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Introduction

We present new stability properties of solutions to a family of multiphase models for sprays. In this work, we will denote by spray a disperse liquid or solid phase evolving in a surrounding gas. The models are based on a coupling between a kinetic equation of Vlasov type (for the droplets or dust specks constituting the disperse phase) and a system of (compressible) fluid equations for the gas, so that they belong to the class of coupled kinetic-(compressible) fluid models. Before presenting our results, we emphasize that despite a rich history which can be traced back to the seminal publications [START_REF] Dukowicz | A particle-fluid numerical model for liquid sprays[END_REF][START_REF] Ishii | Thermo-fluid dynamics of two-phase flow[END_REF][START_REF] Ranz | Evaporization from drops[END_REF][START_REF] O'rourke | Collective drop effects on vaporising liquid sprays PhD, Thesis[END_REF][START_REF] Williams | Spray combustion and atomization[END_REF], which were motivated by application needs, and which were followed by [START_REF] Baranger | A modelling of biospray for the upper airways, CEMRACS 2004-mathematics and applications to biology and medicine[END_REF][START_REF] Baranger | Desvillettes Coupling Euler and Vlasov Equations in the Context of Sprays : Local Smooth Solutions[END_REF][START_REF] Boudin | A modeling of compressible droplets in a fluid[END_REF], the mathematical analysis of coupled kinetic (compressible) fluid models is not yet fully developed. We refer to [START_REF] Li | Global well-posedness of one-dimensional compressible Navier-Stokes-Vlasov system[END_REF][START_REF] Choi | Global existence of weak solutions for Navier-Stokes-BGK system[END_REF] for very recent results. The mathematical theory of continuum physics and hyperbolic balance laws is developed in [START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics[END_REF][START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF], where the fundamental elements of the fluid part of our model is developed. For this fluid part of our model, local existence and stability of strong solutions is established for short time before some singularities (shocks, contact discontinuities) are created. For the kind of coupled kinetic-fluid models discussed in this work, one can expect similar behavior. However we will focus on more basic issues such as the establishment of an entropy and the stability of linearized equations around self-similar profiles.

Before describing our findings, we present the specificity of the family of models that we use, originated for example in the publication [START_REF] Boudin | A modeling of compressible droplets in a fluid[END_REF]. The system is made of a kinetic equation and a system of (compressible) fluid equations which are coupled not only through a drag force, but also through the volume fraction α := α(t, x) of gas at time t and point x ∈ R 3 . Sprays modeled in such a way are sometimes called "thick sprays".

We assume here that the gas is described by the compressible Euler (or Navier-Stokes) equations. The variables are the (mass) density ρ := ρ(t, x) ≥ 0, the velocity u := u(t, x) ∈ R 3 and the internal energy e := e(t, x) ≥ 0 at time t and point x. The pressure p ≥ 0 is a function of ρ and e, that is p := p(ρ, e). For the sake of simplicity, we assume a perfect gas pressure law

p = (γ -1)ρe, γ > 1, (1) 
and an energy law (in terms of temperature)

e = C v T, (2) 
where T > 0 is the temperature, and C v > 0 is a constant.

The disperse phase is described by a phase space density f := f (t, x, v) ≥ 0 of particles (droplets or dust specks) which at time t and point x move with velocity v ∈ R 3 . The force acting on the droplets is m Γ, with m := 4 3 π r 3 , where r > 0 is the radius of one droplet, and m is the mass of one droplet, in a system of units where the density of the material constituting the droplets is equal to 1. The spray is assumed to be mono-disperse, which means that all droplets have the same radius. This force is usually decomposed in two parts, one related to the pressure gradient, and the other one related to the drag or friction between the two phases:

m Γ = -m ∇p -D (v -u), (3) 
where D * > 0. On physical grounds, the drag coefficient D may depend also on the volume fraction of the gas defined by

α := 1 -m f dv, ( 4 
)
on the density of the gas ρ, and on the modulus of difference of velocities |v-u|. However, still for the sake of simplicity, we consider in this paper that it is a constant (all quantities indexed with a are also constants in the sequel). Taking into account the retroaction of the droplets on the fluid, one obtains the model system of partial differential equations with the identities (1) -( 4),

         ∂ t (αρ) + ∇ • (αρu) = 0, ∂ t (αρu) + ∇ • (αρu ⊗ u) + ∇p = -m Γf dv, ∂ t (αρe) + ∇ • (αρeu) + p (∂ t α + ∇ • (αu)) = D |v -u| 2 f dv, ∂ t f + v • ∇ x f + ∇ v • (Γf ) = 0. (5) 
In the last equation one can substitute

∇ v • (Γf ) = -∇ x p • ∇ v f - D m ∇ v • [(v -u)f ].
Such systems are sometimes called "Eulerian-Lagrangian" or "gas-particles" for thick sprays. We shall also investigate a simplified model of the same type, without energy equation (belonging to the "barotropic" family), and more complex models (at the end of this work). In those more complex models, extra parameters can enter the description of additional physical effects for the particles.

When α ≈ 1, it is possible to simplify eq. ( 5) by enforcing α = 1 in the equations, and by discarding the constraint (4). The spray is then said to be thin. One of the simplest thin spray model is the so-called (compressible, barotropic) Euler-Vlasov system, which writes

     ∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p = D (v -u) f dv, ∂ t f + v • ∇ x f + ∇ v • ( D m (u -v)f ) = 0. ( 6 
)
Existence of smooth local in time solutions for a system of this kind was obtained in [START_REF] Baranger | Desvillettes Coupling Euler and Vlasov Equations in the Context of Sprays : Local Smooth Solutions[END_REF], and the derivation of related systems from fully kinetic equations at the formal level was described in [START_REF] Desvillettes | A formal passage from a system of Boltzmann equations for mixtures towards a Vlasov-Euler system of compressible fluids[END_REF]. The most recent works that we are aware of (for example [START_REF] Li | Global well-posedness of one-dimensional compressible Navier-Stokes-Vlasov system[END_REF][START_REF] Choi | Global existence of weak solutions for Navier-Stokes-BGK system[END_REF] and the references therein) address the well-posedness of thin spray systems corresponding to slightly different physical situations (viscous flows, incompressible flows). We refer to [START_REF] Bernard | A Derivation of the Vlasov-Navier-Stokes Model for Aerosol Flows from Kinetic Theory[END_REF][START_REF] Bernard | A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures[END_REF] for the derivation of those systems. We emphasize that thanks to those works (and the works cited therein), it is well established that thin spray systems typically do not suffer from linear instability, and are locally well-posed.

In our case, we deal with thick sprays which model physical situations in which α can be significantly smaller than 1. That is why we will keep in the equations the most general domain of validity for the volume fraction of the gas

α ∈ (0, 1]. ( 7 
)
One of our goals is to investigate whether or not a fluid-kinetic model for thick sprays such as (5) suffers from the same kind of instability phenomena as the one described in [START_REF] Guo | Nonlinear instability of double-humped equilibria[END_REF][START_REF] Bardos | A Vlasov equation with Dirac potential used in fusion plasmas[END_REF]. Note that fluid-kinetic models for thick sprays (with collision kernels) are linked to multiphase (fluid-fluid) models by an identified asymptotics (cf. [START_REF] Desvillettes | Some aspects of the asymptotics leading from gas-particles equations towards multiphase flows equations[END_REF]), so that it is indeed a natural question to ask. Notice also that such an investigation is unavoidably more complex for the system (5) than in the case of a coupling between fluid equations only. Indeed the linear operators associated to equations ( 5) are infinite-dimensional, whereas the linearized equations are 4 or 6-dimensional for the coupling between fluid equations only (cf. [START_REF] Ramos | Quelques résultats mathématiques et simulations numériques d'écoulements régis par des modèles bifluides[END_REF] for example). If ever some instability phenomenon is present in the solutions of ( 5), then it would rule out the possibility to extend the theoretical results from [START_REF] Li | Global well-posedness of one-dimensional compressible Navier-Stokes-Vlasov system[END_REF][START_REF] Choi | Global existence of weak solutions for Navier-Stokes-BGK system[END_REF] to models like [START_REF] Bernard | A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures[END_REF], and it would raise issues on the modeling of real phenomena by those models when α is not very close to 1.

