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1. Introduction
Coronal mass ejections (CMEs; e.g., Webb & Howard, 2012) are spectacular eruptions of magnetic fields 
and plasma that are regularly launched from the Sun throughout the heliosphere. Their magnetic struc-
ture, when they leave the solar atmosphere, is that of a flux rope (e.g., Chen, 2011; Forbes, 2000; Green 
et al.,  2018; Klimchuk, 2001), that is consisting of a bundle of magnetic fields wrapped about a central 
axis. After erupting, CMEs usually undergo rapid acceleration and expansion in the low corona (e.g., Pat-
sourakos, Vourlidas, & Kliem, 2010; Patsourakos, Vourlidas, & Stenborg, 2010; Temmer et al., 2008, 2010; 
Veronig et al., 2018) as a result of the large energy release and the high internal pressure compared to that 
of the ambient solar wind (Démoulin & Dasso, 2009). After the initial, impulsive phase, that is from the 
outer corona outwards, CMEs generally expand in a self-similar fashion (e.g., Good et al., 2019; Schwenn 
et al., 2005; Subramanian et al., 2014; Vršnak et al., 2019). The speed at which CMEs propagate depends on 
the speed of the surrounding solar wind flow, which has the effect of accelerating slower CMEs and decel-
erating faster CMEs (e.g., Gopalswamy et al., 2000; Vršnak & Žic, 2007). CME expansion in interplanetary 

Abstract One of the grand challenges in heliophysics is the characterization of coronal mass ejection 
(CME) magnetic structure and evolution from eruption at the Sun through heliospheric propagation. 
At present, the main difficulties are related to the lack of direct measurements of the coronal magnetic 
fields and the lack of 3D in-situ measurements of the CME body in interplanetary space. Nevertheless, 
the evolution of a CME magnetic structure can be followed using a combination of multi-point remote-
sensing observations and multi-spacecraft in-situ measurements as well as modeling. Accordingly, 
we present in this work the analysis of two CMEs that erupted from the Sun on April 28, 2012. We 
follow their eruption and early evolution using remote-sensing data, finding indications of CME–CME 
interaction, and then analyze their interplanetary counterpart(s) using in-situ measurements at Venus, 
Earth, and Saturn. We observe a seemingly single flux rope at all locations, but find possible signatures 
of interaction at Earth, where high-cadence plasma data are available. Reconstructions of the in-situ 
flux ropes provide almost identical results at Venus and Earth but show greater discrepancies at Saturn, 
suggesting that the CME was highly distorted and/or that further interaction with nearby solar wind 
structures took place before 10 AU. This work highlights the difficulties in connecting structures from the 
Sun to the outer heliosphere and demonstrates the importance of multi-spacecraft studies to achieve a 
deeper understanding of the magnetic configuration of CMEs.
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space is believed to usually take place up to ∼10 –15 AU, where CMEs reach pressure balance with the solar 
wind (e.g., J. D. Richardson et al., 2006; von Steiger & Richardson, 2006). As CMEs propagate through the 
outer heliosphere, they may interact with stream interaction regions (SIRs; e.g., I. G. Richardson, 2018) or 
with other CMEs to produce merged interaction regions (MIRs; e.g., Burlaga et al., 1986, 1997), which are 
believed to dominate the structure of the heliosphere at large heliocentric distances (e.g., Gazis et al., 2006; 
von Steiger & Richardson, 2006).

In reality, the sparsity of observations throughout the heliosphere, together with the fact that in-situ meas-
urements typically sample a 1D trajectory through a much larger structure, mean that many aspects of CME 
evolution are yet to be fully understood (for recent reviews on CME evolution, see Luhmann et al., 2020; 
Manchester et al., 2017). For example, it is unclear to which extent 1D in-situ measurements are representa-
tive of the global CME structure (e.g., Al-Haddad et al., 2011; Owens et al., 2017), mainly because of distor-
tions (e.g., Manchester et al., 2004; Owens, 2008; Savani et al., 2010) and/or the particular sampling distance 
with respect to the CME nose and central axis (e.g., Cane et al., 1997; Kilpua et al., 2011; Marubashi & Lep-
ping, 2007). As they propagate through the solar corona and interplanetary space, CMEs are also known to 
experience deflections and rotations (e.g., Isavnin et al., 2014; Kay et al., 2015; Vourlidas et al., 2011; Y. Wang 
et al., 2004), which may significantly affect the magnetic configuration that is later measured in situ (e.g., 
Palmerio et al., 2018; Yurchyshyn, 2008). Furthermore, in addition to the difficulties in understanding CME 
evolution for single-CME events, cases where CMEs interact with solar wind structures (e.g., Heinemann 
et al., 2019; Rouillard et al., 2010; Winslow et al., 2016, 2021) or with other CMEs (e.g., Dasso et al., 2009; 
Farrugia & Berdichevsky, 2004; Lugaz, Temmer, et al., 2017; Scolini et al., 2020) are not infrequent, thus 
complicating things further.

The properties of interplanetary CMEs (or ICMEs; e.g., Kilpua et al., 2017) have been studied mainly around 
1 AU (e.g., Cane & Richardson,  2003; Jian et  al.,  2006,  2018; Nieves-Chinchilla, Vourlidas, et  al.,  2018; 
Nieves-Chinchilla et al., 2019; Owens, 2018; Regnault et al., 2020; I. G. Richardson & Cane, 2010), that is 
where continuous in-situ measurements of the solar wind have been available for several decades and up to 
this day. In particular, the subset of ICME ejecta known as magnetic clouds (Burlaga et al., 1981) have been 
analyzed extensively around Earth's orbit, both in statistical (e.g., Huttunen et al., 2005; Janvier, Démoulin, 
& Dasso, 2014; Li et al., 2014, 2018; Lynch et al., 2003; Nieves-Chinchilla & Viñas, 2008; Nieves-Chinchilla 
et al., 2005; Rodriguez et al., 2016; Wood et al., 2017) and in case studies (e.g., Kilpua et al., 2009; Lynch 
et al., 2010; Möstl et al., 2008; Möstl, Farrugia, Miklenic, et al., 2009; Nieves-Chinchilla et al., 2011). Mag-
netic clouds are characterized by enhanced magnetic field magnitudes, a large and smooth rotation of the 
magnetic field over one direction, low proton temperatures, and low plasma beta, and they are of particu-
lar interest because their magnetic configuration corresponds to that of a flux rope. Interestingly, the first 
study that identified and defined magnetic clouds in the solar wind, that is that of Burlaga et al. (1981), was 
performed using observations from several spacecraft between 1 and 2 AU, thus highlighting the impor-
tance of well-separated multi-spacecraft measurements to understand the intrinsic structure of CMEs in 
the heliosphere.

