ∈Λ→+∞

Hq(µλ)

logN
with respect to the ℓ2-normalization.(2.9)

Remark 2. We point out that the Renyi entropy of a probability measure
on a lattice L is a natural generalisation of the Shannon entropy familiar
from information theory [35, 36]. For a probability measure p = pξ on a
lattice L, the Shannon entropy is defined as follows

HSh.(p) = −
∑

ξ∈L

pξ log pξ.

In fact, we have

lim
q→1

Hq(p) = lim
q→1

1

1− q
log





∑

ξ∈L

pqξ





= −





d

dq
log





∑

ξ∈L

pqξ









q=1

= −
∑

ξ∈L

pξ log pξ.

So the Shannon entropy of p is recovered from the Renyi entropy in the
limit, as q → 1.

We have the following theorem which we prove in section 5.2. Due to the
weakness of the perturbation, the new eigenvalue is on average close to a
neighbouring Laplace eigenvalue. As a result we only have a single fractal
exponent.

Theorem 2.2 (A simple scaling law). Let Λw denote the sequence of new
eigenvalues in the weak coupling regime. There exists a full density subse-
quence Λ′ ⊂ Λw such that dq(Λ

′) = Dq(Λ
′) = 1.
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2.4. A multifractal regime: strong coupling. To determine the scaling
parameter N we have to calculate the number of important terms in the
moment sum (2.2). This is closely related to the number of lattice points in
an annulus

A(λ,G) = {v ∈ R
2 | ||ξ|2 − λ| ≤ G},

where G = G(λ) is just large enough such that the terms corresponding to
lattice points outside the annulus A(λ,G) are negligible, when λ → +∞.
In particular, G must grow faster than the mean spacing of the Laplace
eigenvalues: G/

√
log λ→ +∞

Let us introduce the tail of the zeta function ζλ:

τq(λ,G) =
∑

m∈N
|m−λ|≥G

r2(m)(m− λ)−2q.

Definition 2.3. We define the essential support of the measure µλ as the
set of lattice points A(λ,G)∩Z2, where G = G(λ) satisfies G/

√
log λ→ +∞,

and is determined from the condition

(2.10) 〈∆j〉2qλ 〈τq〉λ = 1

and the mean tail is defined as

(2.11) 〈τq〉T =
1

T

∫ 2T

T
τq(t,G)dt.

Remark 3. We will see below that 〈τq〉 ≍ G1−2q. So if we recall 〈∆j〉λ =

(log λ)α+o(1), then we see that the definition of G as a solution of (2.10)
is quite robust when λ → +∞. Strictly speaking, for the terms outside the
annulus A(λ,G) to be negligible, one should require the r.h.s. of equation
(2.10) to be o(1). However, for any function which decays sufficiently slowly
(1/o(log λ) to be precise) this will only change a lower order term in the
asymptotic of logG. Because, as we will see below, it is only the leading
term in the asymptotic of logG which is relevant in the definition of Dq, we
set the r.h.s. of (2.10) equal to 1 for simplicity.

As the number of lattice points in a thin annulus fluctuates a lot, we
define the scaling parameter N as the average number of lattice points in
the annulus A(λ,G) which is given by its area.

Definition 2.4. We define the scaling parameter as N = vol(A(λ,G)) =
2πG.

We have the following proposition which we prove in section 8.

Proposition 2.5. We have

〈τq〉λ =
2π

2q − 1
G1−2q(1−O(λ−1+θ))

where θ is the exponent in the circle law. The best known exponent is due
to Huxley [16], θ = 131

416 .
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Our main result concerns the strong coupling regime. In this regime the
spacing of the new eigenvalues may be as large as the mean spacing of the
Laplace eigenvalues. We determine under which conditions on the average
distance of the new eigenvalues to the nearest Laplace eigenvalue a spectrum
of fractal exponents emerges. Our result includes the case of a quantization
consistent with level repulsion, provided the fluctuations around the mean
location of the new eigenvalues are large enough. We prove the following
theorem in section 5.1.

Theorem 2.6 (A multifractal scaling law). Let Λs denote a sequence of
new eigenvalues such that α = α(Λs) ∈ (14 ,

1
2 ). There exists a full density

subsequence Λ′ ⊂ Λs such that for any q > 1 which satisfies (1 − log 2)(2 −
4α)−1 < q ≤ (2 − 4α)−1 we have the following formulae, which may be
analytically continued to the complex plane,

(2.12) dq(Λ
′) =

1

2α

(

1− 1

2q

)

log 2

and for a constant c ∈ [12 log 2, 1]

(2.13) Dq(Λ
′) =

1

2α

(

1− 1

2q

)

2cq − log 2

q − 1
.

Remark 4. It is important to remark that “rigid” quantizations which have
the property that the new eigenvalues stay close to the intermediate values
of the Laplace eigenvalues, in the sense that 〈δj〉x ≍ 〈∆j〉x = (log x)1/2+o(1),
may lead to a possible breakdown of multifractality. This is interesting,
because it suggests that in a regime, where level repulsion occurs, we also
require the fluctuations of the new eigenvalues around their mean location
to be large enough for multifractality to manifest itself. We discuss this case
in detail in section 6.