• Our first result in Proposition 2.1 below is that the volume fraction stays strictly positive under mild smoothness and boundedness conditions on velocities only: if α(0, x) is bounded below by a strictly positive constant, then α(t, x) > 0 for further times t > 0 and for all x. The proof combines nonlinear entropy estimates and simple bounds.

• Our second family of results investigates the linear stability of solutions around space-homogeneous profiles which are adapted from classical solutions in plasma physics [START_REF] Mouhot | On Landau damping[END_REF][START_REF] Grenier | Landau damping for analytic and Gevrey data[END_REF][START_REF] Després | Symmetrization of Vlasov-Poisson equations[END_REF]. We linearize the equations of the problem around a reference solution and we analyze the stability of perturbations using weighted quadratic norms. The major difficulty is that the reference solution is non constant in time due to the drag force, so that some of the weights display a dependence with respect to the time variable also. More precisely, the concentration of droplets in velocity space is such that the reference solution behaves like a Dirac mass in velocity at the limit t → ∞, so that the estimates must be robust enough with respect to this behavior. Linear stability is proved in Proposition 3.4 for the barotropic system which is a simplification of (5), and in Proposition 4.2 for the full system (5).

• Some hints about the possible extension of these results to more general models where the particles are submitted to additional physical effects (such as collisions, or temperature exchanges, or viscosity effects) are collected in Section 5. We first explain how the introduction of elastic collisions preserves the Lyapunov functional for specific reference solutions.

We then show how to get the entropy consistency of a system with thermal effects for the particles, and then how to find explicit solutions to this new system, with a technique of separation of variables. Finally we explain how the presence of viscosity preserves the Lyapunov functional (of the barotropic case).

The organization of the paper is as follows. Preliminary remarks and the nonlinear positivity principle for volume fractions is established in Section 2. Linear stability is shown for the simpler barotropic system in Section 3. The analysis is generalized to the full system (5) in Section 4. Finally in Section 5, we show how to extend the results to more challenging systems involving extra physical effects.

Preliminary remarks and positivity of the volume fraction 2.1 Conservation identities and entropy equation

Considerations on moment equations, thermodynamics and entropy are classical in the mathematical treatment of continuum physics [START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics[END_REF][START_REF] Godlewski | Hyperbolic Systems of Conservation Laws[END_REF][START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF]. For the self consistency of this work, these properties are established below for our model.

We begin with natural remarks on conservation identities and entropy inequality for system (5) (with (1) -( 4)).

One observes that the mass of each phase is preserved since ∂ t (αρ) + ∇ • (αρu) = 0, and

∂ t m f dv + ∇ • m * v f dv = 0. ( 8 
)
The momentum equation for the gas in (5) can be recast as

∂ t u + (u • ∇)u + (αρ) -1 ∇p = 1 αρ -m Γf dv .
Multiplying the kinetic equation by m v and integrating with respect to the velocity variable, one obtains the momentum equation for the particles

∂ t m vf dv + ∇ • m v ⊗ vf dv = m Γf dv.
Adding this identity with the momentum equation for the gas in [START_REF] Bernard | A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures[END_REF], one obtains the conservation law for the total momentum equation

∂ t αρu + m f vdv + ∇ • (αρu ⊗ u) + ∇p + ∇ • m * v ⊗ vf dv = 0. ( 9 
)
In view of the definition (3) of the force m Γ and of identity (4), the momentum equation of the fluid can be rewritten as

∂ t (αρu) + ∇ • (αρu ⊗ u) + α∇p = D (v -u)f dv. ( 10 
)
One obtains then a balance law for the kinetic energy of the fluid

∂ t αρ |u| 2 2 + ∇ • αρ |u| 2 2 u + αu • ∇p = D u • (v -u)f dv. ( 11 
)
The same balance law for the particles is obtained from the kinetic equation

∂ t m |v| 2 2 f dv + ∇ x • m |v| 2 2 vf dv = m v • Γf dv , that is ∂ t m |v| 2 2 f dv +∇ x • m |v| 2 2 vf dv = -m ∇p• vf dv-D (v-u)•vf dv. ( 12 
)
Making use of ( 4) and ( 8), the fluid internal energy equation ( 5) can be expanded as

∂ t (αρe) + ∇ • (αρeu) + m p∇ • vf dv + p∇ • (αu) = D |v -u| 2 f dv. ( 13 
)
The summation of ( 11) -( 13) yields the total energy equation in conservation form

∂ t αρE + m f |v| 2 2 dv ( 14 
) +∇ • αρEu + m |v| 2 2 vf dv + αpu + pm f vdv = 0.
Here E = e + |u| 2 2 is the fluid total energy, and the viscous tensor in the right hand side is defined by (u∇u

) j = u • ∂ xj u.
In order to obtain the fluid entropy equation, we observe that the density equation yields

ρ (∂ t α + ∇ • (αu)) + αD t ρ = 0 ⇐⇒ ∂ t α + ∇ • (αu) = αρD t τ,
where τ = 1/ρ > 0 is the specific volume, and D t := ∂ t + u • ∇. The internal energy equation in [START_REF] Bernard | A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures[END_REF] can be rewritten as

αρ (D t e + pD t τ ) = D |v -u| 2 f dv.
Since we take the perfect gas pressure law (1) and the energy law (2), the entropy is defined by

S = C v log eρ 1-γ . ( 15 
)
The second principle of thermodynamics writes

T dS = de + pdτ, T > 0,
and as a consequence,

αρD t S = D T |v -u| 2 f dv. ( 16 
)
which can be rewritten

∂ t (αρS) + ∇ • (αρSu) = D T |v -u| 2 f dv. ( 17 
)
This entropy inequality shows the thermodynamical consistency of the model.

Positivity of the volume fraction for smooth solutions

The nonlinear stability of the model is related to the possibility of showing that α > 0 for all times, provided that this property initially holds. This means that the concentration of particles cannot exceed the critical value 1/m . In what follows, we prove such a property for smooth flows defined in the time-space domain Ω = [0, T end ) × R 3 for some T end ∈ (0, ∞].

We make standard assumptions about the positivity of the initial density of particles, that is

f (0, x, v) > 0, for (t, x) ∈ Ω, (18) 
and about the positivity and boundedness at initial time of the fluid initial density 0

< ρ -= inf x∈R 3 ρ(0, x) ≤ ρ + = sup x∈R 3 ρ(0, x) < ∞. ( 19 
)
The fluid entropy is also assumed to be initially lower bounded,

-∞ < S -≤ inf x∈R 3 S(0, x), (20) 
and the volume fraction of the fluid to be positive at initial time

0 < α -= inf x∈R 3 α(0, x) ≤ 1. (21) 
This assumption implies that sup

x∈R 3 f (0, x, v)dv ≤ 1 -α - m < 1 m ,
which is an upper bound for the initial density of particles.

