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Abstract
In the world, among all type of cancers, colorectal cancer (CRC) is the third most 
commonly diagnosed in males and the second in females. In most of cases, (RP1) 
patients’ prognosis limitation with malignant tumors can be attributed to delayed 
diagnosis of the disease. Identification of patients with early-stage disease leads to 
more effective therapeutic interventions. Therefore, new screening methods and 
further innovative treatment approaches are mandatory as they may lead to an 
increase in progression-free and overall survival rates. For the last decade, the 
interest in extracellular vesicles (EVs) research has exponentially increased as EVs 
generation appears to be a universal feature of every cell that is strongly involved 
in many mechanisms of cell-cell communication either in physiological or 
pathological situations. EVs can cargo biomolecules, such as lipids, proteins, 
nucleic acids and generate transmission signal through the intercellular transfer of 
their content. By this mechanism, tumor cells can recruit and modify the adjacent 
and systemic microenvironment to support further invasion and dissemination. 
This review intends to cover the most recent literature on the role of EVs 
production in colorectal normal and cancer tissues. Specific attention is paid to the 
use of EVs for early CRC diagnosis, follow-up, and prognosis as EVs have come 
into the spotlight of research as a high potential source of ‘liquid biopsies’. The 
use of EVs as new targets or nanovectors as drug delivery systems for CRC 
therapy is also summarized.
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Core Tip: New efficient screening and treatment approaches are strongly mandatory to 
increase colorectal cancer (CRC) patients’ prognosis. Extracellular vesicles (EVs) 
represent a promising mean to diagnose and treat colorectal cancers. This review 
summarizes the most recent literature on the use of EVs in the management of CRC.

Citation: Mammes A, Pasquier J, Mammes O, Conti M, Douard R, Loric S. Extracellular 
vesicles: General features and usefulness in diagnosis and therapeutic management of colorectal 
cancer. World J Gastrointest Oncol 2021; 13(11): 1561-1598
URL: https://www.wjgnet.com/1948-5204/full/v13/i11/1561.htm
DOI: https://dx.doi.org/10.4251/wjgo.v13.i11.1561

INTRODUCTION
In the world, colorectal cancer (CRC) is the third most commonly diagnosed cancer in 
males and the second in females. In 2018, 1.8 million new cases were reported with 
almost 861000 related deaths according to World Health Organization[1]. In Europe 
and United States, approximately 748000 and 148000 new cases of large bowel cancer 
are diagnosed annually, two third being colon cancers, the remainder being rectal ones
[2,3]. Respectively 242000 and 53000 died of CRC-related diseases. While still treated 
first by surgery and chemotherapy, despite a better understanding of its natural 
history and the development of new therapies (immune checkpoint inhibitors, etc.), 
CRC recurrence and metastasis are still the main causes of death[4]. Thus, determining 
relevant factors involved in disease progression is strongly mandatory to drive 
development of new effective strategies for therapies against CRC, etc.). In tumor 
evolution, recent studies have shown the weight of continuous interplay between 
surrounding cells (cancer cells with themselves, cancer cells with stromal cells[5]. Such 
communication strategies require specific mechanisms including direct cell to cell 
contacts but also autocrine, juxtacrine, paracrine and even endocrine secretion of 
specific factors (growth factors, matrixins, cytokines, chemokines, etc.)[6]. Among such 
secreted means figure extracellular vesicles (EVs), a generic consensus term used to 
describe any type of lipid bilayer-delimited particles, unable to replicate, and extracel-
lularly released by every cell (including microorganisms)[7-9]. EVs surface receptors 
allow their targeting and capture by a broad range of recipient cells that will 
incorporate either proteic, lipidic, or genetic messages resulting in modifications of 
their physiological behavior. These EVs have been recently proved to be efficient 
communication means in human diseases[10], especially in cancer. As the field of EVs 
is extremely active[11,12], we aimed to review the respective roles of colonic cells EVs 
as well as stromal derived-EVs in colon cancer to better understand cellular and 
molecular mechanisms underlying its occurrence and development. We also underline 
EVs as powerful and early tools to diagnose colon cancer, to accurately define its 
aggressiveness, and to better design, in a personalized approach, treatment strategies.

EVS GENERAL PROPERTIES
Either eukaryotic or prokaryotic cells produce continually various amounts of 40-1000 
nm membrane vesicles that are released into local environment. Such EVs can be 
evidenced in the conditioned media of every cultured cell, but also in almost all 
biological fluids (including blood, cerebrospinal fluid (CSF), urine, saliva, seminal 
plasma, and breast milk)[13,14]. EVs definition embodies different terms, sometimes 
used indifferently in literature, including exosomes, microvesicles, microparticles, 
multivesicular bodies, apoptotic particles, apoptotic bodies, oncosomes, etc. As not yet 
defined biomarkers can specifically categorize each vesicle, as a rule the 2018 minimal 
information for studies of extracellular vesicles consensus recommends to label 
bilayered vesicles smaller than 200 nm as small EVs (SEVs) and those larger than 200 

https://www.wjgnet.com/1948-5204/full/v13/i11/1561.htm
https://dx.doi.org/10.4251/wjgo.v13.i11.1561
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nm as medium large EVs (MLEVs)[15]. Alternatively, the original process of the cell 
can also be mentioned: Oncosomes specifically refer to oncogene containing EVs, large 
oncosomes being massive EVs (over 1000 nm) produced by oncogenically transformed 
cells[16]. As they lack bilayered membrane, this definition should exclude the recently 
discovered sub-50 nm nanoparticles exomeres[17].

EVs natural history
MLEVs production: MLEVs, so called ectosomes, are heterogeneous membranous 
vesicles generally originating from outward plasma membrane budding (ectosomal 
release)[18]. In contrast with apoptotic bodies or necrotic blebs of the plasma 
membrane (PM) that are the consequences of complex structural transformations 
resulting in dying cells disassembly[19], ectosomes are shed by living cells.

SEVs synthesis & release: Unlike ectosomes, SEVs stemmed from the endosomal 
compartment. SEVs biogenesis starts with the inward budding of small portions of the 
plasma membrane containing outer membrane exposed material. These small 
intracellular vesicles form the early endosome. Inward budding of the limiting 
membrane of the early endosome then occurs, resulting in the progressive assemblage 
of intraluminal bilayered vesicles (ILVs) within so-called large multivesicular 
endosomes (MVEs) (Figure 1). During this process, cytosolic proteins as well as nucleic 
acids can be trapped into ILVs through the action of the endosomal sorting complex 
required for transport (ESCRT) machinery[20]. ESCRT is a family of proteins that 
associate in successive complexes (ESCRT-0, -I, -II and -III) at MVEs membrane to sort 
ubiquitinated cargos into late endosomes[21]. ESCRT is also essential for ILVs 
generation and cargo targeting driving through deubiquitinating enzymes recruitment
[22,23]. Interestingly, such protein sorting can also follow a ceramide ESCRT-
independent pathway suggesting a critical role for lipid raft microdomains in MVEs 
formation[24]. Most of MVEs are further directed for cargo degradation into lysosomes 
by fusing with them. Nevertheless, MVEs also contain intralumenal proteins and 
lipids, which are not intended for lysosome degradation. ILVs can release their content 
into the cytoplasm by undergoing direct back-fusion with the endosome limiting 
membrane[25]. Progressive acidification along the endocytic pathway seems to be 
required for degradation and recycling of internalized components suggesting that pH 
could be a major determinant of MVEs degradation vs secretion functions[26]. Indeed, 
concerning MVEs secretory function, a subset of MVEs fuse to PM and release their 
content into the extracellular space, in the form of SEVs, a process called exosome 
biogenesis[27]. MVEs that are fated for exocytosis are transported to PM along 
microtubules by the molecular motor kinesin[28]. MVEs docking to PM are strongly 
regulated by the Rab family of small GTPases proteins. Depleting Rab27a prevented 
MVEs to efficiently fuse with the PM while Rab27b knockdown resulted in perinuclear 
MVEs accumulation, both observations suggesting that Rab27 was responsible for 
trafficking MVEs to the cell surface[29]. Once docked, secretory MVEs couple to the 
SNARE (soluble N-ethylmaleimide-sensitive component attachment protein receptor) 
membrane fusion machinery[30]. SNARE complex formation and membrane fusion 
are tightly controlled by multiple regulatory mechanisms[31] among which figure 
phosphorylation profile of SNARE proteins that influence either SNARE complex 
localization or interaction with SNARE partners[32].

EVs capture: Once released by the secreting cell, EVs distribute to extracellular matrix 
(ECM) then circulate locoregionally or distantly to deliver their molecular cargo to 
recipient cell. EVs cargo is protected from degradation and is rapidly taken up by 
different organs, such as liver, spleen and lymph nodes[33]. Circulating labelled EVs 
half-life has been evaluated in mice to be about 2 min but it remains possible to detect 
EVS in the bloodstream hours after injection[34]. Although still globally unknown, 
differences in EV size and presence of outer surface membrane components probably 
could account for their recognition and capture by target cells[35]. Once recognized, 
strongly depending on recipient cell type[36], EVs will enter through a variety of 
endocytic routes, either through clathrin dependent or independent pathways 
(caveolin-mediated uptake, lipid raft-mediated internalization, etc.). Also, both 
phagocytosis and macropinocytosis can been involved in EVs uptake[37], the latter 
being very efficient for specific EVs like those harboring CD47 at their surface[38]. 
After internalization, while endosome seems one of the best candidate locations for 
EVs membrane fusion then cargo delivery, EVs intracellular fate remains a matter of 
debate (Figure 1).

