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Abstract
Bacteria are known to communicate with each other and regulate their activities 
in social networks by secreting and sensing signaling molecules called autoin-
ducers, a process known as quorum sensing (QS). This is a growing area of 
research in which we are expanding our understanding of how bacteria 
collectively modify their behavior but are also involved in the crosstalk between 
the host and gut microbiome. This is particularly relevant in the case of 
pathologies associated with dysbiosis or disorders of the intestinal ecosystem. 
This review will examine the different QS systems and the evidence for their 
presence in the intestinal ecosystem. We will also provide clues on the role of QS 
molecules that may exert, directly or indirectly through their bacterial gossip, an 
influence on intestinal epithelial barrier function, intestinal inflammation, and 
intestinal carcinogenesis. This review aims to provide evidence on the role of QS 
molecules in gut physiology and the potential shared by this new player. Better 
understanding the impact of intestinal bacterial social networks and ultimately 
developing new therapeutic strategies to control intestinal disorders remains a 
challenge that needs to be addressed in the future.

Key Words: Inflammatory bowel disease; Quorum sensing; Gut microbiota; Dysbiosis; 
Inflammation; Intestinal barrier
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Core Tip: Host-microbiota interactions play a crucial role in the pathophysiology of 
many intestinal diseases. While biological components have been repeatedly described, 
a largely overlooked component is quorum sensing (QS), a density-dependent system 
able to coordinate bacterial responses and interact with host cells constantly exposed to 
bacteria. This review intends to describe the different QS systems to show evidence 
that QS is part of the intestinal ecosystem and highlight its impact on intestinal 
epithelial barrier function, inflammation, and intestinal carcinogenesis. From this 
report, we open up a new area of intestinal physiology.

Citation: Coquant G, Aguanno D, Pham S, Grellier N, Thenet S, Carrière V, Grill JP, Seksik P. 
Gossip in the gut: Quorum sensing, a new player in the host-microbiota interactions. World J 
Gastroenterol 2021; 27(42): 7247-7270
URL: https://www.wjgnet.com/1007-9327/full/v27/i42/7247.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i42.7247

INTRODUCTION
Gut microbiota mutually interacts with coevolved host epithelial and immune cells in 
a beneficial reciprocal relationship[1]. The advent of multi-omics sequencing in the 
past decade has allowed researchers to investigate the complexity of the intestinal 
microbiota in various human disorders[2]. Many lines of evidence support a role for 
alteration of gut microbiota (dysbiosis) in the development or perpetuation of inflam-
matory and metabolic disorders; recent data pointed out the consequences of dysbiosis 
on host-microbiota interactions in this setting[3,4]. Currently, gut microbiota 
metabolites recognized as the main drivers of the impact of gut microbiota on hosts are 
short-chain fatty acids (SFCAs), branched-chain amino acids, trimethylamine N-oxide, 
bile acids, tryptophan (Trp), and indole derivatives[3,5]. A largely overlooked 
component is diffusible signaling molecules, which modulate the physiological 
response in the three domains of life[6]. A particular class of these signaling 
compounds is represented by bacterial quorum sensing (QS) molecules called autoin-
ducers (AIs). QS is a density-dependent mechanism allowing bacterial populations to 
coordinate gene expression and physiology by modulating, for example, metabolic 
pathways, secretion of virulence factors, or biofilm formation in response to AIs[7]. 
Drawing on its density-dependent nature, it can be hypothesized that the production 
of bacterial signaling molecules is abundant in the highly densely populated 
environment of the mammalian intestinal tract.

Moreover, since several eukaryotic systems from fungi to plants and animals are 
known to recognize and respond to bacterial signaling compounds, it seems likely that 
human intestinal cells constantly exposed to bacterial compounds might also have 
developed response mechanisms to AIs with consequences on intestinal physiology
[8]. The purpose of this current review is to provide clues to consider bacterial QS as a 
new actor of host-microbiota interactions. We will start by presenting the bacterial QS 
systems and evidence of QS in the gut. We will then provide an overview of the 
impact of QS molecules on host cell functions within the gut. Finally, we will 
investigate how modulation of the QS could be thought of as a therapeutic option, 
determine the key challenges, and suggest directions for future QS research.

QS: GOSSIP IN A BACTERIAL WORLD
In the conventional view of prokaryotic existence, bacteria live as unicellular orga-
nisms, with responses to external stimuli limited to detecting chemical and physical 
signals of environmental origin. This view of bacteriology is now recognized as overly 
simplistic because bacteria communicate through small ‘hormone-like’ organic 
compounds. QS is a bacterial cell-cell communication process that involves the 
production, detection, and response to extracellular signaling molecules called AIs. 
AIs enable bacteria to perceive and respond to temporal and contiguous environments 
and coordinate the behavior of colonies by altering gene expression. QS controls genes 
that direct beneficial activities when performed by groups of bacteria acting in 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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synchrony. Processes controlled by QS include bioluminescence, sporulation, 
competence, antibiotic production, biofilm formation, and virulence factor secretion 
(Figure 1A). Similar to languages between humans, these signals vary between species. 
Some bacterial species can interpret many different signals, while others respond to a 
few. The first such system was described in 1979 in Vibrio fischeri[9], a symbiotic 
species that provides marine eukaryotic hosts with light. Light emission depends on 
transcription of the luciferase operon, which occurs when the cell population density is 
sufficient to produce a threshold accumulation of a secreted AI, a specific N-acyl 
Homoserine Lactone (AHL). It was only in 1994 that the term QS was first used to 
introduce the idea of a minimal population (quorum) that was needed to trigger a 
group behavior thanks to a signal[10]. The science of studying group behavior in 
microorganisms has even been named "sociomicrobiology"[11].

Different ways of talking
Bacterial QS is highly complex and mediates communications thanks to the diversity 
of its different systems. QS systems can be divided into systems specific to species and 
mediating communication between Gram-positive bacteria, Gram-negative bacteria, 
and interspecies systems (Table 1 and Figure 1).

QS in Gram-positive species is driven in most cases by 5-17 amino acid 
oligopeptides (AIPs for AutoInducer Peptides), which are detected by membrane 
receptors belonging to the histidine kinase family and are involved in virulence or 
competence[12]. In addition, γ-butyrolactones are produced and integrated by 
Streptomyces sp. as signals controlling antibiotic production[13] or metabolism[14].

