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REVIEW
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ABSTRACT
Introduction: The search for the ‘perfect’ renal replacement therapy has been paralleled by the search 
for the perfect biomarkers for assessing dialysis adequacy. Three main families of markers have been 
assessed: small molecules (prototype: urea); middle molecules (prototype β2-microglobulin); compre
hensive and nutritional markers (prototype of the simplified assessment, albumin levels; composite 
indexes as malnutrition-inflammation score). After an era of standardization of dialysis treatment, 
personalized dialysis schedules are increasingly proposed, challenging the dogma of thrice-weekly 
hemodialysis.
Areas covered: In this review, we describe the advantages and limitations of the approaches men
tioned above, focusing on the open questions regarding personalized schedules and incremental 
hemodialysis.
Expert opinion: In the era of personalized dialysis, the assessment of dialysis adequacy should be 
likewise personalized, due to the limits of ‘one size fits all’ approaches. We have tried to summarize 
some of the relevant issues regarding the determination of dialysis adequacy, attempting to adapt 
them to an elderly, highly comorbidity population, which would probably benefit from tailor-made 
dialysis prescriptions. While no single biomarker allows precisely tailoring the dialysis dose, we suggest 
using a combination of clinical and biological markers to prescribe dialysis according to comorbidity, 
life expectancy, residual kidney function, and small and medium-size molecule depuration.
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1. Introduction

Identifying the ‘perfect’ renal replacement therapy (RRT) has 
long been the utopia of dialysis; in the 80s, ‘perfect dialysis’ 
had been defined as a treatment that would result in a life of 
quality and duration comparable to that of people without 
kidney diseases [1,2]. Progress in the search for the best treat
ment has been paralleled by the search for the perfect bio
markers for assessing dialysis adequacy [3,4]. Neither has yet 
been achieved.

Three main markers of dialysis adequacy have been tested 
and found to be insufficient, but nonetheless still remain 
interesting in the clinical management of dialysis patients: 
small molecules (prototype: urea, and Kt/V); middle molecules 
(prototype: β2-microglobulin); comprehensive clinical and 
nutritional markers (prototype of the simplified assessment: 
albumin levels; composite indexes such as the malnutrition- 
inflammation score) [5–7].

After numerous attempts to achieve easy and repeatable 
standardization of dialysis treatment, in keeping with a similar 
trend in many other areas of medicine, personalized dialysis 
schedules are now increasingly being proposed, challenging 

the traditional dogmas related to thrice-weekly hemodialy
sis [8].

At the dawn of RRT, the concept of ‘dialysis adequacy’ has 
been clinically interpreted as the amount of dialysis required 
to keep a patient alive, in relatively good clinical conditions 
and relatively asymptomatic [2]. The issue of reaching 
a compromise between the iatrogenicity of dialysis and 
blood depuration from noxious toxins led to a progressive 
decrease in the duration of hemodialysis, from 12 to 6 hours 
with an increase in the number of sessions, from once to thrice 
weekly [9,10].

Interestingly, the ‘short dialysis’ schedule, of 4 hours three 
times per week, was initially proposed by Cambi in Italy, as 
a way to treat more patients during the same working day, in 
an era in which dialysis availability was still limited [9,11]. The 
success of this approach, which was widely applied in the 
western world, was due to a combination of good short-term 
results, acceptable metabolic control (as per the standards at 
the time), lesser impact on everyday life and, probably even 
more importantly, a better integration into the daily routine of 
the dialysis wards. Indeed, economic constraints are probably 
the main reasons why the compromise between number and 
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duration of dialysis sessions was finally reached, i.e. 4 hours 
three times per week [12,13].

In the early days of hemodialysis, the prescription was 
mainly based upon dialyzer surface area and time. Targeting 
prescriptions on pre-dialysis data was clearly not enough to 
ensure the well-being of the patients. At a time in which 
malnutrition was common among dialysis patients and 
cachexia was one of the leading causes of death, low urea 
and creatinine levels could be different sides of the same coin: 
malnutrition or good dialysis management. Indeed, in 1981, 
the National Cooperative Dialysis Study showed that higher 
pre-dialysis urea levels were associated with higher comorbid
ity, hospitalizations and mortality [3]. Using data from this 
study, a dynamic model analyzing the ratio between pre- 
and post-dialysis urea was conceived. This first kinetic model 
considered three elements defining dialysis dose: dialyzer urea 
clearance (K), dialysis time (t), and urea distribution volume (V), 
as a reflection of body size and corresponding to total body 
water, leading to the famous Kt/V formula [14].

The ratio between pre- and post-dialysis urea was found to 
be more important than the actual levels, and this concept 
was translated in a simple equation: Kt/V. Kt/V was equivalent 
to the natural logarithm of the ratio between the pre- and 
post-dialysis urea blood concentration, assuming no ultrafiltra
tion or urea generation. The gold standard for a fully adequate 
dialysis prescription was set at a Kt/V of 1 [14], which was later 
increased to 1.2 [15]. This simple equation was further over- 
simplified in the concept of urea reduction rate (URR), which 
assumed that in adequate dialysis end of treatment urea had 
to be ≤33.3% of the initial value [16].

These equations rapidly spread among the scientific 
community.

However, the initial simplicity left space to the search for 
the perfect equation, more and more complex calculations 
were proposed and, somehow, the search for the perfect 
equation replaced the search for the perfect dialysis. In fact, 
urea has a multicompartmental distribution to which differ
ent mechanisms contribute during the dialysis session: 
access recirculation, cardiopulmonary recirculation and the 
distribution of urea between intra- and extracellular com
partments and low- and high blood flow compartments 
[17]. To avoid an overestimation of Kt//V, post-dialysis 

blood samples should theoretically be drawn at the equili
brium, at least 30 to 60 minutes after the end of the treat
ment, to account for the urea rebound. As waiting such 
a long time is impractical, the concept of equilibrated Kt/V 
(or double-pool Kt/V) was developed and the original Gotch 
and Sargent’s equation was differently modified in the nine
ties, to account for the post-dialysis urea rebound, giving rise 
to a plethora of formulae, which attempted to precisely 
describe the in vivo kinetics of urea in dialysis patients 
[18–23].

Furthermore, to acknowledge the importance of nutrition 
in the determination of dialysis efficacy, even more complex 
equations were proposed, trying to assess protein intake on 
the basis of the urea generation rate (the normalized protein 
catabolic rate – nPCR) [24,25].

Thirty years later, what remains of these massive efforts is 
relatively limited.

The most commonly used Kt/V formula is a second genera
tion one, proposed by Daugirdas, which results in less over
estimation of the dialysis dose for values higher than 1.3 [26].

