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E-mail(corresp.): franckassous55@gmail.com

E-mail: jch1826@gmail.com

Received December 21, 2020; revised October 17, 2021; accepted October 18, 2021

Abstract. We propose a numerical validation of a probabilistic approach applied to
estimate the relative accuracy between two Lagrange finite elements Pk and Pm, (k <
m). In particular, we show practical cases where finite element Pk gives more accurate
results than finite element Pm. This illustrates the theoretical probabilistic framework
we recently derived in order to evaluate the actual accuracy. This also highlights the
importance of the extra caution required when comparing two numerical methods,
since the classical results of error estimates concerns only the asymptotic convergence
rate.
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1 Introduction

Finite element methods and among them, error estimates play a significant role
in the development of numerical methods. Very often, the success of a numeri-
cal method depends on its performance in terms of efficiency and accuracy. For
this reason, it is still an active subject of research, as observed, for instance,
with the considerable interest received by the discontinuous Galerkin methods
in the past decades; see e.g. an introduction for elliptic problems in [3], the
book [2] or the pioneering work [19]. Since the seminal papers of Strang and
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Fix [26], Ciarlet and Raviart [14], Babuška [6] and Bramble and Hilbert [7],
along with co-workers, a large amount of work has been published, the purpose
of which was to derive and expand error estimates in different configurations.
Here, we are concerned with a priori error estimates, that aim to find upper
bounds for the error between the exact solution u and its finite element ap-
proximation uh. More precisely, these estimates describe how the finite element
error ‖u − uh‖, for a given norm, goes to 0 with mesh size h (i.e. the largest
diameter of the elements in a given mesh). In addition, these estimates involve
a constant, generally unknown, which leads to only get an upper bound for the
approximation error. In addition, quantitative uncertainties do exist in finite
element methods; these are based on the way the mesh grid generator creates
the mesh which is used to compute the finite element approximation uh, or
since the equations are not exactly solved due to round-off errors. In previous
papers [11,12], we investigated the error resulting from a partial non-control of
the mesh size. For this purpose, we have considered the approximation error
as a random variable, and we have evaluated the relative accuracy between two
Lagrange finite elements with the help of a probabilistic approach. In the same
way, one can find in [21, 22] a probabilistic approach to evaluate error bounds
in numerical analysis. In this work, we numerically study the a priori error
estimate due to the discretization of a linear variational problem by a finite
element method, using standard polynomials. Our aim is to compare the prob-
abilistic laws we derived with statistical results, when two different degrees of
the polynomials are used, for a fixed value of the mesh size. Since the effective
dependence of the accuracy on the mesh size is a central question, it could help
one to understand the saturation assumption that is often used in a posteriori
error analysis [1]. Indeed, we use here a probabilistic approach which differs
from the methods involved in a posteriori error analysis. Nonetheless, we will
show examples where Pk finite element is more likely accurate than Pm, k < m,
which can be related to the invalidity of the saturation assumption [15]. The
paper is structured as follows: Section 2 summarizes the results of [11, 12],
which are necessary for one to understand the numerical experiments and their
analysis. The main results are the geometrical interpretation of error estimates
and the two probabilistic laws we deduced for finite element accuracy. Section 3
is devoted to the numerical results, which illustrate the new probabilistic way
we propose to evaluate the accuracy between two finite elements. We basically
consider two numerical problems, a stiff one and a smooth one, and we com-
pare, for each of them, the behavior of the theoretical probabilistic models with
the statistical results. Concluding remarks follow.

2 Probabilistic models and finite elements accuracy

2.1 Error estimates revisited

Consider Ω an open bounded and non-empty subset of Rn, and let Γ denote
its boundary, assumed to be C1−piecewise. We also introduce a Hilbert space
V endowed with a norm, ‖.‖V , and a bilinear, continuous and V−elliptic form
a(·, ·) defined on V × V . Finally, l(·) denotes a linear continuous form defined
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on V . Let u ∈ V be the unique solution to the second order elliptic variational
formulation {

Find u ∈ V solution to:
a(u, v) = l(v), ∀v ∈ V. (2.1)

In this paper, we will focus on the simple case where V is the usual Sobolev
space H1(Ω). More general cases can be found in [13]. Let us now introduce the
finite-dimensional subspace Vh of V , and consider uh ∈ Vh an approximation
of u, solution to the approximate variational formulation{

Find uh ∈ Vh solution to:
a(uh, vh) = l(vh), ∀vh ∈ Vh.