QS in Gram-negative bacteria relies on a high diversity of different systems, with 
some bacteria, such as Pseudomonas aeruginosa (P. aeruginosa), possessing several QS 
systems (Table 1). The expression of over 300 genes is regulated by QS. The most 
common system is driven by AI-1 molecules belonging to the AHL family, which are 
constituted by a homoserine lactone ring carrying a 4-18 carbon acyl chain. The lengths 
and modifications of the acyl chain give each AHL its species specificity[15]. The first 
described model is the Vibrio fischeri system, in which N-3-oxohexanoyl-homoserine 
lactone (3-oxo-C6) is synthesized by LuxI synthase, passively diffuses out of the cell 
and enters another bacterium in which it binds its receptor LuxR[16] (Figure 1B). 
Above a threshold, the AHL-receptor complex binds a consensus DNA sequence, thus 
triggering luciferase expression[17]. This model applies to all AHL systems (Table 1 
and Figure 1B). The system involves a positive feedback loop, thus promoting QS 
activation at the population scale (Figure 1B). To date, numerous homologous systems 
(i.e., genes coding synthases and receptors) have been described in many Gram-
negative bacteria, including over 70 Proteobacteria species[18] (Table 1).

Other Gram-negative QS systems involve the AI-3 molecule, initially identified in 
enterohemorrhagic Escherichia coli (E. coli) (EHEC) serotype O157:H7[19]. AI-3 
regulates flagellar genes and pathogenicity[20,21] and is thought to be present in other 
enteropathogens (Table 1). A recent study[22] uncovered the structure of AI-3 and its 
natural analogs, including the prominent analog in mouse feces in vivo, which belongs 
to the pyrazinone family. The authors showed that various gram-negative and Gram-
positive bacteria produce AI-3 analogs, thus redefining the specificity of AI-3 
molecules.

Last, the third type of QS system has been identified in Gram-negative bacteria such 
as EHEC or Vibrio species and Gram-positive bacteria such as Salmonella enterica[23,
24]. It relies on AI-2 molecules such as S-THMF-borate [for (2S,4S)-2-methyl-2,3,3’,4-
tetrahydroxy-tetrahydrofurane-borate][25] and R-THMF [for (2R,4S)-2-methyl-2,3,3’,4-
tetrahydroxy-tetrahydro furane][26]. AI-2 has now been found in various bacterial 
species in which it regulates many processes[27] and is proposed to mediate poly-
species communication (Figure 1C).

In addition, indole is produced from Trp by Gram-negative and Gram-positive 
commensal and pathogenic bacteria displaying tryptophanase activity[28-31]. As the 
source of Trp is supplied by the diet and cannot be synthesized endogenously, either 
by bacteria or by the host, indole is a bacterial byproduct of Trp metabolism. However, 
in recent years, some authors have considered indole to be a QS molecule, as it is 
produced in a density-dependent manner and regulates several bacterial physiological 
processes, such as the formation of spores or biofilms, virulence traits, bacterial 
motility, and drug resistance[29,32,33].

The versatility of QS systems and their AI molecules highlights the complexity of 
communication and thus emphasizes the key role QS could play in a diverse 
ecosystem: the intestinal microbiota.
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Table 1 Examples of bacterial quorum sensing autoinducer and corresponding systems

AI Example of 
producing bacteria QS system Bacterial QS-regulated 

processes Ref.

Staphylococcus aureus agr Virulence Novick et al[155]

Listeria monocytogenes agr Virulence Autret et al[156]

Clostridium perfringens agr Virulence Ohtani et al[157]

Enterococcus faecalis FsR Virulence Sifri et al[158]

AI peptide

Bacillus subtilis com Competence Magnuson et al[159]

scb Antibiotics Takano et al[13]

Gram +

γ-butyrolactone Streptomyces genus

scg Metabolism Du et al[14]

Vibrio fischeri LuxI/LuxR Luminescence Engebrecht et al[16]

Luminescence Mok et al[160]Vibrio harveyi LuxLM/LuxN

Virulence Waters and Bassler[161]

LasI/LasR

AI-1 (acyl-
homoserine lactones)

Pseudomonas aeruginosa

RhlI/RhlR

Virulence and biofilm Gambello and Iglewski[162], Gambello et 
al[163], Winson et al[164], and Chapon-
Hervé et al[165]

QS regulation Pesci et al[166]

Pyocyanin Gallagher et al[167]

Iron homeostasis Bredenbruch et al[168] and Diggle et al
[169]

Virulence Gallagher et al[167] and Cao et al[170]

PQS Pseudomonas aeruginosa PqsABCD/PqsR

Biofilm Diggle et al[171]

IQS Pseudomonas aeruginosa AmbBCDE/IqsR Response to stress Lee et al[172]

CAI Vibrio (cholerae) CqsA/CqsS Virulence Ng et al[173]

EHEC O157:H7 Qse/QseBC Attachment-effacement Sperandio et al[19], Walters et al[21], and 
Kim et al[22]

EPEC O26:H11 Qse/unknown Unknown Kim et al[22], and Kaper and Sperandio
[40]

AIEC LF82 Qse/unknown Unknown Kim et al[22]

Escherichia coli MG1655 Unknown Unknown Kim et al[22]

Escherichia coli 
BW25113

Unknown Unknown Kim et al[22]

Salmonella enterica Qse/unknown Unknown Kim et al[22], Kaper and Sperandio[40], 
and Walters and Sperandio[174]

Shigella flexneri Qse/unknown Unknown Kim et al[22], Kaper and Sperandio[40], 
and Walters and Sperandio[174]

Gram -

AI-3

Yersinia sp. Qse/unknown Unknown Kim et al[22], Kaper and Sperandio[40], 
and Walters and Sperandio[174]

Vibrio harveyi LuxS/LuxPQ Bioluminescence, TSS, 
protease

Surette et al[24], Mok et al[160], and 
Schauder et al[175]

Vibrio cholerae LuxS/LuxPQ Virulence and Biofilm Schauder et al[175], Zhu et al[176], and 
Hammer and Bassler[177]

Enterococcus faecalis LuxS/LuxPQ Unknown Surette et al[24], and Schauder et al[175]

EHEC LuxS/LsrB (?) Attachment-effacement Schauder et al[175], and Bansal et al[178]

Gram + 
and -

AI-2

Salmonella enterica LuxS/LsrB Pathogenicity and 
invasion

Miller et al[26], Schauder et al[175], and 
Choi et al[179]

AI: Autoinducer; AIEC: Adherent-invasive Escherichia coli; AIP: AutoInducer peptides; CAI: Cholera autoinducer-1; EHEC: Enterohemorrhagic Escherichia 
coli; EPEC: Enteropathogenic Escherichia coli; IQS: Integrated quorum sensing; PQS: Pseudomonas quinolone signal; QS: Quorum sensing.

QS in the gut



Coquant G et al. Quorum sensing in host-microbiota interactions

WJG https://www.wjgnet.com 7251 November 14, 2021 Volume 27 Issue 42

The study of QS in the gut is still a relatively recent matter of interest, as QS is 
generally addressed from the pathogenic bacterium P. aeruginosa point of view in the 
lung ecosystem. However, many arguments suggest that QS is a new player in the gut 
ecosystem.