Conversely, nPCR is no longer considered a reliable tool for 
assessing adequate nutrition associated with efficiency of the 
dialysis treatment, as it is influenced by common conditions 
such as inflammation, liver failure, volume expansion and 
urinary or dialysate protein losses, and its association with 
mortality decreases if adjusted for malnutrition and inflamma
tion [27–30]. Moreover, since nPCR does not distinguish 
between proteins derived from dietary sources or endogenous 
catabolism and it is valid only in stable patients [25,31]. Within 
these limits, the most recent guidelines suggest a daily protein 
intake of 1–1.2 g/kg/day and nPCR is still included among the 
criteria to diagnose and score protein energy wasting (PEW) to 
predict survival, as it shows a U-shaped relationship with 
mortality [27,30,32,33].

Meanwhile, the dialysis population has changed, patients 
start dialysis at previously unforeseen older ages, dialysis tech
niques have evolved, membranes have improved and, in line 
with the paradigm shift observed in several other diseases, 
standardized treatments have given way to personalized 
ones [8,34].

Indeed, Kt/V is only validated for three times per week 
hemodialysis schedules; it is not formally validated for hemo
diafiltration (HDF), incremental dialysis, or extended or daily 
hemodialysis, even if, as will be further discussed, urea-based 
kinetic models are widely used in all of them and nomograms 
may allow comparing different dialysis schedules [35].

In this review, we will discuss what may be needed to 
implement the classic assessment of dialysis adequacy in 
order to help clinicians optimizing a patient-friendly persona
lized renal replacement treatment. A schematic representation 
of the evolution of the concept of dialysis adequacy is 
depicted in Figure 1.

2. Urea and Kt/V: old but not gold?

Urea was the first identified marker of kidney function, hence 
the name uremic syndrome. It was initially considered more 
for its correlation with kidney function and ease of measure
ment rather than its toxicity [36]. Later, creatinine clearance 

Article highlights

● Dialysis efficiency evaluation should rely on clinical assessment and 
determination of different biomarkers.

● No single molecule or mathematical formula can precisely determine 
dialysis efficiency or be used to tailor the dialysis schedule.

● A combination of biomarkers reflecting small and middle molecule 
depuration, comorbidity and nutritional status may allow the identi
fication of the best treatment strategy for each patient.

● An incremental dialysis starts to avoid the ‘dialysis shock’ and better 
preserve residual renal function, should be favored in all patients 
without contraindications.

● Convective techniques should be preferred in patients without resi
dual kidney function, with well-functioning vascular access, long life- 
expectancy, and good nutritional status, especially if they have a long 
life expectancy.
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took over in the evaluation of kidney function but urea 
resurged as a marker of dialysis efficiency.

Despite its long history, the actual role played by urea in 
uremic syndrome is not fully understood. In older studies, 
dialysis against a urea enriched bath was not able to repro
duce uremic symptoms; however, later, urea has been shown 
to have direct toxic effects promoting anemia through carba
mylation, inducing endothelial cell apoptosis, participating in 
intestinal barrier dysregulation and insulin resistance [37–41].

Within the limits of an incomplete relationship between 
urea levels and uremic symptoms, urea remains the main 
marker of low molecular weight uremic toxins and adequate 
clearance of small molecules should be considered the first 
step of dialysis adequacy [42]. Kt/V set the standards of dia
lysis, at least for thrice-weekly patients, and for determining 
adequacy on the basis of removal rate rather than on pre- 
dialysis concentration [43]. However, urea-derived Kt/V has 
shown several limitations. While its role was suggested by 
the first large study trying to combine biochemical markers 
of dialysis and survival, later, two large randomized, controlled 
trials, i.e. HEMO and ADEMEX, failed to identify differences in 
mortality according to Kt/V in hemodialysis or peritoneal dia
lysis patients [44,45]. Post-hoc analyses of the HEMO study 
suggested that a higher dialysis dose could be associated 
with better outcomes but also highlighted the pitfalls of the 
equation, mainly related to the difficult estimation of the urea 
distribution volume [46,47]. In fact, individuals of small body 
size are at higher risk of underdialysis due to their lower V [48– 
50]. It has also been suggested that smaller people, with low 
body mass index (BMI), have a greater proportion of highly 
active metabolic compartment (visceral organs), in proportion 
to their body weight, thus generating more uremic toxins per 
kilogram, and therefore adding to the risk of insufficient dia
lysis [51].

Urea is dialyzed against a urea-free dialysate. The ratio 
between urea at the start and at the end of dialysis, and the 
speed of the decrease in urea levels is also a result of the initial 
concentration; consequently, patients starting with higher urea 
levels may attain a higher Kt/V due to the greater blood to 

dialysate gradient. In the elderly, urea generation is reduced as 
a consequence of a reduced metabolism, and this may suggest 
lowering Kt/V targets in this population [52,53]. Moreover, 
achieving higher Kt/V values in the elderly may require longer 
dialysis sessions resulting in poor tolerance and impacting on 
cardiovascular stability and quality of life [54].

Furthermore, as dialysis patients are often over-hydrated, 
their V is not always easy to calculate, thereby reducing the 
clinical applicability of urea kinetic modeling, especially in the 
elderly [55]. Similar considerations hold true for children, for 
whom commonly used formulae tend to overestimate total 
body water [56,57]. Obese patients, who account for 20 to 
over 50% of the dialysis population, pose a further challenge 
in volume calculation, particularly when they suffer from sar
copenia [58].

To account for these shortcomings, V has been variously 
replaced by resting energy expenditure (REE) [59], body sur
face area (BSA) [60], visceral liver mass [61], mass of high 
metabolic rate organs (HMRO) [61], body weight, or simply 
removed from the equation [62]. Nevertheless, none of the 
modified equations has proven superior, and the current 
guidelines still adopt Kt/V to determine dialysis dose [61,63].

The decrease in urea is logarithmic, therefore its kinetics is 
different in short daily dialysis, due to the higher decrease in 
urea in the first two hours of dialysis, when the gradient is the 
highest. Conversely, in long nightly dialysis, the urea reduction 
rate reaches a plateau, but the mass transfer of urea is higher, 
due to the removal of the urea derived from protein catabo
lism and compartment shift.

In this regard, the extended hemodialysis experience 
(≥12 h/week or ≥24 h/week according to different definitions) 
is of particular interest. Results are contrasting: the DOPPS 
analysis suggests an association between the duration of the 
dialysis sessions and survival, independently of Kt/V [64]. On 
the contrary, the Frequent Hemodialysis Network Nocturnal 
Trial did not demonstrate a survival advantage for the 
extended dialysis scheme despite a higher Kt/V [65].