Altogether, due to the multiple sorting mechanisms that determine specific 
molecules incorporation into EVs, the distinct vesicle subpopulations carrying 



Mammes A et al. Extracellular vesicles in colorectal cancer

WJGO https://www.wjgnet.com 1564 November 15, 2021 Volume 13 Issue 11

Figure 1 Extracellular vesicles biogenesis and interaction with recipient cells. Extracellular vesicles (EVs) may have multiple origins. They can 
originate from plasma membrane blebbing during the apoptotic process giving rise to large apoptotic bodies or by membrane budding that leads to heterogeneous 
membranous EVs shedding. Small EVs (SEVs, exosomes) originate from internal budding of plasma membrane giving rise to early endosomes. By complex 
maturating interactions with the Golgi apparatus, early become late endosomes. The membranes of late endosomes form intraluminal vesicles (ILVs), small cargos 
containing proteins from plasma membrane and Golgi as well as nucleic acids. ILVs are contained in multivesicular endosomes that will fuse with either plasma 
membrane, releasing SEVs in the extracellular space or with lysosomes for further internal degradation. The endosomal sorting complex required for transport is the 
key machinery of protein sorting into SEVs. Once recognized, strongly depending on recipient cell type, EVs will enter through a variety of endocytic routes, either 
through clathrin-dependent or independent pathways (caveolin-mediated uptake, lipid raft-mediated internalization, etc.). Phagocytosis, macropinocytosis and simple 
membrane fusion can also be involved in EVs uptake. MLEVs: Medium large extracellular vesicles; SEVs: Small extracellular vesicles; MVEs: Multivesicular 
endosomes; ILVs: Intraluminal vesicles; MVP: Multivesicular particles; ESCRT: Endosomal sorting complex required for transport.

different cargo that can be evidenced, and the complex pathways/factors that regulate 
EVs export and secretion, EVs biogenesis threshold is likely to greatly vary between 
cell types according to their physiological/pathological status. The high rate of SEVs 
secretion found in transformed cells suggests that the balance between EV degradation 
and secretion is disrupted in cancer towards EVs cargo release[39]. This kind of change 
is not specific to cancer cells but may also occur in non-transformed cells. In antigen-
presenting cells, large amounts of SEVs are found to be released upon stimulation[40].

EVs cargo content 
EVs are highly heterogeneous and likely reflect the phenotypic state of the cell that 
generates them[41]. Every EVs behave as a multi-molecular cargo whose bilayered 
membranes regulate its stability by protecting bioactive content from degradation[42]. 
Alike cells, EVS can contain inside their lipid bilayer every basic constituent of a cell 
including metabolites[43], functional proteins (enzymes, receptors, transporters, etc.)
[44-46], but also nucleic acids molecules such as mRNAs[47], interfering microRNAs 
(miRNAs)[48], small and long non-coding RNAs (snRNAs & lncRNAs)[49], and even 
mitochondrial DNA[50] or more recently genomic DNA[51] (Figure 2).

EVs protein cargo: Because of their endosomal origin, and since they derived from the 
ILVs in MVEs, SEVs biogenesis is heavily dependent on the mechanisms that regulate 
MVEs maturation and trafficking. SEVs mostly contain proteins originating from the 
cytosol and either endosomes then PM components[7]. As budding and release of EVs 
require inner PM actin polymerization then actomyosin cytoskeleton contraction, 
cytoskeleton proteins such as actin and tubulin are generally found in EVs[52,53]. 
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Figure 2 Exosome and its cargo content. Small extravesicles (SEVs) are nano-sized membrane vesicles released by a variety of cell types and are thought to 
play important roles in intercellular communications. SEVs contain many kinds of proteins, either cytosolic or plasma membrane ones. Transporters, receptors, 
signaling proteins… but also enzymes can be evidenced. Metabolites are also present as well as nucleic acids. Genomic and mitochondrial DNAs, and multiple RNAs 
(mRNAs, miRNA, lncRNA, circRNA…) can be detected. Through horizontal transfer of these bioactive molecules, SEVS are emerging as local and systemic cell-to-
cell mediators of oncogenic information. MHC: Major histocompatibility complex; MVE: Multivesicular endosomes.

Among highly representative proteins that can also be found in SEVs figure important 
regulators of EVs trafficking: (1) Members of the Rab family that play well-established 
roles in vesicle transfer between intracellular compartments such as MVEs driving to 
PM for SEVs secretion[54,55]; (2) SNARE membrane fusion machinery, through 
SNARE complexes recruitment, that is specifically required for MVEs docking then 
fusion with PM[30,35,56]; (3) ESCRT proteins and important ESCRT side molecules 
implicated in ESCRT assembly or nucleation like ALIX[57]; and (4) Tetraspan 
transmembrane proteins (tetraspanins), highly enriched in SEVs, that are also involved 
in ESCRT-independent EVs release[58,59]. Tetraspanins display high affinity for 
cholesterol and sphingolipids such as ceramides which may create PM microdomains 
as it occurs in membrane reconstitution experiments[60]. Their interaction with PM 
proteins, either by direct association or by entrapment in tetraspanin-enriched PM 
microdomains, facilitates their sorting into EVs[58,61-63].

Interestingly, EVs can also transport mitochondrial proteins that may be active. Two 
mitochondrial inner membrane proteins MT-CO2 (encoded by the mitochondrial 
genome) and COX6c (encoded by the nuclear genome) were highly prevalent in the 
plasma of melanoma patients, as well as in ovarian and breast cancer patients defining 
a new EVs subtype[64]. As not only mitochondrial membrane proteins but also 
mitochondrial enzymes are present in EVs, mt-EVs could affect the metabolic output 
of the recipient cells by either preventing inflammation[65] or promoting tumor 
growth[66-68].

SEVs specific endosomal-driven content allows their distinction from ectosomes that 
can directly bud and shed from PM at lipid-raft-like domains[69]. These vesicles, now 
generically referred to as MLEVs, are extremely heterogeneous in size, ranging from 
200 nm to as large as 10 μm. They are generally enriched in cell surface or integral 
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transmembrane proteins, reflecting their PM origin[70,71]. For example, during 
reticulocyte maturation, autophagosomal exocytic event is coupled with plasma 
membrane blebbing that release glycophorin A, an integral plasma membrane protein, 
into budding vesicles[72].

Last, SEVs content is also distinct from apoptotic microparticles or apoptotic bodies 
(apoBD). ApoBDs are larger than SEVs and MLEVs as they have a diameter of 
800–5000 nm[73]. ApoBDs encapsulate residual ingredients of dying cells. They are 
enriched with autoantigens and pro-inflammatory factors[74,75] and bear key markers 
of cell disassembly such as ROCK1 and PANX1 and apoptotic markers such as CD31 
or Annexin V.

EVs metabolite cargo: Aside proteomic studies that try to unravel the complex protein 
repertoire in EVs, metabolomic studies reveal that EVs contain different classes of low-
molecular-weight compounds. Organic acids, nucleotides, sugars and their 
derivatives, carnitines, vitamins and related metabolites, and amines are frequently 
evidenced in EVs[43]. Of course, most of these metabolites were generally derived 
from cytosolic cellular pathways, as large portions of cytosol are engulfed in ILVs then 
EVs[76]. Nevertheless, metabolites presence could also result from either specific 
metabolite sorting or ILVs/EVs in situ synthesis through residing metabolic enzymes 
as high metabolite concentrations over the cellular levels were reported in EVs[77]. 
Complete but more often partial metabolic routes can be evidenced in EVs explaining 
why EVs metabolite identification does not generally cover the whole parental cell 
metabolome but represents a miniature subset of it.

Lipids are also frequently found in EVs. EVs lipidome analysis allows character-
ization of different classes of lipids, including glycerolipids, glycerophospholipids, 
sphingolipids, sterol lipids, and fatty acids confirming similarity between EVs lipid 
content and their parental cells membranes composition[78]. As it is important to 
preserve functional flexible lipid bilayer as well as right ion composition and pH-
homeostasis[60], numerous ATP-driven transporters and ion-pumps are also found in 
EVs. To be fully functional, these elements need energy supply that may be given 
either by glycolytic enzymes[79] or even mitochondrial ATP synthase that is 
frequently found in EVs[64]. To optimize energy thresholds, such enzymes and 
substrates seems to be organized in metabolons that have been found to be fully 
functional in EVs[80].

Every cell may send out a range of messages to distinct still unknown targets, and 
both messages and targets may vary depending on the metabolic state of the 
producing cell. In EVs metabolic composition is of importance as it may represent a 
specific environment (“climate”) the parental cell is going to transfer to the recipient 
one. By providing substrates for biosynthesis, EVs-transported aminoacids (glutamine, 
leucine…) have been shown to strongly affect the tricarboxylic acid (TCA) cycle of the 
recipient cancer cells thus improving nutrient status of fast growing and proliferating 
cells[81]. By providing both enzymes and substrates, adipocytes EVs stimulate 
melanoma fatty acid oxidation (FAO) that increase mitochondrial activity redistributes 
mitochondria to membrane protrusions of migrating cells, which is necessary to 
increase cell migration[82]. Interestingly, using various cell culture protocols, several 
reports have shown that EVs production in quantity and composition is largely 
influenced by external factors[83], the most striking variation being in the EVs 
metabolomes[84]. As slight metabolic variations could drive cancer cell repro-
gramming[85], the role of EVs seems central in that process.