AHLs in the gut: As part of the eavesdropping mechanism, some bacteria from the 
human gut can sense AHLs from other species (Figure 1A). Gram-negative bacilli such 
as E. coli, Enterobacter, or Klebsiella express the receptor SdiA, which can sense AHL, 
without producing such a signal[34]. The opportunistic pathogen P. aeruginosa, which 
targets the digestive tract in severely immune-compromised patients[35,36], and the 
more common enteropathogen Yersinia enterolitica are known to produce AHLs[37]. 
Analyses from sequencing databases have shown the presence of LuxI/LuxR 
homologs in a few commensals: Hafnia alvei, Edwardsiella tarda, and Ralstonia sp. strain 
5_7_47FAA[37]. However, the latter article did not demonstrate the presence of AHLs 
but only homologs of the genes encoding the synthase complex and the receptor. A 
cohort low sample size pediatric study (n = 4) demonstrated, thanks to bacterial 
reporter systems, the presence of AHLs in the feces of patients without identifying 
them[38]. Our team investigated the question of AHLs in the human gut in the context 
of inflammatory bowel disease (IBD). With high-resolution mass spectrometry, we 
identified approximately ten AHLs in the feces of healthy patients, IBD patients in 
remission, and flare[39]. We also found a never-described AHL, 3-oxo-C12:2-HSL, that 
was less represented in IBD patients, especially in flares, than in healthy subjects[39].

AI-2 in the gut: AI-2 presence in the gut has been reported by several articles[19,40,41] 
but is mainly linked to pathogenic bacteria such as enterohemorrhagic E. coli[19]. As 
AI-2 is considered a “universal language”, it is not surprising to find this AI in an 
ecosystem as diverse as the gut microbiota.

Thompson et al[42] showed that most Firmicutes contain LuxS protein orthologs, an 
important enzyme that allows AI-2 production. In contrast, its presence is less 
represented in Bacteroidetes. Mutant E. coli engineered to regulate AI-2 levels in the 
mouse gut counteract antibiotic-induced dysbiosis[42]. AI-2 produced by E. coli 
benefits Firmicutes while restraining Bacteroidetes representation[42], suggesting an 
important role of AI-2 in the gut ecosystem.

Other QS signals: Concerning other QS signals, there is less evidence of their implic-
ations in gut microbiota. A recent study showed a correlation between indole and 
Clostridioides difficile (C. difficile) infection (CDI) with higher indole concentrations for 
patients with CDI than for CDI-negative patients with diarrhea[43]. C. difficile induces 
indole production through overexpression of the tryptophanase gene tnaA in entero-
toxigenic E. coli and other indole-producing anaerobes. This increased indole level has 
been shown to be detrimental to some of the beneficial bacteria and favors C. difficile 
colonization.

These mechanisms collectively suggest a complex bacteria-bacteria QS network in 
the gut ecosystem. The key issue is now to decode every language to fully understand 
its potential in host-microbiota interactions.

Gossip in the gut: Direct dialog with the host and indirect effects through bacterial 
behavior
In an ecosystem as networked and complex as that in the gut, bacterial communication 
has to be seen from a large perspective, with multiple bacterial populations 
crosstalking to each other through eavesdropping or crosstalking between species 
(Figure 1A). Therefore, the question of how QS affects the host can be addressed in 
two ways (Figure 2).

QS modulates microorganism metabolism, which in turn can affect the host’s 
physiology; one could consider this to be an indirect effect of QS molecules on the host 
(Figure 2). Bacterial metabolism modifies beneficial byproducts such as SFCAs and 
bile acids[42]. By modulating intestinal microbiota composition, QS can indirectly 
influence gut physiology by promoting deleterious or beneficial bacteria (Figure 2). 
Thompson et al[42] demonstrated that AI-2 modulates dysbiotic microbiota composi-
tion by enhancing Firmicutes growth. Several reports in vitro and in vivo describe how 
enteropathogens can signal through QS to commensals and trigger the expression of 
toxins, virulence factors, and biofilm formation[44-46]. In addition, AI-3 controls the 
genes that enable enterohemorrhagic Escherichia coli to cause lesions by the attachment 
and effacing process[19].

The question addressed in this review is how quorum-sensing molecules can 
directly affect the host, independent of the producing bacteria (Figure 2).
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Figure 1 Main known mechanisms of quorum sensing activation in bacteria. A: Quorum sensing (QS) signaling depends on the release of 
autoinducers (AIs) in the environment. Above a threshold concentration depending on bacterial density, QS is activated and triggers gene expression. QS can be 
classified into three categories: self-talk (i.e., one species “talking” to itself), crosstalk (i.e., different species communicating using common AI), and eavesdropping, 
which refers to “listening” by species unable to produce AI by itself; B: The acyl-homoserine lactone (AHL) used by Gram-negative bacteria is produced by the 
synthase complex, and AHL can freely diffuse through the membrane. AHL is recognized by its intracellular receptor, and the complex binds to target gene regulatory 
elements; C: The AI-2 system is used by both Gram-negative and Gram-positive bacteria. AI-2 needs a transporter protein to exit and enter the cell. For both AHLs 
and AI-2, there is a positive feedback loop, allowing the expression of the synthase complex and receptor of AIs. AHL: Acyl-homoserine lactone; AI: Autoinducer.

Figure 2 Interkingdom dialog between bacteria and the host through quorum sensing molecules. When reaching a threshold concentration within 
a bacterial community, quorum sensing (QS) autoinducers synchronize group behaviors such as virulence and attachment-effacement strategies as in 
enterohemorrhagic Escherichia coli, thus indirectly affecting the host (dotted line arrow, middle). QS molecules can impact the host through direct contacts (full arrow, 
left) with host cells, such as epithelial or immune cells, as has been extensively shown for the Pseudomonas aeruginosa QS molecule 3-oxo-C12-HSL, which freely 
enters mammalian cells. In addition, QS molecules can indirectly modify the host (dotted line arrow, right) through effects on other bacterial populations with different 
metabolic properties. QS: Quorum sensing.

HOST: “YOU’VE GOT MAIL”
As discussed above, it remains largely unknown how the microbial communities 
hosted in the gut lumen use QS communication systems. However, there is evidence 
that at least several bacterial species commonly found in the gastrointestinal tract have 



Coquant G et al. Quorum sensing in host-microbiota interactions

WJG https://www.wjgnet.com 7253 November 14, 2021 Volume 27 Issue 42

the capacity to synthesize QS molecules[6,8,39].
Studies on the impact of QS molecules on the biology of intestinal host cells have 

focused on key actors of barrier function and the immune response. Intestinal barrier 
function includes the ability of epithelial cells to form: (1) A selective barrier whose 
permeability is controlled by cell-cell junctions[47], (2) Synthesize a protective mucus 
layer and antimicrobial peptides[48,49], and (3) Secrete cytokines and chemokines 
allowing appropriate crosstalk with the underlying immune compartment. The 
intestinal immune system is involved in tolerogenic or inflammatory responses to the 
commensal microbiota or pathobionts/pathogens[50,51], and it represents the largest 
immune organ in the body. Intestinal epithelial cells, intraepithelial lymphocytes, and 
immune cells located in the lamina propria are involved in the modulation of 
immunity and inflammation by microbiota[52].