Furthermore, the classic Kt/V does not apply to the incre
mental hemodialysis schedules, which have been recently 

Figure 1. Evolution of the concept of dialysis adequacy.
During the first successful systematic application of the dialysis technique on chronic patients in the sixties, adequacy was defined in terms of patient survival compared to controls. With 
the technical advances in the eighties, the following decade was devoted to optimizing the treatment and establishing objective indexes of depuration to assure the best renal replacement 
therapy. However, nowadays the dialysis population has changed and a personalized approach is warranted, taking into account depuration needs, quality of life and the patient’s overall 
status. (First image on the left from: Nosé Y. Discussion. Trans Am Soc Artif Intern Organs. 1965;11: 15.) 
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re-discovered as a suitable means to reduce the ‘dialysis 
shock’ at the start of RRT, and to improve the quality of 
life [66–68].

Once- or twice-weekly dialysis schedules provide good 
results only if they are wisely integrated with the residual 
kidney function (RKF) which has, in turn, been consistently 
shown to be positively correlated to survival [69–71]. RKF 
provides a clearance of middle and protein-bound molecules 
not accounted for by Kt/V, allows for a more liberal diet and 
reduces the problems linked to water and salt overload [72].

Indeed, while adaptations of urea kinetic modeling have 
been proposed to calculate dialysis adequacy, this option is 
probably reductive and other factors should be emphasized in 
‘non-conventional’ hemodialysis.

3. Why urea kinetic models are still useful

Despite several limitations, there are a number of reasons why 
urea-based kinetic models are still recommended in guidelines 
as a basis for monitoring the efficiency of dialysis. Firstly, 
measuring urea is a standardized, low-cost method, which 
can be easily performed and repeated.

Secondly, the experience is long lasting, and low Kt/V is 
associated with higher mortality [14,73]. In this regard, Kt/V 
may identify the minimum dialysis requirement, at least in 
patients without RKF, on thrice weekly treatments. The target 
should be modulated by age or clinical conditions.

Thirdly, clearance of the small molecules is more predict
able and is a better marker not only of dialysis efficiency, but, 
more widely, of the dialysis session.

Figure 2 reports some examples of interpretation of the 
ratio between urea at the start and at the end of the dialysis 
session. The same pattern may have different explanations: for 
example, high pre-dialysis urea may be the result of high 
protein intake, of low dialysis efficiency or of vascular access 
malfunction. Conversely, very low urea at the end of dialysis 
may be an indicator of high dialysis efficiency as well as of 
vascular access recirculation, but it may also be observed in 
a context of malnutrition. The association between high pre- 
dialysis and low post-dialysis urea may be the result of good 
efficiency in a well-nourished patient, of good efficiency in 
a hypercatabolic patient or suggest fistula recirculation, if the 
final blood sample is not drawn at the equilibrium. Other 
biomarkers may help highlight the differences, but more 
than relying on further biochemical data, clinical evaluation 
is decisive. In this regard, the meaning of Kt/V shifts from 
a rigid target that dialysis has to achieve, to an important 
index to be interpreted in the light of the clinical evaluation.

4. The ‘middle molecules’ issue and the importance 
of parathyroid hormone and β2-microglobulin

Table 1 summarizes the advantages and drawbacks of the 
main middle molecules available for use in the clinical setting.

Clearance of small molecules is only loosely associated with 
well-being on dialysis [74].

In particular, in the eighties, there was a moment in which 
researchers hoped that the vast array of uremic toxins could 
explain the protean picture of uremia. Uremic toxins are 

a number of molecules excreted by the kidneys, under normal 
conditions, that are retained and accumulate in the course of 
chronic kidney disease (CKD) and that have an impact on 
biological functions [75]. Among them, the so-called ‘middle 
molecules,’ with a molecular weight of 500 Da to 60 kDa, have 
important implications in cardiovascular disease and inflam
mation and contribute to the non-traditional risk factors asso
ciated with end-stage kidney disease (ESKD); however, they 
are also particularly difficult to clear by dialysis due to their 
size [76,77].

While long lists of uremic toxins have been compiled, only 
few have acquired a role in clinical practice [75,78]. One of 
them is the parathyroid hormone (PTH). This molecule, whose 
molecular weight is 9400 Da, is pivotal to metabolic bone 
disease in dialysis patients, and it is both a hormone and 
a uremic toxin. Serum PTH levels depend on multiple factors, 
including serum calcium and phosphate levels; although inter
national guidelines suggest to keep PTH levels in the range of 
2 to 9 times the upper limit of normality [79], in the presence 
of optimal medical therapy (vitamin D and calcium supple
ments, calcimimetics, phosphate binders, etc.) and in the 
absence of tertiary hyperparathyroidism, an increased PTH 
concentration may be an indicator of an inadequate dialysis. 
Indeed, the attitude toward hyperparathyroidism manage
ment in CKD is not uniform worldwide and the Japanese 
Society for Dialysis Therapy suggests to keep PTH levels 
between 60 and 240 pg/ml [80]. This suggestion may be of 
particular interest on the account of the experience of the 
Japanese Society with patients with long dialysis vintage. The 
metabolism of PTH is too complex to allow PTH levels to be 
used as a self-standing marker of dialysis efficiency; nonethe
less, their evaluation could guide dialysis prescription and its 
intradialytic profile could help tailoring the dialysate calcium 
content [81–83].

β2-microglobulin (B2M), a component of the class I major 
histocompatibility complex, with a molecular weight of 
11,800 Da, is now considered the paradigm of middle mole
cules [84]. As in the case of most middle molecules, high B2M 
levels are correlated with a greater risk of mortality. B2M is, 
however, not only a by-product of protein metabolism, it is 
also a marker of inflammation and the main precursor of 
dialysis-related amyloidosis [4,6,85]. It has been suggested 
that monitoring B2M might be useful in convective and 
mixed techniques, and in HDF in particular [86]. B2M clearance 
is linked to the duration of the dialysis session and to the 
permeability of the dialysis membranes; unlike small mole
cules, its clearance is increased in long-hour dialysis [87,88]. 
Some large European studies found that high-flux hemofiltra
tion was associated with greater B2M clearance compared to 
standard hemodialysis despite equal Kt/V [89,90]. For instance, 
although no differences were found in the primary composite 
outcome of cardiovascular events between high-flux and low- 
flux membranes, a post-hoc analysis of the Turkish Online 
Hemodiafiltration Study showed that patients with an arterio
venous fistula and diabetic ones benefited of a longer cardio
vascular event-free survival when dialyzed with a high-flux 
membrane [91]. This difference was paralleled by reduced 
B2M levels [91]. The benefit in diabetic patients was confirmed 
by another large trial, although no differences in survival 
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between high- and low-flux membranes was detected in the 
overall dialysis population [92]. While there are no clear B2M 
cut-offs identifying efficient dialysis, the Japanese Society for 
Dialysis Therapy suggests keeping pre-dialysis B2M levels 
lower or equal to 30 mg/l [4,6,93]. B2M removal is indeed 
one of the standard pieces of information provided by the 
dialysis companies to identify the performance of dialyzers 
and is used to distinguish high-flux from low-flux membranes, 
replacing hydraulic permeability [94]. Finally, because of its 

dependence on residual kidney function, B2M levels may be 
used to monitor RKF in patients unable to collect 24 hour 
urines [95].