2.5. Multifractality of the ground state. Instead of considering the
semiclassical regime, where λ → +∞, the regime where λ → 0 is also fre-
quently studied. Physically this corresponds to the ground state in a weak
coupling regime. In this regime we expect multifractality of the fluctuations
of the eigenfunction around the constant term in the Fourier series (2.1), as
λ→ 0. This leads to the study of the modified moment sums

(2.14) M∗
q (λ) = ζ∗λ(2q)

where

(2.15) ζ∗λ(s) =
∑

n∈N\{0}

rQ(n)(n − λ)−s, Re s > 1.

The parameter N does not depend on λ in this regime and, therefore, we
remove it from the definition of the fractal exponent.

Definition 2.7. Let q > 1. We define the fractal exponent as follows

d∗q = lim
λ→0

log ζ∗λ(2q)
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and

D∗
q =

d∗q − qd∗1
1− q

We state the second main result of this paper which provides an explicit
formula for D∗

q in terms of Epstein’s zeta function

ζQ(s) =
∑

(m,n)6=(0,0)

Q(m,n)−s, Re s > 1

which is known to satisfy the functional equation

ζQ(s) = ϕQ(s)ζQ(1− s).

Moreover, we show that D∗
q satisfies a symmetry relation with respect to

q = 1
4 which is closely related to the functional equation of Epstein’s zeta

function. The following theorem is proved in section 7.

Theorem 2.8. The fractal exponent D∗
q admits an analytic continuation to

the full complex plane in q. It satisfies the following symmetry relation with
respect to the parameter value q = 1

4 :

D∗
1/2−q =

1− q
1
2 + q

(

D∗
q +

logϕQ(2q) + (2q − 1
2) log ζQ(2)

1− q

)

.

In particular, in the limit as q → 1, the fractal exponent converges to the
Shannon entropy of the measure µλ(ξ) = ζQ(2)

−1|ξ|−4:

lim
q→1

D∗
q = log ζQ(2)− 2

ζ ′Q(2)

ζQ(2)

which we may rewrite as

HSh.(µλ) = −
∑

ξ∈Z2

1

ζQ(2)|ξ|4
log

(

1

ζQ(2)|ξ|4
)

.

3. Background on S̆eba billiards

3.1. Spectral theory of S̆eba billiards. S̆eba billiards belong to the class
of pseudointegrable billiards and over the past 30 years they have been
studied extensively in the literature. For a detailed discussion of the spectral
theory of such billiards we refer the reader to the introductory sections of
the articles [31] and [40].

In this article we will deal with an arithmetic S̆eba billiard associated
with the square lattice Z

2. Let T2 = R
2/2πZ2 and x0 ∈ T

2. The spectrum
of the positive Laplacian −∆ = −(∂2x + ∂2y) is given by integers which may

be represented as a sum of two squares n = x2 + y2, (x, y) ∈ Z
2. We denote

the ordered set of such numbers as N . The multiplicities in the Laplace
spectrum on T

2 are, thus, given by the representation number

r2(n) = #{(x, y) ∈ Z
2 | n = x2 + y2}
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which is an arithmetic function that has been extensively studied in the
number theory literature.

Consider a self-adjoint extension −∆ϕ, ϕ ∈ [−π, π), of −∆ restricted to
the domain C∞

c (T2\{x0}). Physically this operator corresponds to theweak

coupling quantization for a square torus with a Dirac delta potential (as

introduced by S̆eba in [34]).
The spectrum of the operator −∆ϕ consists of two parts:

(i) old (Laplace) eigenvalues with multiplicity reduced by 1
(ii) new eigenvalues with multiplicity 1 which interlace with the Laplace

eigenvalues

The eigenspace associated with an old eigenvalues is simply the codimen-
sion one subspace of Laplace eigenfunctions which vanish at x0. The old
eigenfunctions do not feel the presence of the potential. In this article, we
will only be interested in the new eigenfunctions which do feel the presence
of the potential.

These new eigenfunctions are Green’s functions associated with the resol-
vent of the Laplacian, where one variable has been fixed as the position of
the potential x0. Because of translation invariance we may set x0 = 0. We
then have the following L2-representation of the new eigenfunctions

Gλ(x)
L2

=
∑

ξ∈Z2

ei〈ξ,x〉

|ξ|2 − λ

=
∑

n∈N

1

n− λ

∑

|ξ|2=n

ei〈ξ,x〉.

(3.1)

Moreover, the new eigenvalues may be determined as the solutions of the
following spectral equation

(3.2)
∑

n∈N

r2(n)

{

1

n− λ
− n

n2 + 1

}

= c0 tan(
ϕ

2
).

Because the function on the l.h.s. of equation (3.2) is monotonous on
intervals (nj , nj+1), nj ∈ N , we easily see that the new eigenvalues form
a sequence of real numbers which interlace with the sequence of Laplace
eigenvalues:

λ0 < 0 = n0 < λ1 < n1 < λ2 < n2 < · · · < λj < nj < · · · → +∞.

An important question concerns the statistics of the spacings δj := nj −
λj. As was shown in [32], λj is on average close to nj , precisely δj =

O((log nj)
−1/2) for a full density subsequence of Laplace eigenvalues. This

shows that the quantization procedure using self-adjoint extension theory,
which was introduced by S̆eba [34], gives rise to a so-called weak coupling
quantization. Shigehara [37] and later Bogomolny, Gerland and Schmit [10]
explained that a semiclassical renormalization of the extension parameter ϕ
was necessary in order to obtain a strong coupling quantization giving rise
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to a spectrum and eigenfunctions which are expected to have interesting
features.