The impact of QS molecules on barrier function and the immune response has been 
mainly studied in the context of host-pathogen interactions, probably because most of 
the data rely on AHLs produced by P. aeruginosa. However, evidence of the presence 
of QS molecules in the healthy intestinal lumen has led to further study on their effects 
on the host compartment, including barrier function, inflammatory process, and 
carcinogenesis.

Effects of quorum-sensing molecules on intestinal epithelial barrier function
AHLs: 3-oxo-C12-HSL produced by P. aeruginosa is probably the QS molecule whose 
effects on the barrier function of epithelial cells have been the most studied during the 
last two decades[53]. P. aeruginosa synthesizes various virulence factors, which act 
synergistically with QS molecules to destabilize cell-cell junctions and promote 
bacterial transmigration across epithelial and endothelial barriers[54].

3-oxo-C12-HSL induces an increase in paracellular permeability to ions and 
macromolecules[55-60] (Table 2). This deleterious effect of 3-oxo-C12-HSL on barrier 
function is accompanied by an alteration of tight junctions (TJs) (Figure 3). In the Caco-
2 intestinal epithelial cell line, 3-oxo-C12-HSL induced a decrease in the expression, as 
well as mislocalization, of the TJ proteins occludin, tricellulin, ZO- 1, ZO-3, JAM-A, 
and of the adherent junction proteins E-cadherin and β-catenin[55,58-61] (Table 2). 
Loss of occludin/ZO-1 and tricellulin/ZO-1 interaction at the plasma membrane 
suggested the dismantling of TJ protein complexes[61]. In addition, hyperphos-
phorylation of occludin, ZO-1, ZO-3, JAM-A, E-cadherin, and β-catenin on tyrosine 
residues (as well as serine and threonine for E-cadherin and ZO-1) was reported in the 
presence of 3-oxo-C12-HSL, whereas the serine and threonine residues of occludin, 
JAM-A and β-catenin were less phosphorylated[58,59].

Several signaling mechanisms, including p38 and p42/44 MAP kinases[59,60], Ca2+ 
release[57,58], matrix metalloproteinases MMP-2 and MMP-3 via protease-activated 
receptor (PAR) signaling[55] and oxidative stress[62], have been implicated in 3-oxo-
C12-HSL effects on junctional proteins and on the concomitant increase in 
permeability (Table 2).

As discussed above, the most prominent AHL detected in the human intestinal 
ecosystem is unsaturated 3-oxo-C12:2-HSL[39]. Despite a high structural homology 
with the P. aeruginosa 3-oxo-C12-HSL, this intestinal AHL has recently been found to 
have opposite properties regarding the barrier function (Table 2). In contrast to 3-oxo-
C12-HSL, 3-oxo-C12:2-HSL does not increase paracellular permeability in Caco-2/TC7 
enterocytic cells[39,61]. Most importantly, 3-oxo-C12:2-HSL can limit TJ disruption 
induced by the proinflammatory cytokines interferon-gamma (IFN-γ) and tumor 
necrosis factor-α (TNF-α)[61] (Figure 3). In these conditions mimicking intestinal 
inflammation encountered, for example, in IBD, 3-oxo-C12:2-HSL maintains the 
interaction of the TJ transmembrane proteins occludin and tricellulin with their main 
cytoplasmic partner ZO-1. It limits cytokine-induced occludin and tricellulin ubiquit-
ination and the interaction of these TJ proteins with the E3 ubiquitin ligase itch, 
suggesting stabilization of TJ complexes at the plasma membrane in inflammatory 
conditions. Altogether, these results show that “commensal” intestinal 3-oxo-C12:2-
HSL mitigates the deleterious effects of the inflammatory environment on TJs, which 
are key actors in epithelial barrier function[61].

Epithelial barrier disruption may combine TJ alteration and an unrestricted passage, 
which occurs following epithelial damage, generated, for example, by cell apoptosis 
upon exposure to harmful molecules such as high doses of proinflammatory cytokines
[63-65]. This TJ-independent breaking of the barrier allows translocation of large 
particles such as large proteins, entire bacteria, and viruses, which a priori cannot cross 
the epithelium through the paracellular route even in conditions where TJs are “open”
[66]. The 3-oxo-C12-HSL produced by P. aeruginosa exerts cytotoxic effects, particularly 
through apoptosis induction, in numerous cell types, including the intestinal and 
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Table 2 Effects of quorum sensing molecules on different parameters of the intestinal epithelial barrier function

QS molecule Effects Ref.
Effects on the intestinal epithelial migration

Increased migration at low concentrations (1.5-12 μmol/L) vs inhibition at 200 μmol/L Karlsson et al[72]3-oxo-C12-HSL

Interaction with IQGAP1 and increase in Rac1/Cdc42 (1.5-200 μmol/L) Karlsson et al[72]

Effects on the intestinal epithelial permeability and intercellular junctions

Increased permeability to ions and macromolecules (100-400 μmol/L) Eum et al[55], Vikström et al[58-60], 
and Aguanno et al[61]

Activation of p38 and p42/44 and calcium signaling (100-200 μmol/L) Vikström et al[58-60]

Decreased expression levels of tight junction genes (100-400 μmol/L); Disassembly of 
tight and adherens junctions (modification of their phosphorylation status and 
involvement of MMP-2 and -3)

Eum et al[55], Vikström et al[58-60], 
and Aguanno et al[61]

Decreased levels of tight junction proteins occludin and tricellulin (100-400 μmol/L) Eum et al[55]

3-oxo-C12-HSL

Decreased protein levels of extracellular matrix and tight junction proteins (400 
μmol/L)

Tao et al[62]

3-oxo-C12:2-HSL No deleterious effects on permeabilityProtection of tight junction integrity and 
maintenance of junctional complexes at the plasma membrane under pro-
inflammatory conditions

Landman et al[39] and Aguanno et al
[61]

3-oxo-C14-HSL Decreased protein levels of extracellular matrix and tight junction proteins (400 
μmol/L)

Tao et al[62]

Decreased permeability to ions and increased expression of genes coding tight junction 
and cytoskeleton proteins

Bansal et al[76] and Shimada et al[77]

Decreased permeability to macromolecules Venkatesh et al[79]

Indole and indole 
derivatives

Increased transcripts levels of genes coding tight junction proteins Shin et al[78]

Effects on the mucus layer components

Decreased MUC3 mRNA levels (30 μmol/L) Taguchi et al[70]3-oxo-C12-HSL

Decrease in Muc2 production in goblet cell-like cell line (100 μmol/L) vs increase in 
colonic cell line (400 μmol/L)

Tao et al[67]

Indole Increased expression of genes involved in the production of mucins Bansal et al[76]

