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SUMMARY

Multiple sclerosis is a complex neurological dis-
ease, with ~20% of risk heritability attributable to
common genetic variants, including >230 identi-
fied by genome-wide association studies. Multiple
strands of evidence suggest that much of the remain-
ing heritability is also due to additive effects of com-
mon variants rather than epistasis between these
variants or mutations exclusive to individual families.
Here, we show in 68,379 cases and controls that up
to 5% of this heritability is explained by low-fre-
quency variation in gene coding sequence. We iden-
tify four novel genes driving MS risk independently
of common-variant signals, highlighting key patho-
genic roles for regulatory T cell homeostasis and
regulation, IFNy biology, and NFkB signaling. As
low-frequency variants do not show substantial link-
age disequilibrium with other variants, and as coding
variants are more interpretable and experimentally
tractable than non-coding variation, our discoveries
constitute a rich resource for dissecting the pathobi-
ology of MS.

INTRODUCTION

Multiple sclerosis (MS; MIM 126200) is an autoimmune disease
of the central nervous system and a common cause of neuro-
logic disability in young adults (Compston and Coles, 2008). It
is most prevalent in individuals of northern European ancestry
and—in line with other complex, common disorders—shows
substantial heritability (Binder et al., 2016), with a sibling stan-
dardized incidence ratio of 7:1 (Westerlind et al., 2014). Over
the last 15 years, we have identified 233 independent, com-
mon-variant associations mediating disease risk by genome-
wide association studies (GWASSs) of increasing sample size
(Andlauer et al., 2016; Australia and New Zealand Multiple Scle-
rosis Genetics Consortium, 2009; Baranzini et al., 2009; Bee-
cham et al., 2013; De Jager et al., 2009; International Multiple
Sclerosis Genetics Consortium et al.,, 2011, 2017; Jakkula
et al., 2010; Martinelli-Boneschi et al., 2012; Nischwitz et al.,
2010; Patsopoulos et al., 2011; Sanna et al., 2010; Burton
et al., 2007). In our most recent meta-analysis of 14,802 MS
cases and 26,703 controls, these effects —including 32 mapping
to classical human leukocyte antigen (HLA) alleles and other vari-
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ation in the major histocompatibility (MHC) locus (International
Multiple Sclerosis Genetics Consortium et al., 2017; Moutsianas
et al., 2015; Patsopoulos et al., 2013)—account for 7.5% of h?g,
the heritability attributable to additive genetic effects captured
by genotyping arrays, with a total of 19.2% of h2g attributable
to all common variants in the autosomal genome (International
Multiple Sclerosis Genetics Consortium et al.,, 2017). MS is
thus a prototypical complex disease with a substantial portion
of heritability determined by hundreds of common genetic vari-
ants, each of which explain only a small fraction of risk (Sawcer
et al., 2014).

As with other common, complex diseases where large GWASs
have been conducted, we find that although common variants
(minor allele frequency [MAF] > 5%) account for the bulk of trait
heritability, they cannot account for its entirety. Identifying the
source of this unexplained heritability has thus become a major
challenge (Manolio et al., 2009). Two hypotheses are frequently
advanced: some common variants show epistatic (i.e., non-
additive) interactions so that they contribute more risk in combi-
nation than each does alone, and a portion of risk is due to rare
variants that cannot be imputed via linkage disequilibrium to
common variants present on genotyping arrays and are there-
fore invisible to heritability calculations based on such arrays.
The only evidence we have found for epistatic interactions be-
tween common MS risk variants is between two HLA haplotype
families in the MHC locus (Moutsianas et al., 2015). This lack of
epistatic interactions is consistent with other common, complex
diseases, both of the immune system and beyond (Altshuler
et al., 2008). We have also found no evidence that mutations in
individual families drive disease risk in genome-wide linkage an-
alyses of 730 MS families with multiple affected members
(Sawcer et al., 2005). These results indicate that neither epistasis
between known risk variants nor mutations in a limited number of
loci are major sources of MS risk. They do not, however, pre-
clude a role for variants present in the population at low fre-
quencies, which cannot be imputed but are likely to individually
contribute moderate risk.