3.2. Renormalization and strong coupling quantizations. In fact, a
logarithmic renormalization of the coupling parameter, tan(ϕλ/2) ∼ c log λ,
is equivalent to a truncation of the sum on the l.h.s. of equation (3.2) outside

a window of size λ1/2. We refer the reader to [40] for a detailed discussion of
this renormalization procedure. The reason for this equivalence is that the
tail of the sum has a logarithmic asymptotic as λ→ +∞ which is cancelled
by the leading term in the asymptotic of tan(ϕλ/2). The second order term
in this asymptotic is related to local information about the position of the
new eigenvalues.

We thus obtain the following strong coupling quantization, where the
function β = β(λ) = o(log λ) is related to the inverse coupling strength of
the potential, and λj is determined as the solution on the interval (nj, nj+1)
as the solution to the following equation

(3.3)
∑

n∈N

|n−nj |≤n
1/2
j

r2(n)

n− λ
= β(λ).

The relationship between the precise form of β and the location of the
new eigenvalues is not understood at the rigorous level. When β is constant,
we expect the spacings δj = nj − λj to be of the order of the mean spacing
of the Laplace eigenvalues, 〈δj〉x ∼ c

√
log x. However, one may choose

β = c(log λ)b, b ∈ (0, 1), to achieve spacings of lower order.
It is important to remark that the location of a new eigenvalue λj within

the interval (nj , nj+1) depends on the interplay of the coefficients r2(n) in
the summation in equation (3.3). Due to the strong fluctuations of the
function r2(n) one may have 〈δj〉x ≍ √

log x, even though 〈∆j〉x ≪ (log x)α,

α < 1
2 .

4. An estimate for ζλj
(2q)

In this section we will prove the following lemma.

Lemma 4.1. Let q > 1. There exists a subsequence of full density N1 ⊂ N
such that for any m ∈ N1 we have the bound

∑

n∈N
n 6=m

r2(n)

(m− n)2q
≪ (logm)−q+1/2+o(1).

Proof. Let m ∈ N1(x). For convenience denote L = logm. We first of
all claim that there is a full density subsequence of N1 ⊂ N such that for
m ∈ N1 (proof to be given in a separate section)

(i) if r ∈ [L1/2+o(1), L2] there are ≫ r/((logm)1/2+o(1)(log r)2) elements
in N that lie in between m and n if r2(n) ≥ r
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(ii) if r ≥ L2 there are ≫ǫ r
5/4−ǫ/ log r elements in N that lie in between

m and n
(iii) the nearest neighbours of m are at distance at least L1/2−o(1)

(iv) for G ∈ [2,m1−ǫ] we have the bound

∑

n∈N
|m−n|≥G

(m− n)−2q ≤ (logG)2

G2q−1L1/2−o(1)

We next divide the sum in three parts according to the size of r2(n):
Small r2(n): r2(n) ≤ L1/2+o(1). We have

∑

|m−n|≫L1/2−o(1)

r2(n)

(m− n)2q
≪

∑

|m−n|≫L1/2−o(1)

r2(n)

(m− n)2q

≪ L1/2+o(1)

Lq−1/2−o(1)L1/2−o(1)
= L−q+1/2+o(1)

Medium r2(n): Set Ri = 2i(logm)1/2+o(1). By property (6) (cf. [23]) we
may set T = |m− n| and we then obtain

T (log T )2

(logm)1/2−o(1)
≫ Ri

L1/2+o(1)(logRi)2

which implies T ≫ Ri/L
o(1).

We thus have
∑

r2(n)∈[Ri,Ri+1]

r2(n)

(m− n)2q
≪

∑

|m−n|≫Ri/Lo(1)

Ri

(m− n)2q

≪ Ri(logRi)
2

L1/2−o(1)R2q−1
i

=
1

Lq−1/2−o(1)2i(2q−2)

(4.1)

and summing over i ≥ 0 yields the result (we used q > 1).
Large r2(n): We imitate the argument used in the proof of property (8)

in [23].
Take Ri = 2iL2/100. Suppose r2(n) ∈ [Ri, 2Ri]. By property (ii) we have

|m− n| ≫ǫ R
5/4−ǫ
i . And, thus, we have

∑

r2(n)∈[Ri,2Ri]

r2(n)

(m− n)2q
≪ Ri

∑

|m−n|≫ǫR
5/4−ǫ
i

(m−n)2q ≪ǫ Ri(R
5/4−ǫ
i )1−2qL−1/2+o(1)

and this is bounded by 2i(9/4−5q/2+ǫ)L4−5q+ǫ.
Summing over i (recall q > 1, so 9/4 − 5q/2 < 0) we obtain

∑

r2(n)≥L2

r2(n)

(m− n)2q
= Oǫ(L

4−5q+ǫ) = O(L1−2q)

because q > 1 implies 4− 5q < 1− 2q.
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�

4.1. Proof that N1 is of full density:

(i) We use the same strategy as in the proof of property (7) in [23].