In what follows, we are interested in evaluating error bounds for finite element
methods. Hence, we first assume that domain Ω is exactly covered by a mesh
Th composed by Ns n-simplices Kj , (1 ≤ j ≤ Ns), which respects classical rules
of regular discretization, (see for example [8] for the bidimensional case, or [23]
in Rn). We also denote by Pk(Kj) the space of polynomial functions defined
on a given n-simplex Kj of degree less than or equal to k, (k ≥ 1). Our study
relies on the results of [23]. Let ‖.‖1 be the classical norm in H1(Ω) and |.|k+1

the semi-norm in Hk+1(Ω), and let h be the mesh size, namely the largest
diameter of the elements of the mesh Th. We thus have:

Lemma 1. Suppose that there exists an integer k ≥ 1 such that the approxi-
mation uh of Vh is a continuous piecewise function composed by polynomials
which belong to Pk(Kj), (1 ≤ j ≤ Ns). Then, if the exact solution u belongs to
Hk+1(Ω), we have the following error estimate:

‖uh − u‖1 ≤ Ck h
k |u|k+1 , (2.2)

where Ck is a positive constant independent of h.

Now, let us consider two families of Lagrange finite elements Pk and Pm for two
values (k,m) ∈ N∗2, (k < m). Assuming that the solution u to (2.1) belongs
to Hm+1(Ω), inequality (2.2) can be written as

‖u(k)h − u‖1 ≤ Ckh
k |u|k+1, (2.3)

‖u(m)
h − u‖1 ≤ Cmh

m |u|m+1 , (2.4)

where u
(k)
h and u

(m)
h respectively denote the Pk and Pm Lagrange finite element

approximations of u. In this article, following a series of previous papers [12,13]
where a theoretical analysis was performed, we are interested in numerical
applications. To this end, for a given mesh size h, two independent meshes for
Pk and Pm are built by a mesh generator. Usually, one considers inequalities
(2.3) and (2.4) so as to conclude that, when h goes to zero, Pm is more accurate
that Pk, since hm goes faster to zero than hk. However, in practical numerical
applications, the size of the mesh is chosen according to the desired accuracy,
so that h has a fixed value. Consequently, this way of comparison is no more
relevant. For this reason, we mean to identify the relative accuracy between
Pk and Pm, (k < m), for a given value of h.
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2.2 Two probabilistic laws

In [11, 12], we introduced a probabilistic approach that provides a coherent
framework for modeling uncertainties in finite element approximations: such
uncertainties may come from the way the meshes are created by computer algo-
rithms, leading to a partial non-control of the mesh, even for a given maximum

mesh size. In this framework, values ‖u(k)h − u‖1 and ‖u(m)
h − u‖1 are viewed

as two random variables, respectively denoted as X(k)(h) and X(m)(h), whose
support is

[
0,Ci|u|i+1h

i
]
, (i = k or i = m), according to inequalities (2.3) and

(2.4). Our goal is thus to derive a probabilistic law for the event{
X(m)(h) ≤ X(k)(h)

}
≡
{
‖u(m)

h − u‖1 ≤ ‖u(k)h − u‖1
}
,

which corresponds to the relative accuracy between finite elements Pk and Pm.
For this purpose, we first introduce the random events A and B defined by:

A ≡
{
X(m)(h) ≤ X(k)(h)

}
, B ≡

{
X(k)(h) ∈

[
Cm|u|m+1h

m,Ck|u|k+1h
k
]}
.