Effects on intestinal epithelial cell viability

Mitochondrial dysfunction and induction of apoptosis in goblet cell-like cell line (100 
μmol/L) and in colonic cell line (30-100 μmol/L)

Tao et al[67-69], and Taguchi et al[70]3-oxo-C12-HSL

Induction of apoptosis, mitochondrial dysfunction, oxidative stress and blocking of 
cell cycle (400 μmol/L)

Tao et al[62]

3-oxo-C14-HSL Induction of apoptosis, mitochondrial dysfunction, oxidative stress and blocking of 
cell cycle (400 μmol/L)

Eum et al[55], Vikström et al[58-60], 
Aguanno et al[61], and Tao et al[62]

CSF Reduction of oxidative stress-induced cell death and loss of the epithelial barrier 
(involving HSP27 and p38/MAPK pathway)

Fujiya et al[74]

CSF: Competence and sporulation factor; HSL: Homoserine lactones; HSP27: Heat shock protein 27; IQGAP1: IQ motif containing GTPase activating 
protein 1; MAPK: Mitogen-activated protein kinase; MMP-2/-3: Matrix metalloproteinase-2/-3; MUC: Mucin; QS: Quorum sensing; Rac1/Cdc42: Ras-
related C3 botulinum toxin substrate 1/cell division control protein 42 homolog.

colonic epithelial cell lines LS174T[67-69], Caco-2[70], and CT26[62] (Table 2 and 
Figure 3). Apoptosis triggered by 3-oxo-C12-HSL relies on oxidative stress and 
caspase-dependent processes[62,69], whereas short-chain C4-HSL does not exert any 
apoptotic effects[67]. Interestingly, the increase in paracellular permeability to 
macromolecules induced by 3-oxo-C12-HSL was dramatically exacerbated in Caco-
2/TC7 cells cultured in the presence of IFN-γ and TNF-α or cocultured with THP-1 
activated monocytic cells[61]. These synergistic effects on barrier disruption probably 
rely on epithelial cell apoptosis, as they are abolished by a caspase inhibitor 
(unpublished results). In contrast, intestinal AHL 3-oxo-C12:2-HSL neither exerts 
cytotoxic effects nor synergizes with proinflammatory cytokines to disrupt the 
epithelial barrier[61].
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Figure 3 Effects of quorum sensing molecules on intestinal barrier function (see Table 2) and on the immune response (see Table 3). The 
Pseudomonas aeruginosa quorum sensing (QS) molecule 3-oxo-C12-HSL induces apoptosis in various cell types, including epithelial cells, promoting a breach in the 
intestinal barrier. In addition, 3-oxo-C12-HSL disrupts tight junctions, thus leading to increased paracellular permeability, and affects mucin production. Conversely, 
intestinal acyl-homoserine lactone 3-oxo-C12:2-HSL and the tryptophan metabolite indole protect tight junctions. Bacillus subtilis CSF, which binds to OCTN2, also 
promotes intestinal barrier integrity by reducing cell death through activation of HSP27 signaling. While 3-oxo-C12-HSL stimulates chemoattraction and phagocytosis 
in neutrophils and induces cell death, its pro- or anti-inflammatory effects on immune cells are more complex (see Table 3). Autoinducers (AI)-2 and AI-3 both exert 
proinflammatory effects on macrophages by inducing the expression of the immune mediators TNSF9 and interleukin (IL)-8, respectively, whereas 3-oxo-C12:2-HSL 
reduces IL-8 production by epithelial cells. It remains to be clarified how all these QS molecules could cross the intestinal barrier and/or reach immune cells in vivo in 
a physiological context, as illustrated by dotted lines. Last, just as QS molecules can impact eukaryotic cells, the host can interfere with QS: the hormones 
epinephrine/norepinephrine bind to the AI-3 receptor in EHEC; intestinal epithelial cells secrete an AI-2 mimic in addition to paraoxonase (PON) enzymes degrading 
homoserine lactones. CSF: Competence and sporulation factor; AI: Autoinducer; PON: Paraoxonase; AhR: Aryl hydrocarbon receptor; IL: Interleukin.

Epithelial injury accompanying acute inflammatory conditions is followed by a re-
epithelialization phase, during which cell migration plays an important role[71]. 
Interestingly, 3-oxo-C12-HSL has been shown to dose-dependently modulate Caco-2 
cell migration in a wound-healing assay and interact directly with the GTPase 
activating protein IQGAP1, stressing a potential role of AHL in cytoskeletal reorgan-
ization[72] (Table 2).

Another key actor of the intestinal physical barrier is the mucus layer, which is 
essential to maintain segregation between luminal microorganisms and the epithelium
[49]. 3-oxo-C12-HSL induces reduced expression and production of Mucin2 in LS174T 
cells[67], as well as a decrease in the levels of MUC3 mRNA in the Caco-2 cell line 
cultivated in an undifferentiated state[70] (Table 2 and Figure 3). Interestingly, differ-
entiated Caco-2 cells, which express higher levels of mucin 3, showed less sensitivity to 
3-oxo-C12-HSL-induced apoptosis in the latter study, and the addition of mucin dose-
dependently protected cells from apoptosis induced by this AHL[70].

It must be specified that all these studies on barrier function were carried out with 
high concentrations of AHLs (100-400 μmol/L) (Table 2), knowing that the concen-
tration of 3-oxo-C12-HSL has been estimated to reach 600 μmol/L in biofilms of P. 
aeruginosa[73].

Gram-positive QS peptides: The effects of AIP (found in Gram-positive bacteria) on 
intestinal barrier function are much less documented than those of Gram-negative QS 
molecules. Whereas most of the studies on the effects of AIP on host inflammation 
describe the indirect effects of AI through the modulation of bacterial metabolism, one 
article reported the direct effects of AIP. Fujiya et al[74] reported that Bacillus subtilis 
AIP, named competence and sporulation factor (CSF), induces HSP27 expression and 
the p38/MAPK pathway and reduces cell death and the loss of the epithelial barrier 
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induced by oxidative stress (Table 2 and Figure 3). Inducible HSPs are needed under 
stress and help stabilize proteins to prevent denaturation[75]. B. subtilis is part of the 
normal microbiota; it is also used as a commercial probiotic and is beneficial to the 
host. Moreover, CSF seems to signal through a receptor named OCTN2 (organic 
cation/carnitine transporter 2), and polymorphisms of the gene encoding this receptor 
are part of the susceptibility locus of Crohn’s disease[74].

Indole: Indole exerts a beneficial role on TJ protein expression in several intestinal 
epithelial cells[76-79] (Table 2). Oral administration of indole to germ-free mice, which 
display very low indole fecal levels, increased the expression of TJ and adherens 
junction-associated proteins in the colonic epithelium and improved their resistance to 
dextran sulfate sodium (DSS)-induced colitis[77]. Indole has been identified as an 
endogenous agonist of aryl hydrocarbon receptor (AhR), which can compete for 
receptor binding with well-known AhR ligands[80]; several studies have also stressed 
the key role of the AhR pathway in indole derivative protective effects[81-83]. 
Accordingly, several studies have shown that AhR activation strengthens the epithelial 
barrier by protecting TJs[82,84-87] (Figure 3) or by stimulating antimicrobial peptide 
production via interleukin (IL)-22[88,89].