Given that n ∈ N satisfies r = r2(n) ∈ [(log n)1/2 log log n, (log n)2]
we remove
2r/((log n)1/2(log log n)(log r)2) elements ofN to the left and right of
n and denote the set of such removed elements by Rn. As was shown
in the proof of property (7), it is sufficient to bound the total number
of removed elements in all sets Rn such that n ≤ 2x. If we show that
this set is of zero density in N (i.e. its cardinality is o(x/

√
log x)),

then we have shown that the set of remaining elements is of full
density in N . Moreover, for any m in this full density set and any
n ∈ N such that r2(n) ≥ r and r ∈ [(log n)1/2 log log n, (log n)2] we

have at least r/((log n)1/2(log log n)(log r)2) elements of N between
m and n.

It remains to be shown that the union of Rn, n ≤ 2x, is indeed
of cardinality o(x/

√
log x). As in the proof of (7), it is sufficient (in

view of the upper bound (log n)2) to consider n ∈ [x/(log x)10, 2x]
and we, thus, have log n = (1 + o(1)) log x.

In view of the asymptotic
∑

n≤x

r2(n) ∼ πx

Chebyshev gives that the number of n such that r2(n) ≥ T is ≪ x/T .
Let r2(n) ∈ [Ri, 2Ri] with Ri = 2i(log x)1/2 log log x. So the total

number of removed elements is

≪ x

Ri

Ri

(log x)1/2(log log x)(logRi)2
≪ x

(log x)1/2(log log x)i2

and summing over i shows that the total number of elements re-
moved is o(x/

√
log x).

(ii) We follow the same strategy as in the proof of property (8) in [23].

Given n ∈ N such that r = r2(n) ≥ (log n)2 we remove 2r5/4−ǫ/ log r
elements of N to the left and right. We use the bound

∑

n≤x

r2(n)
2 ≪ x log x.

As in the proof of (8) it is sufficient to consider n ∈ [
√
x, 2x]. Let

Ri = 2i(log x)2/100 and consider r ∈ [Ri, 2Ri]. Chebyshev gives

that the number of n ≤ 2x s. t. r2(n) ≥ Ri is ≪ x log x
R2

i
and the

associated removed contribution is

≪ x log x

R2
i

R
5/4−ǫ
i

logRi
≪ x log x R

−3/4−ǫ
i = x2−i(3/4+ǫ)(log x)−1/2−ǫ
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and summing over i shows that the total number of removed ele-
ments is o(x/

√
log x).

(iii) This is the same as property (3) in [23].

(iv) The proof is analogous to the proof of property (9) in [23], where
(m− n)−2 is replaced with (m− n)−2q and we use

∑

h≥T

c(h)

h2q
≪ T 1−2q.

5. Proofs of Theorems 2.6 and 2.2

Let us consider the moments

mq(λj) =∆2q
j

∑

ξ∈Z2

1

(|ξ|2 − λ)2q

=(ñj − λj)
2q
∑

n∈N

r2(n)(n− λj)
−2q, q > 1,

which give information about the multifractal properties of the eigenfunc-
tions.

5.1. Proof of Theorem 2.6. Let us denote

N2 = {n ∈ N1 | r2(n) = (log n)
1
2 log 2+o(1)}

which is of full density in N (cf. [23]).

Moreover, α(Λ) ∈ (0, 12 ) and Chebyshev imply that ∆j ≪ (log ñj)
α+o(1)

is a full density condition if we assume (log ñj)
o(1) ր +∞. We denote by

N ′ the subset of N2 which satifies this condition.
We need to estimate the fractal exponent associated with the subsequence

N ′

Dq =
1

1− q
lim sup
ñj∈N ′

logmq(ñj)− q logm1(ñj)

logN
.

Let L = log ñj. For q > 1 and ñj ∈ N ′ we have

mq(ñj) = r2(ñj) + ∆2q
j O(L(1/2−q+o(1)))

= Llog 2/2+o(1) +O(L2αq+o(1))×O(Llog 2/2−q+o(1))
(5.1)

where we used Lemma 4.1.
We have q > (1− log 2)/(2− 4α) which implies −(1− 2α)q + 1

2 <
1
2 log 2

so that we have the asymptotic

mq(ñj) ∼ Llog 2/2+o(1).

Thus, we find

lim sup
ñj∈N ′

logmq(ñj)

log log ñj
= lim

ñj∈N ′

logmq(ñj)

log log ñj
=

1

2
log 2.
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We need a separate estimate for m1(ñj), because the above estimate as-
sumes q to be sufficiently large.

For q = 1 we have
∑

n∈N , n 6=ñj

r2(n)

(n− ñj)2
=

∑

n∈N , n 6=ñj

r2(n)≤L2

r2(n)

(n− ñj)2
+

∑

n∈N , n 6=ñj

r2(n)>L2

r2(n)

(n− ñj)2

where the second sum is bounded by Oǫ(L
−1+ǫ) in view of the bound ob-

tained for sums over large r2(n) in the proof of Lemma 6.1, and the first
sum is bounded by

L2
∑

|n−ñj |≫L1/2−o(1)

(n− ñj)
−2 ≪ L1+o(1)

where we used (iii) and (iv).
This yields the bound

(5.2)
∑

n∈N , n 6=ñj

r2(n)

(n− ñj)2
≪ L1+o(1).

So, we see that

c := lim inf
n∈N ′

logm1(n)

log log n
∈ [12 log 2, 1].