Increased removal of large molecules can be achieved by 
means of convective treatments or high cutoff membranes. 
The new medium cutoff dialysis membranes showed optimal 
performances in removing uremic toxins during HD, compar
able to HDF [96]. Polymethyl methacrylate (PMMA) dialyzers, 
as well as high cutoff membranes, have proven to be effective 

Figure 2. Some examples of the role of pre- and post-dialysis urea in different patients, not all Kt/V are created equal.
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in removing middle molecules, including free light chains 
[97,98].

Interest in the intestinal microbiota highlighted the role of 
toxins derived from this source; in particular of p-cresyl sulfate 
and indoxyl sulfate [99,100]. They are protein-bound mole
cules with a molecular weight of 188 Da and 213 Da, respec
tively, and are derived from the intestinal metabolism of 
tryptophan and tyrosine, which accumulate in CKD patients 
[101]. In the course of CKD, there is a change in the microbiota 
composition, which leads to the selection of bacterial species 
producing uremic toxins and the downregulation of beneficial 
strains [102–104]. Gut-derived toxins mediate the gut-kidney 
crosstalk [105]. In fact, intestinal dysbiosis, coupled with 
reduced kidney function, leads to increased p-cresyl sulfate 
and indoxyl sulfate levels, and has been associated with blood 
vessel inflammation, endothelial dysfunction, increased intest
inal permeability, insulin resistance and, in a vicious cycle, 
altered microbiota composition [106,107]. It has even been 
suggested that gut-derived uremic toxins could have a role 
in uremic pruritus and the modulation of the intestinal flora 
could have a beneficial effect on this difficult-to-treat symp
tom [108]. P-cresyl sulfate and indoxyl sulfate levels have been 
associated with mortality in dialysis patients [109,110]. 
However, while their clearance could be useful for monitoring 
protein-bound solutes during dialysis, the need for liquid 
chromatography coupled with mass spectrometry to dose 
them limits extensive routine clinical use [111,112].

5. Albumin: a survival biomarker in dialysis

Removal of larger molecules comes at a price: increased mem
brane permeability and increased convective volumes might 
result in considerable albumin losses during the dialysis 
session.

In the first studies that attempted to give a mechanistic 
interpretation of dialysis efficiency, albumin levels emerged as 
the most important factor associated with survival. This is still 
true: albumin is one of the most important, comprehensive 
markers of survival during hemodialysis, underlying as nutri
tional status is of utmost importance in dialysis patients [113].

The emphasis on albumin has led some scientific societies 
to use serum albumin levels (usually identified as ≥3.5 or 4 g/ 
dl) as the main, if not the sole, marker of (mal)nutrition in 
dialysis patients [114]. Of note, the serum albumin assessment 
method is relevant, as different techniques may yield different 
results [115]. This simplistic interpretation may, like many 
over-simplifications, be misleading, and the most recent 
guidelines on nutritional management in CKD patients advise 
against considering albumin alone as a reliable nutritional 
marker and emphasize that it should be combined with 
other biological markers and a careful clinical assessment 
(indeed, to stress the subtleties of the nutritional evaluation, 
at least 15 pages have been dedicated to this topic in the 
latest published guidelines) [30]. In fact, serum albumin levels 
are modulated by inflammation, similarly to other nutritional 
markers, in particular, those of the middle molecule family 
[116–118].

According to the non-univocal definitions of this condition, 
the prevalence of malnutrition in dialysis patients varies 
widely among studies, being reported between 18% and 
75% [119–121]. The name itself has changed over time: the 
initial term ‘malnutrition’ was replaced by protein-energy 
wasting (PEW), a more extensive term, whose definition is, 
however, as complex as that of malnutrition [32]. The story 
has not yet reached the end, and the search for the ‘right 
term’ to define an elusive condition is still ongoing [122–130].

Moreover, as mentioned above, the dialysis population has 
dramatically changed over its six decades of history; the 
young, cachectic, under-dialyzed patient is less frequently 

Table 1. Pros and cons of routinely used dialysis adequacy markers.

Marker Advantages Limitations

Urea ● Easy to measure
● Good example of low molecular weight molecule
● Longstanding tradition as a measure of dialysis adequacy
● Used as a marker to determine membrane permeability and prop

erties

● Not all low molecular weight molecules behave like urea
● Not representative of all uremic toxins
● Influenced by nutritional status
● Falsely low in case of access recirculation

Creatinine ● Reflects residual kidney function ● Highly dependent on muscle mass

Beta2- 
microglobulin

● Good example of middle molecular weight molecule
● Used to determine membrane permeability to middle molecules
● Routinely dosable
● Known role in dialysis-related amyloidosis allows for surveillance of 

long-term dialysis complications

● Highly dependent on inflammatory status
● Highly compartmentalized
● Difficult prediction of in-vivo clearance
● Highly dependent on residual kidney function

Phosphorus ● Good nutritional marker
● Well known prognostic role in cardiovascular morbidity and mortality

● Highly dependent on dietary intake
● Low dialysis clearance
● Complex interplay between phosphorus, calcium and PTH

PTH ● Its variations during the dialysis session may reflect calcium mass 
transfer

● Highly dependent on calcium and phosphorus balance
● Influenced by dialysate calcium concentration and several drugs

Albumin ● Simple nutritional marker
● Strict well-known correlation with mortality

● Influenced by inflammation, membrane permeability, dialysis 
technique, diseases other than CKD

Pre-albumin ● Reflects the metabolic balance of the patient
● To be used in conjunction with albumin

● Dialysis clearance unknown

Please note that none of the listed molecules is reliable if used alone. 
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encountered, while the prevalence of elderly patients with 
‘vascular’ cachexia is increasing, together with that of sarco
penic-obese, protein-wasted patients [131–138]. The potential 
role of increasing dialysis dose in young under-dialyzed 
patients is obvious, while increasing dialysis efficiency may 
be counterproductive in elderly vasculopathic patients, and 
dialysis modulation is not clear in obese sarcopenic patients.

Several additional markers can be added to albumin levels 
to better understand the patient’s nutritional status. Among 
them, pre-albumin is the most widely used one, as also 
acknowledged by the current National Kidney Foundation’s 
Kidney Disease Outcomes Quality Initiative (NKF-KDOQI) 
guidelines, but transferrin, complement, immunoglobulins 
are also of interest [139,140]. Table 2 shows the main patterns 
of albumin pre-albumin combinations encountered in dialysis 
patients and their potential meaning.

Together with anthropometric measurements [141], 
a number of scores have been built to describe patient’s 
nutritional status, and among them, the Malnutrition 
Inflammation Score (MIS) has gained success for its simplicity, 
and because it combines the three main constituents, namely 
comorbidity (and dialysis vintage), biochemical markers and 
anthropometric assessment [7,142,143].