Here, we report our assessment of the contribution of low-
frequency variation in gene coding regions to MS risk. We con-
ducted a meta-analysis of 120,991 low-frequency coding
variants across all autosomal exons, including 104,218 non-syn-
onymous and 2,276 nonsense variants, which are more likely to
have a phenotypic effect. We analyzed a total of 32,367 MS
cases and 36,012 controls drawn from centers across Australia,
10 European countries, and multiple US states, which we geno-
typed either on the lllumina HumanExome Beadchip (exome
chip) or on a custom array (the MS chip), incorporating the
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Figure 1. Rare-Coding Variants Are Associated to Multiple Sclerosis Risk in a Multi-cohort Study

(A—-C) We analyzed 120,991 low-frequency non-synonymous coding variants across all autosomal exons in 32,367 MS cases and 36,012 controls drawn across
the International Multiple Sclerosis Genetics Consortium centers. We find evidence for association with both common variants with combined MAF > 5% (A) and
with rare variants across the autosomes (B). We sourced samples from Australia, 10 European countries, and the United States (C).

See also Figures S2 and S3.

exome chip content (International Multiple Sclerosis Genetics
Consortium et al., 2017), and which satisfied our stringent quality
control filters (Figure S1 and Table S1). The exome array is a
cost-efficient alternative to exome sequencing, capturing
approximately 88% of low-frequency and rare-coding variants
present in 33,370 non-Finnish Europeans included in the Exome
Aggregation Consortium (MAFs between 0.0001 and 0.05; Fig-
ure S1), and <5% of the extremely rare alleles present at even
lower frequencies. Our study was well powered, with 80% power
to detect modest effects at low frequency (odds ratio [OR] =1.15
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at MAF = 5%) and rare variants (OR = 1.5 at MAF = 0.5%) at a
significance threshold of p < 3.5 x 10”7 (Bonferroni correction
for the total number of variants genotyped).

RESULTS

We first assessed the contribution of individual variants to MS
risk by conducting a meta-analysis of association statistics
across 14 country-level strata (Figure 1 and Table S1). We
used linear mixed models to correct for population structure in



Table 1. Coding Variants Associated to Multiple Sclerosis Risk

Studies
Chr  Position rsiD Minor Allele  MAF  Observed P Value OR LCI UCI  Gene AA Change
14 88452945 rs11552556 A 3.9% 14 5.759E-14 095 0.93 097 GALC Synonymous D84D
19 10463118 rs34536443 G 41% 13 6.282E—-13 0.95 0.93 097 TYK2 Missense P1104A
10 72360387 rs35947132 A 5.0% 14 1.043E-10 1.04 1.02 1.06 PRF1 Missense A91V
2 179315031  rs61999302 T 56% 12 6.467E—-10 0.95 0.93 0.97 PRKRA Missense D33G
2 179315726  rs62176112 A 5.6% 12 6.633E—10 0.95 0.93 0.97 PRKRA Missense P11L
19 56487619 rs61734100 C 02% 9 1.925E-07 0.78 0.67 0.91 NLRP8 Missense [1942M
12 48191247 rs148755202 T 1.4% 14 2.597E-07 094 091 098 HDAC7 Missense R166H

We analyzed 120,991 low-frequency non-synonymous coding variants across all autosomal exons in 32,367 MS cases and 36,012 controls drawn
from centers across Australia, 10 European countries, and multiple US states. Genome positions are relative to hg19. The two variants in PRKRA
are in linkage disequilibrium (Ft2 =1,D‘=1inthe 1000 Genomes European samples). These variants lie in common variant risk loci found in our previous

GWAS (International Multiple Sclerosis Genetics Consortium et al., 2017).