We will then make the following regularity hypothesis on the velocity variables:

u ∈ W 1,∞ (Ω), f vdv f dv ∈ L ∞ (Ω). ( 22 
)
For the model problem [START_REF] Bernard | A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures[END_REF], it is natural to consider that the pressure vanishes at infinity. We will therefore use the following assumption (in which there is uniformity in time of this limit), that is for all > 0, there exists A > 0 such that

0 < p(t, x) = (γ -1)ρ(t, x)e(t, x)) < , for 0 ≤ t < T end and |x| > A. ( 23 
)
This assumption is very natural for smooth flows defined on the whole space R 3 (note that for a flow in a bounded domain, the boundary condition sometimes induces the boundedness of the pressure under the form 0 < p(t, y) = (γ -1)ρ(t, y)e(t, y) < B for some particular y ∈ R 3 ). We now write down a result of positivity of the volume fraction under the above assumptions. Proposition 2.1. Assume that a solution of ( 5) defined on the whole space R 3 (and R 3 × R 3 for f ) is smooth on [0, T end ) for some T end ∈]0, ∞[. We also suppose that the assumptions on the initial data ( 18) -( 21) hold, that α ∈ [0, 1] on [0, T end ) × R 3 , and that the boundedness assumptions ( 22) -( 23) hold. Then for some C > 0 depending only on

T end , ρ + , ρ -, α -, S -, A (corresponding to ε = 1) and ||u|| W 1,∞ (Ω) , f vdv f dv L ∞ (Ω)
, the following estimate holds:

C ≤ α(t, x) ≤ 1, t ∈ [0, T end ), x ∈ R 3 . ( 24 
)
Proof. The regularity u ∈ W 1,∞ (Ω) and a classical treatment of the characteristic curves of the first eq. in [START_REF] Bernard | A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures[END_REF] yields that for some C -, C + > 0,

C -= inf x∈R 3 (αρ)(t, x) ≤ sup x∈R 3 (αρ)(t, x) = C + , 0 ≤ t < T end . ( 25 
)
Therefore, if one manages to obtain an upper bound on the density ρ, it will yield a positive lower bound on α, which is the claim. The momentum equation ( 10) yields

α∇p = -αρD t u + D 1 -α m × f vdv f dv -u ,
so that one can write for some C > 0 (in the rest of the proof, we use C > 0 for various constants depending on the parameters cited in Proposition 2.1)

α∇p L ∞ (Ω) ≤ C 1 + 1 -α L ∞ (Ω) . ( 26 
)
For the perfect gas pressure and energy laws (2), one has

p = (γ -1) ρ γ e S/Cv . ( 27 
)
Therefore, the following identity holds:

α∇p = (γ -1)
1 γ e S/(Cv γ) αρ 1

p 1 γ ∇p = (γ -1) 1 γ e S/(Cv γ) 1 -1/γ αρ ∇(p 1-1/γ ).
Since αρ is lower bounded by a positive constant thanks to [START_REF] O'rourke | Collective drop effects on vaporising liquid sprays PhD, Thesis[END_REF] and S is lower bounded by means of ( 16), we see that thanks to estimate [START_REF] Ramos | Quelques résultats mathématiques et simulations numériques d'écoulements régis par des modèles bifluides[END_REF],

∇(p 1-1/γ ) L ∞ (Ω) ≤ C 1 + 1 -α L ∞ (Ω) .
Thanks to the hypothesis [START_REF] Mathiaud | Local smooth solutions of a thin spray model with collisions[END_REF], one gets after integration wit respect to x,

p 1-1/γ L ∞ (Ω) ≤ C 1 + 1 -α L ∞ (Ω) .
By means of ( 27) and the lower boundedness of the entropy S, the density ρ is bounded

ρ γ-1 L ∞ (Ω) ≤ C 1 + 1 -α L ∞ (Ω) .
Then thanks to [START_REF] O'rourke | Collective drop effects on vaporising liquid sprays PhD, Thesis[END_REF], one has

1/α L ∞ (Ω) ≤ C 1 + 1 -α 1/(γ-1) L ∞ (Ω) ≤ C.
3 Linear stability explained for the barotropic system

Presentation of a simplified system

What we mean by linear stability is stability of the linearized equations around a specific family of interesting exact solution, for some weighted L 2 norm. The method that we present below is quite explicit, however the algebra is somewhat cumbersome because the linear integro-differential system has coefficients which are time dependent. This is why it is useful to present the method for a model simpler than the initial one [START_REF] Bernard | A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures[END_REF]. We consider therefore a simpler model, with a barotropic type hypothesis, where the pressure law depends only on the density, that is p = p(ρ), p (ρ) > 0, [START_REF] Williams | Spray combustion and atomization[END_REF] so that the equation for the energy is not needed.

It writes

     ∂ t (αρ) + ∇ • (αρu) = 0, ∂ t (αρu) + ∇ • (αρu ⊗ u) + ∇p = -m Γf dv, ∂ t f + v • ∇ x f + ∇ v • (Γf ) = 0, (29) 
with the closure relations ( 3) and (4).

An explicit solution of the system

We compute an explicit solution to system (29). We consider initial data for the gas which are homogeneous (independent on x). Using Galilean invariance, we can moreover impose that the initial velocity is equal to 0. Those assumptions write ρ(0, x) := ρ 0 > 0, u(0, x) := 0, α(0, x) := α 0 > 0.

Then we assume that the particles are also initially distributed in an homogeneous way w.r.t. x, and in an isotropic way with respect to v, that is

f (0, x, v) = n 0 (K T ) 3 2 F |v| 2 2T ,
where n 0 > 0 does not depend on x, T > 0 also does not depend on x (the introduction of this last constant is not really mandatory, but is useful if one wishes to fix some moment of the profile F ), and F is a smooth function from R + to R + . The case of a Maxwellian distribution function corresponds to F (w) = e -w for w ≥ 0. In the above formula, K > 0 is defined by

K 3/2 := 4π ∞ 0 F (w) √ 2w dw, so that R 3 f (0, x, v) dv = n 0 and R 3 f (0, x, v) v dv = 0. Lemma 3.1.
A solution to the system (29) with the closure relations ( 3), ( 4), [START_REF] Williams | Spray combustion and atomization[END_REF] is

ρ(t, x) = ρ 0 , u(t, x) = 0, α(t, x) = α 0 = 1 -m n 0 , Γ = -d v, f (t, x, v) = e 3d t f (0, x, e d t v) = e 3d t n0 (K T ) 3 2 F e 2d t |v| 2 2T , ( 30 
)
where d * = D m ≥ 0. If the drag/friction coefficient is non zero, then d * > 0. Remark 3.

The distribution function of the particles is homogeneous in space. It is equivalent to write

f (t, x, v) = f 0 (t, v) := n 0 (K T k (t)) 3 2 F |v| 2 2T k (t) ( 31 
)
where v = |v| and the kinetic temperature T k (t) of the particules is

T k (t) = T e -2d t . ( 32 
)
Note that R 3 f (t, x, v) dv = n 0 and R 3 f (t, x, v) v dv = 0 for all time t ≥ 0. Remark 3.

The originality of the family of profiles (30) with respect to what is usually considered in stability analysis, is that it is time dependent (for non zero drag/friction d > 0). Note that the density of particles tends to a Dirac mass in v as t → ∞.