Indeed, studying the properties of CMEs at different radial distances as they propagate throughout the he-
liosphere can provide paramount information and insight into CME evolution. Heliocentric orbiters such 
as Helios 1/2 and Ulysses have enabled long-term observation and analysis of ICMEs away from 1 AU 
and/or the ecliptic plane (e.g., Bothmer & Schwenn, 1994, 1998; Du et al., 2010; Jian et al., 2008b; Lepri & 
Zurbuchen, 2004; Y. Liu et al., 2005; I. G. Richardson, 2014; Riley et al., 2000). Data from the more recently 
launched Parker Solar Probe, BepiColombo, and Solar Orbiter have resulted in several studies of CMEs 
measured between the Sun and 1 AU (e.g., E. E. Davies et al., 2021; Korreck et al., 2020; Lario et al., 2020; 
Nieves-Chinchilla et al., 2020; Zhao et al., 2020; Weiss et al., 2021). Considerable results were also achieved 
using data from spacecraft, such as Pioneer 10/11 and Voyager 1/2, that were launched on escape trajec-
tories out of the solar system and that have provided valuable information on the behavior of ICMEs at 
progressively larger heliocentric distances (e.g., Burlaga et al., 2001; C. Wang & Richardson, 2001, 2004). 
Finally, another important contribution in understanding CME properties away from 1 AU has come from 
planetary missions, which usually spend some part of their orbit outside of the planet's bow shock, thus 
exposing their instruments to the solar wind (e.g., Collinson et al., 2015; Good & Forsyth, 2016; Janvier 
et al., 2019; Jian et al., 2008a; Lee et al., 2017; Palmerio et al., 2021; Winslow et al., 2015).
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In-situ measurements of the same CMEs by multiple spacecraft at different radial distances throughout 
the heliosphere enable studies of their interplanetary evolution (e.g., Burlaga et  al.,  1981; E. E. Davies 
et al., 2020; de Lucas et al., 2011; Good et al., 2018, 2019; Lugaz et al., 2020; Salman et al., 2020; Vršnak 
et al., 2019). Additionally, solar and heliospheric remote-sensing observations can be combined with mul-
ti-spacecraft in-situ data to obtain a complete picture of the whole solar–heliospheric system when charac-
terizing CME evolution (e.g., Asvestari et al., 2021; Kilpua et al., 2019; Möstl et al., 2015; Nieves-Chinchilla 
et al., 2012; Palmerio et al., 2021; Prise et al., 2015; J. D. Richardson et al., 2002; Rodriguez et al., 2008; Rouil-
lard et al., 2009). In particular, the use of heliospheric imagery has been proven useful to connect CMEs at 
the Sun to their in-situ counterparts (e.g., DeForest et al., 2013; Möstl, Farrugia, Temmer, et al., 2009; Möstl 
et al., 2017; Palmerio et al., 2019; Rouillard, 2011; Srivastava et al., 2018). ICME structures can be identified 
in situ using a number of signatures based on magnetic field, plasma, compositional, and energetic particle 
data (e.g., Zurbuchen & Richardson, 2006). Furthermore, since spacecraft may lack magnetic field and/or 
plasma instruments (especially those not dedicated to studying the solar wind), reduction in galactic cos-
mic rays (GCR) measurements known as Forbush decreases (Forbush, 1937; Hess & Demmelmair, 1937) 
can be used as a proxy for ICME passage (e.g., Cane, 2000; Dumbović et al., 2020; Freiherr von Forstner 
et al., 2018, 2020; Papaioannou et al., 2020; I. G. Richardson & Cane, 2011; Winslow et al., 2018; Witasse 
et al., 2017).

Despite the amount of spacecraft scattered throughout the heliosphere and decades of research efforts, the 
number of well-observed multi-spacecraft events covering extended radial distances into the outer helio-
sphere is still exiguous, even when considering both studies of the solar wind and interplanetary magnetic 
field (e.g., Burlaga et  al.,  2001; Prise et  al.,  2015; Witasse et  al.,  2017) as well as multi-planet observing 
campaigns designed to track the auroral response of giant planetary magnetospheres to CME-driven shocks 
between 5 and 30 AU (e.g., Branduardi-Raymont et al., 2013; Dunn et al., 2021; Lamy et al., 2012, 2017; 
Lamy, 2020; Prangé et al., 2004). More so, even fewer studies have focused on the magnetic structure of 
CMEs in the outer heliosphere. The Bastille event studied by Burlaga et al. (2001) at Voyager 2 at 63 AU is 
considered the most distant magnetic cloud ever observed, but its handedness was reported to be opposite 
to that of the corresponding ejecta at 1 AU, thus highlighting the difficulties in associating measurements 
that are separated by large radial distances.

This work represents the first in-depth study of the magnetic structure of a (merged) flux rope from the 
Sun to ∼10  AU. We analyze here in detail the eruption and evolution of two CMEs that left the Sun on 28 
April 2012 and were observed to interact in the inner heliosphere. The favorable position of the spacecraft 
involved in this study allows us to follow the event in remote-sensing imagery as it propagates away from 
the Sun and then to study its in-situ signatures and magnetic structure at Venus, Earth, and Saturn. Figure 1 
shows the position of various planets and spacecraft throughout the heliosphere on the day of the eruptions 
under analysis. This article is organized as follows. In Section 2, we enumerate the various instruments that 
are involved in this study. In Section 3, we describe the CMEs under analysis from a remote-sensing obser-
vational perspective. In Section 4, we estimate the propagation of the CMEs and their impact at different 
locations using the remote-sensing observations described in Section 3 as input. In Section 5, we present 
the in-situ signatures and analyze the magnetic structure of the interacting CMEs at different heliocentric 
distances. In Section 6, we discuss different aspects of the event, especially in terms of CME propagation 
and magnetic structure. Finally, in Section 7, we summarize our results and present our conclusions.

2. Spacecraft and Ground-Based Data
We list here the fleet of instruments that are involved in this study, starting from the Sun and moving out-
wards to Saturn. We combine remote-sensing and in-situ data in order to follow and characterize the event 
at various locations throughout the heliosphere.

Observations of the solar disc are made from three vantage points, namely Earth and the twin Solar Terres-
trial Relations Observatory (STEREO; Kaiser et al., 2008) spacecraft. The STEREO mission comprises two 
identical spacecraft that orbit the Sun close to 1 AU, one ahead of Earth in its orbit (STEREO-A) and the 
other one trailing behind (STEREO-B, which has been out of contact since late 2014). At the time of the 
events under analysis, STEREO-A and -B were located ∼113◦  west and ∼118◦ east of the Sun–Earth line, 
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respectively. Extreme ultra-violet (EUV) images are provided by the Atmospheric Imaging Assembly (AIA; 
Lemen et al., 2012) onboard the Solar Dynamics Observatory (SDO; Pesnell et al., 2012) orbiting Earth and 
the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI; R. A. Howard et al., 2008) Ex-
treme UltraViolet Imager (EUVI) onboard STEREO. Line-of-sight magnetograms are available from Earth's 
viewpoint only, and we use data from the Helioseismic and Magnetic Imager (HMI; Scherrer et al., 2012) 
onboard SDO.

Coronagraph observations are made from the same three viewpoints. White-light images from Earth are 
provided by the Large Angle and Spectrometric Coronagraph (LASCO; Brueckner et al., 1995) C2 (2.2–
6 𝐴𝐴 𝐴𝐴⊙ ) and C3 (3.5–30 𝐴𝐴 𝐴𝐴⊙ ) cameras onboard the Solar and Heliospheric Observatory (SOHO: Domingo 
et  al.,  1995). Imagery from STEREO-A and -B is supplied by the SECCHI/COR1 (1.5–4 𝐴𝐴 𝐴𝐴⊙ ) and COR2 
(2.5–15 𝐴𝐴 𝐴𝐴⊙ ) coronagraphs.

White-light observations of the heliosphere are provided by the Heliospheric Imagers (HI; Eyles et al., 2009) 
onboard the twin STEREO spacecraft. Each HI instrument consists of two cameras, HI1 (4–24◦ ) and HI2 
(18–𝐴𝐴 88◦ ), that image interplanetary space in the vicinity of the Sun–Earth line (the degrees indicate the 
elongation in helioprojective radial coordinates).

In-situ measurements from Venus are provided by the Venus Express (VEX; Svedhem et al., 2007) space-
craft. The instruments that we avail ourselves of are the Magnetometer (MAG; Zhang et al., 2006) and the 
Analyzer of Space Plasmas and Energetic Atoms (ASPERA-4; Barabash et al., 2007). From the ASPERA-4 
package, we use data taken by the Ion Mass Analyzer (IMA) and the Electron Spectrometer (ELS) sensors. 
VEX terminated operations in early 2015 and was characterized by a 24-h highly elliptical orbit, most of 
which was in the solar wind and the remaining couple of hours were spent inside the bow shock of Venus. 
MAG was operational at all times, whilst ASPERA-4 was turned on for several hours close to periapsis and 
apoapsis.

In-situ measurements from Earth are provided by the Wind (Ogilvie & Desch, 1997) spacecraft, which orbits 
the Sun from Earth's Lagrange L1 point. Magnetic field and plasma (including solar wind electron distri-
butions) data are taken by the Magnetic Fields Investigation (MFI; Lepping et al., 1995) and Solar Wind 
Experiment (SWE; Ogilvie et al., 1995) instruments. We also use count rate data from the Neutron Monitor 
Database (NMDB), and specifically from the Thule (THUL), Oulu (OULU), and South Pole (SOPO) obser-
vatories on ground, as GCR proxies.