As a consequence of Prop. 2.5, we see that

log 〈τq〉n = (1− 2q) logG+O(log q) +O(n−1+θ)

and from the definition of G we have

log 〈τq〉n = −2q log 〈∆j〉n = −2q α log log n+ o(log log n).

Combining these equations we obtain

(5.3) logG = α(1 + o(1))
2q

2q − 1
log log n,

and we recall the requirement G/
√
log n → +∞. Therefore, we must have

α 2q
2q−1 <

1
2 which yields the upper bound q < (2− 4α)−1.

Since N = 2πG, we obtain

lim
ñj∈N ′→+∞

hq(ñj)

logN
=
1

α
(1− 1

2q
) lim
ñj∈N ′→+∞

logmq(ñj)

log log ñj

=
1

2α
(1− 1

2q
) log 2

and

lim inf
ñj∈N ′→+∞

h1(ñj)

logN
=
1

α
(1− 1

2q
) lim inf
n∈N ′→+∞

logm1(ñj)

log log ñj

=
c

α
(1− 1

2q
).
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We, thus, obtain the following formula for the fractal exponent:

Dq = lim sup
ñj∈N ′→+∞

Hq(ñj)

logN

= lim
ñj∈N ′→+∞

hq(ñj)

logN
− q lim inf

ñj∈N ′→+∞

h1(ñj)

logN

=
1

2α

2cq − log 2

q − 1

(

1− 1

2q

)

(5.4)

5.2. Proof of Theorem 2.2. We know (cf. [32]) that the new eigenvalues
of the operator −∆ϕ are on average close to a nearby old Laplace eigenvalue.
More precisely, there exists a full density subsequence N2 ⊂ N such that
∆m = O(1/

√
logm).

We have
∑

n∈N

r2(n)

(n− λm)2q
=

r2(ñj)

(ñj − λj)2q
+
∑

n∈N
m6=ñj

r2(m)

(m− λj)2q

and, by applying Lemma 6.1, we get for ñj ∈ N1 and q > 1

∑

m∈N
m6=ñj

r2(m)

(m− λj)2q
= O((log ñj)

−q+1/2+o(1)).

If ñj ∈ N1 ∩N2, then, for any q > 1,

mq(λj) = (ñj − λj)
2q
∑

m∈N

r2(m)

(m− λj)2q
= r2(ñj) +O((log ñj)

−2q+1/2+o(1))

and thus the general entropy has asymptotics

hq(ñj) ∼ log r2(ñj)

and

dq = lim
ñj∈N1→+∞

hq(ñj)
1
2 log 2 · log log ñj

= 1

because r2(ñj) = (log ñj)
1
2 log 2+o(1).

Moreover, for q = 1, we recall the bound (5.2) to see that

(5.5) m1(λj) = r2(ñj) +O(Lo(1)) ∼ (log ñj)
1
2 log 2+o(1)

where we used ∆2
j = O((log ñj)

−1). It follows that

d1 = lim
ñj∈N1→+∞

h1(ñj)
1
2 log 2 · log log ñj

= 1.

Hence, for q 6= 1,

Dq =
dq − qd1
1− q

= 1.
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6. Rigid quantizations

In this section we will deal with quantizations which have the prop-
erty that the new eigenvalues stay close to the intermediate values of the
Laplace eigenvalues, n̄j = 1

2(nj + nj+1), in the sense that 〈∆j〉x ≍ 〈δj〉x =

(log x)1/2+o(1).
Under the assumption of an analogue of the Sathe-Selberg asymptotic

on ω1(n), the number of distinct prime factors congruent to 1 mod 4, we
obtain the following lemma which improves the exponent in Lemma 4.1 if q
is sufficiently large.

Lemma 6.1. Let q > 3
2 . There exists a subsequence of full density N3 ⊂ N

such that for any m ∈ N1 we have the bound

∑

n∈N
n 6=m

r2(n)

(m− n)2q
≪ (logm)−q+

1
2 log 2+f(q)+o(1)

as m→ +∞, where

f(q) =
1

2
log 2

(

exp

{

log 2

q − 1/2

}

− 1

)

.

Proof. Let m ∈ N3(x). For convenience denote L = logm. We first of
all claim that there is a full density subsequence of N3 ⊂ N such that for
m ∈ N3 (proof to be given in a separate section). Note that properties
(ii)-(iv) coincide with the respective properties of N1, which we restate here
for completeness.

(i) if r ∈ [Llog 2/2+η , L2], and r ∈ [2iLlog 2/2+η , 2i+1Llog 2/2+η] for some
integer i, then there are ≫ (1 + 2η′)i/((log r)2 logL) elements in N
that lie in between m and n if 2ω1(n) ≥ r

(ii) if r ≥ L2 there are ≫ǫ r
5/4−ǫ/ log r elements in N that lie in between

m and n
(iii) the nearest neighbours of m are at distance at least L1/2−o(1)

(iv) for G ∈ [2,m1−ǫ] we have the bound

∑

n∈N
|m−n|≥G

(m− n)−2q ≤ (logG)2

G2q−1L1/2−o(1)

(v) for f(n) := r2(n)/4 · 2ω1(n) andQ ≥ 1 there are at least Q/((logQ)2 logL)
elements in N that lie in between m and n if f(n) ≥ Q