Proof. In the first equation of (29), both terms vanish. In the second equation of (29), the only term which might be non zero is proportional to vf dv. As already noticed in the remark, the function f is radially symmetric with respect to v, so vf dv = 0 and the second equation is verified. Finally, concerning the last equation of (29), it is easy to check that

∂ t f + ∇ v • (Γf ) = ∂ t f + Γ • ∇ v f + f ∇ v • Γ = ∂ t f -d v • ∇ v f -3d f = e 3d t [∂ t g -d v • ∇ v g] (where g = e -3d t f ) = 0, (33) 
which ends the verification.

Linearization

We linearize the system (29), (3 -4) around the state ρ 0 > 0, u 0 = 0, α 0 = 1 -m * n 0 > 0 and f 0 (defined in (31)), known to be a solution thanks to the results of Lemma 3.1.

We consider therefore

       ρ(t, x) = ρ 0 + ερ 1 (t, x) + O(ε 2 ), u(t, x) = εu 1 (t, x) + O(ε 2 ), α(t, x) = α 0 + εα 1 (t, x) + O(ε 2 ), f (t, x, v) = f 0 (t, v) + ε f 0 (t, v)e d t g 1 (t, x, v) + O(ε 2 ).
The linearization of the density equation writes

α 0 ∂ t ρ 1 + ρ 0 ∂ t α 1 + α 0 ρ 0 ∇ • u 1 = 0,
which can be rewritten, using the linearized specific volume

τ 1 = -ρ1 ρ 2 0 , under the form α 0 ρ 0 ∂ t τ 1 = α 0 ∇ • u 1 + ∂ t α 1 = α 0 ∇ • u 1 -m * ∂ t f 0 e d t g 1 dv = α 0 ∇ • u 1 + m ∇ • f 0 e d t g 1 v dv ,
thanks to the linearization of the mass conservation of the disperse phase

∂ t m * f 0 e d t g 1 dv + ∇ • m * f 0 e d t g 1 v dv = 0.
Defining the speed of sound c 0 := p (ρ 0 ), one can see that ρ 1 p (ρ 0 ) = -ρ 2 0 c 2 0 τ 1 , so that the linearization of the momentum equation can be written under the form

α 0 ρ 0 ∂ t u 1 = α 0 ρ 2 0 c 2 0 ∇τ 1 + m d v f 0 e d t g 1 dv -m d u 1 f 0 dv.
The equation for g 1 is more tricky to get and we keep the notation f 0 (t, v) to make some terms clearer. One has

f 0 (t, v)e d t ∂ t g 1 + g 1 ∂ t ( f 0 (t, v)e d t ) + f 0 (t, v)e d t v • ∇ x g 1 +∇ v • Γ 0 f 0 (t, v)e d t g 1 + Γ 1 f 0 (t, v) = 0,
where

Γ 0 = -d v and Γ 1 = -∇(p (ρ 0 ) ρ 1 ) + d u 1 = ρ 2 0 c 2 0 ∇τ 1 + d u 1 . So ∂ t g 1 + v • ∇ x g 1 + ( f 0 (t, v)e d t ) -1 ρ 2 0 c 2 0 ∇τ 1 • ∇ v f 0 = ( f 0 (t, v)e d t ) -1 -g 1 ∂ t ( f 0 (t, v)e d t ) -∇ v • Γ 0 f 0 (t, v)e d t g 1 -d u 1 • ∇ v f 0 (t, v) .
One has the following formula for f 0

∇ v f 0 (t, |v|) = - v T e 2d t - F F |v| 2 2T k (t) f 0 (t, v),
which yields the identity

( f 0 (t, v)e d t ) -1 ∇ v f 0 (t, v) = - v T f 0 (t, v)e d t - F F |v| 2 2T k (t) . ( 34 
)
One gets

∂ t g 1 + v • ∇ x g 1 - ρ 2 0 c 2 0 T f 0 (t, v)e d t v • ∇τ 1 - F F |v| 2 2T k (t) = d T f 0 (t, v)e d t v • u 1 - F F |v| 2 2T k (t) -( f 0 (t, v)e d t ) -1 g 1 ∂ t ( f 0 (t, v)e d t ) + ∇ v • Γ 0 f 0 (t, v)e d t g 1 .
The opposite of the last term in the right hand side is

( f 0 (t, v)e d t ) -1 g 1 ∂ t ( f 0 (t, v)e d t ) + ∇ v • Γ 0 f 0 (t, v)e d t g 1 = ( f 0 (t, v)e d t ) -1 ∂ t ( f 0 (t, v)e d t ) + ∇ v • Γ 0 f 0 (t, v)e d t g 1 + Γ 0 • ∇ v g 1 = ( f 0 (t, v)e d t ) -1 ∂ t ( f 0 (t, v)e d t ) + ∇ v • Γ 0 f 0 (t, v)e d t - 1 2 [∇ v • Γ 0 ] ( f 0 (t, v)e d t ) g 1 + 1 g 1 ∇ v • 1 2 Γ 0 g 2 1 .
The term in front of

g 1 is ( f 0 (t, v)e d t ) -1 × ∂ t ( f 0 (t, v)e d t ) + ∇ v • Γ 0 f 0 (t, v)e d t - 1 2 [∇ v • Γ 0 ] ( f 0 (t, v)e d t ) = ( f 0 (t, v)e d t ) -1 f 0 (t, v)∂ t e d t + e d t ∂ t f 0 (t, v) +Γ 0 • ∇ v ( f 0 (t, v)e d t ) + 1 2 ∇ v • Γ 0 ( f 0 (t, v)e d t ) = ( f 0 (t, v)) -1 ∂ t f 0 (t, v) + Γ 0 • ∇ v f 0 (t, v) + d + 1 2 ∇ v • Γ 0 = (2f 0 (t, v)) -1 [∂ t f 0 (t, v) + Γ 0 • ∇ v f 0 (t, v)] + d + 1 2 ∇ v • Γ 0 = - 1 2 ∇ v • Γ 0 + d + 1 2 ∇ v • Γ 0 = d * ,
because f 0 which is defined by (31) satisfies (cf. eq. ( 33))

∂ t f 0 (t, v) + Γ 0 • ∇ v f 0 (t, v) + f 0 (t, v)∇ v • Γ 0 = 0.
One gets

∂ t g 1 + v • ∇ x g 1 - ρ 2 0 c 2 0 T f 0 e d t v • ∇τ 1 - F F |v| 2 2T k (t) (35) = d T f 0 e d t v • u 1 - F F |v| 2 2T k (t) -d g 1 - 1 g 1 ∇ v • 1 2 Γ 0 g 2 1 .
Regrouping the linearized equations for τ 1 , u 1 and g 1 , we end up with the system

                   α 0 ρ 0 ∂ t τ 1 = α 0 ∇ • u 1 + m ∇ • √ f 0 e d t g 1 v dv, α 0 ρ 0 ∂ t u 1 = α 0 ρ 2 0 c 2 0 ∇τ 1 + m d v √ f 0 e d t g 1 dv -m d u 1 f 0 dv, ∂ t g 1 + v • ∇ x g 1 - ρ 2 0 c 2 0 T √ f 0 e d t v • ∇τ 1 -F F |v| 2 2T k (t) = d T √ f 0 e d t v • u 1 -F F |v| 2 2T k (t) -d g 1 + d g1 ∇ v • 1 2 vg 2 1 .
(36) This is a linear integro-differential system of equations, with coefficients which are homogeneous in space, but with a dependency in time. More precisely, if d = 0 (no friction), then the coefficients become constant in space and time, however for non zero friction d > 0, then terms like e d t display exponential increase in time. Such coefficients are not a surprise, because the system is derived from the linearization around kinetic profiles which tend to a Dirac mass as t → ∞.