13 of these strata, estimated from the 16,066 common, synony-
mous coding variants present on the exome chip (i.e., variants
with MAF > 5% in our samples). We included population struc-
ture-corrected summary statistics for the remaining cohort (from
Germany), which has been previously described (Dankowski
et al., 2015). As expected, we saw a strong correlation between
effect size and variant frequency, with rarer alleles exerting larger
effects (Figure S2). We found significant association between MS
risk and seven low-frequency coding variants in six genes outside
the extended MHC locus on chromosome 6 (Table 1 and Fig-
ure S3). Two of these variants (TYK2 p.Pro1104Ala, overall MAF
4.1% in our samples; GALC p.Asp84Asp, overall MAF 3.9%) are
in regions identified by our latest MS GWAS and show linkage
disequilibrium with the common-variant associations we have
previously reported (International Multiple Sclerosis Genetics
Consortium et al., 2011). The remaining associations are novel,
with the variants neither in linkage disequilibrium nor physical
proximity to common variant association signals and thus not
imputable in our GWASs (Table S2).

We were struck by the observation that the minor allele is pro-
tective in six of the seven cases in Table 1, a trend we also
observe at less stringent significant thresholds (Figure S2). This
pattern is unusual in common-variant studies: for example, in
our most recent GWAS, 101/200 non-MHC effects showed
that the minor allele increases risk. To test if this phenomenon
is due to our strata containing more cases than controls, we
randomly resampled 4,000 affected and 4,000 unaffected sam-
ples in our three largest strata and calculated association statis-
tics as for our main analysis. In this symmetric design, we found
no bias toward protective minor alleles at even modest levels of
significance (Table S3). Thus, low-frequency variants do not
preferentially decrease MS risk rather than increase it.

Though we are able to identify individual low-frequency vari-
ants associated with MS risk, we recognize that we cannot
detect all such variants at genome-wide significance, even in a
study of this magnitude. We thus sought to quantify the overall
contribution of low-frequency coding variation to MS risk. We
used a restricted maximum-likelihood approach to model herita-
bility attributable to genotypic variation across the genome that
was initially developed for common-variant analyses (Yang
etal., 2011) and later shown to also perform well for rare variants,

as in the present case (Mancuso et al., 2016). In each of the 13
strata that comprise our data, we estimated the proportion of
heritability explained by common (MAF > 5%) and low-frequency
(MAF < 5%; Table S4) variants on the exome arrays (Yang et al.,
2011). We included genotype-derived principal components to
further control for population stratification. By meta-analyzing
these estimates across the twelve strata where the restricted
maximum likelihood model converged, we found that low-fre-
quency variants explain 11.34% (95% confidence interval
11.33%-11.35%) of the observed difference between cases
and controls (mean estimate 4.1% on the liability scale; Figure 2).
We further partitioned the low-frequency variants into intermedi-
ate (5% > MAF > 1%) and rare (MAF < 1%) and found that the
latter alone explain 9.0% (95% confidence interval 8.9%-
9.1%) on the observed scale (mean estimate 3.2% on the liability
scale; Figure 2). We note that six of the eight genome-wide
significant variants presented in Table 1 are of intermediate
frequency and thus are not included in the rare category. We
capture the majority, though not all, of known common risk var-
iants to some extent with the common variants on the exome
chip (Table S5); our analysis therefore adequately, though imper-
fectly, models this portion of the frequency spectrum. Our results
thus indicate that many more non-synonymous rare variants
contribute to MS risk but are not individually detectable at
genome-wide thresholds, even in large studies like ours.

In this study, we show that low-frequency coding variation
explains a fraction of MS risk that cannot be attributed to com-
mon variants across the genome. We capture most, but not all,
low-frequency missense variants (Figure S1), suggesting our
heritability estimates for low-frequency and rare variation are
conservative. This broadly agrees with previous reports that
such variants contribute to complex traits, including Alzheimer’s
disease (Sims et al., 2017) and schizophrenia (Purcell et al.,
2014), where heritability modeling similar to ours supports a
role for rare variants. Studies of quantitative phenotypes shared
by the entire population, such as height (Marouli et al., 2017),
serum lipid levels (Liu et al., 2017), and blood cell traits (Chami
et al., 2016; CHARGE Consortium Hematology Working Group,
2016) have also reported novel associations to low-frequency
coding variants outside the large number of known GWAS loci
in each trait. However, a meta-analysis of different type 2