Effects of QS molecules on immune response
In addition to their effects on the intestinal barrier, QS molecules were analyzed on 
different actors of the immune compartment of the intestine, which is involved in a 
complex crosstalk with the epithelial compartment to maintain an appropriate 
immune response toward the content of the intestinal lumen.

AHLs: Our group described that 3-oxo-C12:2-HSL, an AHL recently discovered in the 
human gut[39], exerts anti-inflammatory effects on intestinal epithelial cells. During 
inflammation, intestinal epithelial cells can secrete some cytokines, among which the 
chemokine IL-8 promotes the recruitment of neutrophils in the mucosa and 
participates in the acute-phase response[90,91]. In a study comparing the effect of 3-
oxo-C12:2-HSL to 3-oxo-C12-HSL produced by P. aeruginosa, our group demonstrated 
in the human enterocytic Caco-2/TC7 cell line that 3-oxo-C12:2-HSL, but not 3-oxo-
C12-HSL, attenuated the induction of IL-8 secretion induced by the proinflammatory 
cytokine IL-1β[39,92] (Table 3 and Figure 3). This potential anti-inflammatory effect of 
3-oxo-C12:2-HSL is consistent with the hypothesis of a beneficial role of this AHL in 
gut ecosystems[39], as are its protective effects on TJ integrity. The impact of intestinal 
3-oxo-C12:2-HSL on immune cells remains largely unknown.

The effects of 3-oxo-C12-HSL depend on the concentration and cell type studied[6,
93]. Telford et al[94] showed that 3-oxo-C12-HSL inhibits the production of TNF-α and 
IL-12 [a cytokine involved in the T helper cell-1 type response (Th1-type response)] by 
lipopolysaccharide-activated macrophages at high concentrations and stimulates the 
production of antibodies, particularly immunoglobulin G1, which is an indicator of a 
Th2-type response at lower concentrations (Table 3). Conversely, Smith et al[95] 
showed that 3-oxo-C12-HSL activates and promotes the differentiation of naive T 
lymphocytes toward a Th1-like phenotype, while Ritchie et al[96] observed that 3-oxo-
C12-HSL inhibits the differentiation of both Th1 and Th2 T lymphocytes (Table 3). 
Altogether, these results demonstrated that 3-oxo-C12-HSL is an immunomodulator of 
the Th1/Th2 response. 3-oxo-C12-HSL and two other QS molecules from P. aeruginosa, 
PQS (Pseudomonas quinolone signal), and HHQ (4-hydroxy-2-heptylquinoline), 
suppress both innate and adaptive immune responses acting on lymphoid cells, 
dendritic cells, and neutrophil monocytes/macrophages[22,97,98]. 3-oxo-C12-HSL and 
PQS decreased the production of the cytokines IL-12 and IFN-γ by activated dendritic 
cells, which in turn decreased T-cell proliferation and activity[98-100] while promoting 
the induction of regulatory T-cells[99] (Table 3). 3-oxo-C12-HSL provoked apoptosis of 
macrophages, neutrophils, and T lymphocytes through activation of caspases and the 
mitochondrial apoptosis pathway[101,102]. Several reports described inhibition of the 
nuclear factor-kappa B (NF-κB) pathway by QS molecules from P. aeruginosa[93,103-
106] and/or the activation of signaling pathways such as p38 MAPK[105,107] 
(Table 3). It has been recently demonstrated that only long-chain AHLs such as 3-oxo-
C12-HSL modulate the phenotype of dendritic cells and the type 2 immune response 
through mechanisms involving retinoic acid signaling and the protein kinase AKT
[106].

The molecular mechanisms involved in the effects of QS molecules from P. 
aeruginosa on immune cells are independent of the Toll-like receptor pathway[105], 
which is a classical cell process involved in recognizing pathogen fragments. Some 
reports have indicated that the perception of AHL by mammalian cells involves the 
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Table 3 Effects of quorum sensing molecules on inflammation in different cell types

Cell type QS molecule Effects Ref.
Effects on innate immune cells

Anti-inflammatory effects on IL-12 and TNF-α 
(0.1-100 μmol/L)

Telford et al[94]

Increased TLR2 and TLR4 expression and 
decreased TNF-α production (1-100 μmol/L)

Bao et al[180]

Pro-apoptotic effects (12-50 μmol/L) Tateda et al[102]

Increased phagocytosis (100 μmol/L) Vikström et al[107]

NF-κB inhibition (4.7 μmol/L) Kravchenko et al[104]

Dose-dependent anti-inflammatory effects (1-50 
μmol/L)

Kravchenko et al[105]

Involvement in p38/MAPK signaling (1-100 
μmol/L)

Kravchenko et al[105], Vikström et al[107], 
Glucksam-Galnoy et al[181]

Activation of the Unfolded Protein Response 
(6.25-100 μmol/L)

Zhang et al[182]

3-oxo-C12-HSL

Change in cell volume and shape (10-50 μmol/L) Holm et al[183]

Indole derivatives Prevents the induction of pro-inflammatory 
cytokines

Krishnan et al[184]

Macrophages

AI-2 Induction of the expression of cytokines, 
chemokines and TNFSF9

Li et al[41]

Monocytes AI-3 and analogues Increase in IL-8 secretion Kim et al[22]

Pro-apoptotic effects (100 μmol/L) Boontham et al[185]

No effect on IL-10 secretion (5-30 μmol/L) Skindersoe et al[100]

Increased IL-10 production (5-100 μmol/L) Li et al[99]

Decreased IL-12 secretion (5-100 μmol/L) Li et al[99] and Skindersoe et al[100]

Dendritic cells 3-oxo-C12-HSL

Increased induction of Treg (5-100 μmol/L) Li et al[99]

Chemoattraction (0.01-100 μmol/L) Karlsson et al[186] and Zimmermann et al
[187]

Activation of MAPK signaling (12-50 μmol/L) Tateda et al[102] and Singh et al[188]

Increased phagocytosis (10 μmol/L) Wagner et al[189]

Neutrophils 3-oxo-C12-HSL

Pro-apoptotic effects (12-50 μmol/L) Tateda et al[102]

Effects on adaptive immune cells

Inhibition of proliferation and activation (0.1-100 
μmol/L)

Telford et al[94], Boontham et al[185], Gupta 
et al[190], and  Hooi et al[191]

Activation of naïve T cells towards Th1 phenotype 
(5 μmol/L)

Smith et al[95]

Decreased secretion of IL-4 and IFN-γ (5 μmol/L) Ritchie et al[96]