Lyapunov functional

Taking our inspiration from stability analysis in plasma physics, we introduce a quadratic Lyapunov functional for the linearized system (36). This approach has been introduced in plasma physics in 58', we refer to [START_REF] Oberman | On the Stability of Plasma in Static Equilibrium The[END_REF][START_REF] Witt | La théorie des gaz neutres et ionisés : le problème des n corps à température non nulle (The theory of neutral and ionized gases) Ecole d'été de physique théorique[END_REF]. We point out its recent use for the analysis of the asymptotic stability around Maxwellian profiles in the context of the Vlasov Poisson equation, cf. [START_REF] Després | Symmetrization of Vlasov-Poisson equations[END_REF]. For a given smooth function F ≥ 0, we introduce the function

R(t, v) = - F F |v| 2 2T k (t) . ( 37 
)
If we assume that F is strictly decreasing (more precisely, if F < 0), then R is positive and well defined. In plasma physics, the strict monotony of F is a classical way to satisfy the Penrose stability criterion around radial profiles [START_REF] Mouhot | On Landau damping[END_REF][page 45 and remark 2.2] and [START_REF] Grenier | Landau damping for analytic and Gevrey data[END_REF]. In the rest of this work, we will therefore make the assumption R > 0, which corresponds to F < 0. A Maxwellian reference profile corresponds to F (w) = e -βw , so that R = β > 0 is a constant in this case.

Proposition 3.4. We consider constants m , T > 0 and d ≥ 0. We also consider constants ρ 0 > 0, α 0 = 1 -m n 0 ∈ (0, 1), c 0 > 0, and f 0 defined by ( 32), ( 31), where F is a smooth function such that F < 0.

Then, for any T end ∈]0, ∞], all smooth quickly decaying when |x| → ∞ (and |v| → ∞ for g 1 ) solution (τ 1 , u 1 , g 1 ) to the system (36) on [0, T end ) × R 3 (×R 3 for g 1 ) satisfy on [0, T end ) the differential inequality

d dt α 0 ρ 0 ρ 2 0 c 2 0 2 τ 2 1 + 1 2 |u 1 | 2 + m T 1 2 g 2 1 R dv dx ≤ 0. ( 38 
)
Proof. We compute

∂ t α 0 ρ 0 ρ 2 0 c 2 0 2 τ 2 1 + 1 2 |u 1 | 2 + m T 1 2 g 2 1 R dv = ρ 2 0 c 2 0 τ 1 ∂ t (α 0 ρ 0 τ 1 )+u 1 •∂ t (α 0 ρ 0 u 1 )+m T g 1 ∂ t g 1 R dv+ 1 2 m T g 2 1 ∂ t R dv = ρ 2 0 c 2 0 τ 1 α 0 ∇ • u 1 + ρ 2 0 c 2 0 τ 1 m ∇ • f 0 e d t g 1 v dv +u 1 • α 0 ρ 2 0 c 2 0 ∇τ 1 + u 1 • m d v f 0 e d t g 1 dv -m d |u 1 | 2 f 0 dv + m T g 1 [-v•∇ x g 1 ] R dv+m g 1 ρ 2 0 c 2 0 f 0 e d t v•∇τ 1 - F F |v| 2 2T k (t) R dv + m d g 1 f 0 e d t v • u 1 - F F |v| 2 2T k (t) R dv -m T d g 2 1 R dv + m T d ∇ v • 1 2 vg 2 1 R dv + 1 2 m T g 2 1 ∂ t R dv.
We see that

∂ t α 0 ρ 0 ρ 2 0 c 2 0 2 τ 2 1 + 1 2 |u 1 | 2 + m T 1 2 g 2 1 R dv = ∇ • α 0 ρ 2 0 c 2 0 τ 1 u 1 -m T g 2 1 2 v R dv + ρ 2 0 c 2 0 m τ 1 f 0 e d t g 1 v dv +u 1 • D v f 0 e d t g 1 dv -D |u 1 | 2 f 0 dv +m d g 1 f 0 e d t v dv • u 1 -m T d g 2 1 R dv + 1 2 m T g 2 1 (∂ t R -d * v • ∇ v R) dv = ∇ • G -D Q + 1 2 m T g 2 1 - F F |v| 2 2T k (t) - ∂ t T k T 2 k |v| 2 2 -d * |v| 2 T k dv = ∇ • G -D Q,
where

G := α 0 ρ 2 0 c 2 0 τ 1 u 1 -m T g 2 1 2 v R dv + ρ 2 0 c 2 0 m τ 1 f 0 e d t g 1 v dv,
and

Q := |u 1 | 2 f 0 dv -2 g 1 √ f 0 e d t v dv • u 1 + T g 2 1 R
dv. Lemma 3.5 below shows that Q can be recast as

Q = T |h 1 | 2 R dv ≥ 0, h 1 = 1 T u 1 • v f 0 e d t R -1 -g 1 . ( 39 
)
Therefore one has by integration in space

d dt α 0 ρ 0 ρ 2 0 c 2 0 2 τ 2 1 + 1 2 |u 1 | 2 + m T 1 2 g 2 1 R dv dx = -D Q dx ≤ 0,
which is the claim.

Lemma 3.5. The following formula holds:

T 1 T u 1 • v f 0 e d t R -1 2 R dv = |u 1 | 2 f 0 dv.
Proof. We denote u 1 = (α, β, γ) and v = (v 1 , v 2 , v 3 ) and use classical symmetry arguments. One has

T v∈R 3 1 T u 1 • v f 0 e d t R -1 2 R dv = 1 T v∈R 3 |u 1 • v| 2 f 0 e 2d t R -1 dv = 1 T k (t) v∈R 3 |u 1 • v| 2 n 0 (K T k (t)) 3 2 F |v| 2 2T k (t) - F F |v| 2 2T k (t) dv = - 1 T k (t) |αv 1 + βv 2 + γv 3 | 2 n 0 (K T k (t)) 3 2 F |v| 2 2T k (t) dv = - 1 T k (t) α 2 v 2 1 + β 2 v 2 2 + γ 2 v 2 3 n 0 (K T k (t)) 3 2 F |v| 2 2T k (t) dv = - 1 T k (t) α 2 + β 2 + γ 2 v 2 1 n 0 (K T k (t)) 3 2 F |v| 2 2T k (t) dv = - |u 1 | 2 T k (t) |v| 2 3 n 0 (K T k (t)) 3 2 F |v| 2 2T k (t) dv = - 2 3 n 0 |u 1 | 2 K 3/2 4π √ 2 u 3/2 F (u) du = n 0 |u 1 | 2 K -3/2 4π √ 2 u 1/2 F (u) du = n 0 |u 1 | 2 = |u 1 | 2 f 0 dv.

Linear stability for the general case

The extension to the full Euler equations (including the equation for the energy) coupled with particles ( 5) is needed for applications [START_REF] Boudin | A modeling of compressible droplets in a fluid[END_REF]. We show how to linearize around the new reference exact solution and how to complement to Lyapunov functional with a Gronwall technique.

Exact solution

The exact solution of Section 3.2 can be generalized to the system (5) by giving the value of the internal energy e 0 (t).