EVs RNA cargo: Valadi and Skog both demonstrated that EVs transported mRNAs 
that can be translated into protein, providing the first evidence of virus-independent 
genetic material horizontal transfer between cells[86]. Since these pioneering studies, 
the presence of RNAs, within EVs have been reliably shown with either microarrays or 
real-time quantitative polymerase chain reaction techniques in numerous reports[47]. 
This presence can easily be explained as cytosolic proteins engulfment, resulting from 
a microautophagy process[87], involve proteins located close to the MVE outer 
membrane during its inward budding and can comprise RNAs molecules[86]. Those 
RNA species include not only mRNAs but also rRNA, tRNA, snRNA, snoRNA, 
piRNA, Y-RNA, scRNA, SRP-RNA, 7SK-RNA and lncRNAs. All these RNAs can be 
transferred to the recipient cells[88,89]. In addition, two major components of the 
RNA-Induced Silencing Complex, namely DICER and Argonaute, aimed at producing 
miRNAs have been shown to associate with MVE and to be sorted into exosomes[48,
90]. This suggests that miRNAs are likely to be packaged into EVs along with proteins 
required for their processing or function)[91]. As largely protected from RNAses when 
packaged in EVs, miRNAs driven-gene regulation will be able to generate a 
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multifaceted signaling response in the target cell. As EVs mRNAs are also functional 
and can be translated in the target cell[86], both mechanisms provide a direct 
modulation of recipient cell protein production. This new signaling pathway play 
specific roles in intercellular communication during various physiological[14,92] or 
pathological processes. Indeed, numerous reports have described the ability of EVs 
RNAs to impact the functional properties of cells that incorporate them[93], especially 
in the cancer field where such mechanism may drive apoptosis resistance[94], drug 
resistance[67,95,96], and metastatic behavior[89].

EVs DNA cargo: Extracellular DNA is present in the circulation and may represent an 
attractive marker issue for liquid biopsies. In plasma, DNA is found both in free form 
and enclosed in EVs[97,98]. Rather than being packaged within EVs membrane-bound 
space, DNA seems mostly attached to the outer surface of EVs[99]. Quantities as well 
as properties of packaged DNA may largely vary in different subsets of EVs even 
originating from the same source. It is likely that the heterogeneity of DNAs in EVs is 
related to the size of EVs. In contrast to SEVs that are more frequently devoid of DNA, 
large size intact DNA (> 2 Mbp), generally associated to histones, is commonly found 
in LEVs[100,101]. EVs DNA fragments may represent and even cover all chromosomes 
of parental cells[51,97]. As DNA sometimes harbor mutations, it may reflect the 
mutational status of parental DNA[102-104] and thus serve as a relevant oncologic 
biological marker.

Beside single stranded and/or double stranded genomic DNA, mtDNA can also be 
found in EVs extracted from cell culture medium[105,106] but also in plasma EVs[107] 
where presence of complete mitochondrial genome has been evidenced. Transfer of 
this complete mtDNA molecule seems to drive recipient cells fate[108].

EVS ROLE IN LARGE BOWEL TISSUES AND COLORECTAL CANCER
Considering the many cell types that interact at the mucosal interface, the intestinal 
lumen could be a rich source for EVs in large bowel tissues as well as an interesting 
source of disease-specific EVs in pathological conditions.

EVs production in normal large bowel tissues
Normal colonic cells as a primary source of EVs: As most of our tissues, colonic tissue 
may be an important source of EVs. Intestinal epithelial cells (IEC) are located at the 
strategic interface between external environment and the body most extensive 
lymphoid compartment. Aside their essential role in nutrients absorption, IEC have 
been shown to play a key role in immune response by promoting and regulating 
luminal antigens presentation to mucosal immune cells[109] through EVs release at 
both apical and basolateral sides as IEC display all the elements needed for either 
antigen processing or EVs production[110]. These EVs contain molecules that are 
implicated in adhesion and antigen presentation, such as major histocompatibility 
complex (MHC) class I molecules, MHC class II molecules, CD63…[111]. As these EVs 
may also contain CD133, whose presence in lipid rafts play a pivotal role in the 
maintenance of stem cell features[112], it has been suggested that CD133-containing 
EVs release may contribute to cell differentiation by reducing and/or modifying stem 
cell characteristic membrane microdomains composition within IEC apical plasma 
membrane[113].

Maintenance of the intestinal stem cell can be driven by niche-derived EVs: The 
intestinal epithelium is continuously renewed by a small proliferating intestinal stem 
cell (ISC) population residing at the bottom of the intestinal crypts in a specific 
microenvironment, the stem cell niche[114]. Niche surrounding cells including 
intestinal subepithelial myofibroblasts, endothelial cells and macrophages, generate 
Wnt, Notch, hedgehog and epidermal growth factor (EGF) signals that maintain ISC as 
a stem cell[115,116]. Mutations within these key signaling pathways can deregulate 
ISCs from the control of regulatory signals, allowing them to develop precursor lesions
[117]. Once induced, intestinal regeneration through ISC symmetric division is 
strongly dependent on specific signals such as the recently evidenced IL-22[118]. In 
that intestinal homeostasis general regulatory process, EVs can also largely participate 
as intestinal fibroblast-derived EVs are involved in forming the ISC niche by 
transmitting Wnt and EGF activity[119] as well as intestinal macrophage-derived EV-
packaged Wnt are essential for regenerative response of intestine against radiation
[120]. EVs can also drive ISC differentiation as Rab8a vesicles regulate Wnt ligand 
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delivery then Paneth cell maturation at ISC niche[121]. Such EVs-driven mechanism 
has also been shown to impose quiescence on residual hematopoietic stem cells in the 
leukemic niche[122].

Microbiota as an important source of EVs: Intestinal tract is a specific place where 
communication between many different species (bacteria, fungi, parasites…) occurs 
continually. Not only human IEC but also commensal bacteria are known to release 
signaling vesicles[123]. Interestingly, many studies have shown that intestinal 
microbiota can be shaped either by food plant-derived EVs[124] or host-derived EVs
[125] suggesting multidirectional influences on each other of all intestinal tract living 
species. Such interspecies communication has also been evidenced between resident 
helminths and host IEC[126,127]. Every bacteria, parasite, fungi… generate a huge 
reservoir of antigen that can induce host immune response. Thus, once initiated, this 
response can be tailored through complex cross reacting EVs modulation leading to 
either immune tolerance or inflammatory reaction.

Deregulation of EV release in colorectal diseases
Numerous studies have demonstrated that circulating EVs increased in patients with 
intestinal pathologies while EVs fractions are different in cancers, compared to 
patients with inflammatory intestinal diseases such as Crohn's or inflammatory bowel 
diseases (CD or IBD)[128].

EVs deregulation in intestinal inflammatory diseases: Chronic inflammation 
pathologies of gastrointestinal (GI) such as IBD, CD, Helicobacter pylori-associated 
inflammation and chronic pancreatitis have been identified as strong risk factors for 
cancer development[129]. Interaction of different genetic, microbiome, and environ-
mental factors with the immune system drives IBD complex characters. The balance 
between immune suppression and stimulation against environmental factors is largely 
disturbed in IBD patients, resulting in inflammation and compromised integrity of the 
intestinal barrier. Elevated levels of EVs and/or EV content have been identified in 
IBD patients. EVs can modulate the immune response[130]. Among immune cells, 
macrophages are essential for the maintenance of intestinal homeostasis[131]. Serum 
EVs isolated from the dextran sulphate sodium-induced acute colitis mouse model 
could activate macrophages[132]. as well as EVs derived from the colonic luminal fluid 
of IBD patients that contained high mRNA and protein levels of several inflammatory 
cytokines could promote macrophage migration[133]. Dysfunction of regulatory T 
cells (Tregs) has been shown to be associated with a failure of intestinal tolerance, and 
contributes to the pathogenesis of IBD[134]. EVs derived from Tregs were shown to 
induce other T cells to develop into the Treg phenotype[135].

EVs release in colorectal cancer: Acidity and hypoxia are key features in cancer that 
could affect exosome release. Tumor pH may range from 6.0 to 6.8, and the level of 
acidity is directly associated to the tumor level of malignancy as it selects among 
cancer cells those that will resist[136]. One consequence of acidity-driven cancer cell 
selection pressure is an increased EVs release by human cancer cells[137,138].

Hypoxia is also a common characteristic of solid tumors and is associated with 
cancer progression and poor outcomes. It is generally associated with hypoxic 
environment that has also been shown to be an important cause of EVs release[139]. 
Hypoxic CRC cells can transfer Wnt4 mRNA to normal CRC cells by exosome, which 
can activate β-catenin signal and potentiate the invasive ability of normal CRC cells
[140]. In hypoxic microenvironment, CRC cells-secrete miR-410-3p in EVs that 
promotes progression and metastatic potential of normoxic CRC cells via PTEN/ 
PI3K/Akt pathway[141].