Induction of apoptosis via the mitochondria 
pathway (100 μmol/L)

Jacobi et al[101]

3-oxo-C12-HSL

Induction of Treg (1-50 μmol/L) Li et al[99]

Re-programming into tolerogenic T cells Cervantes-Barragan et al[192]

T cells

Indole derivatives

Promotion of differentiation towards a regulatory 
type 1 phenotype

Aoki et al[193]

B cells 3-oxo-C12-HSL Modulation of immunoglobulin production (0.1-
100 μmol/L)

Telford et al[94] and Ritchie et al[194]

ILC Indole derivatives Promotion of IL-22 production Zelante et al[83]

Effects on epithelial cells

Pulmonary tract epithelial Induction of IL-8 production and NF-B activation 3-oxo-C12-HSL Smith et al[195]
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(100 μmol/L)cells

Increased expression levels of pro-inflammatory 
cytokines

Jahoor et al[115]

3-oxo-C12-HSL Mitigation (1-10 μmol/L) or aggravation (> 50 
μmol/L) of IL-8 expression induction

Peyrottes et al[92]Intestinal epithelial cells
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bitter taste receptor T2R38[108-110], which is widely expressed in the human digestive 
tract from the tongue to the colon[111]. Polymorphisms in the TAS2R38 gene may 
increase susceptibility to infections and colorectal cancer (CRC)[112]. It has been 
shown that these receptors use inflammatory pathways, which differ according to the 
cell type and their localization[113]. 3-oxo-C12-HSL binds to the transcription factor 
peroxisome proliferator-activated receptor γ[114], which has been proposed as a 
potential receptor for AHL and seems to be involved in AHL proinflammatory effects
[115]. Recently, Moura-Alves et al[116] showed that QS molecules produced by P. 
aeruginosa modulated the activity of the transcription factor AhR, which plays an 
important role in regulating innate and adaptive immunity[117,118].

Overall, it has been demonstrated that QS molecules from P. aeruginosa have an 
immunosuppressive effect, allowing the pathogen to evade the immune system during 
infection. It remains to be determined whether endogenous intestinal 3-oxo-C12:2-HSL 
participates in controlling intestinal immunity in health and diseases and to decipher 
the underlying mechanisms.

AI-2 and AI-3: AI-2 is produced by both Gram-negative and Gram-positive bacteria 
and is mainly studied for its role in bacteria-bacteria communication and the virulence 
of pathogenic strains[8]. However, little is known about the effect of AI-2 on immune 
cells. In mice, AI-2 administration has no effect by itself on cytokine expression but 
aggravates lung inflammation during P. aeruginosa infection by interfering with QS 
molecules produced by this pathogen[119]. In cultured macrophages, AI-2 induces the 
expression of several cytokines and chemokines as well as the expression of TNF 
superfamily member 9 (TNFSF9), a protein involved in the immune response[41] 
(Figure 3).

The AI-3 system is mainly described in enterohemorrhagic E. coli and is therefore 
linked to the development of intestinal epithelial lesions, suggesting its proinflam-
matory activity[120] (Table 3 and Figure 3). Indeed, AI-3 and its analogs increase IL-8 
secretion by THP-1 monocytes[22]. Given that the AI-3 structure has only been 
uncovered recently[22], the direct effect of this molecule on the host is poorly known 
so far. In addition, since the AI-3 bacterial receptor can recognize host-synthesized 
epinephrine/norepinephrine (Figure 3), one could suggest that adrenergic receptors 
could recognize AI-3[19]. However, it has been shown that AI-3 and its analogs do not 
activate or modulate adrenergic signaling[22].

Gram-positive AIP: The effects of Gram-positive AIP bacteria on inflammation are far 
less documented than those of Gram-negative QS. Moreover, most of the studies on 
the effects of AIP on host inflammation describe the indirect effects of AIs through the 
modulation of bacterial metabolism.

A study described that AIP could selectively cross intestinal epithelial cell Caco-2 
cell monolayers[121]. Additionally, it has been reported that AIP can cross the highly 
selective blood-brain barrier in vivo[122]. These processes seem to be peptide-specific: 
Clostridium acetobutylicum AIP easily penetrates the blood-brain barrier, while Strepto-
coccus pneumonia’s AIP crosses it poorly[122]. This shows that small molecules such as 
AIs affect the host's physiology beyond the gastrointestinal tract. For instance, it has 
been described that AIP has various effects on muscle inflammation as part of the gut-
muscle axis. De Spiegeleer et al[121] performed an extensive screening of 75 QS 
molecules on muscle cells. They demonstrated both pro- and anti-inflammatory effects 
of four peptides from the genera Staphylococcus, Streptococcus, Lactobacillus, and 
Bacillus, and some of those peptides have been described in the gut.
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Indole: Several studies have reported that indole exerts anti-inflammatory effects in 
the intestine and protects against pathogenic infection[123] (Table 3). AhR, an 
important contributor to the maintenance of innate and adaptive immunity, drives 
most of these effects, particularly in the intestinal mucosa[117,118,124].

Several reports have shown altered Trp metabolism in gut inflammation in humans 
and mice [81,125-127]. A decrease in endogenous indole was observed in human feces 
from subjects with celiac disease or IBD[127]. This was associated with a decrease in 
AhR activity in the intestinal mucosa. In parallel, an increase in Trp levels in the same 
samples suggested that the gut microbiota-dependent metabolism of Trp was altered
[127]. In mouse models of celiac disease and IBD, the implantation of indole-producing 
bacteria increases AhR activity and protects them from gut inflammation[81]. 
Interestingly, Moura-Alves et al[116] showed that 3-oxo-C12-HSL and HHQ had an 
inhibitory effect on AhR activity and could compete with well-known activators of 
AhR. This observation raises the question of potential competition between several QS 
molecules for AhR-dependent modulation of innate and adaptive immunity.

Effects of QS molecules on carcinogenesis
There is growing evidence that gut microbiota dysbiosis plays a major role in CRC 
development[128]. Indeed, modifications of commensal gut microbiota in favor of 
opportunist bacteria promote intestinal inflammation, which is well known as a driver 
event in CRC onset[129,130]. Thus, the concept of the “bacterial driver-passenger 
model” highlights the crosstalk between host immunity and colonic microbiota[131]. 
For example, some driver pathogens, such as Bacteroides fragilis, have been proposed to 
promote a strong Th17 inflammatory response[132]. This proinflammatory microen-
vironment might favor colonization by opportunist pathogens such as Fusobacterium 
spp. Accordingly, Fusobacteria-dominant biofilms were associated with human CRC
[133-135]. Altogether, these findings support that polymicrobial interactions and 
intercellular communications might play an important role in CRC development[136]. 
Nevertheless, how bacteria communicate with themselves and with the host during 
CRC remains poorly understood.