Finally, in-situ measurements from Saturn are provided by the Cassini (Matson et  al.,  2002) spacecraft. 
We use data from the Cassini Magnetic Field Investigation (MAG; Dougherty et al., 2004), the Radio and 

Figure 1. Position of various planets and spacecraft until the orbits of (a) Mars and (b) Saturn, on April 28, 2012. The orbits of all planets from Mercury to 
Saturn are also indicated.
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Plasma Wave Science (RPWS; Gurnett et al., 2004) experiment, and the Magnetosphere Imaging Instrument 
(MIMI; Krimigis et al., 2004). MIMI consists of three different sensors, and we use data from the Low En-
ergy Magnetospheric Measurement System (LEMMS) sensor. The Cassini spacecraft was dismissed in 2017 
through a controlled entry into Saturn.

3. Remote-Sensing Observations
In this section, we provide an overview of the solar events that originated on April 28, 2012 and follow them 
from the solar disc (Section 3.1) through white-light imagery of the corona (Section 3.2) and heliosphere 
(Section 3.3).

3.1. Solar Disc Observations

The sequence of events analyzed in this article commenced on April 28, 2012, which was a day character-
ized by several eruptions. Here, we focus on the three major solar events that originated on that day from 
the Earth-facing disc. Figure 2a shows the approximate source regions of these CMEs as seen by SDO (i.e., 
from Earth's perspective). For a complete set of observations of the front-sided eruptions of April 28, 2012 
from three viewpoints (STEREO-A, Earth, and STEREO-B), see Movie S1.

The first major eruption of the day, marked as “CME0” in Figure 2a, had its onset at 𝐴𝐴 ∼ 10:00 UT and originat-
ed from a quiet-Sun, J-shaped filament located in the southwestern quadrant of the solar disc (approximate-
ly at S25W40). Given the large scale of the resulting eruption and the proximity of the filament to the source 
of the next CME (CME1), it is possible that CME0 triggered the chain of subsequent events (e.g., Schrijver 
& Title, 2011; Török et al., 2011). However, this CME was seen to deflect significantly toward the southwest 
already in the lower corona (see Movie S1 and Section 3.2), making it highly unlikely to interact with the 
following CMEs or to encounter any observer close to the ecliptic plane. Hence, CME0 will be disregarded 
for the rest of this study.

The following eruption, marked as “CME1” in Figure 2a, had its onset at 𝐴𝐴 ∼ 13:00 UT and originated from 
a quiet-Sun, U-shaped filament located in the southeastern quadrant of the solar disc (approximately at 

Figure 2. Eruptive events on April 28, 2012 as seen in solar disc imagery from SDO. (a) Overview of the solar disc in the 304 Å channel prior to the eruptions, 
with the approximate source regions of the three CMEs marked in chronological order as “CME0,” “CME1,” and “CME2,” respectively. (b) Base-difference 
image in the 211 Å channel overlaid with magnetogram contours (red: positive polarity, blue: negative polarity). The footpoints of CME1 are indicated with 
green circles. (c) Image in the 171 Å channel showing the post-eruption arcade signatures of CME1. The global neutral lines (calculated from smoothed 
magnetogram data taken at the same time) are overlaid in red, and the main polarity inversion line involved in the eruption is indicated with a white arrow. 
(d–e) Same as panels (b–c), but for CME2.
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S45E15). Although this CME erupted from higher latitudes than CME0, it deflected toward the equator 
(see Movie S1 and Section 3.2), making it more likely to exhibit a significant component along the ecliptic 
plane and to interact with the following CME2. Hence, we proceed to evaluate the magnetic structure of 
the flux rope associated with CME1, also known as the “intrinsic flux rope type.” This can be achieved via 
a combination of multi-wavelength, remote-sensing observations that yield information on the chirality 
(or handedness), tilt, and axial field direction of a flux rope during eruption (see Palmerio et al., 2017, and 
references therein for a summary of the available proxies). The eruption of CME1 was not characterized by 
a clear pair of coronal dimmings (usually tracers of a flux rope's footpoints; e.g., B. J. Thompson et al., 2000; 
Zhukov & Auchère, 2004), but rather by several patches of diffuse dimming regions. Hence, we estimate 
the CME footpoints to be simply located at either end of the erupting filament's spine, noting however that 
these are approximate locations because of possible projection effects. The resulting footpoints are shown in 
Figure 2b, according to which CME1 was rooted in a positive (negative) polarity to the west (east). Further-
more, we observe the “roll effect” (i.e., the sense of bending and twisting) of the filament material off limb 
in STEREO imagery (see Movie S1), which can be used as a chirality proxy (e.g., Martin, 2003; Panasenco 
& Martin, 2008). We determine that the filament rolled in a right-handed sense, which is also confirmed 
by the presence of a left-bearing barb (signature of a right-handed CME; e.g., Martin, 1998) that we could 
identify in H𝐴𝐴 𝐴𝐴 imagery of the solar disc from the Big Bear Solar Observatory (not shown). For the the flux 
rope tilt, we consider the inclination of the corresponding polarity inversion line and post-eruption arcade 
(e.g., Marubashi et al., 2015), shown in Figure 2c. Both are inclined ∼15◦ counterclockwise with respect 
to the solar equator, implying thus a low-inclination flux rope. A right-handed, low-inclination flux rope 
with an eastward axial field yields a north–east–south (NES) type, following the scheme of Bothmer and 
Schwenn (1998) and Mulligan et al. (1998).

Finally, the last eruption, marked as “CME2” in Figure 2a, had its onset at 𝐴𝐴 ∼ 18:00 UT and originated from 
active region (AR) 11469 (approximately at S15E20), in the vicinity of the eastern footpoint of the CME1 
filament. Given the close location of the source region with respect to the center of the solar disc and noting 
no major deflections during early evolution (see Movie S1 and Section 3.2), we can expect CME2 to be likely 
Earth-directed. Hence, we again estimate the intrinsic flux rope type associated with this eruption. Low-cor-
onal signatures of the CME included J-shaped ribbons (shown in Figure 2d), proxies of right-handed chiral-
ity (e.g., Démoulin et al., 1996). Together with coronal dimming pairs, flare ribbons are also tracers of where 
a flux rope is rooted (e.g., Aulanier et al., 2012; Janvier, Aulanier, et al., 2014), resulting in the footpoints 
indicated in Figure 2d and showing the northern (southern) leg anchored to the positive (negative) mag-
netic polarity. The polarity inversion line and post-eruption arcade are both inclined ∼55◦ counterclockwise 
with respect to the solar equator, indicating a high-to-intermediate inclination flux rope. A right-handed, 
high-inclination flux rope with a southward axial field yields an east–south–west (ESW) type, whilst its 
low-inclination counterpart would be a NES type.

3.2. Coronagraph Observations

After erupting, the April 28, 2012 CMEs appeared in coronagraph imagery from three locations (STEREO-A, 
SOHO, and STEREO-B). We provide here an overview of white-light observations of the events through-
out the solar corona, with a particular focus on the derivation of geometric and kinematic parameters for 
the eruptions that we deemed in Section 3.1 to be possibly Earth-directed (i.e., CME1 and CME2, shown 
in Figure 3). For a complete set of the coronagraph observations from the three available viewpoints, see 
Movie S2.

As mentioned in Section 3.1, CME0 (the first to erupt and visible in COR2-A imagery starting at 12:24 UT 
on April 28, 2012) was seen to propagate mainly below the ecliptic plane (STEREO views) and toward the 
west (SOHO view), strongly suggesting that the eruption was directed away from the Sun–Earth line and 
from the following CMEs. This event was particularly faint in STEREO-B imagery, which is not surprising 
since the CME was propagating fully away with respect to the plane of the sky.