Moreover, we proved in [12] the following result:

Lemma 1. Let us assume that A and B are two independent events. Then,
the probability law P (A) of event A is given by:

P (A) =

∣∣∣∣ 1 if 0 < h < h∗k,m,

0 if h > h∗k,m,
(2.5)

where h∗k,m is defined by:

h∗k,m ≡ (Ck|u|k+1/Cm|u|m+1)
1

m−k . (2.6)

The shape of the probabilistic distribution, called the two-steps model, is de-
picted in Figure 1.

Figure 1. Case m− k 6= 1: shape of the sigmoid distribution (2.7) (full line) and the two
steps corresponding one (2.5) (dashed line), (Pk,m(h) ≡ Prob{X(m)(h) ≤ X(k)(h)}).

Basically, it expresses the fact that, for h < h∗k,m, finite element Pm is almost
surely more accurate than Pk, whereas for h > h∗k,m, Pk becomes almost surely
more accurate than Pm. To relax the independence assumption of events A and
B, we also derived a second probabilistic law based on the uniform distribution
of the random variable X(k)(h) over

[
0,Ck|u|k+1 h

k
]
. In this context, we proved

in [12] the following theorem:

Math. Model. Anal., 26(4):684–695, 2021.
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Theorem 1. Let us assume that X(i)(h), (i = k,m), are independent and uni-
formly distributed on [0,Ci|u|i+1h

i]. Then, the probability P (A) of event A is
given by:

P (A) =

∣∣∣∣∣ 1− 0.5
(
h/h∗k,m

)m−k
if 0 < h ≤ h∗k,m,

0.5
(
h∗k,m/h

)m−k
if h ≥ h∗k,m.

(2.7)

The shape of this law, called the sigmoid model, is also plotted in Figure 1.
As one can see, for h > h∗k,m, P (A) ≤ 0.5: in that case, finite element Pm is
probably overqualified. The purpose of the next section is to propose numerical
examples that illustrate and validate this probabilistic approach by compar-
ing statistical frequencies and the corresponding probabilities determined by
(2.5) or (2.7). Note that our method can be a priori applied for solution u
smooth enough. This constraint comes from the use of classical estimates (see
Lemma 1), where, for instance, the exact solution u must be at least in H3(Ω)
for comparing P1 and P2 finite elements. Nevertheless, from a heuristic point of
view, it is usual to apply these theoretical results even for less regular solutions,
where a priori regularity of u is not known.

3 Numerical results

In this section, we will illustrate our probabilistic approach on numerical ex-
amples, by evaluating the relative accuracy of two Lagrange finite elements.
We have intentionally chosen simple, standard examples, in order to help us
to check numerically the relevance of the proposed probabilistic distributions.
Note also that we will only consider examples where the exact solution is known.
Hence, we will not deal with cases where, for instance, non-tensor product so-
lutions can be constructed using a Fourier series. Indeed, such an approach
would require to truncate the corresponding Fourier series, introducing in such
a way an unwanted additional error, that would damage the numerical results
we want to investigate.

Hence, we consider the following classical elliptic problem, with obvious
notations: Find u ∈ H1(Ω) solution to{

−∆u = q in Ω ,
u = h on ∂Ω ,

(3.1)

where, for simplicity, domain Ω is the open unit square in R2: Ω =]0, 1[×]0, 1[.
The associated variational formulation, which is analogous to (2.1), can be
readily derived. According to the choice of q and h, we will consider as examples
a stiff problem, where the solution exhibits rapid variations or, alternatively, a
very smooth problem.