Cell 175, 1679-1687, November 29, 2018 1681



USF2 (0.3%) GRE (0.3%) FRA (0.8%) BEL (1.3%) NOR (2.2%) NED (3.2%)
0.50 T T
Meta-analysis
0.25- s ! . 0.50
'y L ]
"3 0.00 - ? 0.25
1 L ]
g .
< -
'é.‘ 3 3 o 3 0.00
3 DEN (4.4%) USF1 (5.4%) ITA (5.5%) USB (18.2%) SWE (21.1%) UKA (34.5%)
g 050 T '
E Liability ~ Observed
<
> 0.25 )i .
7 s 3 3 . * MAF bin
0.00 . (] . )
Common
® Low frequency
Liability Observed  Liability Observed  Liability Observed  Liability Observed  Liability Observed Liability Observed
Heritability scale
USF2 (0.3%) GRE (0.3%) FRA (0.8%) BEL (1.3%) NOR (2.2%) NED (3.2%)
0.50 Y
t ? Meta-analysis
oe 4 0.50
0.25 Ps s ) )
[ ] * Py ¢
[ ]
"qcs) 0.00 A L4 ¢ 0.25+
=}
% o o e LN 0.001 - * -
2,) DEN (4.4%) USF1 (5.4%) ITA (5.5%) USB (18.2%) SWE (21.1%) UKA (34.5%)
£ 050
8 T v
= Liability ~ Observed
> 0.25
L ]
L ] ? L ] ®
0.00 1 s ? () 3 L} ? - o CR & - 3 = ® o ° - MAF bin
Common
o Intermediate

Liz\b‘ility ()hse‘r\'ed
Heritability scale

Liab‘ilit_v ()bselrved Lial;ility ()hse‘wed

Liability Observed

Liak;ility ()bse‘r\'ed Liuk;ility ()bse‘r\'ed

® Rare

Figure 2. Rare Variants Explain a Substantial Portion of Multiple Sclerosis Heritability

We estimated the MS risk heritability explained by common variants (MAF > 5%) and low-frequency non-synonymous coding variation (MAF < 5%) in each of 13
cohorts genotyped on the exome chip using genome-wide complex trait analysis (GCTA; top). By meta-analyzing these estimates across cohorts, we found that
low-frequency variants explain 11.34% of heritability on the observed scale, which corresponds to 4.1% on the liability scale (right top). After dividing the low-
frequency variants into intermediate (5% > MAF > 1%) and rare (MAF < 1%; bottom), we found that the latter alone explains 9.0% heritability on the observed
scale (3.2% on the liability scale; bottom right). Meta-analysis confidence intervals are small and visually occluded by the mean estimate plot characters. Cohorts
(abbreviations as in Table S1) are ordered by sample size, with the percentage of the overall sample size shown in each subplot title. We could not obtain es-
timates for either model for our Finnish cohort (see STAR Methods; not shown), or for the three-component model for our Belgian cohort (bottom, top row, fourth

from left). Both cohorts are small, which may explain the failure to converge.

diabetes study designs found no associations outside common-
variant GWAS regions (Fuchsberger et al., 2016), though this
may be due to the heterogeneity of sample ascertainment and
study design. In aggregate, therefore, our results and these
past studies demonstrate that rare coding variants contribute a
fraction of common, complex trait heritability. These results
also agree with both theoretical expectation and empirical ob-
servations that low-frequency coding variants are under natural
selection and are unlikely to increase in frequency in the popula-
tion (Nelson et al., 2012; Schoech et al., 2017; Zeng et al., 2018).
Thus, some portion of disease-associated variants, and hence
the genes they influence, may not be detectable with conven-
tional GWAS designs.