EVs and cancer stem cells
Epithelial cancers may be driven by a relatively rare sub-population of self-renewing, 
multipotent cells, named cancer stem cells or cancer-initiating cells (CSCs). Increasing 
data show that CSCs play a crucial role not only in primary colorectal tumor formation 
but also in metastasis[142]. In addition, CSCs play a critical role in CRC relapse[143]. 
They display unique properties of self-renewal, infinite division and multi-directional 
differentiation potential[144]. Asymmetrical growth and slow-cycling cellular turnover 
renders them resistant to therapies that target rapidly replicating cells[145]. Not all 
CSCs in primary lesions are metastatic, allowing distinction between stationary cancer 
stem cells (SCSCs) and migrating cancer stem cells (MCSCs)[146]. SCSCs exist in 
colonic epithelial tissues and are active even in benign precursor lesions, contributing 
to tumor mass proliferation in situ[147]. On the contrary, MCSCs, which have 
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undergone EMT, possess motility characteristics and are able to spread in other tissue 
to form metastatic tumor mass[148,149].

Untreated colorectal tumors contain a population of quiescent/slow cycling cells 
resembling CSCs and overexpressing EMT markers such as Zeb2[150]. As for ISC, 
maintenance of these scarce CSCs generally resides in very specialized niches[151], 
allowing them to stay dormant for various to long periods of time[152,153]. These 
niches represent a positive specific microenvironment which is able to maintain 
stemness and pluripotency[154]. The release of EVs by mesenchymal stromal niche 
surrounding cells drive hematopoietic stem cell clonogenic potential maintenance and 
survival, by preventing apoptosis through EV gene expression regulation[155].

This continuous crosstalk between CSC and their surrounding microenvironment is 
critical as a tiny variation in its modulation could induce important deregulation and 
subsequent tumor progression[156]. For example, miR-196b-5p, which is highly 
enriched in CRC patients serum EVs[157] has been shown to promote either CRC cells 
stemness or chemoresistance to 5-fluorouracil (5-FU) via targeting negative regulators 
of the STAT3 signaling pathway. Understanding the importance of EVs transfer in that 
context is a key feature for future CRC therapy[158].

Bidirectional contribution of colorectal tumor and microenvironmental cells EVs to 
CRC changes
Tumor microenvironment (TME) is a complex and dynamic network including both 
cancer and stromal cells. Stress conditions such as hypoxia, starvation, and acidosis 
increase tumor cells EVs release leading to TME changes and expansion. Such specific 
behavior is the consequence of a complex combinatory of bioactive molecules present 
in EVs[159]. Not only different form of RNAs but also proteins or lipids could account 
for these important changes. The release of CD133+ EVs by poorly differentiated CRC 
cells was found to increase Src and ERK phosphorylation in surrounding cells, with 
subsequent MAPK intracellular signaling activation and promotion of tumor growth
[113]. In response to CRC cells, TME modifications induce EVs-driven stromal cells 
response that subsequently results in tumor progression by further modifying CRC 
cells[160]. This continuous dual EVs-driven interplay between stromal and CRC cells 
is central in tumor behavior as it may drive either tumor cells proliferation or 
migration[161] (Figure 3).

Among TME, fibroblasts such as cancer associated fibroblasts (CAFs), endothelial 
cells and infiltrating immune cells are likely to be the major cell types that interacts 
with tumor cells through EVs signaling[162,163]. Both nature and composition of 
TME-derived EVs is of importance as cellular origin of the EVs cargo will determine 
specific changes within the recipient cell[164]. Analyzing their effect on CRC tumor 
cells, TME-originating EVs have been evidenced to play a central role in cell prolif-
eration[165], acquisition of invasive properties and increased migration[166,167], 
resistance to chemotherapy[168], angiogenesis development[169], and escape from the 
immune system.

On the other side, several tumorigenic signals are derived from CRC cells and 
conveyed to stromal cells through EVs. From the very beginning of CRC progression, 
CRC cells secrete EVs that can deeply modify TME cells[170]. CAFs are prompted by 
CRC cells EVs to harbor a highly pro-proliferative and pro-angiogenic phenotype
[171]. These important stromal changes are driven by CRC cells EVs composition that 
is itself largely modulated by different factors such as differentiation or hypoxia[113].

Promotion of cancer cell expansion
Accumulated genetic and epigenetic changes often activate the expression of 
oncogenes while silencing tumor suppressors during carcinogenesis. In CRC, several 
protooncogene mutations affecting KRas, BRaf, PTEN, PIK3CA or TP53 are now well 
known to promote CRC cells proliferation through cell cycle key players deregulation
[172]. Interestingly, mutant KRas expression in donor cell alter EVs cargo composition
[173,174]. Such KRas mutation can be transferred through EVs cargo to non-
transformed neighboring recipient cells leading to enhanced growth of these newly 
KRas-expressing cells[175]. However, aside these genetic transfers, most of the 
profound changes that drive cancer cell proliferation remains of epigenetic origin. 
Many different mechanisms can be used to alter gene expression, among which figure 
transfer of EVs cargo content that can increase cell proliferation by their oncosup-
pressive properties[176]. By suppressing fibroblast TP53 expression, CRC cells EVs 
miRNAs promote tumor progression[177]. This holds also true for DeltaNp73 enriched 
EVs that promote oncogenic potential of recipient cells[178]. Such CRC cells EVs 
transfer can play a role in a synergistic manner with classical factors acting on CRC cell 
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Figure 3 Bidirectional communications between tumor cells and their surrounding environment. Tumor microenvironment is a complex and 
dynamic network that include tumor (TC), stromal (SC), immune (tumor associated macrophages, TAM) and endothelial cells (EC). TC can bidirectionally signal to 
each other through extracellular vesicles (EVs) production. TC can produce EVs that will regulate SCs and TAMs differentiation and activity. SCs as well as TCs can 
regulate ECs activity, especially in hypoxic situations. TAMs and ECs can cooperate to promote angiogenesis. TC: Tumor cells; EC: Endothelial cells; SC: Stromal 
cells; TAMs: Tumor associated macrophages.

growth in a paracrine manner[179].

Cancer metabolism reprogrammation
All along the natural history of cancer, malignant cells should exhibit high metabolic 
plasticity to adapt themselves to tumor and surrounding environment continual 
changes[180]. Tumor cell proliferation continuously demand the highest nutrient 
capacity to fulfill enhanced biosynthetic and bioenergetics requests. In normal cells, 
metabolism of glucose is mainly performed through cytosolic glycolysis then 
mitochondrial TCA and OXPHOS that produce ATP. As mitochondrial PDH is 
inhibited and pyruvate cannot be transformed into acetyl-coA, cancer cells enhance 
glycolysis to produce sufficient ATP and generate high lactate content even in aerobic 
conditions (the “Warburg effect”), both being hallmarks of cancer[181]. High lactate 
production and release induces TME acidification promoting immune surveillance 
escape and metastasis[182]. As lipids, amino-acids, and nucleotides are strongly 
required for cancer cell multiplication, either fatty acids synthesis and FAO[183], or 
glutamine and serine metabolisms are all increased in tumor cells. Glutamine appears 
as a major energy substrate in cancer cells. Glutamine could produce TCA cycle 
intermediates to provide an additional energy source for cancer cells[184]. It has been 
recently shown that TME metabolism can largely modulate cancer cells progression. 
CAFs can provide metabolites that will facilitate tumor cells ATP production. Lactate, 
exported through CAFs MCT4 lactate shuttle then up-taken through cancer cells 
MCT1 Lactate transporter, could be used to fuel surrounding cancer cells, a process 
called “reverse Warburg effect”[185-187]. TME can also induce cancer cells FAO 
through cancer-associated adipocytes free fatty acid (FFA) release then cancer cells 
FFA CD36 uptake, hereby promoting cancer progression[188]. TME associated 
endothelial cells that mediated tumor angiogenesis are highly glycolytic[189] while 
tumor-associated macrophages (TAMs) polarization to immunostimulatory M1 or 
immunosuppressive M2 phenotype is largely driven by metabolism, M1 cells being 
highly glycolytic whereas M2 cells mostly relying on FAO and OXPHOS[190]. All 
these TME cells can shed EVs that will modulate cancer cells metabolism and play a 
role in their proliferation. EVs can contain metabolites but also metabolism enzymes 
that can modulate cancer cells metabolism. Uptake of EVs enriched in metabolic 
enzymes ALDOA and ALDH3A1 accelerated glycolysis thus promoting unirradiated 
lung cancer cells proliferation[191]. EVs lncRNA SNHG3 sponging miR-330-5p in 
recipient cells positively regulated pyruvate kinase M expression inhibiting OXPHOS, 
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increasing glycolysis, and promoting breast cancer cells proliferation[192]. As EVs can 
be produced bi-directionally (Figure 3), cancer cells can also modulate TME cells fate 
through metabolism reprogramming. Human melanoma-associated EVs miR-210 and 
miR-155 can reprogram CAFs metabolism to enhance glycolytic phenotype leading to 
extracellular acidification that favors pre-metastatic niche formation[193]. Prostate 
cancer cells EVs transfer of PKM2 protein to stromal cells leads to pre-metastatic niche 
formation[194]. Breast cancer cells EVs were found to contain miR-122 which could 
remodel metabolism to exacerbate metastasis[195]. VEGF-containing EVs can enhance 
EC glycolytic phenotype, inducing vascular permeability and cancer cells trans-
endothelial migration[196] or promoting chemoresistance[197]. By increasing 
glycolysis and reprograming myeloid cells to an immunosuppressive phenotype, 
pancreatic ductal adenocarcinoma EVs could create an immunosuppressive 
background favoring tumor progression[198].