There is, however, an important point missing in this dis
cussion, i.e. albumin losses [144].

The removal of middle molecules is linked to the structure 
of the dialysis membrane and, since albumin is one of the 
smallest, albeit most represented, blood proteins, its intradia
lytic loss is often the price to pay for better removal of middle 
molecules. Albumin is incrementally lost from low-flux hemo
dialysis to high volume pre-dilution HDF [145]. Acceptable 
albumin losses during a single dialysis session have been 
suggested to be less than 4 g, which may have a different 
impact in young, well-nourished patients or in elderly ones 
[146,147]. Canaud, a paladin of pre-dilutional HDF, even sug
gested that albumin loss could be favorable for improving 
nutritional status, postulating that higher albumin losses are 
associated with greater removal of protein-bound toxins and 
inflammatory markers, provided that serum albumin levels do 
not decrease over time. These considerations may suggest 
reserving highly permeable membranes and post-dilution 
HDF to patients able to compensate for protein losses 
[148,149].

There are several differences among dialysis membranes, 
and recent research has focussed on how to design mem
branes that allow a significant removal of middle molecules 

(usually targeted at B2M and myoglobin), with limited albumin 
loss. Moreover, besides the permeability of the membrane and 
its sieving coefficient for albumin, the possibility of absorption 
should be considered. PMMA and Polyester Polymer Alloy 
(PEPA) are both materials, which have shown a 20% to 60% 
fractional absorption of albumin, suggesting that analyzing 
the exhausted dialysate is not enough to account for the 
losses [150]. Newer high or medium cutoff membranes, 
employed for expanded hemodialysis, are associated with 
greater albumin losses (between 2 and 4 g per session for 
medium cutoff membranes) compared to conventional mem
branes [151,152]. In particular, high cutoffs are associated with 
albumin losses of 6–9 g per session and should be reserved to 
selected patients (multiple myeloma or cast nephropathy) and 
for a short period of time [151,153]. However, in prospective 
trials, medium cutoff membranes do not seem to be asso
ciated with a significant reduction of albumin levels [154– 
156]. Nonetheless, the effect may be different in various popu
lations, being less evident in younger patients usually enrolled 
in randomized controlled trials than in the elderly high comor
bidity population at high risk of malnutrition.

The benefits of convective therapies on mortality are still 
a matter of debate, and the role of albumin loss may be 
important. Data from the literature are contrasting: an obser
vational analysis of the French REIN registry showed higher 
survival for patients on HDF compared to hemodialysis, in 
keeping with another pooled analysis of four randomized 
controlled trials, which showed a survival benefit associated 
with on-line HDF for convective volumes greater than 23 l/ 
1.73 m2/session [157,158]. However, a larger Cochrane sys
tematic review of 40 randomized controlled trials found no 
difference in all-cause mortality, although convective thera
pies were superior in preventing cardiovascular deaths [159]. 
In one Spanish study, greater convective volumes in post- 
dilution HDF were associated with higher albumin losses 
[160]. Conversely, the Turkish OL-HDF Study and the 
FRENCHIE trial did not demonstrate a difference in albumin 
levels between convective therapies and conventional HD 
over a 2 year follow-up period [161,162]. Differences in the 
study populations may partially explain the different 
findings.

Hemodiafiltration is not necessarily performed in the same 
way in different settings: for instance, in France, for reasons of 
efficiency, convective therapies are preferred in younger 
patients with a long life-expectancy or a transplant project, 
while in Italy, HDF is often chosen to improve cardiovascular 
stability in fragile subjects [163]. Finally, according to the 
Japanese experience, HDF should be offered to prevent long- 
term complications such as dialysis-related amyloidosis 
(Table 3) [164–166]. Elderly patients, who are often affected 
by high comorbidity, might be particularly vulnerable to pro
tein losses and this should be considered together with favor
ing an incremental dialysis approach [145,167–169].

6. Phosphate balance: an indirect maker of dialysis 
efficiency

Ideally, RRT should correct electrolyte imbalances assuring 
their homeostasis even in the interdialytic period. 

Table 2. Albumin and pre-albumin patterns commonly encountered in dialysis 
patients.

Albumin
Pre- 

albumin Remarks

Normal Normal Good nutritional status
Normal Decreased May be the first sign of malnutrition/inflammation, 

search for the cause
Decreased Normal Consider albumin losses (dialysate, residual 

proteinuria), may be the first sign of nutritional 
improvement (consider nutritional supplements)

Decreased Decreased Poor nutritional status, monitor inflammatory 
markers, hallmark of malnutrition-inflammation- 
atherosclerosis syndrome
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Nevertheless, electrolyte disorders are the rule in dialysis 
patients.

While some of these disorders are life threatening, others 
are insidious. Sodium and potassium are easily cleared by 
dialysis, at difference with phosphorus, due to its higher 
molecular weight, protein binding and low bioavailability in 
free form [170].

Serum phosphate levels are major determinants of vascular 
calcifications and cardiovascular mortality [171–174]. 
Hyperphosphatemia is common on dialysis, due to 
a combination of high intake (in particular if the indication 
of a high intake of proteins is followed) and to the effect of 
calcium-phosphorus-PTH derangements. In fact, hyperpho
sphatemia is particularly common in two situations that are 
independently associated with cardiovascular morbidity: 
hyperparathyroidism and adynamic bone disease [175,176]. 
Given all these interferences, efficient dialysis alone may not 
always allow phosphate control [177]. An exception is 
extended hours or daily dialysis, in which phosphate levels 
are often so low as to require supplementation [178].

Dietary management may be difficult, in particular in 
patients consuming high quantities of processed and pre
served foods, containing additives rich in inorganic phosphate, 
whose role has only recently been acknowledged [179]. 
Hence, phosphate binders are usually employed, but, 
although a discussion on this topic is beyond the scope of 
this review, it should be noted that their use is not without 
a price, and their effect on mortality is controversial [180].

Once more, the presence of RKF is associated with better 
phosphate control and preserving it should be a goal, as will 
be further discussed [181,182].