One of the main ingredients of the method is the computation of h∗k,m,
as defined by (2.6). As one will see, it will be evaluated using a maximum
likelihood estimator; see for instance [24]. In our case, this principle is applied
as follows: for a given finite element Pk, we consider a number N of different
meshes with the same (maximum) mesh size h. Then, we compute:

max
N,h
‖u(k)h − u‖1/hk, (3.2)
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which constitutes, using estimate (2.3), the maximum likelihood estimator for

Ck|u|k+1. Indeed, due to inequality (2.3), quantity Xk(h)
hk is also a uniform

random variable whose support is [0,Ck|u|k+1]. Then, one can show [18] that
for a given uniform random variable Y whose support is [0, θ], θ being an

unknown real parameter, the maximum likelihood estimator θ̂ is given by:

θ̂ = max(Y1, . . . , YN ),

where (Y1, . . . , YN ) is a sample built with independent and identically dis-
tributed random variables (Yi)i=1,N , with the same distribution as Y . In our
case, this implies that (3.2) is the maximum likelihood estimator for Ck|u|k+1,
since N and h each take a finite number of values. Doing the same for another

finite element Pm, we obtain that the estimator for h∗k,m, denoted ĥ∗k,m, is
defined by:

ĥ∗k,m =

(
max
N,h

‖u(k)h − u‖1
hk

/
max
N,h

‖u(m)
h − u‖1
hm

)1/m−k

. (3.3)

Then, one can easily compute the two probability laws introduced in Sub-

section 2.2. Indeed, as soon as ĥ∗k,m is computed, functions (2.5) and (2.7)

are operational by replacing h∗k,m by ĥ∗k,m. All the numerical results below are
computed in this way. In order to numerically check the validity of each model,
we now compare the two probabilistic laws defined by (2.5) and (2.7) with the
corresponding statistical frequencies computed on the N meshes, for each fixed
value h of the mesh size. To that end, we consider for two finite elements Pk

and Pm (k < m), the same number N of different meshes with the same (max-

imum) mesh size h. From there, we compute the approximate solution u
(m)
h

and u
(k)
h , and we test if ‖u(m)

h − u‖1 ≤ ‖u(k)h − u‖1. Then, we repeat the same

process for different values of h, either lower or greater than ĥ∗k,m. This gives,
as a function of h, the percentage of cases where the approximation error of
Pm is lower than the approximation error of Pk. In all cases, we use package
FreeFem++ [17] to compute the Pk and Pm finite element approximations.
Basically, the mesh generator of FreeFem++ is based on the Delaunay-Voronoi
algorithm, and allows us to fix the maximum mesh size h for N different meshes
of the same domain Ω. Since FreeFEM++ is built using updated and mod-
ern methods of meshing, we are confident that using another mesh generator
will lead to equivalent results. In the next subsection, we consider a stiff case,
whereas in the following one, we deal with a very smooth example.

3.1 A first stiff case

To introduce such a stiff case, we consider the well-known Runge function
ϕ(t) = 1/(1 + αt2), which takes α as a parameter, the classical Runge function
corresponding to α = 25 (see [16, 25]). Since we first aim at building an exact
solution u(x, y) for (3.1), we consider solutions of the form u(x, y) = f(x)g(y),
where both f(x) and g(y) are Runge functions of parameter α. To compute the
derivatives of u(x, y), we basically need the derivatives of the Runge function

Math. Model. Anal., 26(4):684–695, 2021.
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ϕ. After some elementary algebra, we obtain the derivatives of ϕ(t) (namely
ϕ′(t) = −2αt/(1 + αt2)2, ϕ′′(t) = 2α(3αt2 − 1)/(1 + αt2)3), from which the
Laplacian of u(x, y) can easily be derived. Indeed, by computing the second
order partial derivatives uxx, uyy, we find that

−∆u = −(f ′′(x)g(y) + f(x)g′′(y))

= −2α(3αx2 − 1)

(1 + αx2)3
1

1 + αy2
− 1

1 + αx2
2α(3αy2 − 1)

(1 + αy2)3
. (3.4)

We now set the right-hand side q(x, y) of (3.1) equal to expression (3.4) above,
so that

u(x, y) =

(
1

1 + αx2

)(
1

1 + αy2

)
(3.5)

is the exact solution of (3.1), provided that the Dirichlet boundary condition
h(x, y) is taken as the trace of u(x, y) on the boundary ∂Ω, that is

h(x, 0) =
1

1 + αx2
, h(0, y) =

1

1 + αy2
,

h(x, 1) =
1

1 + αx2
1

1 + α
, h(1, y) =

1

1 + α

1

1 + αy2
.