Metastastic spread potentiation and secondary settlement
EVs can be involved in directional cell movement through tissues[199]. Distant spread 
can arise in two steps. The first one concerns local tumor cell dissemination where 
epithelial cell migrate through TME at the front of the tumor through generation of 
membrane protusions (invadopodia) and basal lamina break-in[200]. The second 
involves vascular disruption to allow tumor cells hematogenous spread. Once in the 
circulation, tumor cells migrate and must found a premetastatic niche where they can 
settle then proliferate.

To initiate both process, CRC cells will recruit then educate stromal cells to induce 
CAFs, tumor-associated macrophages with the immune-suppressive M2 phenotype, 
and endothelial cells that promote tumor angiogenesis[147]. CXCR4, present in HT29 
EVs may also contribute to stromal cells recruitment[201]. CRC cells can induce CAF 
generation by EVs transfer of TGF-β[202] promoting also two CAFs distinct 
phenotypes, i.e., proliferative or invasive, by reprogramming their proteome[171]. 
Concerning macrophages, mutant p53 CRC cells are able to reprogram them into M2 
phenotype through EVs miR-1246 transfer[203].

In both steps, loss of epithelial characteristics in favor of mesenchymal-like 
phenotype through epithelial to mesenchymal transition (EMT) process is involved
[140,204]. During the local movement phase, stromal cells support EMT induction in 
tumor cells through stromal EVs. CAFs EVs can induce EMT in CRC cells by transfer 
of miR-92a-3p that promotes beta-catenin ubiquitination then degradation[205]. 
Similarly, EVs mediated transfer of miR-21 from CAFs to CRC cells increases their 
metastatic potential[166]. Aside CAFs, M2 macrophages can induce CRC cell 
migration through EVs cotransfer of miR21-5p and miR-155-5p[206]. M2 cells can also 
secrete Wnt-containing EVs to induce CRC stem cell activity that is involved in 
metastasis development[120]. This EMT transition is largely influenced by EVs 
matrixins transfer. Cotransfer of claudin 7 and MMP14 induces MMP2 and MMP9 
recruitment that enhance invasiveness[207].

By EVs release, tumor cells can themselves induce up-or down-regulation of EMT-
related genes in neighboring tumor cells, leading to distant invasion and/or migration
[208]. EVs EMT inducers such as caveolin-1, HIF1α, beta-catenin, TNFa, TGF-β transfer 
can result in directional tumor cell migration[199,209] by either regulating ECM 
composition[210] or driving fibroblast differentiation into myofibroblast[211].

An important characteristic of tumor cells relies on their capacity to colonize prefer-
entially specific organs (organotropic metastasis) that is often determined by anatomic 
aspects. Indeed, an important subset of CRCs will develop through distant metastasis, 
mostly to the liver. CRC capacenenity to colonize liver is primarily due to the hepatic 
portal system that drains the colon and by the facilitating defenestrated architecture of 
liver sinusoid endothelium[212]. Nevertheless, a crosstalk between CRC circulating 
cells and hepatocytes through bidirectional EVs transfer is also mandatory. It is now 
well accepted that primary tumor educates metastatic microenvironment, commonly 
defined as the “premetastatic niche,” allowing circulating tumor cells (CTC) to find a 
suitable environment in which they can settle then proliferate. Such niche generation is 
characterized by local tissue inflammation, immune suppression, stromal cell 
activation, and ECM remodeling[213]. EVs proteins or miRNAs have been shown to be 
involved in establishing this niche[167]. EVs can modify ECM to support circulating 
CRC cells adhesion by increasing fibronectin deposits within the liver[214]. Such ECM 
modifications increase CRC cell adhesion, promoting mesenchymal-to-epithelial 
transition (MET), and enabling liver metastasis colonization. EVs miR-25-3p promotes 
pre-metastatic niche formation by inducing vascular permeability and angiogenesis
[169] while EVs miR-21 through toll like receptor (TLR) 7/IL-6 axis in macrophages 
pathway as well as EVs miR-203 seem to induce an inflammatory niche that can 
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potentiate liver metastasis[215,216]. EVs derived from CRC cell lines are involved in 
the modulation of the innate immune response, which is considered as a central step in 
the formation of the metastatic niche. Circulating EVs miRNAs after internalization by 
target cells can also act as ligands of TLRs[217].

Like in primary tumors, cancer cell EVs can reprogram resident cells to promote 
metastatic niche achievement and attract newly released CTCs. For example, in the 
niche, gastric cancer cells drive epidermal growth factor receptor (EGFR) EVs transfer 
to liver stromal cells that upregulate HGF expression through miR-26a/b downregu-
lation inducing CTC attraction and further metastatic proliferation[218].

Angiogenesis induction
Angiogenesis is important for tumor proliferation and distant metastasis. Endothelial 
cells (ECs) can uptake via the endocytic pathway EVs from various origins[219]. 
Uptake of tumor-derived exosomes by normal endothelial cells activates angiogenic 
signaling pathways in endothelial cells and stimulates new vessel formation[67,68,
220]. Once internalized, EVs are immediately directed to the perinuclear zone and 
actin filaments enriched area. When tubules are formed, EVs move to cell periphery 
and enter advanced pseudopods[221]. After complete remodeling, adjacent ECs 
probably transport EVs to neighboring ECs and to other cells in the TME[222].

In hypoxic conditions, tumor cells can secrete angiogenic factors, such as VEGF-A, 
inducing ECs migration and tumor angiogenesis. Higher levels of circulating 
proangiogenic basic bFGF originating from CRC cells have been detected in the serum 
of CRC patients[223]. EVs are also released by hypoxic CRC cells. Wnt4 enriched EVs 
increased β-catenin nuclear translocation in ECs enhancing angiogenesis and tumor 
growth[224]. It holds the same for Wnt5a[225] and Wnt5b whose increased expression 
in CRC cells correlates with aggressiveness. Caco-2 cells, one of the mostly used 
human CRC cell lines, secrete Wnt5b containing EVs that stimulates cell migration and 
proliferation of A549 cells[210]. Mutations in adenomatous polyposis coli (APC) gene 
are common in CRC patients and are associated with the deregulation in Wnt 
signaling. Restoration of APC expression in CRC SW480 cells induces DKK4 release 
through EVs, a mechanism restoring Wnt signaling pathway that may be lost during 
CRC progression[226]. In CRC ascites, EVs released by CRC tumor cells have been 
shown to carry proangiogenic proteins like Plexin B2 and tetraspanin[227]. 
Interestingly, CRC cell lines (HCT116 and DLD-1) secrete EVS that carry high levels of 
tissue factor, which is involved in blood coagulation, but is also a known modulator of 
angiogenesis and metastasis processes[228]. Aside proteins, EVs miRs have also been 
involved in angiogenesis induction[229], miR-183-5p was first found to be highly 
expressed in CRC cell-derived EVs, which triggers a marked increase in the prolif-
eration, migration and tube formation abilities of HMEC-1 cells by targeting FOXO1
[230]. CRC-derived miR-1229 containing EVs, by inhibiting HPIK2 expression, 
promote through VEGF pathway activation HUVECs tubulogenesis, transfection with 
exomiR-1229 inhibitor anta-miR-1229 significantly suppressing tube formation[231]. 
EVs from 5-FU-resistant CRC cells promoted angiogenesis through dipeptidyl 
peptidase IV, a potent inducer of this angiogenesis[232].

TAMs were also proven to be beneficial for angiogenesis. M2 macrophages were 
positively correlated with microvessel density of pancreatic ductal adenocarcinoma 
tissues. M2 macrophage-derived EVs could promote mouse aortic ECs angiogenesis in 
vitro and subcutaneous tumors growth in vivo, increasing vascular density in mice
[233].

Immune escaping modulation
While tumor cell dissemination seems to be an early event of tumorigenesis, metastasis 
development ability is strongly associated with immune evasion. It seems that in CRC, 
the immune system influences tumor heterogeneity and sculpts clonal evolution. 
Tumor clones development is linked to the intra-metastatic immune microenvir-
onment via an immune editing process[234].

CRC EVs induce recruitment to the pre-metastatic niche of suppressive immune 
cells, such as TAMs, tumor-associated neutrophils, Tregs leading to a strong inhibition 
of the antitumor response and facilitating CRC growth[235]. Specifically, it has been 
shown that TAMs can stimulate CRC growth by altering ECM remodeling, TME 
composition, tumor metabolism and angiogenesis[187]. CRC-derived EVs are involved 
these processes. CRC cells TGF-β EVs transfer to T cells can induce cell repro-
gramming toward Treg phenotype[236]. Similarly, delivery of miR-214-containing 
tumor cells EVs to mouse peripheral CD4+ T cells downregulates PTEN and promotes 
Treg expansion[237]. CRC CT26 cells EVs promote the proliferation of lymphatic 
endothelial cells and the formation of lymphatic network in sentinel lymph node 
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(SLN), facilitating CRC cells metastasis to SLN[238]. Cancer cell EVs miRNAs can also 
block the adaptive immune response by affecting natural killer (NK) cells, or by 
decreasing dendritic cell maturation[239]. Similarly, CRC cell EVs that contain Fas-
ligand and Trail can target T cells to induce their apoptosis[240] (Figure 4). While it is 
well admitted that EVs from metastatic tumor cells display protumorigenic functions, 
it seems that, in poorly metastatic cancer, tumor cells EVs induce expansion of 
patrolling monocytes in bone marrow, promoting metastasis eradication via NK cells 
and macrophages recruitment[241]. Such discrepancies highlight the fact that cancer 
cell EVs may play heterogeneous functions in tumor immunity that remain to be 
elucidated.