Lemma 4.1. The functions ( 30) -( 32), complemented by e 0 (t) = e 0 (0

) + 1 -e -2d t m α 0 ρ 0 K , ( 40 
)
with K * = 1 2 v 2 f 0 (0, v) dv, is a solution to the system [START_REF] Bernard | A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures[END_REF]. Under the physical condition e 0 (0) > 0, the following estimate holds:

0 < e 0 (0) ≤ e 0 (t) ≤ e 0 (0) + m α 0 ρ 0 K < ∞ 0 ≤ t < ∞. ( 41 
)
Proof. Plugging (30) -(32) in the internal energy equation [START_REF] Bernard | A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures[END_REF] or in the total energy equation ( 14) yields the equations

α 0 ρ 0 e 0 (t) = D |v| 2 f 0 (t, v)dv.
The kinetic energy of particles is

Kin(t) := 1 2 |v| 2 f 0 (t, v)dv = |v| 2 2 n 0 (KT k (t)) 3 2 F |v| 2 2T k (t)
dv = e -2d t Kin(0).

Using this to calculate e 0 (t), one obtains (40) which is the first part of the claim. The last part is obtained directly from (40).

Contrary to the density ρ 0 which is constant in time, the internal energy e 0 is monotone increasing with respect to time. It illustrates a transfer of the kinetic energy of the particles to the internal energy of the fluid. Note that the pressure p 0 (t) = p(ρ 0 , e 0 (t)) is also monotone increasing because of eq. ( 1).

Linearization

We introduce the ansatz e(t, x) = e 0 (t) + ε e 1 (t, x) + O(ε 2 ),

p(t, x) = (γ -1) ρ 0 e 0 (t) + ε p 1 (t, x) + O(ε 2 ),
and

S(t, x) = S 0 (t) + ε S 1 (t, x) + O(ε 2 ),
where S is the entropy of the gas.

The linearized system associated with the full system ( 5) contains the following equations, which are close to those of (36):

                 α 0 ρ 0 ∂ t τ 1 = α 0 ∇ • u 1 + m ∇ • √ f 0 e d t g 1 v dv, α 0 ρ 0 ∂ t u 1 = -α 0 ∇p 1 + D v √ f 0 e d t g 1 dv -D u 1 f 0 dv, ∂ t g 1 + v • ∇ x g 1 + 1 T √ f 0 e d t v • ∇p 1 -F F |v| 2 2T k (t) = d T √ f 0 e d t v • u 1 -F F |v| 2 2T k (t) -d g 1 + d g1 ∇ v • 1 2 vg 2 1 .
(

) 42 
The only difference between (36) (that is, the linearized equations in the barotropic case) and ( 42) is the first term in the right hand side of the velocity equation.

Next we eliminate τ 1 in (42) since it can be written in terms of p 1 and S 1 . For the perfect gas pressure law (1), ( 2), one has dp = -(ρ 2 c 2 )dτ + p/C v dS, where

c 2 := γ p ρ = γ (γ -1) e
is the square of the speed of sound in the gas. It yields the identity

τ 1 = - 1 ρ 2 0 c 2 0 p 1 + 1 γC v ρ 0 S 1 .
One must take care that c 0 (t) 2 = γ(γ -1)e 0 (t) is non constant with respect to the time variable (note however that it is bounded below and above by a strictly positive constant). This sole fact explains some of the unavoidable technicalities when treating the full model with internal energy. After differentiation with respect to the time variable, one gets

∂ t τ 1 = - 1 ρ 0 c 0 ∂ t p 1 ρ 0 c 0 - p 1 ρ 0 c 0 ∂ t 1 ρ 0 c 0 + 1 γC v ρ 0 ∂ t S 1 .
Therefore it is possible to rewrite (42) as

                   α 0 ρ 0 ∂ t p1 ρ0c0 = -α 0 ρ 0 c 0 ∇ • u 1 -m ρ 0 c 0 ∇ • √ f 0 e d t g 1 v dv + W, α 0 ρ 0 ∂ t u 1 = -α 0 ∇p 1 + D v √ f 0 e d t g 1 dv -D u 1 f 0 dv, ∂ t g 1 + v • ∇ x g 1 + 1 T √ f 0 e d t v • ∇p 1 -F F |v| 2 2T k (t) = d T √ f 0 e d t v • u 1 -F F |v| 2 2T k (t) -d g 1 + d g1 ∇ v • 1 2 vg 2 1 .
(43) The additional term in the first equation is

W = α 0 ρ 2 0 c 0 1 γC v ρ 0 ∂ t S 1 -α 0 ρ 0 p 1 ∂ t 1 ρ 0 c 0 , ( 44 
)
it is not present in the barotropic case.

In order to get a closed linearized system, one must complement the system (43) with one more equation for one of the unknowns e 1 , p 1 or S 1 . If one starts from the entropy identity ( 16), the calculations can be handled swiftly. One first writes thanks to ( 16)

αρT D t S = D |v -u| 2 f dv.
Using the perfect gas pressure law (1), ( 15), one obtains

αpD t S = (γ -1)C v D |v -u| 2 f dv. ( 45 
)
The linearization of this identity around the solution defined by (30), (31), (40) yields (using the radial symmetry of f 0 and u 0 = 0 to simplify the right hand side)

α 0 p 0 ∂ t S 1 + α 0 p 1 ∂ t S 0 + α 1 p 0 ∂ t S 0 = (γ -1)C v D |v| 2 f 0 e d t g 1 dv. ( 46 
)
Using the notation (39), it is rewritten as

α 0 p 0 ∂ t S 1 = -α 0 p 1 ∂ t S 0 -α 1 p 0 ∂ t S 0 + (γ -1)C v D |v| 2 f 0 e d t h 1 dv. ( 47 
)
Two comments can be made about (47). The first one is that from the definition of the perfect gas equation of state (1), ( 2) and the identity (40), the following estimate holds:

∂ t S 0 = C v e 0 e 0 = O(e -2d t ). ( 48 
)
The second comment is that in the second term in the right hand side of eq. (47), the term α 1 can be rewritten as

α 1 = -e d t m √ f 0 g 1 dv = -e d t m √ f 0 h 1 dv + e d t m √ f 0 (h 1 -g 1 )dv = -e d t m √ f 0 h 1 dv. ( 49 
)
Indeed the difference h 1 -g 1 is an odd function with respect to any component of the velocity variable v because of (39), so the corresponding integral vanishes.

Linear stability

Linear stability is shown thanks to an adaptation of the Lyapunov functional argument of Section 3.4 to the system (43), (47). Let us define

a = p 1 ρ 0 c 0 2 L 2 (R 3 ) + u 1 2 L 2 (R 3 ) + S 1 2 L 2 (R 3 ) + m T α 0 ρ 0 g 1 √ R 2 L 2 (R 6 ) , ( 50 
)
where R is defined by (37).

Proposition 4.2. We consider constants m , T > 0, d ≥ 0, C v > 0, γ > 1.
We also consider constants ρ 0 > 0, α 0 = 1 -m n 0 ∈ (0, 1), f 0 defined by ( 32), ( 31), where F is a smooth strictly decreasing function such that (remembering definition (37))

r -≤ R(t, v) ≤ r + for all t, v, (51) 
for some 0 < r -≤ r + , and e 0 is defined by (40) (with e 0 (0) > 0). Then, for any T end ∈]0, ∞], all smooth quickly decaying when |x| → ∞ (and |v| → ∞ for g 1 ) solution (p 1 , u 1 , S 1 , g 1 ) to the system ( 43), ( 46) on [0, T end )×R 3 (×R 3 for g 1 ) satisfy on [0, T end ) the inequality

a(t) ≤ C a(0),
where a is defined in (50) and C > 0 is a constant which depends only on the parameters introduced in the proposition. Note that p 0 , c 0 and S 0 used in the definition of the system (43), ( 46) are assumed to be related to ρ 0 and e 0 (and C v , γ) by the thermodynamical identities coming out of ( 1), [START_REF] Baranger | Desvillettes Coupling Euler and Vlasov Equations in the Context of Sprays : Local Smooth Solutions[END_REF].