In what follows, we analyze the relative accuracy between two Lagrange finite
elements, u(x, y), as defined in (3.5), being the reference solution for compari-
son.

3.1.1 P2 −P3 comparison and α-independence

The first numerical test we present is devoted to a comparison between finite
elements P2 and P3. We first choose α = 500. In that case, as explained above,

we computed value ĥ∗2,3 as defined in (3.3) and obtained ĥ∗2,3 ' 0.12. For this
example, we have used values of h varying from 0.05 to 0.18, and for each h
we have constructed N = 500 different meshes with the same value of h. In
Figure 2 we plot, on the same picture, the results obtained for the statistical
frequencies (full line) and for the two-steps probability law (2.5) (dotted line),
as a function of h.

Figure 2. P2 versus P3 for the Runge function with α = 500. Comparison between the
statistical frequencies (full line) and the probabilistic law (2.5) (dotted line). 500 meshes

are used for each value of h.
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We then checked that the results do not depend on the value of α. For this
purpose, we repeated the same numerical experiments for α = 25 and α = 2000.
The results, depicted in Figure 3, show the same behavior as previously. Of

course, the value of ĥ∗k,m does depend on α and we have ĥ∗2,3 ' 0, 13 for α = 25

and ĥ∗2,3 ' 0.07 for α = 2000.

Figure 3. P2 versus P3 for the Runge function with α = 25 (left) and α = 2000 (right).
Statistical frequencies (full) and probabilistic law (2.5) (dotted). 500 meshes are used for

each value of h.

3.1.2 Comparison with P4 finite element

Next, we numerically assessed the validity of the present approach when finite
element P4 is involved. We first compared P3 with P4, then P2 with P4. To
this end, we used the Runge function with α = 2000, and we also considered

N = 500 different meshes. The computed value of ĥ∗k,m we obtained are

ĥ∗3,4 ' 0.24 for P3–P4 and ĥ∗2,4 ' 0.094 for P2–P4. The results are depicted in
Figure 4 and show, like previously, that the statistical frequencies behave very
similarly to the two-steps probabilistic law (2.5).

Figure 4. Comparisons P3–P4 (left) and P2–P4 (right) for the Runge function with
α = 2000. Statistical frequencies (full) and probabilistic law (2.5) (dotted). 500 meshes are

used for each value of h.

The last illustration of this subsection is devoted to the comparison between
the statistical frequencies and the sigmoid probabilistic law defined in (2.7).
We considered comparisons between finite elements P2 and P4, then between
P1 and P4. We followed the same procedure as above, again with the same
parameters (N = 500 and α = 2000). The results are depicted in Figure 5.

As one can see, there is a weaker fitting between the two curves than with
the two-steps law (2.5), even if the trend is still correct. Remark also that the
fit is better in the P1–P4 case than in the P2–P4 case. More generally, the

Math. Model. Anal., 26(4):684–695, 2021.
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Figure 5. P2 versus P4 (left) and P1 versus P4 (right) for the Runge function with
α = 2000. Comparison between the statistical frequencies (full) and the probabilistic law

(2.7) (dotted). 500 meshes are used for each value of h.

greater the m− k difference, the better the match. Hence, the sigmoid model
also gave a correct trend, but was less precise and satisfying than the two-steps
law, in particular when m − k = 1, for instance when one compares P2 with
P3, see Figure 6.

Figure 6. P2 versus P3 for the Runge function with α = 2000. Comparison between the
statistical frequencies (full) and the probabilistic law (2.7) (dotted). 500 meshes are used

for each value of h.

Indeed, in that case, the first part of (2.7) is a linear decreasing function of
h (for any given fixed h∗k,m), and the second one decreases like 1/h. However,
if difference m− k = 2, for instance when comparing P2 to P4, the fit is better.
Indeed, the first part of (2.7) is a decreasing function ' −h2 (for any given fixed
h∗k,m), and the second one decreases like 1/h2. So, depending on the difference
m−k, the sigmoid law remains to some extent relevant, where high order finite
element (with m around 20–25) are sometimes used [20].