CME1 emerged in coronagraph imagery a few hours after CME0 (around 18:24 UT in COR2-A data) and 
was seen to propagate at significantly lower latitudes than the previous eruption (see also Section 3.1). In 
addition, the main “bulk” of CME1 was preceded by a smaller feature at its southern edge, resulting in a 
double-lobe structure visible from all viewpoints shown in Movie S2. We note that asymmetric and complex 
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white-light morphologies of CMEs that originated from filament eruptions have been reported in previous 
studies (e.g., Palmerio et al., 2021; Yang et al., 2012; Zhu et al., 2014). In the case under study, it is likely that 
the double-lobe structure seen in STEREO imagery resulted from an uneven eruption and disconnection of 
the corresponding filament legs (e.g., R. Liu et al., 2009; Tripathi et al., 2006; Vourlidas et al., 2011). Further-
more, we note that images of CME1 from the SOHO viewpoint (see e.g., Figure 3b) are particularly complex 
to interpret because of an almost-simultaneous back-sided CME (clearly visible in Figures 3a and 3c) over-
lapping due to projection effects. Overall, CME1 did not appear to evolve drastically throughout the solar 
corona, suggesting that its orientation was maintained similar to that prior to eruption (cf. the low-inclina-
tion configuration that was inferred from the analysis of solar disc imagery in Section 3.1).

Finally, CME2 appeared in coronagraph imagery a few hours after CME1 (around 22:24 UT in COR2-A 
data) and was seen to propagate mainly along the ecliptic plane. It was the faintest of the three eruptions 
in white-light data from all available viewpoints (see Movie S2), possibly because of its passage through an 
already disturbed corona due to the preceding CME1. The morphology of the eruption in coronagraph im-
ages from the two STEREO viewpoints (see also Figures 3g–3i) is reminiscent of a low-inclination flux rope 
seen edge on (see, e.g., T. A. Howard et al., 2017; Krall & St. Cyr, 2006; Thernisien et al., 2006), suggesting 
that the CME rotated slightly upon eruption (cf. the high-to-intermediate-inclination configuration that 
was inferred from the analysis of solar disc imagery in Section 3.1).

In order to obtain quantitative estimates of the geometric and kinematic parameters of CME1 and CME2 
through the solar corona, we reconstruct both eruptions using the Graduated Cylindrical Shell (GCS; Th-
ernisien et al., 2009; Thernisien, 2011) model. In the GCS model, a parameterized shell reminiscent of a 

Figure 3. Coronagraph observations and GCS reconstructions for CME1 and CME2. (a–c) CME1 shown in difference images from the COR2-A, C3, and 
COR2-B telescopes, respectively. Background images are taken 1 h prior to each of the main images. (d–f) Same images as (a–c), with the GCS wireframe 
overlaid in red. (g–i) Same as (a–c), but for CME2. (j–l) Same as (d–f), but for CME2. All images are taken within 6 min of the times reported under each 
column.



Journal of Geophysical Research: Space Physics

PALMERIO ET AL.

10.1029/2021JA029770

8 of 28

croissant with its legs attached to the Sun is manually fitted to nearly simultaneous white-light images until 
its morphology best matches the observed features. GCS model results are shown in Figures 3d–3f for CME1 
and Figure 3j–3l for CME2. According to our reconstruction results, CME1 had a propagation direction of 
(𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ) = (−12◦,−18◦ ) and a tilt (𝐴𝐴 𝐴𝐴 ) of 𝐴𝐴 5◦ with respect to the solar equatorial plane, whilst the corresponding 
values for CME2 are (𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ) = (−8◦,−24◦  ) and 𝐴𝐴 𝐴𝐴 = 15◦ (here, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are expressed in Stonyhurst coordi-
nates; e.g., W. T. Thompson, 2006, and a positive 𝐴𝐴 𝐴𝐴 is assumed for counterclockwise rotations). Further-
more, we determine the speeds (𝐴𝐴 𝐴𝐴 ) of both CMEs through the outer corona by performing GCS reconstruc-
tions at two separate times separated by 1 h, resulting in 𝐴𝐴 𝐴𝐴 = 405.8 km⋅s−1 for CME1 and 𝐴𝐴 𝐴𝐴 = 309.2 km⋅s−1  
for CME2. Overall, both CMEs propagated slightly toward the southeast as seen from Earth, had low speeds, 
and were characterized by a low tilt of their axes with respect to the solar equatorial plane. In terms of their 
resulting magnetic configuration through the corona, it can be assumed that CME1 maintained its NES flux 
rope type determined in Section 3.1, whilst CME2 rotated from its higher-inclination, ESW type inferred 
in Section 3.1. The shortest “path” from 𝐴𝐴 𝐴𝐴 = 55◦ to 𝐴𝐴 𝐴𝐴 = 5◦ corresponds to a clockwise motion of the CME 
axis, which is the expected sense of rotation for a right-handed flux rope (e.g., Green et al., 2007; Lynch 
et al., 2009). Hence, these results indicate that both CME1 and CME2 featured a NES flux rope configura-
tion when they left the fields of view of the coronagraphs employed in this study.

3.3. HI Observations

After leaving the field of view of the COR2 coronagraphs, CME1 and CME2 appeared in images from the 
HI cameras onboard both STEREO spacecraft. For a complete set of observations from both HI1 cameras, 
see Movie S3. An overview of HI observations is shown in Figure 4. CME1 first emerged in HI1-A data at 

Figure 4. CME1 and CME2 seen as a single structure in images from the STEREO/SECCHI/HI cameras. (a–b) The 
CME seen in running-difference images taken with the (a) HI1-A and (b) HI1-B cameras. The locations of Mercury, 
Venus, and Mars are marked in panel (a). (c–d) Time–elongation maps from (c) STEREO-A and (d) STEREO-B. The 
CME is tracked in red. The maps are constructed along position angles of 𝐴𝐴 90◦ for STEREO-A and 𝐴𝐴 260◦ for STEREO-B.
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20:49 UT on April 28, 2012 and in HI1-B data at 22:49 UT on the same day. The complex morphology of 
CME1, mentioned already in Section 3.2, is evident in heliospheric imagery as well. Furthermore, it is diffi-
cult to clearly distinguish the front of CME2 amongst the material of the preceding CME1, making the two 
eruptions appear as a merged, complex structure as they propagate away from the Sun. Figures 4a and 4b 
shows a snapshot of the complex structure observed in HI1 imagery, whilst Figures 4c and 4d shows time–
elongation maps constructed using data from both HI1 and HI2 cameras, together with the corresponding 
tracks of the merged CME.

We note that CME1 and CME2 are also indicated as a single CME in the HELiospheric Cataloging, Analysis 
and Techniques Service (HELCATS) catalogs, based on observations made with the STEREO/SECCHI/HI 
cameras. This event is included in the HICAT catalog (Harrison et al., 2018), which was compiled through 
visual inspection of HI1 images, and in the HIGeoCAT catalog (Barnes et al., 2019), which was compiled 
using time–elongation maps and by applying single-spacecraft fitting techniques to derive CME kinematic 
properties. In both catalogs, CMEs are identified using single-spacecraft data, hence the STEREO-A and 
STEREO-B observations are presented separately. Amongst the fitting techniques reported in HIGeoCAT, 
we consider here the results obtained with the Self-Similar Expansion fitting technique (SSEF; J. A. Davies 
et al., 2012; Möstl & Davies, 2013) with a fixed half-width of 𝐴𝐴 30◦ applied to time–elongation single-spacecraft 
data. In the SSEF model, CMEs are assumed to have a circular front and to propagate radially with constant 
speed and half-width. SSEF results based on STEREO-A observations report a propagation direction of  
(𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ) = (−16◦,−9◦ ) and a speed of 405 km⋅s−1 ; whilst SSEF results based on STEREO-B observations report 
a propagation direction of (𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ) = (−16◦, 1◦ ) and a speed of 791 km⋅s−1 . Whilst the values for propagation 
latitude and longitude are consistent with each other and also with the GCS results shown in Section 3.2, 
the SSEF-B speed is approximately twice as large as the SSEF-A one, which is on the other hand basically 
identical to the speed for CME1 derived using GCS reconstructions.

4. CME Propagation Modeling
In this section, we estimate the impact locations and arrival times of CME1 and CME2 across the helio-
sphere. In order to achieve this, we employ two different propagation models that are based on different 
physical assumptions and observational inputs. The first model (presented in Section 4.1) is based uniquely 
on HI observations (see also Section 3.3) and treats CME1 and CME2 as a single, merged structure. In the 
second model (presented in Section 4.2) CME1 and CME2 are inserted separately and their input parame-
ters are derived from coronagraph observations (see also Section 3.2).