Proof. Multiplication of the first (resp. second, resp. third) equation of (43) by p1 ρ0c0 (resp. u 1 , resp. g 1 ) and integration yields (using notations (39) and (44))

d dt α 0 ρ 0 1 2 p 1 ρ 0 c 0 2 + 1 2 |u 1 | 2 dx + m T 1 2 g 2 1 R dxdv = -D T 1 2 h 2 1 R dxdv + W p 1 ρ 0 c 0 dx.
It can be simplified as (C > 0 being here and in the sequel a generic constant depending only on the parameters introduced in the statement of the proposition)

d dt p 1 ρ 0 c 0 2 x + u 1 2 x + m T α 0 ρ 0 g 1 √ R 2 xv ≤ -C h 1 √ R 2 xv + C p 1 x W x , ( 52 
)
where we use the shorthands || || x and || || xv for the L 2 norms on R 3 and R 3 ×R 3 .

From (47) -( 49), one gets

∂ t S 1 x ≤ C e -2d t p 1 x + C e -d t √ f 0 h 1 dv x + C e d t |v| 2 √ f 0 h 1 dv x .
(53) We bound the second term in the right hand side of (53) by

f 0 h 1 dv x ≤ f 0 dv 1 2 h 1 xv ≤ C h 1 √ R xv .
Concerning the third term in the right hand side, one has

|v| 2 √ f 0 h 1 dv x ≤ |v| 4 f 0 dv 1 2 h 1 xv
. By virtue of the definition (31) of f 0 , one can bound |v| 4 f 0 dv ≤ Ce -4d t . It yields

|v| 2 f 0 h 1 dv x ≤ C e -2d t h 1 xv ≤ C e -2d t h 1 √ R xv .
From (53), one obtains

∂ t S 1 x ≤ Ce -2d t p 1 x + Ce -d t h 1 √ R xv . (54) 
Identity ( 44) yields (remembering (40) and

c 2 0 = γ (γ -1) e 0 ) W x ≤ Ce -2d t p 1 x + ∂ t S 1 x ,
which turns, thanks to (54), into

W x ≤ C e -2d t p 1 x + C e -d t h 1 √ R xv .
Plugging this estimate in (52), one obtains

d dt p1 ρ0 c0 2 x + u 1 2 x + m T α0 ρ0 g 1 √ R 2 xv ≤ -C h 1 √ R 2 xv + C e -2d t p 1 2 x + C e -d t p 1 x h 1 √ R xv .
(55) Inequality (54) also yields

d dt S 1 2 x ≤ C e -2d t p 1 x S 1 x + C e -d t h 1 √ R xv S 1 x . ( 56 
)
The summation of ( 55) and ( 56) and a Cauchy-Schwarz inequality yield a control

d dt a(t) ≤ -C h 1 √ R 2 xv + C e -2d t a(t) + C e -d t a(t) 1 2 h 1 √ R xv .
Thanks to Young's inequality, it turns into d dt a(t) ≤ C e -2d t a(t).

A Gronwall lemma yields the final bound for all t ≥ 0 a(t) ≤ a(0)e C (1-e -2d t ) .

Models including more physics

In this section, we consider some natural physical extensions for which the tools developed in this work can be applied. In a first subsection, we consider colliding particles. In the second subsection, we consider particles with their own internal energy. We restrict in this last subsection the discussion to the presentation of the new terms in the model.

Extension to colliding particles

We introduce here the elastic Boltzmann collision kernel for droplets. We assume that the fluid is barotropic as in section 3. We recall that in the Boltzmann theory for hard spheres, the kernel Q := Q(f ) acts on functions of v only (that is, t and x are parameters), and writes (up to a constant)

Q(f )(v) = v * ∈R 3 ω∈S 2 f (v * ) f (v ) -f (v * ) f (v) |(v -v * ) • ω| dωdv * ,
where v * represents the velocity of a droplet which has just collided with the droplet under study (of velocity v), and v , v * represent the velocities of two droplets which after collision will have velocities v and v * . The quantities v and v * are given by the following parametrization (involving the unit vector ω):

v = v -(ω • (v -v * )) ω, v * = v * + (ω • (v -v * )) ω.
The factor |(v -v * ) • ω| is that of hard spheres, which is natural for macroscopic particles. We refer to [START_REF] Mathiaud | Local smooth solutions of a thin spray model with collisions[END_REF] for the use of Boltzmann operator in the context of (thin) sprays.

In this subsection, the equation for f in the barotropic system (29) is modified by adding the collision kernel in the right hand side. The resulting system is called in the rest of this subsection the modified system, it writes

   ∂ t (αρ) + ∇ • (αρu) = 0, ∂ t (αρu) + ∇ • (αρu ⊗ u) + ∇p = -m Γf dv, ∂ t f + v • ∇ x f + ∇ v • (Γf ) = Q(f ), (57) 
with the closure relations (3) and ( 4).

Then one linearizes Q around a function f 0 ≥ 0 assumed to be a timedependant Maxwellian (thus F (u) = exp(-β(t) u) with the notation of section 3), that is ln f

0 (t, v) = a(t) + b(t) • v -c(t)|v| 2 , with a(t) ≥ 0, b(t) ∈ R 3 and c(t) > 0. Using the expansion f = f 0 + ε √ f 0 g 1 ,
one gets thanks to a classical computation (cf. [START_REF] Cercignani | The Boltzmann Equation and its Applications[END_REF] for example) that Q(f 0 ) = 0, and that

Q(f 0 + ε f 0 g 1 )(v) = ε (Lg 1 )(v) + O(ε 2 ),
where L is the linearized Boltzmann operator (around f 0 ):

(Lg 1 )(v) := ( f 0 (v)) -1 v * ∈R 3 ω∈S 2 f 0 (v) f 0 (v * ) × g 1 (v * ) √ f 0 (v * ) + g 1 (v ) √ f 0 (v ) - g 1 (v * ) √ f 0 (v * ) - g 1 (v) √ f 0 (v) |(v -v * ) • ω| dωdv * .
Moreover, it is well known (this is the linearized version of Boltzmann equation) that

v∈R 3 g 1 (v) (Lg 1 )(v) dv ≤ 0. ( 58 
)
Thus the linearization of the modified system (29) around the time dependent Maxwellian f 0 (t, v) is just the system (36) where the equation of g 1 is modified by adding Lg 1 in the right hand side, that is

                   α 0 ρ 0 ∂ t τ 1 = α 0 ∇ • u 1 + m ∇ • √ f 0 e d t g 1 v dv, α 0 ρ 0 ∂ t u 1 = α 0 ρ 2 0 c 2 0 ∇τ 1 + m d v √ f 0 e d t g 1 dv -m d u 1 f 0 dv, ∂ t g 1 + v • ∇ x g 1 - ρ 2 0 c 2 0 T √ f 0 e d t v • ∇τ 1 -F F |v| 2 2T k (t) = d T √ f 0 e d t v • u 1 -F F |v| 2 2T k (t) -d g 1 + d g1 ∇ v • 1 2 vg 2 1 + Lg 1 .
(59) Our observation is that

E := α 0 ρ 0 ρ 2 0 c 2 0 2 τ 2 1 + 1 2 |u 1 | 2 + m T 1 2 g 2 1 R dv dx
is still a Lyapunov functional (for the case F (u) = exp(-β(t) u), in other cases, this is not necessarily true).