7. Ultrafiltration: avoiding intradialytic hypotension

Extracellular volume overload is frequently encountered in 
dialysis patients and is associated to mortality [183]. The aim 
of ultrafiltration (UF) during the hemodialysis session is to 
maintain fluid balance, especially in anuric patients. Often, 

patients are not particularly compliant with fluid restrictions 
suggested to limit interdialytic weight gain [184,185]. This 
poses a problem, as higher UF rates have been associated 
with increased mortality [186,187]. A UF rate >13 ml/kg/h 
has been identified as a threshold for intradialytic hypotension 
(IDH), associated with low tolerance and a risk factor for 
mortality [188,189]. Older patients, with higher UF rates and 
higher B2M and N-terminal pro-B-type natriuretic peptide (NT- 
proBNP) are at increased risk of IDH [189,190]. Besides, IDH 
contributes to vascular access failure and myocardial stunning 
and remodeling [191,192]. Trying to achieve a better blood 
pressure control through UF has been shown to increase IDH 
[193]. Vascular stiffness, myocardial hypertrophy, autonomous 
neuropathy and delayed refilling are all contributors to IDH 
[190]. Interdialytic weight gain, obviously, influences IDH and 
the first sessions of the week are at higher risk for such 
a complication [194]. Repeated episodes of IDH may reduce 
patient’s compliance to the dialysis sessions, while dietary 
restrictions and in-center malaises could impair the patient’s 
quality of life, up to dialysis discontinuation [195]. Moreover, 
IDH is associated with lower dialysis efficiency, due to the 
premature termination of the dialysis session, worst volume 
control, cerebral ischemia, and rapid loss of residual renal 
function [196–198]. Thus, a combination of education and 
promotion of patient’s awareness of the reasons of certain 
restrictions, adopting a flexible dialysis schedule, frequently 
assessing the ‘dry weight,’ adapting the dialysate composition 
and temperature and exploiting the newer blood volume 
monitoring tools is needed to reduce IDH occurrence [199– 
206]. Finally, for patients prone to IDH, convective therapies 
should be considered: HDF, hemofiltration (HF) and acetate- 
free biofiltration have been shown to reduce IDH [207–209].

8. Acid-base balance and survival

The acid load accumulating because of end-stage kidney dis
ease is a matter of concern [210]. Pre-dialysis bicarbonate 
levels have shown an inverse association with phosphorus 
and protein intake. A U-shaped curve is observed as for mor
tality in analogy with what has been described with other 
biomarkers including phosphates [211]. Of note, after adjust
ing for components of the malnutrition-inflammation complex 
syndrome, bicarbonate levels ≥22 mmol/l were associated 
with a lower risk of mortality, thus confirming the importance 
of correcting acidosis [211]. However, bicarbonate levels 
per se, might not be the best treatment target as another 
large study did not find a significant relationship between pre- 
or post-dialysis bicarbonates and all-cause or cardiovascular 
mortality [212]. On the contrary, a pre-dialysis pH≥7.4 was 
associated with an increased risk of all-cause and cardiovas
cular death [212]. Once more, differences in dialysis schedules 
and populations may account for these partially conflicting 
results.

9. ‘Non-conventional hemodialysis schedules’: what 
does non-conventional mean?

The measures and indexes mentioned above have been 
mostly validated in thrice-weekly dialysis schedules, of 

Table 3. Hemodiafiltration (HDF) treatment approaches to achieve different 
goals.

Aim Features Comments

High  
efficiency

Larger surface, post- 
dilution (commonly 
chosen in France)

HDF is mainly performed for 
efficiency reasons. High cutoff, 
high flux membranes are 
employed to obtain higher 
β2-microglobulin depuration 
and Kt/V.

High 
tolerance

Smaller surface, post- 
dilution (commonly 
employed in Italy)

HDF is mainly performed to 
improve cardiovascular stability. 
Smaller surfaces and lower 
convective volumes may be 
used.

Long 
follow- 
up

High permeability, pre- 
dilution (diffused in 
Japan)

HDF is performed in a setting of 
traditionally low incidence of 
kidney transplants. Pre-dilution 
is seen as a compromise 
between good nutritional status 
and middle molecule 
depuration.
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‘standard’ duration (usually 4 hours) and cannot immediately 
be applied to different treatment regimens. The term ‘non- 
conventional’ usually indicates dialysis schedules that differ 
from the standard ‘3 × 4’ frequency and duration, either with 
longer or more frequent sessions, or their combination (‘inten
sive dialysis’), with shorter schedules (short daily dialysis) or 
with shorter and less frequent sessions. When these are pro
gressively increased to compensate for the loss of RKF, they 
are usually referred to by the term incremental dialysis 
(Table 4).

It is worth mentioning, for the sake of completeness, decre
mental dialysis schedules. The term ‘decremental dialysis’ indi
cates a less intensive dialysis schedule usually applied to ease 
the transition to end-of-life care in patients on thrice weekly 
hemodialysis [213]. However, patients started on dialysis 
because of acute over chronic kidney injury, who partially 
recover kidney function over time, may be eligible for 
a reduced dialysis rhythm. Attention toward residual kidney 
function may allow identifying these cases who might other
wise remain fully dialysis dependent.

10. Daily hemodialysis

The first intensive (daily) hemodialysis experience took place 
in Los Angeles in 1967 to ameliorate the clinical conditions of 
seven chronic hemodialysis patients doing badly on a thrice- 
weekly schedule, because of vascular access malfunctioning, 
circuit clotting, uncontrolled hypertension and severe anemia 
[214]. Later, for the same clinical reasons, daily dialysis was 
started in Bologna, Italy, in six dialysis patients, leading to 
great clinical improvement, amelioration of nutritional 
indexes, improved blood pressure control and a dramatic 
reduction in hemotransfusion needs [215]. Since the pioneer
ing experiences, the interest in daily dialysis increased and 
diffused in several countries, progressively reducing the ses
sion length from the initial 4–5 hours 5 times per week to 1.5– 
2 hours 5–6 times per week, even adopting a flexible approach 
[216–218]. In the eighties, Buoncristiani reported several ben
efits of intensive hemodialysis schedules with a follow-up 
lasting up to 15 years, including blood pressure control, car
diovascular outcomes, oxidative stress markers, and left ven
tricular function [219–222]. Even if the rationale behind 
frequent hemodialysis is strong, the problem of adequacy 
quantification has been raised [223]. The Frequent 
Hemodialysis Network Nocturnal Trial, which randomized 
patients to receive either thrice-weekly hemodialysis for 
5 hour or less, or 5–6 dialysis sessions per week for 6 or 
more hours each, failed to demonstrate a survival benefit in 
the extended dialysis group [65]. However, the trial, as well as 
further French and Canadian experiences, confirmed better 
blood pressure and phosphate control [65,224–226]. 
Conversely, intensive dialysis has been associated with 
a more rapid loss of RKF [227].

A paradigmatic example of the clinical advantages of 
extended dialysis is pregnancy. It is generally agreed that, in 
order to cope with the increased metabolic needs of preg
nancy, hemodialysis patients should be treated by daily dialy
sis sessions for at least 36 hours per week, as outcomes 
improve with the number of hours delivered [228,229]. The 

only available guidelines, proposed by the Italian Society of 
Nephrology, advise against the use of Kt/V to identify the ideal 
dialysis dose and refer to the largest Canadian experience 
suggesting to use pre-dialysis urea levels as a surrogate ade
quacy marker (namely, <100 mg/dl) [230].

11. Incremental dialysis

The concept of implementing and progressively increasing the 
duration and frequency of the dialysis sessions to compensate 
for the reduction in RKF is relatively old, but its application has 
been limited to particular cases [66,231–234].