Recent findings provide new insights into the role of the QS molecule AI-2 in 
intercellular communication during CRC. First, the AI-2 concentration is increased in 
tumors compared to the surrounding normal tissue in human CRC[41]. These levels 
also correlate with the progression of the disease according to the CRC TNM (tumor 
node and metastasis) score[41]. Regarding the tumor immune microenvironment, the 
AI-2 concentration positively correlates with TNFSF9 expression, which is mainly 
expressed by tumor-associated macrophages, and negatively correlates with the 
CD4/CD8 ratio, suggesting that AI-2 associates with the antitumor response[41]. At 
the molecular level, it was demonstrated that AI-2 induces in vitro M1 polarization of 
U987-derived macrophages through the TNFSF9 signaling pathway[137]. These 
findings reveal that AI-2 could be an important factor linked to the immune tumor 
microenvironment and shed light on the role of the quorum-sensing system during 
CRC development and progression. Interestingly, mammalian epithelial cells are able 
to produce AI-2 analog molecules that mimic AI-2 effects (Figure 3), illustrating the 
complexity of bacteria-host crosstalk[45]. Thus, a better characterization of QS 
molecules involved in tumorigenesis might be an opportunity to improve our 
knowledge of the mechanisms underlying CRC development.

The host strikes back to QS
Interkingdom signaling works in two ways, as host cells are able to counterattack the 
QS system using several strategies.

As described above, as part of AI-3 signaling, host hormones such as epinephrine 
and norepinephrine can be recognized by EHEC and lead to the expression of 
virulence genes[19]. This AI-3/epinephrine/norepinephrine signaling is not restricted 
to EHEC, and the receptor QseC is also expressed, for example, by the intestinal 
pathogenic Salmonella enterica serovar Typhimurium[138] (Table 1). Recently, in silico 
analysis suggested that another catecholamine neurotransmitter, dopamine, can bind 
to QseC. However, no effect in vitro was measured[139]. This study of interkingdom 
signaling through hormones has been named “microbial endocrinology”[140].

Interestingly, there is evidence that human epithelial cells can produce AI-2 
mimicking molecules. The study was conducted on Caco-2 intestinal epithelial cells, 
and the authors showed that an AI-2 mimic is produced not only when cells are in 
contact with bacteria but also after TJ disruption by calcium deprivation or DSS 
treatment[45]. This emphasizes how much AI-2 is a universal language between 
Gram-positive and Gram-negative bacteria and the host (Figure 3).
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Hosts have also developed defense tools against QS, leading to a mechanism named 
quorum quenching. Mammals can synthesize enzymes named paraoxonases (PONs) 
that hydrolyze the lactone ring of long-chain AHLs[141] (Figure 3). There are three 
types of PONs (PON 1, PON2, PON3) that are highly conserved across species, and 
PON2 has greater activity on AHLs[142]. It has been demonstrated that PON2 is more 
highly expressed in the human jejunum than in other parts of the intestine[143]. 
Interestingly, PON1 and PON3 are expressed at lower levels in patients with Crohn’s 
disease and ulcerative colitis than in healthy subjects[144]. A case-control study has 
also shown that carriage of the PON1 R192 allele in Ashkenazi Jewish may confer 
protection against the development of IBD. This allele was significantly less common 
among IBD Ashkenazi patients, with a significant odds ratio of 0.61[145].

QS IN THE GUT: FUTURE DIRECTIONS FOR THIS NEW PLAYER
Using QS to modulate gut microbiota: Application in gut ecosystem disorders
Gut dysbiosis is an imbalance in the composition of microorganisms inside the 
digestive tract, especially described with bacteria. This dysregulation has been shown 
to be a preponderant risk factor in several digestive and extra digestive diseases[146-
149]. For example, in IBD and recurrent C. difficile infections, it is well known that the 
over- and underrepresentation of certain phyla can lead to a pathologic state[150,151]. 
Modulating the gut microbiota may be the key to treating or even preventing such 
diseases by restoring normobiosis. Fecal microbiota transplantation is now commonly 
used in the setting of C. difficile infections[152,153]. However, the lack of standard-
ization and the safety and quality issues of this procedure call for the development of 
new strategies.

Theoretically, AHLs remain good candidates in this approach using natural 
molecules from QS to modulate microbiota composition and gut inflammation. As 
seen above, AHL signaling may involve different pathways that contribute to 
controlling intestinal inflammation, such as inhibition of NF-κB, modulation, 
inhibition of MAPK activation, increase in regulatory T cell induction, decrease in 
proinflammatory cytokines, and modulation of junctional complexes in the epithelial 
barrier. Indeed, using QS molecules could play a role in both components (gut 
microbiota and host responses) of gut ecosystem disorders observed in metabolic and 
inflammatory diseases. AHL-based QS devices already exist as therapeutic applic-
ations for the dynamic control of Gram-negative bacterial populations, especially in 
infectious diseases. Other QS molecules could be extended as potential clinical 
therapies for diseases related to the gut microbiota that involve biofilm formation and 
antibiotic resistance[154]. Research efforts must investigate the potential of this new 
trial.

In addition to therapeutic applications, one could consider QS molecules as reliable 
biomarkers for dysbiosis-related chronic diseases such as IBD or CRC. Indeed, it has 
been shown that the presence of some AI-1 QS molecules in the gut ecosystem directly 
correlates with bacterial group size[39]. AHLs could represent a biomarker of the 
bacterial level population acting as a magnifying glass for dysbiosis. In addition, AI-2 
concentration increased during adenomas to colorectal transition and CRC progression
[41]. This opens the perspective for using the QS system as a biomarker for the 
prevention and follow-up of chronic diseases.

For the future
Knowing which commensal bacteria carry QS systems, their site of production, their 
ability to be mobilized during dysbiosis, and their effect on the luminal or mucosal 
microenvironment are as many unresolved questions. The scientific community, 
together with gastroenterologists, needs to tackle these issues to pave the way for 
translation into clinical use. Future directions also involve designing dedicated QS 
derivatives targeting either the host cells or the bacterial compartment. Such QS 
derivatives have already been reported to control the epithelial cell inflammation 
pathway with a wider effect than natural 3-oxoC12:2 without bacterial-activating 
properties[92]. Using QS molecules as an approach to tackle the gut microbiota 
compartment has already been proven to be a successful strategy[42], thus leading to 
interesting perspectives. Considering the QS system as a new player in the gut 
ecosystem, it represents a control platform to shape the host's gut microbiota 
population and/or major physiological pathways.
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CONCLUSION
In conclusion, the intestinal microbiota interacts mutually with epithelial and immune 
cells of the coevolved host in a beneficial, reciprocal relationship. The QS signaling of 
bacteria probably contributes substantially to establishing symbiotic interactions in 
certain dynamics of interaction between the different kingdoms. A better 
understanding of QS systems by researchers and gastroenterologists involved in 
describing and managing ecological disorders of the intestinal ecosystem is a new 
approach that opens up fascinating therapeutic opportunities.
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