Resistance to therapy
Despite improvement and diversification of therapeutics for CRC patients (surgery, 
targeted therapy, radiotherapy and chemotherapy) and the emergence of new drugs 
during the last years, resistance to treatment still exists and remains one of the 
deadlocks for patients with an advanced CRC for whom medicines no longer work
[242]. Today, administration of FOLFOX, a combination of folinic acid, 5- FU and 
oxaliplatin (OXA), is one of the most widely used chemotherapeutic regimens for 
treating CRC but these treatments generate serious systemic side effects and have an 
impact on the patients quality of life. More recently, the use of targeted drugs (for 
example bevacizumab, cetuximab, regorafenib ...) allow improvement of metastatic 
CRC survival times but malignant tumors drug resistance still persist[243].

Resistance to conventional chemotherapy: Aside classical mechanisms of resistance to 
5-FU and OXA such as impaired drug inflow or efflux, drug inactivation, or single 
nucleotide polymorphisms of fluoropyrimidine or platinum targets, EVs generated by 
CRC cells have been reported to play a critical role in resistance to treatments[244]. 
Cancer stemness acquisition could be a possible feature that induces chemoresistance 
in CRC[245]. Wnt activity may reflect stem cell features. EVs-mediated Wnt secretion 
by CAFs is able to induce CRC reprogramming into CSCs then potentiate CRC 
resistance to chemotherapy[246]. In addition, CAFs release of H19 EVs also 
potentiated cancer stem cell resistance to OXA. LncRNA H19 was highly expressed in 
CAFs and upregulated in EVs. H19 activated the Wnt/β-catenin signaling pathway 
and potentiated drug resistance of CSCs[247]. The role of CAFs in exporting EVs that 
will confer chemoresistance to CRC cells is significant as it was reported that CAFs Evs 
can activate CRC cells ERK/AKT pathway inducing a protective effect to OXA[162]. 
CAFs can export urothelial carcinoma-associated 1 (UCA1), a lncRNA with three 
exons that has been found to display oncogenic functions in various types of cancer
[248]. In CRC, UCA1 was found to be associated with resistance to cetuximab and 5-
FU[249,250]. UCA1 suppresses miRNA-204-5p expression[251] that induces drug 
resistance. miR-196b-5p promotes CRC cells chemoresistance to 5-FU by targeting 
SOCS1 and SOCS3 negative regulators of STAT3 signaling pathway, resulting in 
global activation of STAT3 signaling[157]. Interestingly, UCA1 and miR-196b-5p are 
highly expressed in CRC patients EVs as compared to healthy control subjects and 
may represent interesting CRC biomarkers (Figure 5).

Resistance to targeted therapies: Cetuximab or panitumumab, that target the 
extracellular domain of EGFR preventing downstream activation of the MAPK or 
mTOR pathways, increases survival times in CRC patients[252]. Nevertheless, a subset 
of mutations involving either BRAF or PIK3 and amplifications of MET or HER2 
induce resistance to these monoclonal antibodies (Mab) therapy[253]. Cetuximab CRC-
resistant EVs have been shown to restrict the PI3K negative regulator PTEN in CRC 
cells[254] through UCA1 overexpression[250]. Aside EVs nucleic acids or proteins 
inhibition of EGFR-driven cellular process in the recipient cell, EGFR positive EVs 
could bind anti-EGFR mAbs reducing mAb bioavailability. Such mechanism has been 
described for anti VEGFA mAb bevacizumab in metastatic and lung cancers. VEGFA 
positive EVs neutralize bevacizumab inducing cancer cell chemotherapeutic escape
[255].

EVs as pertinent biological markers of CRC
Being able to quantify and use EVs as relevant biological markers may improve CRC 
screening in the future. Nowadays, CRC is currently detected by different methods. 
Colonoscopy is widely used in clinical practice, which is regarded as the gold standard 
for detecting CRC. However, it has several limitations such as invasive nature, high 
cost and bothering bowel preparation[256]. Aside this invasive procedure, non-
invasive screening tests such as iterative fecal occult blood testing (FOBT)[257] or 
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Figure 4 Antitumor immune system balance modulation by colorectal cancer cells extracellular vesicles. Antitumor immune response is largely 
modulated by colorectal cancer (CRC) cells through either extracellular signaling molecules (cytokines, etc.) secretion or extracellular vesicles (EVs) production and 
release. CRC cells EVs contain inhibiting or activating molecules that favor target cells expansion, mobilization, and recruitment (regulatory T cells and mesenchymal 
stem cells), polarization and activation (tumor associated macrophages M2) and block others (CD8+ T-cells, dendritic cells, and natural killer cells). MSC: 
Mesenchymal stromal cells; CD4: CD4 positive T cells; CD8: CD8 positive T cells; EC: Endothelial cells; TC: Tumor cells; TAM: Tumor associated macrophages; NK: 
Natural killer cells; Treg: Regulatory T cells.

plasma carcinoembryonic antigen (CEA) quantification have also been used. Unfortu-
nately, both are of limited value mainly because poor sensitivity and specificity[258,
259] urging the need to find new methods aimed to quickly, easily and robustly 
diagnose and monitor CRC. This is where EVs can certainly play an important role.

EVs can be detected in many biological fluids of patients, such as blood, urine, CSF 
and saliva[13] and can now be easily isolated[260] even though a universal 
standardized and widely accepted method for isolating then analyzing EVs is still 
mandatory[244]. Thanks to their lipid bilayers, EVs are stable in circulation and 
protected from degradation of serum ribonucleases and DNases[261]. As several 
miRNAs, lncRNAs and proteins are differently expressed in EVs originating from 
tumor and normal cells, they are potential sources of biomarkers and become a 
promising field in CRC diagnosis (Figure 6).

EVs miRNAs as relevant CRC biological markers: EVs miRs have been regularly 
involved in CRC development holding promise that their quantification in plasma or 
serum could serve as relevant CRC biomarkers. Some of them, that have been 
associated to specific events in CRC natural history, have been found in blood of CRC 
patients[262]. Among them, miR-25-3p[169] and miR-21[216], both promoting pre-
metastatic niche formation by respectively inducing vascular permeability and 
macrophages differentiation towards a pro-inflammatory phenotype, and miR-203 
that induces TAM activation[215], have been reported to be highly expressed in 
plasma CRC patients EVs and related to a poor prognosis. Recently, miR-410-3p was 
found highly enriched in hypoxic CRC-derived EVs in a HIF1α or HIF2α-dependent 
manner. miR-410-3p decreases PTEN in recipient cancer cells thus activating PI3/Akt 
axis and leading to tumor progression. miR-410-3p levels were positively associated 
with poor prognosis of CRC[141]. Nevertheless, while several specific miRNAs panels 
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Figure 5 Mechanisms of extracellular vesicles-mediated chemoresistance in colorectal cancer treatment. Extracellular vesicles (EVs) released 
either by colorectal cancer (CRC) or cancer activated fibroblasts cells can cooperate to promote cytotoxic drugs or targeted therapies resistance. These processes 
are mainly mediated by lncRNAs such as urothelial carcinoma-associated 1 that stimulate mTOR and STAT3 signaling, and by Wnt proteins or miRNAs targeting Wnt 
signaling pathway leading to CRC cell acquisition of stemness features. EVs can also trap targeted anti-epidermal growth factor receptor antibodies reducing their 
bioavailability and further action on CRC cells. TC: Tumor cells; CAF: Cancer activated fibroblasts; DOX: Doxycycline; 5-FU: 5-fluorouracil; OXA: Oxaliplatin.

have been found in EVs from CRC patients, only a few have yet been clinically 
validated[263]. A panel of 7 miRNAs (let-7a, miR-1229, miR-1246, miR-150, miR-21, 
miR-223, and miR-23a) was first validated by qRT-PCR, indicating that it may be a 
suitable biomarker to detect CRC[264]. Among this, miR-23a, miR-1246 and miR-21 are 
highly interesting as all three display high specificity and sensibility[262]. If both miR-
23a and miR-1246 are positive and both CA19-9 and CEA negative, one can say that it 
is probably an early stage CRC[265]. In addition, miR-125a-3p and miR-320c were 
found to be significantly increased in EVs of early-stage CRC patients, combination of 
miR-125a-3P and CEA improving drastically the screening power for early-stage CRCs
[266]. Another interesting work showed that miR-6803-5p was significantly increased 
in serum samples from CRC patients and correlated to a poor prognosis as compared 
to healthy subjects[267]. While associated increased levels of both miR-17-5p and miR-
92a-3p levels may serve as an early indicator of liver metastases[268], EVs overex-
pression of miR-486-5p, miR-19a, miR-17-92a correlate with CRC recurrence[269,270]. 
Last, increased expression of EVs miRs that can be released by CAFs can be also an 
early indicator of chemotherapy resistance. High expression of miR-92a-3p activates 
Wnt/β-catenin pathway and inhibits mitochondrial apoptosis by directly inhibiting 
FBXW7 and MOAP1, contributing to cell stemness, EMT, metastasis and 5-FU 
resistance in CRC[205].