The idea that a progressive approach to hemodialysis may 
be advantageous has recently been systematized from the 
experiences in peritoneal dialysis, a mode of treatment 
acknowledged as having the advantage of better preserving 
kidney function due to a combination of lesser or no intradia
lytic volume and electrolyte shifts, thus avoiding phases of 
renal hypoperfusion. The interest in incremental dialysis is 
enhanced by changes in the dialysis population, which is 
progressively getting older and who has kidney diseases that 
frequently present slower progression. In parallel, the advan
tages of maintaining some RKF (and even just some residual 
diuresis) have been acknowledged: increased survival, better 
volume and blood pressure control, better preservation of 
nutritional status, due also to a more liberal diet, reduced 
inflammation and reduced plasma levels of middle molecules 
and protein-bound solutes [235–241].

As already mentioned, while the example of dialysis in 
pregnancy demonstrates that ‘the more the better’ holds 
true at least in young patients with high metabolic needs, 
fragile and elderly patients could benefit from a ‘less is better’ 
approach [242]. Incremental hemodialysis, challenging the 
dogma ‘four hours, three times a week’ [68,243], may offer 
the advantage of a ‘soft’ start of dialysis, aimed at preserving 
RKF and at reducing ‘dialysis shock’ [227,244].

Strictly speaking, an incremental approach relies on pre
served RKF, and, as a consequence, Kt/V, which was developed 
for a standard thrice weekly schedule, mostly in anuric 
patients, is ‘inadequate’ as it may overestimate dialysis need 
[35]. The rate of loss of RKF after the start of dialysis is 
unpredictable and residual urinary output is the first control 
that should be regularly performed in incremental dialysis 
patients [245].

The first approach to overcoming this limit was the equiva
lent renal urea clearance, developed by Casino and Lopez, that 
was initially applied to patients starting incremental dialysis, 
but that later found application in daily treatments [35]. More 
recently, some authors suggest considering residual renal urea 
clearance (Kru) in addition to Kt/V to achieve a standard 
weekly Kt/Vurea of 2.3, considering a Kru of 3 ml/min equiva
lent to a standard Kt/Vurea of 1 volume per week [246]. 
However, this recommendation is based on the assumption 
that 1 ml/min of dialysis clearance is the equivalent of 1 ml/ 
min of Kru, and this is not altogether true [68]. In fact, 1 ml/ 
min of Kru results in a greater survival benefit than 1 ml/min 
of dialysis urea clearance, most likely because of better 
removal of larger solutes and volume control [247–250].
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Assuming that a fixed dialysis dose should be delivered and 
that this is the result of the sum of dialysis clearance plus RKF, 
the concept of equivalent continuous clearance (ECC) could 
come in handy: as RKF decreases, dialysis clearance should 
increase to compensate [35]. However, as extensively dis
cussed, RKF and dialysis clearance are not equivalent and, 
given the prominent role of RKF over dialysis clearance, 
recently a variable target model was proposed [251]. 
According to this model, the ECC target varies as an inverse 
function of residual renal urea clearance. The authors suggest 
that patients with a residual renal urea clearance of about 
5 mL/min/35 L could start dialysis with a once weekly sche
dule, increasing progressively as the residual renal urea clear
ance decreases [251].

A long list of ideal characteristics has been suggested to select 
a patient candidate for incremental hemodialysis. This includes 
a urinary output >500 mL/24 h, a Kru >3 mL/min, no fluid over
load, absence or stable pharmacological control of hyperkalemia, 
well-controlled phosphorus levels, good nutritional status, good 
hemoglobin levels, infrequent hospitalization, and satisfactory 
health-related quality of life [66].

Starting dialysis once weekly usually requires nutritional man
agement. Patients may be kept on moderately protein-restricted 
diets, trying to mediate between diets that are usually prescribed 
in the pre-dialytic phase and the high protein intake suggested for 
patients on a thrice weekly schedule [143]. Low protein diets, 
supplemented or not with ketoanalogues, have been shown to 
preserve RKF, possibly extending the patient’s time on incremen
tal dialysis [252,253]. In this respect, wise and personalized 

nutritional management may be one of the keys for success. 
Traditionally, the nPCR has been employed to estimate the dietary 
protein intake in hemodialysis patients [254]. Recently, a new 
equation has been proposed for patients on once-weekly incre
mental schedules [255], based upon the same parameters used to 
estimate nPCR (pre-dialysis urea nitrogen concentration, Kt/V and 
the ratio between Kru and post-dialysis urea distribution volume) 
[246]. To simplify the assessment, the authors even provided 
a nomogram for clinical use [255].

While these elegant approaches are of interest, they do not 
escape from the attrition between standardization and perso
nalization, and the authors of this review indeed employ 
a more personalized approach, overall exploiting the same 
integrated clinical criteria that are used for the start of hemo
dialysis, including well-being, PTH, nutritional status, extracel
lular volume balance, urea, signs of uremic syndrome and urea 
kinetic modeling whose weight and importance may differ 
across ages and in single cases (Table 5).

12. Conclusions

According to the Merriam-Webster dictionary, something is 
adequate if it is sufficient or acceptable.

The challenge of personalized treatments is closely fol
lowed by the challenge of personalized monitoring. In the 
context of personalized dialysis, this review suggests that the 
answer may come from a wise combination of different bio
markers, together with regular clinical assessments. No math
ematical formula or complex algorithm can replace the latter.

Table 4. Main ‘non-conventional’ dialysis schedules.

Definition(s) Synonymous Definition(s) Schedule(s)

Incremental 
dialysis

Once weekly, twice weekly dialysis. A dialysis schedule that complements the 
residual renal function to allow clinical well- 
being, good metabolic balance and 
acceptable depuration (whose definition is 
however arbitrary). Frequency is based upon 
the assessment of the residual kidney 
function (clinical or kinetic criteria)

Two main options: starting with 2–3 hours, 
increasing time first (usually 4 h max) and 
frequency later; increasing frequency first 
(3 hours twice for example) and duration 
later.

Less 
frequent 
dialysis

Twice weekly dialysis A dialysis schedule that is based upon two 
sessions per week regardless of the residual 
kidney function, in settings with limited 
resources or based on other considerations 
(old age for example).

Usually 4 hours twice weekly.

Daily 
dialysis

Short daily dialysis, quotidian dialysis, intensive 
hemodialysis.

Short dialysis sessions (2–3 h) performed 5– 
7 days per week.

The initial dialysis schedule of 2 h 7 days per 
week was further modified to different 
dialysis schedules of 2–3 h 5–7 days per 
week; flexibility is usually granted by the 
fact that this is mainly a home dialysis 
treatment

Long hour 
dialysis

Intensive hemodialysis, nocturnal dialysis, 
nightly dialysis even if this is usually 
employed for quotidian dialysis at nighttime. 
Extended hours dialysis may also be used.