We next divide the sum in three parts according to the size of r2(n):
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Small r2(n): r2(n) ≤ Llog 2/2+ǫ. We have

∑

|m−n|≫L1/2−o(1)

r2(n)≤Llog 2/2+ǫ

r2(n)

(m− n)2q
≪

∑

|m−n|≫L1/2−o(1)

r2(n)

(m− n)2q

≪ Llog 2/2+ǫ

Lq−1/2−o(1)L1/2−o(1)
= L−q+log 2/2+ǫ

Medium r2(n) ∈ [Llog 2/2+η , L2]: Set Ri = 2i(logm)log 2/2+η. By property
(6) (cf. [23]) we may set T = |m− n| and we then obtain, in view of (i),

T (log T )2

(logm)1/2−o(1)
≫ (1 + 2η′)i

(logRi)2 logL
,

where η′ = η/ log 2, which implies T ≫ (1 + 2η′)iL1/2−o(1).

Similarly, in view of (v), if f(n) = r2(n)/(4 · 2ω1(n)) ∈ [2j , 2j+1], then we
have

T (log T )2

(logm)1/2−o(1)
≫ 2j

j2 logL

which implies T ≫ 2jL1/2−o(1).
Combining these two lower bounds we get

|m− n| ≫ Gi,j := 2j/2(1 + 2η′)i/2L1/2−o(1).

We define

Ni,j := {n ∈ N | f(n) ∈ [2j , 2j+1] and 2ω1(n) ∈ [Ri, Ri+1]}.
Therefore

∑

n∈N , n 6=m
r2(n)∈[Llog 2/2+η ,L2]

r2(n)

(m− n)2q
=
∑

i,j≥0

∑

n∈Ni,j

r2(n)

(m− n)2q
≪
∑

i,j≥0

2j
∑

n∈Ni,j

2ω1(n)

(m− n)2q

Let us bound the interior sum:

∑

n∈Ni,j

2ω1(n)

(m− n)2q
≪

∑

|m−n|≫Gi,j

Ri

(m− n)2q

≪ Ri(logRi)
2

Lq−o(1)(1 + 2η′)i(q−1/2)2j(q−1/2)

=
2i

(1 + 2η′)i(q−1/2)2j(q−1/2))
L−q+log 2/2+η+o(1)

(6.1)

And if q > max(32 ,
1
2 + log 2

log(1+2η′)), we may sum over i and j to obtain

∑

n∈N , n 6=m
r2(n)∈[Llog 2/2+η ,L2]

r2(n)

(m− n)2q
≪ǫ L

−q+log 2/2+η+o(1).
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So, if q > 3
2 , then we need

q > 1
2 +

log 2

log(1 + 2η/ log 2)

which is achieved by

η > 1
2 log 2

[

exp

{

log 2

q − 1
2

}

− 1

]

.

Large r2(n): We imitate the argument used in the proof of property (8)
in [23].
Take Ri = 2iL2/100. Suppose r2(n) ∈ [Ri, 2Ri]. By property (ii) we have

|m− n| ≫ǫ R
5/4−ǫ
i . And, thus, we have

∑

r2(n)∈[Ri,2Ri]

r2(n)

(m− n)2q
≪ Ri

∑

|m−n|≫ǫR
5/4−ǫ
i

(m−n)2q ≪ǫ Ri(R
5/4−ǫ
i )1−2qL−1/2+o(1)

and this is bounded by 2i(9/4−5q/2+ǫ)L4−5q+ǫ.
Summing over i (recall q > 1, so 9/4 − 5q/2 < 0) we obtain

∑

r2(n)≥L2

r2(n)

(m− n)2q
= Oǫ(L

4−5q+ǫ) = O(L1−2q)

because q > 1 implies 4− 5q < 1− 2q.
�

6.1. Proof that N3 is of full density:

(i) We use the same strategy as in the proof of property (7) in [23].

Given that n ∈ N satisfies r = 2ω1(n) ∈ [(log n)
1
2 log 2+η, (log n)2]

we have r ∈ [2i(log n)
1
2 log 2+η, 2i+1(log n)

1
2 log 2+η] for some integer i.

We remove
(1 + 2η′)i/((log log n)(log r)2) elements of N to the left and right
of n and denote the set of such removed elements by Rn. As was
shown in the proof of property (7), it is sufficient to bound the total
number of removed elements in all sets Rn such that n ≤ 2x. If
we show that this set is of zero density in N (i.e. its cardinality is
o(x/

√
log x)), then we have shown that the set of remaining elements

is of full density in N . Moreover, for any m in this full density set

and any n ∈ N such that r2(n) ≥ r and r ∈ [(log n)
1
2 log 2+η, (log n)2]

with r ∈ [2i(log n)
1
2 log 2+η, 2i+1(log n)

1
2 log 2+η ], we have at least (1+

2η′)i/((log log n)(log r)2) elements of N between m and n.
It remains to be shown that the union of Rn, n ≤ 2x, is indeed

of cardinality o(x/
√
log x). As in the proof of (7), it is sufficient (in

view of the upper bound (log n)2) to consider n ∈ [x/(log x)10, 2x]
and we, thus, have log n = (1 + o(1)) log x.
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Recall that ω1(n) denotes the number of distinct prime factors
congruent to 1 mod 4. The analogue of the Sathe-Selberg asymptotic
for ω1(n) gives

(6.2) #{n ∈ N (x) | ω1(n) = k} ∼ C0
x

log x

(log log x)k−1

2k−1(k − 1)!

for k ≤ C log log x, where C is a constant.