4.1. SSSE Model

The first CME propagation model that we employ in this study is based on HI observations and fittings such 
as the SSEF results presented in Section 3.3. The SSEF results reported in the HELCATS catalogs, howev-
er, consider observations made with each spacecraft separately. Since the merged CME1 and CME2 were 
observed from both STEREO probes, we use here the two-spacecraft version of the SSE model, that is the 
Stereoscopic Self-Similar Expansion (SSSE; J. A. Davies et al., 2013) model. With the aid of time–elongation 
data (see Figure 4) from both spacecraft, we initially triangulate the CME front as it propagates away from 
the Sun assuming a circular cross-section and fixed half-width (set in this case as 𝐴𝐴 𝐴𝐴∕2 = 60◦ , since the model 
was found by Barnes et al., 2020, to perform better with angular extents 𝐴𝐴 𝐴 30◦ ). Then, in order to propagate 
the CME beyond its last observation time in both HI cameras, we fit a second-order polynomial to the CME 
apex as a function of time, assuming a constant propagation direction. As a result, the merged CME is pre-
dicted to impact Venus (2012-05-01T22:19), Earth (2012-05-04T15:08), Mars (2012-05-05T16:21), and Saturn 
(2012-06-08T14:52). Figure 5 shows the position of the tracked CME front (top row) and the impact location 
at the four planets with respect to the apex (bottom row).

4.2. Enlil Simulation

The second CME propagation model that we use in this work is the 3D heliospheric magnetohydrodynamic 
(MHD) Enlil (Odstrcil, 2003; Odstrcil et al., 2004) model. Enlil uses the Wang–Sheeley–Arge (WSA; Arge 
et al., 2004) coronal model to generate a background solar wind from its inner boundary (placed at 21.5 𝐴𝐴 R⊙ or 
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0.1 AU) onwards. Here, we set the outer boundary of the simulation domain at 10 AU. CMEs are launched 
through the heliospheric domain at the inner boundary as spherical hydrodynamic structures, that is lack-
ing an internal magnetic field. The input parameters for CME1 and CME2 are entirely derived from the GCS 
reconstructions reported in Section 3.2. The two CMEs that we inject have an elliptical cross-section and 
their angular extent is obtained by “cutting” a slice out of the GCS shell (see Figure 3 and Thernisien, 2011). 
The speeds and injection times are derived from the last observations in coronagraph data and by prop-
agating the CMEs up to 21.5 𝐴𝐴 R⊙ under the assumption of constant speed. As a result, CME1 is launched 
on April 29, 2012 at 04:32 UT, at (𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ) = (−12◦,−18◦ ) and with axis tilt � = 5◦ , speed 𝐴𝐴 𝐴𝐴 = 405.8 km⋅s−1 , and 
half-angular width (𝐴𝐴 𝐴𝐴max, 𝐴𝐴min ) = (41.6◦, 16.9◦ ); CME2 is launched on April 29, 2012 at 12:42 UT, at (𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ) 
= (−8◦,−24◦ ) and with � = 15◦ , 𝐴𝐴 𝐴𝐴 = 309.2 km⋅s−1 , and (𝐴𝐴 𝐴𝐴max, 𝐴𝐴min ) = (𝐴𝐴 44.8◦, 20.5◦ ). Three screenshots from 
the simulation, corresponding to when the merged CME was at approximately 1, 5, and 10 AU, are shown 
in Figure 6. We note that, although CME2 is slightly slower than CME1, the two eruptions merge early on 
and appear to propagate away from the Sun as a single structure, possibly due to solar wind preconditioning 
caused by the prior CME (i.e., CME1), which is a phenomenon seen both in observations (e.g., Y. D. Liu 
et al., 2014, 2019; Temmer & Nitta, 2015) and in simulations (e.g., Desai et al., 2020; Scolini et al., 2020). 
The resulting CME-driven shock and/or sheath is predicted to impact Venus (2012-05-01T19:35), Earth 
(2012-05-02T06:15), Mars (2012-05-05T23:33), and Saturn (2012-06-10T14:10). The merged ejecta is predict-
ed to impact Venus (2012-05-02T00:42), Earth (2012-05-02T13:53), Mars (2012-05-06T06:31), and Saturn 
(2012-06-11T14:26).

5. In-Situ Measurements
In this section, we present and analyze in-situ data from Venus at 0.7 AU (Section 5.1), Earth at 1.0 AU 
(Section 5.2), and finally Saturn at 9.7 AU (Section 5.3). We remark that, although both propagation models 
shown in Section 4 estimated an impact at Mars, the main focus of this work is the study of the magnet-
ic structure of the CMEs from eruption through heliospheric propagation. Since there was no spacecraft 

Figure 5. Schematic representation of the stereoscopic self-similar expansion (SSSE) method applied to the merged CME1 and CME2 observed in HI data. 
(a–d) Position of the coronal mass ejection (CME) front (red circle) within the ecliptic plane triangulated from the observed leading edge in the HI1 cameras 
(dashed lines), shown at 𝐴𝐴 ∼ 12-h intervals. (e–h) CME position extrapolated from the last observations to predict arrival times at four planets: (e) Venus, (f) Earth, 
(g) Mars, and (h) Saturn. Plots are shown in the Heliocentric Earth Ecliptic (HEE) coordinate system.
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equipped with a solar wind-sampling magnetometer in orbit around Mars at the time of the events present-
ed here, this location is not included in our investigation.

5.1. Measurements at Venus

The first impact location predicted by both models presented in Section 4 is Venus. On April 28, 2012, Ve-
nus was located ∼25◦ east of the Sun–Earth line, at 0.72 AU (see Figure 1). In-situ measurements at Venus 
taken around the expected arrival time of CME1 and CME2 are shown in Figure 7, revealing the passage 
of a clear, albeit weak, interplanetary disturbance. In particular, two sudden increases in the magnetic field 
magnitude (at 2012-05-01T09:50 and 2012-05-02T00:39, marked by solid lines in Figure 7) may correspond 
to two interplanetary shocks, but it is not possible to establish this with certainty because of the lack of 
high-cadence plasma data. Nevertheless, the solar wind speed displays an increase after each magnetic field 
jump, suggesting that the two structures may indeed coincide with shocks. These are followed by a period of 
enhanced magnetic field featuring a rotation in the 𝐴𝐴 𝐴𝐴𝐵𝐵 component and a steady 𝐴𝐴 𝐴𝐴𝐵𝐵 (shaded area in Figure 7), 
characteristic of a flux rope configuration. The exact boundaries (i.e., leading and trailing edge) of this 
magnetic ejecta are not straightforward to identify, in particular because the rotation seem to extend beyond 
the enhancement in the magnetic field magnitude (see also the dash-dotted line in Figure 7, which appears 
to mark the beginning of a smoothly rotating region but is followed by a data gap). Hence, the identified 
ICME ejecta region (from 2012-05-02T15:14 to 2012-05-03T20:56) is based largely on the magnetic field 
magnitude (assumed to be greater than its surrounding material). Furthermore, it is unclear whether this 
structure corresponds to a single ejecta or to the merged CME1 and CME2, especially because of the lack 
of high-cadence plasma measurements and a data gap in the middle of the flux rope. It has been shown, in 
fact, that the interaction of two CMEs may result in an ejecta that resembles a coherent, isolated magnetic 
flux rope (e.g., Kilpua et al., 2019; Lugaz & Farrugia, 2014).

Visual inspection of the magnetic field components within the ejecta reveals a (weak) rotation from north 
to south and a constant eastward direction, corresponding to a right-handed, NES flux rope type. This was 
also the magnetic configuration of both CME1 and CME2 in the outer corona as inferred from the analysis 
of solar disc and coronagraph imagery (see Sections 3.1–3.2). We also fit the structure using the Elliptic–
Cylindrical (EC) analytical model of Nieves-Chinchilla, Linton, et al.  (2018), which is able to describe a 
magnetic flux rope topology with a distorted cross-section, which may result from interactions with for 
example the solar wind. The results are shown over the magnetic field measurements in in Figure 7 and the 
full set of parameters obtained are reported in Table S1. Apart from vector magnetic field data, the model 
requires as input the CME average speed, for which we choose a value 𝐴𝐴 𝐴𝐴 = 333 km⋅s−1 based on the three 

Figure 6. Screenshots from the WSA–Enlil + Cone simulation. The parameter shown in the plots is the solar wind radial speed in the ecliptic plane on (a) May 
2, 2012, (b) May 20, 2012, and (c) June 10, 2012. The merged CME ejecta is represented with a black countour.
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data points available. According to the EC model, the flux rope is right-handed and has axis orientation  
(𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ) = (−10◦, 128◦ ), fully consistent with a NES-type structure. Furthermore, its cross-section is rather 
distorted, with a distortion parameter 𝐴𝐴 𝐴𝐴 = 0.47 (𝐴𝐴 𝐴𝐴 is defined to be 1 for a circular cross-section and 0 for 
maximum distortion).