Dialysis that lasts at least 6 hours, to 
a maximum of 8 hours, usually performed at 
nighttime.

Dialysis lasting 6–8 hours, usually at nighttime; 
if thrice weekly may be performed at home 
or in hospital setting

Nightly 
dialysis

Extended hours dialysis, long quotidian dialysis, 
nocturnal dialysis, intensive hemodialysis.

Same as above, but 6–7 nights per week. A home based treatment if performed 6–7 
nights per week.

Tailored 
schedules

Custom-made dialysis; personalized dialysis 
treatment.

Include dialysis performed 4 times per week 
and various combinations of the above 
schedules

Different combinations of ‘custom made’ 
schedules may be included; for instance, 
dialysis sessions of different duration over 
the week (ex. 3–4 hours thrice weekly and 
2–3 hours the 4th day)
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13. Expert opinion

If we want to tailor the prescription of renal replacement therapy 
to the needs of each patient, a personalized approach should be 
adopted also in its control. While no single biomarker allows 
precisely tailoring the dialysis dose, we suggest using 
a combination of clinical and biological markers to prescribe 
dialysis according to comorbidity, life expectancy, residual kidney 
function, and small and medium-size molecule depuration. On 
thrice weekly hemodialysis, Kt/V remains a valid tool to determine 
adequacy and, with regard to all schedules, a starting point for 
a global assessment of dialysis needs. However, no single objec
tive and exhaustive marker exists: different patients have different 
needs, especially in a setting like hemodialysis, which has been 
revolutionized by technical advances and whose prevalent popu
lation has drastically changed. A comprehensive clinical assess
ment should guide decisions from the start of hemodialysis. At 
least a marker of middle molecules (B2M), calcium-phosphate and 
PTH balance, and nutritional status should be integrated into this 
clinical evaluation.

We believe that an incremental approach should be pro
posed to every patient who starts hemodialysis with 
a substantial RKF and good nutritional status. In individuals 
who start hemodialysis at a very old age (≥85 years) or have 
a very high comorbidity burden, the policy that ‘less may be 
better’ is probably wiser. Conversely, younger subjects, with 

high metabolic requirements and a transplant plan, may ben
efit from more intensive schedules; the paradigm of these 
increased needs is hemodialysis during pregnancy.

Based on our experience, we suggest performing a weekly 
biochemical evaluation at the beginning and at the end of the 
dialysis session in all incremental schedules, including at least 
urea, creatinine, sodium, potassium, calcium, phosphorus, bicar
bonates, total proteins and albumin. Moreover, PTH, B2M, 
C-reactive protein and creatinine clearance should be monitored 
at least monthly, to modulate dialysis frequency and duration, to 
confirm the choice of the membrane and the dialysis technique, 
and to assess RKF. Dialysis prescription should be combined with 
nutritional evaluation, whenever possible performed by a renal 
dietitian; while this is usually advised at least twice yearly, in the 
absence of other clinical indications, in all hemodialysis patients, 
we suggest that frequency should be increased in patients on 
incremental schedules. Protein intake may be modulated accord
ing to the dialysis schedule: moderate protein restriction, similar 
to that prescribed in the pre-dialysis phase, could be coupled with 
one weekly dialysis sessions to control urea generation, phos
phate intake and preserve RKF. Protein intake could be gradually 
liberalized by increasing dialysis frequency, eventually focusing on 
phosphate, potassium, and fluid intake in oligo-anuric patients.

Since an incremental approach is aimed at reducing the 
‘dialysis shock,’ we suggest starting with conventional hemo
dialysis (HD) and low permeability membranes to limit albu
min loss in patients in whom residual clearance allows natural 
depuration of middle molecules. Convective techniques 
should be preferred in patients without substantial kidney 
function, with well-functioning vascular access, long life- 
expectancy, and good nutritional status. Long dialysis vintage 
and dialysis-related amyloidosis are likewise indications for 
focusing on the depuration of middle molecules, preferring 
post-dilutional HDF with high permeability membranes. 
Patients on HDF could be switched to HD in case of vascular 
access malfunctioning or vice-versa. To limit albumin losses 
but achieve good removal of middle and inflammatory mole
cules, we favor pre-dilution HDF. The depuration rate for both 
small and middle molecules is lower in pre-dilution HDF, 
unless greater convective volumes are employed. This may 
be a disadvantage in young patients with high depuration 
needs. However, this may not be the case in elderly patients 
with low metabolic needs and high comorbidity, in whom 
a moderate advantage in the removal of middle molecules 
may be sufficient and pre-dilution HDF may allow it without 
increasing anticoagulation and albumin losses [256–258].

When depuration needs increase as a result of 
a progressive loss of RRF, MCO membranes in HD may be 
considered before increasing the session frequency.

More intensive dialysis schedules should be employed to 
improve efficiency, hypertension or volume control, especially 
avoiding the long interdialytic interval over the weekend. 
Session length, and consequently the number of sessions, 
should be tailored to the patient’s tolerance. In a context of 
personalized approach, duration and number of sessions may 
be modulated over time, to timely adapt to the frequent 
clinical changes of this population (Figure 3).

Table 5. How to monitor dialysis adequacy in incremental dialysis.

Clinical parameters Remarks

Extracellular volume status Typical of old and fragile patients, 
consider increasing dialysis frequency 
if signs of volume overload or cardiac 
failure

Urea and residual kidney function Consider increasing dialysis frequency 
in case of elevated pre-dialysis serum 
urea or creatinine, or decreased 24- 
hour urinary output

Albumin and anemia Consider increasing dialysis frequency 
in case of hypoalbuminemia, 
inflammation or anemia resistant to 
erythropoietin therapy

Calcium-phosphorus-PTH Consider increasing dialysis frequency 
in case of low calcium, elevated 
phosphorus and PTH despite 
optimized medical therapy and 
dietary habits

Neuropathy and fatigue Signs of underdialysis such as restless 
leg syndrome, insomnia and fatigue 
suggest the need to increase the 
dialysis dose

Kinetic modeling parameters
Residual renal urea clearance (Krc) 

considering a double pool urea 
distribution volume of 35 L

It has been suggested that patients in 
good clinical conditions, with a Krc of 
about 5 mL/min/35 L could start 
dialysis with a 1 weekly schedule; if 
Krc decreases to 4 mL/min/35 L, 
dialysis should be increased to 2 
sessions per week and, finally, 
a thrice weekly schedule should be 
implemented at a Krc of 2 mL/min/ 
35 L [251]

Equivalent renal urea clearance 
(EKRc) considering a single pool 
urea distribution volume of 40 L

An EKRc of 13 mL/min/40 L should 
assure a Kt/v of 1.2, while an EKRc of 
9 ml/min should be enough to 
implement incremental dialysis 
schedules [35]
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