Let r = 2ω1(n) ∈ [Ri, Ri+1] with Ri = 2i(log x)
1
2 log 2+η

Because ω1(n) = log r/ log 2, we see that r ∈ [Ri, Ri+1] is equiva-
lent to

ω1(n) ∈ [(12 + η′) log log x+ i, (12 + η′) log log x+ i+ 1]

where η′ = η/ log 2. Thus, the asymptotic (6.2) yields that the
number of n ∈ N satisfying r ∈ [Ri, Ri+1] is bounded by

≪
(

1

1 + 2η′

)i x√
log x

√
log log x

≪ x

(1 + 2η′)i
√
log x

.

So the total number of removed elements is

≪ x

(1 + 2η′)i
√
log x

(1 + 2η′)i

(log log x)(logRi)2
≪ x√

log x(log log x)i2

and summing over i shows that the total number of elements re-
moved is o(x/

√
log x).

(ii)-(iv) cf. proof for N1.

(v) First of all we have the bound (cf. [23])
∑

n∈N (x)

f(n) ≪ x√
log x

.

So Chebyshev gives that the number of n ∈ N (x) s. t. f(n) ≥ T is
≪ x/(T

√
log x).

Let us denote Nj = {n ∈ N | f(n) ∈ [2j , 2j+1]}. For each n ∈ Nj

let us remove 2j/(j2 log log n) elements of N to the right and left.
Let us bound the total number of removed elements in N (x) for

the set Nj. It is sufficient to do this for elements n ≥ √
x, so that

log log n = (1+o(1)) log log x. Then, in view of Chebyshev, the total
number of elements removed is

≪ x

2j
√
log x

· 2j

j2 log log x
=

x

j2
√
log x · log log x

and summing over j shows that the total number of elements re-
moved for all sets Nj is

≪ x√
log x · log log x = o(|N (x)|).
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6.2. Breakdown of multifractality. For rigid quantizations which have
the property that the new eigenvalues stay close to the intermediate values
of the old Laplace eigenvalues, in the sense that

〈δj〉x ≍ 〈∆j〉x = (log x)1/2+o(1),

we may see a breakdown of multifractality.
We will use Lemma 6.1 to obtain an estimate of the fractal exponent dq to

illustrate this phenomenon. Let L = log ñj. The lemma yields the following
estimate on the moment sum mq:

mq(ñj) = r2(ñj) + ∆2q
j O(L(log 2/2−q+f(q)+o(1)))

= Llog 2/2+o(1) +O(Llog 2/2+f(q)+o(1)).
(6.3)

Thus, we find

lim sup
nj∈N ′

logmq(nj)

log log nj
∈ [12 log 2,

1
2 log 2 + f(q)].

and (recall α = 1
2)

dq = lim sup
ñj∈N ′→+∞

hq(ñj)

logN
=2(1− 1

2q
) lim
ñj∈N ′→+∞

logmq(ñj)

log log ñj

=(1− 1

2q
)(1 + F (q)) log 2

where the function F satisfies the inequality

0 ≤ F (q) ≤ 2 log 2

2q − 1

which does not rule out the possibility that F (q) = (2q−1)−1 which in turn
would yield dq = log 2. It is striking that even a precise asymptotic such
as an analogue of Sathe-Selberg for integers representable as sums of two
squares does not seem to be sufficient to improve this bound further. We
are, therefore, led to suspect that multifractality may break down for such
rigid quantizations.

7. Multifractality of the ground state

Consider a general rectangular torus T2 = R
2/2πL0, where L0 = Z(a, 0)⊕

Z(0, 1/a) for some a > 0. Denote the dual lattice of L0 by L. We recall
the L2 expansion of the eigenfunction (we drop the 1/(4π)2 factor for con-
venience)

Gλ(x) =
∑

ξ∈L

1

|ξ|2 − λ
ei〈ξ,x〉

Let us consider the (non-normalized) complex moment

ζλ(s) =
∑

ξ∈Z2

1

(|ξ|2 − λ)s
, Re s > 1
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which gives information about the multifractal properties of the eigenfunc-
tions.

In order to study the multifractal properties of the ground state of the
S̆eba billiard in the limit λ→ 0, we first of all note that the leading term is
the coefficient λ−s which corresponds to the constant term (no dependence
on x) in the L2-expansion. We might expect interesting scaling properties of
the fluctuations of the eigenfunction around the constant term (effectively,
we are studying the scaling properties of the regularized function Gλ+1/λ).

Let us, therefore, study the modified moment

ζ∗λ(s) =
∑

ξ∈L\{0}

(|ξ|2 − λ)−s, Re s > 1.

Accordingly, we define the ℓ2-normalized modified moment as

M∗
s/2(λ) =

ζ∗λ(s)

ζ∗λ(2)
s/2
.