On the opposite, aside plasma EVs miRs increased levels, down-regulation of some 
miRNAs could be predictive factors of CRC. Five EVs miRNAs (miR-638, miR-5787, 
miR-8075, miR-6869-5p and miR-548c-5p) were decreased among CRC patients. These 
miRNAs may be involved in the development and progression of CRC by regulating 
glucose metabolism. Besides, in this study, 2 miRNAs (miR-486-5p and miR-3180-5p) 
have been shown to be significantly increased[271], results that were further 
confirmed[269]. Low levels of tumor suppressor miR-6869-5p that targets TLR4/NF-
κB signaling pathway inhibiting proliferation and promoting CRC cells apoptosis have 
been reported in CRC patients serum EVs[272]. More recently, decreased expression of 
miR-1505p[273] and miR-548c-5p[274] were both associated to CRC poor prognosis.
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Figure 6 Colorectal cancer cells extracellular vesicles molecules as relevant cancer biomarkers. Among all the molecules present in extracellular 
vesicles, only a subset (proteins, miRNAs, lncRNAs) have been shown to be of potential clinical value on colorectal cancer detection, diagnosis, prognosis and 
treatment response evaluation. All referenced markers were found to be differentially expressed in cancer patients and in healthy people. The yellow ones were 
useful for diagnosis, the green ones for progression, the blue ones for prognosis and the pink ones were associated with chemoresistance. TAM: Tumor associated 
macrophages.

LncRNAs as interesting CRC markers: LncRNAs, non-coding RNAs greater than 200 
nucleotides, were once considered as junk DNA and transcriptional noise but 
emerging evidences demonstrate that they are evolutionarily conserved and that their 
strongly regulated expression plays critical roles in regulating gene expression[275]. 
As they can be differentially expressed in blood EVs of CRC patients, they could be 
new interesting biomarkers[276]. LncRNAs have been involved in CRC initiation and 
progression. Colorectal cancer-associated lncRNA (CCAL) seems to be a key regulator 
of CRC progression[277] and it was reported that CCAL promotes OXA resistance of 
CRC cells[278]. It has been also demonstrated that both down-regulation of lncRNA 
UCA1 and up-regulation of circRNA homeodomain interacting protein kinase 3 is 
found in CRC patients EVs. UCA1 LncRNAs, upregulated in CRC biopsies and 
downregulated in serum EVs, serves as a miR143 sponge that modulate MYO6 
expression[279]. Six lncRNAs (LNCV6_116109, LNCV6_98390, LNCV6_38772, 
LNCV_108266, LNCV6_84003, and LNCV6_98602) are significantly up-regulated in 
patients with CRC as compared to healthy individuals[280]. High serum EVs 
expression of lncRNA 91H have been associated to CRC poor prognosis[281] and an 
increase of growth arrest-specific 5 and colon cancer-associated transcript 2 (CCAT2) 
lncRNAs in CRC patients have also been reported[282]. Interestingly, CCAT2 lncRNA 
levels were significantly decreased after surgery and removal of the tumor[283]. 
Finally, several lncRNAs have been associated to treatment resistance[284]. HOTAIR
[285], XIST[286] and LINC00473[287] lncRNAs have been found to confer 5-FU 
resistance through respective miR-218 and miR-203a-3p, miR15a and miR-152 
regulations[288,289]. LncRNA CRNDE induces CRC OXA resistance via miR-181a-5p-
mediated regulation of Wnt/beta-catenin signaling and miR 136 sponging[290,291].

EVs proteins as a source of cancer biomarkers: Finally, aside nucleic acids, EVs 
proteins could also be measured to diagnose CRC as they may differ between healthy 
and CRC individuals. A primary study has shown that 36 proteins were upregulated 
and 22 proteins downregulated in CRC patients EVs compared to normal volunteers 
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EVs. Moreover, upregulation of these proteins was associated with a pretumorigenic 
microenvironment for metastasis and on the opposite, downregulation was associated 
with tumor growth and cell survival[292]. Several studies have identified a number of 
proteins that can be considered as potential biomarkers. For example, among them, 
glypican-1[293,294] was suggested to be a specific diagnosis marker because it is 
highly expressed in CRC patient EVs and normalized after surgery. Identically, EVs 
lower expression of Copine III, a protein highly expressed in CRC tumors, was 
associated to better survival[295]. Additionally, S100 calcium-binding protein A9 
(S100A9) levels were noticeably higher in plasma EVs of CRC relapse patients than 
those in tumor resection patients[296]. S100A9 has been related to CRC worsening as 
its overexpression could enhance TME CRC cells stemness. High levels of cytokeratin 
19, CA125, and tumor-associated glycoprotein 72 (TAG72) have been quantified in 
CRC patients plasma EVs[297]. Interestingly, TAG72 protein overexpression was 
found to contribute to CRC patients chemoresistance to 5-FU.

The emergence of quantitative measurements that will be simple, inexpensive, 
easily performed and non-invasive for the patient is strongly mandatory. Analysis of 
EVs content (miRNAs, lncRNAs and proteins) may allow early diagnosing CRC and 
even predicting its relapse, metastasis and potential chemotherapy resistance.

EVs as potential targets to inhibit cancer
EVs have been shown to be a source of patient’s resistance to chemotherapy. It is 
mandatory to explore new therapeutic possibilities aimed to both suppress tumor 
progression and reduce EVs-related drug resistance.

EVs uptake and biogenesis inhibitions: The first possibility to treat cancer would be 
to target EVs by inhibiting EVs uptake[298]. Indeed, EVs endocytosis is an active 
process but a rather complex one leading its inhibition a new therapeutic perspective 
but a very difficult one to achieve. Many studies have found molecules that could 
inhibit EVs internalization. Heparin can inhibit in a dose-dependent manner EVs 
absorption through direct action on heparan sulfate proteoglycans which themselves 
play a role EVs endocytosis[299]. Cytochalasin D that inhibits phagocytosis and other 
endocytosis mechanisms through an inhibitory effect of actin polymerization has been 
shown to inhibit EVs uptake[300]. Inhibition of EVs internalization by Methyl-β-
cyclodextrin (MβCD) in glioblastoma cells has been reported[301]. MβCD depletes 
cholesterol from natural membranes and decreases EVs uptake by interfering with 
lipid rafts stability. Another molecule, dynamin, already described as an inhibitor of 
endocytosis, has been shown to interfere with EVs uptake in cancer[302]. Nevertheless, 
the large repertoire of mechanisms involved in EVs uptake in cancer impairs the 
overall efficiency of these molecules. A recent study showed that antibodies targeting 
CD9 and CD63 tetraspanins stimulate EVs macrophages phagocytose inhibiting cancer 
EVs-mediated communication[303]. However, such antibodies do not only target 
cancer EVs but also “physiological” CD9 and CD63 EVs. The role of these specific EVs 
being not yet known, additional studies must be carried out to know the viability of 
such method.

One other possibility of EVs targeting would be to inhibit EVs biogenesis. Inhibiting 
EVs biogenesis also involves complex issues, primarily due to the large number of 
proteins that are concerned in this cellular process. However many pharmacological 
agents have been found and seem promising. Fluidity of cell plasma membrane is 
fundamental during membrane lipid bilayer re-organization and thus EVs formation. 
During EVs biogenesis, ceramide regulate EVs production[24]. Ceramide synthesis 
required an ubiquitous enzyme, neutral sphingomyelinase 2 (nSMase2) that can be 
specifically targeted by GW4869 inhibiting cancer cells EVs release in a dose-
dependent manner[304] and consequently limiting miRNAs hematogenous release
[305]. On the opposite, nSMase2 overexpression increases miRNAs quantity in blood
[306]. The link between nSmase2 and EVs has been shown in breast cancer aggress-
iveness[307]. GW4869 therapeutic effects have been observed on murine melanoma. 
GW4869-induced B16BL6-derived EVs secretion inhibition decreased B16BL6 cells 
proliferation and increased apoptosis-related proteins. Treatment of GW4869-treated 
cells with B16BL6-derived EVs restore their proliferation[308]. As GW4869 seems to be 
promising, imipramine which is a tricyclic anti-depressant is also a source of interest 
because of its inhibitory activity on acid sphingomyelinase (aSMase) that catalyzes 
sphingomyelin hydrolysis to ceramide[309]. Thus, imipramine is reported to prevent 
the translocation of aSMase, inhibiting EVs secretion. So, both GW4869 and 
imipramine can stop the production of ceramide
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TSG101 is a protein involved on endosomes trafficking and exosomes biogenesis
[310]. In CRC cells that express Wnt5b, knockdown of TSG-101 generates Wnt5b EVs 
downregulation decreasing Wnt5b-driven cell proliferation suggesting TSG101 as a 
potential therapeutic target in cancer[311].

EVs release inhibition: A third possibility to target EVs is to limit or inhibit their 
release by secreting cells.