Indeed, due to (37), R = 1 β , and the proof is similar to the proof of Proposition 3.4. The only change is that one needs to use inequality (58) for the linearized operator L.

Extension to particles with internal energy

We consider in this subsection droplets which have their own temperature T p related to an internal energy e p ≥ 0 (satisfying e p = C vp T p for the sake of simplicity). Their phase space density is then f := f (t, x, v, e p ) ≥ 0, cf. [START_REF] Boudin | A modeling of compressible droplets in a fluid[END_REF]. We assume that internal energy is exchanged between the gas and a given droplet, at a rate proportional to T -T p . The coefficient N of proportionality is assumed to be an absolute constant (related to the Nusselt number) for the sake of simplicity. The model (5) becomes, with these assumptions,

                             ∂ t (αρ) + ∇ • (αρu) = 0, ∂ t (αρu) + ∇ • (αρu ⊗ u) + ∇p = -m Γf dvde p , ∂ t (αρe) + ∇ • (αρeu) + p (∂ t α + ∇ • (αu)) = D |v -u| 2 f dvde p +N (T p -T )f dvde p , α = 1 -m f dvde p , ∂ t f + v • ∇ x f + ∇ v • (Γf ) + ∂ ep (Φf ) = 0, m Φ = N (T -T p ), m Γ = -m ∇p -D (v -u). (60) 
We still consider a linear relation between the energy of the fluid e and the temperature of the fluid T , that is e = C v T , as in (2).

Entropy property

Before constructing an exact solution which is a generalization of (31), we show that this model is thermodynamically consistant. We define the entropy of the particles s p = C vp log e p by the differential relation T p ds p := de p .

For the simplicity of the notations, we shall take a system of units where C vp = 1. The total entropy of the particules is then S p = m s p f dvde p .

Lemma 5.1. The model ( 60) is endowed with the following entropy law

d dt (αρS + S p ) dx = D T |v -u| 2 + N (T -T p ) 2 T T p f dvde p dx ≥ 0. (61) 
Proof. We first proceed as in [START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF], and obtain the entropy law of the fluid

∂ t (αρS) + ∇ • (αρSu) = D T |v -u| 2 f dvde p -N 1 T (T -T p )f dvde p .
(62) We then derive an entropy law for the particles

∂ t (m s p f ) + ∇ • (vm s p f ) + ∇ v • (Γm s p f ) + m s p ∂ ep (Φf ) = 0, which yields ∂ t S p + ∇ • vm s p f dvde p + m s p ∂ ep (Φf )dvde p = 0.
An integration by parts of the last term shows that

∂ t S p + ∇ • vm s p f dvde p = N 1 T p (T -T p )f dvde p . ( 63 
)

Exact solutions

We show how to generalize (30), (31) in the case of system (60). We use another notation for the right hand side of (31), that is, we define

G(t, v) := n 0 (K T k (t)) 3 2 F |v| 2 2T k (t) , ( 64 
)
where T k (t) is still defined by (32). By construction We take U (0) = 0 so that H(0, e p ) = H 0 (e p ). With the natural assumption that T (t) ≥ 0, one has U (t) ≥ 0 for all time.

∂ t G + ∇ v • (ΓG) = 0, Γ = -d v. (65 
We observe that

∂ t H + ∂ ep (ΦH) = 0, ( 67 
)
where Φ is defined as in (60), that is Φ = λ(T (t) -T p ) = λ(T (t) -e p ), (68) thanks to the following computation: It is convenient to assume that H 0 is continuous on R, and has a compact support included in R + . The consequence is that H is endowed with an homogeneous Dirichlet condition at e p = 0, that is H(t, 0) = e λt H 0 (-e λt U (t)) = 0 for all t ≥ 0.

∂ t H
(69)

Let us finally consider the function

f (t, v, e p ) = G(t, v)H(t, e p ), (70) 
which exhibits concentration with respect to both the velocity variable v and the energy variable e p . We observe that the function f is a spatially homogeneous solution to the kinetic equation

∂ t f + v • ∇ x f + ∇ v • (Γf ) + ∂ ep (Φf ) = 0.
Indeed, since v and e p are separate variables, We see that the quantities defined by (71), (70), ( 64), (32), (66) constitute a spatially homogeneous solution of system (60) provided that T := T (t) and U := U (t) are solutions to the following linear differential system (with right hand side): The obtained explicit homogeneous solution to system (60) can hopefully be used to investigate the linear stability. We leave this issue to future works.

∂ t f + ∇ v • (Γf ) + ∂ ep (Φf ) = ∂ t (GH) + ∇ v • (ΓGH) + ∂ ep (ΦGH) = H [∂ t G + ∇ v • (ΓG)] + G [∂ t H + ∇ v • (ΦH)] = 0 + 0.
α 0 ρ 0 T (t) = -

Models with viscosity

Usually, thick spray models are inviscid (though sometimes some turbulent diffusion terms are introduced in those models). We just notice here that the presence of viscosity terms in the equation for αρu does not affect the Lyapunov structure obtained in Prop. 3.4, it only changes the dissipation of the functional.

2 R 3 |w| 2 G |w| 2 2 dw 2 R 3 G |w| 2 2 dw 2 R 3 G |w| 2 2 dw

 22232232 We now consider ρ(t, x) := ρ 0 , u(t, x) := 0, α(t, x):= α 0 = 1 -m n 0 , (71)and e := e(t, x) depending only on t and satisfyingα 0 ρ 0 e (t) = D v∈R 3 ep>0 |v| 2 G(t, v)H(t, e p )dvde p (72) -v∈R 3 ep>0 N (T -T p )G(t, v)H(t, e p )dvde p ,which can be rewrittenα 0 ρ 0 e (t) = c 1 T e -2d t -c 2 (T (t) + U (t)) + c 3 e -λt ,where the coefficients c 1 , c 2 , c 3 are defined by R+ H 0 (e p )de p , c 2 = N n0 K 3 R+ H 0 (e p )de p , c 3 = N n0 K 3 R+ e p H 0 (e p )de p .

c 2 (

 2 T (t) + U (t)) +c 1 T e -2d t + c 3 e -λt , U (t) = -λ(T (t) + U (t)). (73)This system can be quickly solved by observing that thanks to a linear combination,(T + U ) = -λ + c 2 α 0 ρ 0 (T + U ) + c 1 T α 0 ρ 0 e -2d t + c 3 α 0 ρ 0 e -λt ,so that (T + U )(t) = (T + U )(0) e T and U are obtained by a direct integration of the two equations of system (73).

)

  Let us now consider a nonnegative function H which depends on t and e p as follows H(t, e p ) := e λt H 0 e λt (e p -U (t)) ,

				(66)
	where			
		U (t) + λU (t) = λT (t),
	and	λ =	N m	.

  + ∂ ep (ΦH) = λe λt H 0 + λe 2λt (e p -U (t))H 0 -e 2λt U (t)H 0 +(∂ ep Φ)H + Φ∂ ep H = λe λt H 0 + λe 2λt (e p -U (t))H 0 -e 2λt U (t)H 0 -λH + λ(T (t) -e p )e 2λt H 0 = (-U (t) + λT (t) -λU (t)) e 2λt H 0 = 0.