The limit of M∗
s/2(λ), as λ→ 0, exists and we have

M∗
s/2(0) =

ζQ(s)

ζQ(2)s/2

where ζQ denotes the Epstein zeta function for the quadratic formQ(m,n) =
a2m2 + a−2n2:

ζQ(s) =
∑

(m,n)6=(0,0)

Q(m,n)−s

In the half-plane Re s > 1, we have

M∗
λ(s) = ζQ(s)/ζQ(2)

s/2 + λF (s) +O(λ2)×G(s)

where F (s) and G(s) can be written explicitly in terms of ζQ.
One may now continueM∗

λ(s) analytically to the complex plane using the
functional equation for ζQ:

ζQ(s) = ϕQ(s)ζQ(1− s), ϕQ(s) = π2s−1Γ(1− s)

Γ(s)
.

In order to derive the fractal exponent, we recall q = s/2 and we expect
a scaling law of the form

M∗
λ(2q) ∼ k(1−q)D∗

q , λ→ 0

where k is the effective length of the summation (which is defined for Re s >
1 and is constant, due to the fact that we are dealing with the ground state
and λ is small).

Therefore, we define

d∗q = log ζQ(2q)
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as the fractal exponent with respect to the ℓ∞-normalization and, with re-
spect to the ℓ2-normalization, we define

(7.1) D∗
q =

log ζQ(2q) − q log ζQ(2)

1− q
.

where, for simplicity, we drop the constant factor 1/(log k) (a normalization
in some sense).

Note that in the limit as q → 1 we obtain the Shannon entropy associated
with the probability measure µλ(ξ) = ζQ(2)

−1|ξ|−4:

lim
q→1

D∗
q = log ζQ(2)− 2

ζ ′Q(2)

ζQ(2)

which we may rewrite as

HSh.(µλ) = −
∑

ξ∈Z2

1

ζQ(2)|ξ|4
log

(

1

ζQ(2)|ξ|4
)

.

Symmetry around q = 1
4 : The functional equation for ζQ yields a

similar property for d∗q , D
∗
q with respect to the transformation q 7→ 1

2 − q.
We have

d∗1/2−q = d∗q + logϕQ(2q)

and as an immediate consequence

D∗
1/2−q =

d∗1/2−q + logϕQ(2q)− (12 − q)d∗1
1
2 + q

=
1− q
1
2 + q

(

D∗
q +

logϕQ(2q) + (2q − 1
2 ) log ζQ(2)

1− q

)

.

(7.2)

8. Proof of Proposition 2.5

We recall the definition

〈f〉T =
1

T

∫ 2T

T
f(t)dt.

So let us calculate 〈τq〉T . We define the summation into two ranges:
|m− t| ≤ T and its complement in N .

Let us denote

τ tq(t,G) =
∑

G≤|m−t|≤T

r2(m)(m− t)−2q

and denote the sum over the complement τ rq (t,G).
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First of all note that the contribution from τ rq is negligible:

∑

|m−t|>T

r2(m)(m− t)−2q ≪ǫ

∫

|x−t|>T

xǫ

(x− t)2q
dx

=

∫

|s|>T

(s+ t)ǫ

s2q
ds = Oǫ(T

1−2q+ǫ).

Let us now calculate the mean of τ tq :

(8.1)
〈

τ tq
〉

T
=

1

T

∑

m∈[T,2T ]

r2(m)

∫ 2T

T
(t−m)−2q

1(t | G ≤ |t−m| ≤ T )dt

and we rewrite the integral inside the sum as

Im =

∫ 2T−m

T−m
τ−2q

1(τ | G ≤ |τ | ≤ T )dτ

We may evaluate (recall m ≥ T )

I−m =

∫ 0

T−m
τ−2q

1(τ | G ≤ |τ | ≤ T )dτ =











∫ −G
T−m τ

−2qdτ, if m ≥ T +G,

0, otherwise.

which yields

I−m =











1
1−2q (−G1−2q − (T −m)1−2q), if m ≥ T +G,

0, otherwise.

Similarly, we may evaluate

I+m =

∫ 2T−m

0
τ−2q

1(τ | G ≤ |τ | ≤ T )dτ

=











1
1−2q ((2T −m)1−2q −G1−2q), if m ≤ 2T −G,

0, otherwise.

(8.2)

Let us now calculate the sums over m.
We have

∑

m∈[T+G,2T ]

r2(m)I−m =
1

2q − 1
G1−2q

∑

m∈[T+G,2T ]

r2(m)

+
1

2q − 1

∑

m∈[T+G,2T ]

r2(m)(T −m)1−2q
(8.3)
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and
∑

m∈[T,2T−G]

r2(m)I+m =
1

2q − 1
G1−2q

∑

m∈[T,2T−G]

r2(m)

− 1

2q − 1

∑

m∈[T,2T−G]

r2(m)(2T −m)1−2q
(8.4)

and we estimate
∑

m∈[T+G,2T ]

r2(m)(T −m)1−2q ≪ǫ

∫ 2T

T+G
tǫ(t− T )1−2qdt =

∫ T

G
(t+ T )ǫt1−2qdt

which is Oǫ((G + T )ǫG2−2q).
Similarly, one may show that

∑

m∈[T,2T−G]

r2(m)(2T −m)1−2q = Oǫ((G + T )ǫG2−2q).

So we find
1

T

∑

m∈[T,2T ]

r2(m)Im =
2π

2q − 1
G1−2q(1 +O(T−1+θ))

where θ denotes the exponent in the circle law:
∑

m≤T

r2(m) = πT +O(T θ)
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