5.2. Measurements at Earth

The next impact location predicted by the models presented in Section 4 is Earth, situated at 1.01 AU on 
April 28, 2012 (see Figure  1). In-situ measurements at Earth taken around the expected arrival time of 
CME1 and CME2 are shown in Figure 8. The sequence of events starts with an interplanetary shock (at 
2012-05-03T01:01, marked by a solid vertical line in Figure 8), followed by a decreasing magnetic field pro-
file similarly to the first structure encountered at Venus (cf. Figure 7). We note that the shock is remarkably 
slow (𝐴𝐴 𝐴𝐴 ∼ 300 km⋅s−1 ), which has however been shown to be possible for slow CMEs characterized by sig-
nificant expansion that travel through a slow upstream solar wind with a low magnetosonic speed (Lugaz, 
Farrugia, et al., 2017). We do not find signatures of a second shock at Earth. A second sharp increase in 
the magnetic field magnitude (similar to the one detected at Venus) is not associated with a solar wind 
speed jump and, furthermore, density and temperature feature a decrease. This suggests that the second 
discontinuity at Venus was also not a shock or that the second shock dissipated between 0.7 and 1.0 AU. 
The structure (between 2012-05-04T03:25 and 2012-05-05T11:23) following the second sharp magnetic field 
increase displays clear signatures of a magnetic cloud (shaded region in Figure 8), albeit with a low mag-
netic field strength and several complex characteristics. In particular, the center of the identified flux rope 
(between the dashed orange lines in Figure 8) features a region characterized by less smooth magnetic field, 
an irregular speed profile, and enhanced density and plasma beta. Furthermore, the proton temperature is 
relatively high throughout the first portion of the ejecta and finally drops below expected levels only after 

Figure 7. Measurements at Venus around the expected arrival time of the merged coronal mass ejection (CME1) and CME2. The parameters shown are: (a) 
magnetic field magnitude, (b) magnetic field components in Venus Solar Orbital (VSO) Cartesian coordinates, (c) 𝐴𝐴 𝐴𝐴 and (d) 𝐴𝐴 𝐴𝐴 angles of the magnetic field in 
VSO angular coordinates, (e) solar wind speed, and (f) proton and (g) electron energy distribution. The solid gray lines indicate two possible interplanetary 
shocks. The dash-dotted blue line represents a possible start of the magnetic field rotation. The shaded green area marks the period characterized by flux rope 
signatures and enhanced magnetic field, corresponding to a magnetic ejecta. The magenta curves over magnetic field data within the ejecta show fitting results 
from applying the Elliptic–Cylindrical flux rope model of Nieves-Chinchilla, Linton, et al. (2018).
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the high-beta region (the same trend is observed for alpha particles, not shown here). Unfortunately, heavy 
ion composition or charge state data from the Advanced Composition Explorer (ACE) spacecraft are not 
available because of a data gap. Nevertheless, these characteristics are consistent with the merging CMEs 
or multiple magnetic clouds scenario described by, for example, Lugaz and Farrugia (2014) and Y. M. Wang 
et al. (2003), in which the central portion represents the interaction region between the two original ejecta 
(in this case, CME1 and CME2). Finally, we note that the interplanetary disturbance is associated with a 
weak (∼2 % variation) Forbush decrease, registered at all neutron monitors considered here but with differ-
ent onset times, ranging from the arrival of the interplanetary shock to the beginning of the magnetic field 
rotation (dash-dotted line in Figure 8).

The magnetic cloud boundaries identified here coincide with the ones defined in the NASA–Wind ICME list 
(Nieves-Chinchilla, Vourlidas, et al., 2018). Visual inspection of the magnetic field components within the 
ejecta reveal a very similar configuration to the one encountered at Venus (see Section 5.1), that is character-
ized by a north–south rotation of the helical field and an eastward axial field, forming a NES-type flux rope. 
This picture is consistent with CME1 and CME2 (both of NES type in the outer corona, see Section 3.2) 

Figure 8. Measurements at Earth around the expected arrival time of the merged CME1 and CME2. The parameters shown are: (a) magnetic field magnitude, 
(b) magnetic field components in Geocentric Solar Ecliptic (GSE) Cartesian coordinates, (c) 𝐴𝐴 𝐴𝐴 and (d) 𝐴𝐴 𝐴𝐴 angles of the magnetic field in GSE angular coordinates, 
(e) solar wind speed, (f) proton density, (g) proton temperature (with the expected temperature defined by I. G. Richardson & Cane, 1995, shown in red), (h) 
plasma beta, (i) pitch angle distribution, and (j) galactic cosmic rays percentage variation (measured by three different neutron monitors on ground). The solid 
gray line marks the arrival of the interplanetary shock. The dash-dotted blue line represents the beginning of the magnetic field rotation. The shaded gray area 
marks the magnetic cloud, with an interaction region delimited by dashed orange lines. The magenta curves over magnetic field data within the ejecta show 
fitting results from applying the Elliptic–Cylindrical flux rope model of Nieves-Chinchilla, Linton, et al. (2018).
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reconnecting in interplanetary space before reaching Venus and coalescing into a single NES flux rope. 
Again, we fit the structure using the EC model and assuming a CME average speed of 𝐴𝐴 𝐴𝐴 = 310 km⋅s−1 directly 
from in-situ data. The results are shown over the magnetic field measurements in Figure 8 and the full set 
of parameters obtained are reported in Table S1. The resulting flux rope is right-handed, has axis orientation 
(𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ) = (2◦, 145◦ ), and its distortion parameter is 𝐴𝐴 𝐴𝐴 = 0.46 . We note that these results are compatible with 
those at Venus, that is consistent with a NES flux rope that is rather distorted.

5.3. Measurements at Saturn

Finally, the last location where an arrival of CME1 and CME2 is predicted is Saturn, which was positioned 
at 9.73 AU from the Sun and ∼12◦ east of Earth on April 28, 2012 (see Figure 1). Even though CMEs usually 
take a relatively long time to reach ∼10 AU (about a month; e.g., Prangé et al., 2004), Saturn's 29-year orbit 
results in the planet moving about 1◦ in longitude per month and, thus, can be considered essentially fixed 
in space throughout the analyzed period. In-situ measurements at Saturn taken around the expected arrival 
time of CME1 and CME2 are shown in Figure 9. Providentially, Cassini exited the Kronian magnetosheath 
between June 9–16, 2012 and was fully immersed in the solar wind during most of this time interval. On 
the other hand, Cassini's plasma spectrometer was permanently turned off on June 2, 2012 (i.e., just a week 
before the start of the data shown in Figure 9) due to short circuits in the instrument, hence there are no 
measurements such as solar wind speed and proton density available. Nevertheless, we complement mag-
netic field data with particle measurements and radio observations of Saturn's Kilometric Radiation (SKR; 
e.g., Kaiser et al., 1984; Lamy et al., 2008; Warwick et al., 1981). The SKR is Saturn's primary radio emission 
and is generated by auroral electrons that are accelerated along field lines rooted around Saturn's auroral 
oval (e.g., Lamy, 2017; Lamy et al., 2009). The emission is highly dependent on solar wind conditions (e.g., 

Figure 9. Measurements at Saturn around the expected arrival time of the merged CME1 and CME2. The parameters shown are: (a) magnetic field magnitude, 
(b) magnetic field components in Kronocentric Solar Orbital (KSO) Cartesian coordinates, (c) 𝐴𝐴 𝐴𝐴 and (d) 𝐴𝐴 𝐴𝐴 angles of the magnetic field in KSO angular 
coordinates, (e) electron (including penetrating GCR protons) and (f) proton count rates (with the corresponding LEMMS channels and proton energy ranges 
indicated), and (g) dynamic spectrum of SKR spectral flux density normalized to 1 AU. Green-shaded regions correspond to periods in which Cassini was inside 
the Kronian magnetosheath. The beginning of the period featuring magnetic field rotation is marked with the dash-dotted blue line, and the period of enhanced 
magnetic field magnitude is shaded in gray, with a possible interaction region indicated by the dashed orange lines. The magenta curves over magnetic field 
data within the ejecta show fitting results from the Elliptic–Cylindrical flux rope model of Nieves-Chinchilla, Linton, et al. (2018).
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Bradley et al., 2020; Clarke et al., 2009; Desch, 1982; Kurth et al., 2005; Lamy et al., 2018), and previous 
studies have reported SKR enhancements concurrently with the passage of ICMEs (e.g., Crary et al., 2005; 
Palmaerts et al., 2018) and SIRs (e.g., Badman et al., 2008; Kurth et al., 2016).