A drug that inhibits EVs release is manumycin A, an antibiotic which is a selective 
and strong inhibitor of Ras farnesyltransferases. Farnesyltransferase inhibitors inhibit 
Ras activity and therefore EVs release[312]. Aside Ras proteins figure Rab proteins that 
are also modulators of EVs biogenesis[7]. Rab2b, Rab5a, Rab9a, Rab27a and Rab27b 
impacts in EVs release have been studied, the two latter playing also a role in EVs 
docking and exocytosis[29]. Knockdown of Rab27a decreased EVs-release amount[313] 
and Rab27a inhibition reduced tumor growth and lowered metastatic cells dissem-
ination[314,315]. Gold nanoparticles conjugated with anti-sense RAB27a oligonuc-
leotides to mute Rab27a generate 80% inhibition of EVs release in breast cancer[316]. 
Plectin enables EVs secretion in pancreatic cancer. Downregulation of plectin in 
pancreatic cancer cells reduced EVs release in the same way Rab27a and Rab27b 
knockdowns do suggesting that combining both mechanisms could be a therapeutic 
combination that enables greater results[317].

As plasma membrane fluidity is important for EVs shedding, drugs aimed at 
targeting either lipid rafts formation or cholesterol synthesis will interfere with EVs 
release. Lipid depletion results in EVs release reduction[318]. Pantethine, a 
pantothenic acid (vitamin B5) derivative is used as an intermediate in the production 
of co-enzyme A and it plays a role in the metabolism of lipids and reduction of total 
cholesterol levels. Panthetine inhibits by 80% cholesterol synthesis as well as fatty acid 
synthesis[319]. Panthetine has been shown to limit EVs release in systemic sclerosis
[320]. Its use on chemoresistant breast cancer cells significantly reduced EVs release
[321].

Actin and actin-regulating proteins are also strongly involved in EVs secretion. 
Invadopodia are cellular structures used by cancer cells to degrade extracellular matrix 
and invade. Because of high levels of actin, such structures are key sites for EVs 
release. Indeed, invadopodia inhibition limits EVs release[322]. Furthermore, 
knockdown of cortactin, that acts as an actin dynamics regulatory protein, decreased 
whereas its overexpression led to an increase of EVs release[323].

Rho-associated protein kinases (ROCK) are a family of serine-threonine kinases 
belonging to the PKA-G-C family and involved in cells shape and movement 
regulation, by acting on the cytoskeleton. Cytoskeleton organization as well as cellular 
contractility through activity on actin filaments is important features for EVs shedding. 
Y27632 is a commonly used ROCK competitive inhibitor which is able to compete with 
ATP at ROCK catalytic sites[324]. Y27632 causes a reduction in the release of EVs as 
well as a change in cell surface morphology[325] by sustaining activation of proteolytic 
enzymes, such as stathmin and calpain, that destabilized cell plasma membrane. Thus, 
Y27632 can be used alone or in combination with Calpeptin, the most studied calpain 
inhibitor[326]. Calpains, once activated through calcium binding, can activate different 
cellular processes including cell migration, cell invasion and EVs formation and 
release. Calpeptin has also been used alone to inhibit EVs release[327].

PEG-SMRwt-Clu, a drug derived from the secretion region of HIV-1 Nef protein, 
regulates exosomal pathway trafficking and seems promising. PEG-SMRwt-Clu was 
able to inhibit cell growth in breast cancer cell lines and more interesting to partially 
increase chemosensitivity. The use of PEG-SMRwt-Clu was also associated with a 
decrease in the number of released EVs[328].

Despite the current efforts and the number of EVs endocytosis, biogenesis and 
release inhibitors that are already available, inhibition of EVs is still a very complex 
issue because of the multifactorial nature of the different pathways involved in these 
processes. Nevertheless, EVs uptake, biogenesis or release inhibition remains a 
potential and interesting therapeutic cancer target in the near future.

EVs as therapeutic vectors in CRC
EVs are major players in tumor progression via the transfer of cargo within them. One 
other possible way to cure CRC would be an EVs-based therapy that uses EVs as 
therapeutic vectors.

In very recent years, studies have mainly focused on the idea that EVs could be 
natural delivery vehicles to transport therapeutic drugs, antibodies or RNA to modify 
gene expression[329]. In the cancer field, it would be indeed a specific and effective 
therapy delivery method to specifically treat cancer cells. EVs are biocompatible and 
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biodegradable and therefore, less toxic and immunogenic than other nanoparticular 
drug delivery systems such as liposomes or polymeric nanoparticles[330]. EVs have 
innate limited immunogenicity and cytotoxicity[331,332]. Moreover, drug stability is 
largely enhanced as EVs avoid drugs degradation by extracellular enzymes[333]. Thus 
EVs capacity to target tumor cells is 10 times higher than liposomes of a similar size. 
Such property is certainly linked to particular ligand-receptor interactions and to 
efficient endocytosis mechanisms linked to the EVs membrane lipid composition that 
contributes significantly to cellular adherence and internalization[334]. Last, EVs can 
penetrate through anatomical barriers[335,336] and their lipid composition protects 
them from reticuloendothelial system phagocytosis[244].

Several reports have demonstrated the potential of using EVs therapy and clinical 
trials are currently underway to find treatments that extend patient survival. Many 
kinds of EVs-based therapies have been shown to improve chemotherapy effect-
iveness. EVs have been used to deliver many kinds of drugs such as curcumin[337], 
paclitaxel[338] and doxorubicin[339]. While loading doxorubicin in EVs reduces 
cardiotoxicity[340], its packaging into EVs increases its efficacy when compared to free 
doxorubicin in cancer-bearing mice treatment. Inside EVs, doxorubicin has a better 
stability and will be even more collected within the tumor, significantly suppressing 
mice CRC growth and extending survival time[341]. EVs loaded with paclitaxel were 
tested in the treatment of multiple drug resistance cancers. Loaded exosomes can 
overcome drug efflux transporter adverse effect, decreasing metastasis growth when 
compared to controls[342].

EVs are also natural carriers of nucleic acids molecules and can be genetically 
engineered to deliver specific nucleic acid molecules such as miRNA[343], and more 
recently gene editing system CRISPR/Cas9[344]. EVs-based nucleic acid delivery in 
cancer treatment have shown promising therapeutic effects[38]. EGFR expressing cells 
can be targeted with GE11-positive exosomes loaded with microRNA let-7a, a tumor 
suppressor microRNA. The results showed an efficient delivery of exosomes cargo and 
consequent tumor growth inhibition[345].

EVs can also be used as a new type of tumor vaccine. Phase I clinical trials have 
shown that ascites EVs combination with granulocyte-macrophage colony stimulating 
factor induces a safe and effective response from specific anti-tumor cytotoxic T-cell in 
the treatment of advanced CRC[346]. EVs have also been explored as modulators of 
the immune response against tumor cells. Dendritic cells are antigen-presenting cells 
inducing immune responses. Dendritic cells have been shown to secrete antigen-
presenting EVs that coexpress molecules of the major histocompatibility complex. 
Such exosomes activate specific cytotoxic T lymphocytes in vivo that can reduce or 
even suppress tumor growth[347]. EVs loading of anti-tumor peptides has also been 
used. A specific mutated form of survivin-T34A induces caspase activation leading to 
apoptosis. In vitro treatment of cancer cell lines with survivin-T34A EVs increased cell 
death[348].

Different cell-derived EVs may be home to specific cell types[7]. EVs derived from 
hypoxic tumor cells tend to be taken up by hypoxic tumor cells[349]. Different cells 
under different conditions determine EVs heterogeneity, generating huge and complex 
combinatorial possibilities. Thus, to better use EVs in cancer, engineering EVs with 
ligands that can specifically bind to targeted cancer cells is mandatory. Either EVs 
surface expression of receptor/ligand, antibody/ligand or microenvironment specific 
molecules can be used to specifically modify EVs. Recently, bioengineered EVs have 
been shown to be able to specifically bind to HER2/Neu by expressing designed 
ankyrin repeat proteins on their membrane surface[350]. Engineering both CD3 and 
EGFR expression on EVs membranes allows cross-linking of T cells with EGFR 
positive cancer cells enhancing antitumor immunity[351]. As hyaluronan has been 
evidenced in EVs[352], hyaluronidase engineered EVs have been shown to degrade 
tumor extracellular matrix and enhance the permeability of T cells and drugs within 
the tumor[353].

Using EVs as therapeutic vectors in cancer seems very promising and clinical trials 
are nowadays being carried out[354]. Unfortunately, no major breakthrough still 
occurs certainly because of the complexity to handle such new therapeutic methods in 
vivo. To accelerate their use in cancer patient treatment, there is also an urgent need to 
better understand both EVs biology and nature[298].

CONCLUSION
EVs exert a wide variety of biological functions, mainly via delivering signaling 



Mammes A et al. Extracellular vesicles in colorectal cancer

WJGO https://www.wjgnet.com 1580 November 15, 2021 Volume 13 Issue 11

molecules that regulate a vast repertoire of cellular processes. Their role in cancer 
development is central as they participate through bidirectional signaling between 
cancer cells and TME cells to every step of CRC carcinogenesis up to metastatic 
dissemination. Their detection in a large variety of biological fluids represents the 
future of cancer detection, an easy and reproducible mean to identify specific 
biomarkers of diagnostic and prognostic relevance. Moreover, they also represent new 
targets for treatment as their inhibition could limit or stop cancer development. 
Additionally, as extracellular signaling molecules, they could be used as very specific 
nanovectors to transport conventional or innovative therapies to cancer cells of 
interest.

However, although pre-clinical data appear very promising, validation from large 
clinical trials are needed to support EVs use as either tumor biomarkers for monitoring 
cancer progression and driving treatment decisions or new vectors for specifically 
targeted treatments. Such data are mandatory to better understand EVs function in 
cancer progression and translate EVs use in clinical practice.
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