The newly discovered genes have clear immunological func-
tions, confirming that MS pathogenesis is primarily driven by
immune dysfunction. The associated polymorphisms show
negligible linkage disequilibrium with other variants (Table S2),
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so the genes harboring them are likely to be relevant to disease.
PRF1 encodes perforin, a key component of the granzyme-
mediated cytotoxicity pathways used by several lymphocyte
populations. In addition to cytotoxic lymphocytes and natural
killer (NK) cells (House et al., 2015), perforin-dependent cytotox-
icity is also seen in CD4*FOXP3* regulatory T cells (Tregs), which
show aberrant, T helper-like IFNy secretion in MS patients (Dom-
inguez-Villar et al., 2011). The MS risk variant rs35947132
(p.Ala91Val) is associated with a decrease in target cell-killing ef-
ficiency and increases in IFNvy secretion by NK cells (House et al.,
2015), which aligns with the aberrant Treg phenotype observed
in MS. This decreased cytotoxicity efficiency will prolong
average cell-cell interactions with target cells, and such
extended interactions are known to increase T cell-receptor-
mediated signaling and induce changes to T cell phenotypes,
especially secretion of IFNy and other cytokines (Constant
et al.,, 1995). Similarly, HDAC7 encodes the class Il histone



deacetylase 7, which potentiates the repressive effects of
FOXP3, the master regulator governing naive CD4* T cell devel-
opment into Tregs (Bettini et al., 2012; Li et al., 2007). It also reg-
ulates T cell survival during their development in the thymus
(Kasler et al., 2011). PRKRA encodes protein kinase interferon-
inducible double-stranded RNA-dependent activator; in
response to double-stranded RNA due to virus infection, it
heterodimerizes with protein kinase R to inhibit EIF2a-dependent
translation, resulting in upregulation of nuclear factor kB (NFkB)
signaling, interferon production, and eventually, apoptosis
(Sadler and Williams, 2008). NFkB-mediated signaling is a core
feature of MS pathogenesis, which we have shown to be altered
by at least one MS-associated variant (Housley et al., 2015) and
may be the relevant mechanism for this gene. Finally, NLRPS8 is
an intracellular cytosolic receptor active in innate immune re-
sponses; the lle942Met MS risk variant rs61734100 is detected
only in individuals with European ancestry in EXAC, consistent
with the higher prevalence of MS in European ancestry
populations.

DISCUSSION

Broadly, therefore, our results show that low-frequency genetic
variation explains a portion of MS risk and that this variation im-
pacts genes not detectable by common-variant association
studies. Our heritability modeling demonstrates that more low-
frequency and rare-variant associations remain to be discov-
ered, though larger sample sizes will be required to increase
statistical power. Recent attention has focused on changes to
the adaptive immune system as pathogenic for MS, particularly
to functional changes in helper T cell subsets and B cells after
they have been released from the thymus and bone marrow,
respectively, into the peripheral blood stream. These processes
remain important to pathogenesis and are supported by a wealth
of data, including our own GWAS (International Multiple Scle-
rosis Genetics Consortium et al., 2017). However, two of the
four new genes we report (PRKRA and NLRPS8) have clear func-
tions in innate immunity, and HDAC?7 plays a central role in the
development of T cells in the thymus. Roles for both innate im-
mune function and thymic development in MS pathogenesis
are also supported by pathway analyses of our most recent
GWAS data (International Multiple Sclerosis Genetics Con-
sortium et al., 2017), an independent observation due to the
lack of linkage disequilibrium (LD) between the variants in this
study and those in our GWAS and the non-overlapping sample
collections. Our data thus expand the scope of immune function
relevant to MS pathogenesis.

The mechanisms whereby our newly discovered variants
alter MS risk will require detailed experimental dissection:
even when we can directly implicate specific genes and vari-
ants, these can have diverse consequences across multiple
cell types. For example, perforin 1 has key—and potentially
distinct—roles in cytotoxic T cells, regulatory helper T cells,
NK cells, and other cell types. Both the effects of the variant
on each of these functions and their relevance to MS pathogen-
esis will thus require demonstration, as is the case for the
genes central to IFNy biology, Treg function, and the NFkB
signaling pathway.
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