First of all, the magnetic field measurements shown in Figure 9 reveal the passage of a (weak) disturbance, 
since the (ambient) interplanetary magnetic field around Saturn's orbit has usual magnitudes below 0.5 nT 
(e.g., Jackman et al., 2008; Echer, 2019). In this case, the magnetic field magnitude reaches values just under 
1 nT, which is rather low (cf. the 𝐴𝐴 ∼ 2 nT measurements reported by Witasse et al., 2017, for an ICME in 2014 
November), but is on the other hand consistent with the “weakness” of the transient measured at Earth  
(𝐴𝐴 ∼ 7.5 nT, see Figure 8). We do not find signatures of an interplanetary shock, but we could identify a peri-
od of smoothly rotating magnetic field (starting at 2012-06-10T21:24, marked by the dash-dotted blue line 
in Figure 9) that includes the interval of enhanced magnetic field magnitude (between 2012-06-11T21:24 
and 2012-06-15T03:50, shaded gray region in Figure 9). We note that the central portion of this interval 
(bounded between the dashed orange lines in Figure 9) is characterized by a more irregular 𝐴𝐴 𝐴𝐴𝐵𝐵 component 
that is reminiscent of the one encountered at Earth (see Figure 8), that is indicating a possible interaction 
region. In order to confirm that an interplanetary disturbance has indeed impacted Saturn, we also examine 
energetic particle observations. In this regard, Roussos et al. (2018, 2020) showed that Cassini observations 
of solar energetic particle (SEP) and GCR transients can be used to identify disturbed solar wind conditions 
around Saturn, especially due to CMEs and SIRs. This is because SEPs and GCRs are able to penetrate Sat-
urn's magnetosphere, hence they can be monitored at all times (e.g., Roussos et al., 2008, 2011). During our 
period of interest, we find signatures of a Forbush decrease in the GCR data that are indirectly monitored 
with the LEMMS electron channel E6 (due to penetrating GCR protons; Roussos et al., 2019). This event 
was included by Roussos et al. (2018) in their list of SEP and GCR transients at Saturn between 2004 and 
2016. The decrease commenced around 10 June 2012 and reached its minimum around 14 June, concur-
rently with an increase in the LEMMS proton channels A5/A6 (the recovery phase of the Forbush decrease 
follows the plotted interval and is shown in its full extent by Roussos et al., 2018). Furthermore, SKR data 
feature increased emission between 2012-06-10T13:08 and 2012-06-14T02:16, that is over an interval that is 
in agreement with the Forbush decrease. The temporal extent of the SKR intensification is consistent with 
enhancements triggered by solar wind pressure fronts, as opposed to transient ones triggered by planetary 
rotation (lasting a few hours; e.g., Reed et al., 2018). Finally, we note a peak in proton counts occurring on 
June 9, 2012 shortly before the interval of enhanced SKR emission. It is unclear whether this structure has a 
magnetospheric or solar origin, especially since it was observed when Cassini was inside the Kronian mag-
netosheath. Nevertheless, the features detected during June 10–14, 2012 (in magnetic field, particles, and 
SKR) occur approximately at the same time, and strongly suggest that a solar transient, and in particular an 
ICME, impacted Saturn during the observed period.

The magnetic configuration of the entire structure characterized by smoother magnetic field components 
(i.e., from the dash-dotted blue line to the end of the shaded gray area in Figure 9) exhibits a larger rotation 
than that expected for an axial-symmetric flux rope (the 𝐴𝐴 𝐴𝐴𝐵𝐵 component rotates as west–east–west, resulting 
in a 360◦ rotation in the 𝐴𝐴 𝐴𝐴𝑌𝑌  –𝐴𝐴 𝐴𝐴𝑍𝑍 hodogram). Similar events displaying a rotation greater than 180◦ in the 
magnetic field were analyzed at 1 AU by Nieves-Chinchilla et al. (2019), who suggested that such events 
can be interpreted as flux ropes with significant curvature and/or distortion or as more complex topologies, 
such as a spheromak or a double flux rope. Since it is not unusual for interplanetary transients to interact 
and possibly merge by 1 AU, one may expect even more interaction and complexity in structures detected 
in the outer heliosphere (e.g., Hanlon et al., 2004; Prise et al., 2015). Hence, it is not possible to establish 
with certainty whether the observed configuration stems from a single, intrinsically complex structure, 
from the interaction of different structures, or if the region preceding the period of enhanced magnetic field 
magnitude corresponds to a “smoothed” sheath. Nevertheless, considering only the shaded gray region in 
Figure 9, visual inspection of the magnetic field yields an ESW flux rope type, still right-handed but corre-
sponding to a ∼90◦ counterclockwise rotation of the configuration found at Venus and Earth (NES). Again, 
we fit the structure using the EC model. In this case, due to the lack of plasma data at Saturn, we assume an 
average CME speed of 𝐴𝐴 𝐴𝐴 = 380 km⋅s−1 by considering the transit times of the flux rope leading and trailing 
edges from Earth to Saturn. Fitting results are shown over the magnetic field measurements in in Figure 9 
and the full set of parameters obtained are reported in Table S1. The resulting structure is right-handed (as 
expected), but its axis has orientation (𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ) = (−9◦, 3◦ ), that is consistent with a low-inclination flux rope. 
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Although the reconstructed magnetic field components fit well to the data, the observed east–west rotation 
is attributed in the model to a crossing more parallel to the central axis of a low-inclination flux rope, rather 
than a crossing perpendicular to the axis of a high-inclination one. Furthermore, the resulting distortion 
parameter is 𝐴𝐴 𝐴𝐴 = 0.21 , indicating that the structure is highly distorted.

6. Discussion
In this section, we synthesize the multi-spacecraft observations, modeling results, and interpretations pre-
sented in Sections 3, 4, and 5 and discuss them in the context of two main aspects: the propagation of the 
interacting CME1 and CME2 to 10 AU (Section 6.1) and the evolution of their magnetic structure from the 
Sun to Saturn (Section 6.2).

6.1. CME Propagation

CME1 and CME2 erupted 𝐴𝐴 ∼ 5 h apart from the southeastern quadrant of the Earth-facing disc, and their 
source regions were separated by ∼30◦ in latitude (see Section  3.1). Through the solar corona (see Sec-
tion 3.2), CME1 could be seen to deflect significantly toward the solar equator (its apex position changed 
from approximately S45E15 to S12E18), whilst CME2 propagated radially (its apex direction could be con-
sidered basically unchanged, from S15E20 at the Sun to S12E24 in the corona). This resulted in the two 
CMEs traveling away from the Sun in close succession and on a very similar trajectory. Despite CME2 ap-
pearing slightly slower (by ∼100 km⋅s−1 ) than CME1 at an altitude of ∼15  𝐴𝐴 𝐴𝐴⊙ , the two eruptions could not be 
clearly distinguished in HI imagery (see Section 3.3), possibly indicating that they interacted somewhere in 
the HI1 field of view. This outcome occurs also in the Enlil simulation (Section 4.2), where the CMEs appear 
as a merged structure throughout the heliospheric domain even if they were inserted separately at the inner 
boundary of 21.5 𝐴𝐴 𝐴𝐴⊙ . We suggested that this scenario can be attributed to solar wind preconditioning (e.g., 
Temmer et al., 2017), which allowed CME2 to travel through a rarefied background experiencing little to no 
drag and thus to run into CME1. As a consequence, we considered CME1 and CME2 as a single, interacting 
structure when estimating their propagation throughout the heliosphere.