This shows that the two-steps model works well, but is a bit “rough” (es-
sentially binary), whereas the sigmoid law is probably too “rigid” and has to
be make more “flexible” to obtain a better fit with the statistical results. For
this reason, we are currently working on a more general approach which corre-
sponds to a new generation of probabilistic laws that better fit the statistical
frequencies.

3.2 A smooth example

In this subsection, we illustrate the probabilistic laws for a very smooth so-
lution to the variational problem (2.1). To build such a case, we chose q =
2π2 sin(πx) cos(πy) in (3.1), so that u(x, y) = sin(πx) cos(πy) is the exact solu-
tion of the problem, provided that the Dirichlet boundary condition h is taken
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as the trace of u(x, y) on the boundary ∂Ω. This can be written as:{
h(x, 0) = sin(πx), h(0, y) = 0,
h(x, 1) = − sin(πx), h(1, y) = 0.

As previously, we first compute ĥ∗k,m defined by (3.3), then we compute the
probabilistic models introduced above. After that, we compare these results
to the statistical frequencies. For example, we consider the finite elements
P2 and P3: we depicted in Figure 7 (left) the statistical frequencies and the
probabilistic law (2.5). As in all the other numerical experiments, 500 meshes

have been used for each value of h, where we found a value of ĥ∗2,3 approximately
equal to 0.18. As one can see, even in this case, there is a good agreement
between the statistical frequencies and the probabilistic law (2.5). However,
the comparison with the sigmoid law (2.7) (right part of Figure 7) gave only a
global trend and was not really accurate. Here again, as for the Runge example,
it will be improved by the above-mentioned new generation of probabilistic
laws.

Figure 7. P2 versus P3 for the smooth case. Comparison between the statistical
frequencies (full) and the two probabilistic laws (dotted). 500 meshes are used for each

value of h. Left: comparison with the two-steps probabilistic law (2.5) – Right: comparison
with the sigmoid probabilistic law (2.7).

4 Conclusions

In this paper, we proposed to apply the probabilistic approach we developed
in [12] to numerical examples. It enabled us to evaluate the relative accuracy
between two Lagrange finite elements Pk and Pm, (k < m), for a fixed value of
the mesh size h. Our approach, which is based on a geometrical interpretation
of the error estimate, considers the approximation errors as random variables.
Two probabilistic laws were derived, a so-called ”two steps” law and a ”sig-
moid” one, depending on the probabilistic assumptions which were made on
the corresponding random variables. For the finite elements we considered, we
illustrated, using several examples, the property that, depending on the posi-
tion of h with respect to the critical value h∗k,m, we can actually estimate which
of finite elements Pk and Pm is more likely accurate. This overturns the com-
mon misconception that finite elements Pm are always more precise than Pk if
m > k, regardless of the mesh size h. In particular, this shows cases where a
Pm finite element surely is overqualified. As a consequence, a significant reduc-
tion of implementation time and execution cost can be obtained without loss
of accuracy. Such a phenomenon was already observed by using data-mining
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techniques (see [4, 5, 9] and [10]). However if, in the proposed examples, the
first investigated law (the two-steps law) fit the numerical results satisfacto-
rily, the second proposed law (the sigmoid one) produces only a trend and is
not accurate enough. Indeed, the results show that the statistical frequencies
behave similarly to the two-steps probabilistic law, in both the smooth and
stiff examples. However, there is a weaker fitting between the statistical error
and the sigmoid law, particularly when difference m − k is small. To address
this issue, we are currently working on a new probabilistic framework which
corrects the gap between the statistics and a “generalized” probability law.
Finally, note that this approach is not limited to finite element methods, and
can be generalized to other approximation methods: given several different nu-
merical methods and their error estimates, it would be possible to order them
by evaluating which is the most probably accurate.
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