In Section 4, we used two models to evaluate the arrival times of the interacting CME1 and CME2 at differ-
ent locations and to aid interpretation of the in-situ measurements shown in Section 5. The two propagation 
models that we employed are substantially different in their physics, assumptions, and observational input: 
the SSSE model (Section 4.1) consists of a 2D circular cross-section reconstructed using HI data and is then 
propagated outwards assuming constant acceleration, whilst Enlil (Section 4.2) is a full 3D MHD model of 
the heliosphere in which we inserted CME1 and CME2 as hydrodynamic pulses and with input parame-
ters based on coronagraph imagery. Nevertheless, both techniques estimated impacts at the same locations 
(Venus, Earth, Mars, and Saturn) and within reasonable temporal windows compared to the actual in-situ 
observations. In particular, the predicted arrival time at Saturn was remarkably accurate (with same-day 
precision) in the case of Enlil, and about 3 days off for SSSE (corresponding to a 7% error for a 𝐴𝐴 ∼ 43-day 
propagation). We note that, regardless of these encouraging results, both models have made a number of 
simplifying assumptions. For example, the treatment of CMEs as hydrodynamic pulses within Enlil is likely 
to affect the predicted arrival times due to the absence of internal magnetic forces that can contribute to 
the acceleration profile. However, as a CME travels away from the Sun these forces are expected to be less 
influential, especially at radial distances of a few AU and through the outer heliosphere. The SSSE model, 
on the other hand, treats CMEs as self-similarly propagating spherical fronts under the assumption of con-
stant half-width and acceleration, from which it would be unrealistic to expect precise estimates at 10 AU. 
Nevertheless, these results suggest that even simplifying models can be used to successfully approximate a 
CME arrival time window up to the outer heliosphere.

As a further indication of the solar wind propagation that occurred between 1 and 10 AU, we employ the 1D 
numerical MHD model of Tao et al. (2005), which uses in-situ measurements from Earth or the STEREO 
spacecraft to estimate the interplanetary conditions further out in the heliosphere, such as the orbits of Ju-
piter (e.g., Dunn et al., 2020), Saturn (e.g., Provan et al., 2015), and Uranus (e.g., Lamy et al., 2017). In this 
case, we use data at Earth (closest to Saturn in longitude, see Figure 1) and propagate the measurements up 
to 𝐴𝐴 ∼ 10 AU along the Sun–Earth line. The results for speed and dynamic pressure are shown in Figure 10. 
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The ICME at Earth was followed by a high-speed stream (HSS), which is estimated to have arrived at Saturn 
around June 10, 2012. The solar wind preceding this HSS (which includes the ICME measurements shown 
in Figure 8) is expected to be caught up by the fast stream around May 25, 2012 at a heliocentric distance of 
∼5 AU, possibly resulting in compression and acceleration of the ICME from behind (this is consistent with 
the Enlil simulation, see Figure 6b). The arrival time of these features at 10 AU matches quite well with the 
Enlil results (see Section 4.2) and the in-situ measurements at Saturn (see Section 5.3), further confirming 
the likelihood of our connection.

We also explored the level of interaction and possible merging between CME1 and CME2 through inter-
planetary space. We emphasise that, whilst the Enlil simulation estimated the two eruptions to merge well 
before reaching Mercury's orbit, it is not possible to fully model the nature and outcome of their interaction 
due to the lack of an internal magnetic field in the purely hydrodynamic representation of CMEs. Hence, 
our interpretation is entirely based on the in-situ observations presented in Section 5. At Venus, we did not 
find clear indications of interaction, possibly because of the lack of high-cadence plasma data and a data 
gap exactly at the center of the flux rope interval that we identified (see Figure 7). At Earth, a seemingly 
single magnetic cloud structure displayed less smooth magnetic field, variable speed, and enhanced plasma 
parameters at its center, which could be considered signatures of the interaction between CME1 and CME2 
(see Figure  8). At Saturn, the region that we selected as the magnetic ejecta featured similar magnetic 
field characteristics at its center as the ones encountered at Earth (see Figure 9). However, we could not 

Figure 10. Solar wind propagated from 1 to 9.75 AU using the Tao et al. (2005) model. The top panels show solar wind speed, whilst the bottom panels show 
dynamic pressure. Results are shown in both line (left) and contour (right) formats. In the line plots, the values for speed and dynamic pressure beyond 1 AU 
are progressively shifted toward lower values for visibility (values at different heliocentric distances can be read in the contour plots). In the line plots, the blue 
lines show measurements at Earth, the red lines show solar wind propagated to 9.75 AU along the Sun–Earth line, and the black lines at the bottom show model 
results shifted to Saturn's position. In all panels, the downward-pointing arrows mark the ICME ejecta arrival time at Earth (see Figure 8), whilst the upward-
pointing arrows mark the ICME ejecta arrival time at Saturn (see Figure 9).
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determine with confidence whether the observed structure corresponded entirely to the ejecta detected at 
Venus and Earth, or whether additional material was added to it via further interaction with nearby struc-
tures in the solar wind. At all locations, fitting the entire ejecta interval as a single flux rope yielded the best 
results, suggesting that, if interaction was present, it resulted in the two eruptions slowly merging and trav-
eling as a single magnetic structure, rather than in more extreme outcomes such as the second CME over-
coming and compressing the first. This is plausible, considering that CME1 and CME2 were ejected close 
in time and with comparable speeds. An alternative interpretation is that CME1 skimmed the inner planets 
and its signatures were observed following the first interplanetary shock, and the entire ejecta intervals at 
Venus and Earth belonged on the other hand to CME2.

6.2. CME Magnetic Structure

Both CME1 and CME2 erupted from the Sun as right-handed flux ropes, but with slightly different ori-
entations according to our analysis of solar disc imagery (Section 3.1): CME1 featured a low-inclination 
NES type, whilst CME2 displayed a high-to-intermediate inclination between an ESW and a NES type. In 
the solar corona, CME1 was observed to largely maintain its orientation, whilst CME2 appeared to have 
slightly rotated in a clockwise direction, from which we inferred that both eruptions consisted of NES-type 
flux ropes based on coronagraph imagery and reconstructions (Section 3.2). The two CMEs were hard to 
distinguish as separate structures in HI data (Section 3.3), suggesting that they interacted in some capacity 
in the inner heliosphere. At Venus (Section 5.1), we found a single flux rope signature of NES type (based 
on both visual inspection and flux rope fitting), which did not display evident indications of interaction 
(possibly because of lacking high-cadence plasma data and magnetic field measurements at the center of 
the structure). Nevertheless, the whole interplanetary distrubance (including shock and sheath material) 
was rather long in duration (𝐴𝐴 ∼ 2.5 days), suggesting that it may be linked to more than one parent eruption. 
At Earth (Section 5.2), we again found a long-duration (𝐴𝐴 ∼ 2.5 days) disturbance culminating in a seemingly 
single magnetic cloud of NES type (based on both visual inspection and flux rope fitting). However, we 
observed characteristic interaction signatures at the center of the flux rope, including enhanced plasma 
density, temperature, and beta, as well as an irregular speed profile and a less smooth magnetic field in the 

𝐴𝐴 𝐴𝐴𝐵𝐵 direction. Finally, at Saturn (Section 5.3), we found an extended (𝐴𝐴 ∼ 4 days in duration) disturbance mostly 
characterized by smoothly rotating field. We associated a period of enhanced magnetic field magnitude 
with a magnetic ejecta, noting that it featured at its center an irregular magnetic field profile (especially in 

𝐴𝐴 𝐴𝐴𝐵𝐵 ) reminiscent of the one encountered at Earth and attributed to interaction signatures. Its correspond-
ing flux rope type was determined to be ESW based on visual inspection, whilst flux rope fitting yielded a 
low-inclination structure with its axis pointing back toward the Sun. The chirality was found to be consist-
ently right-handed at all in-situ locations.

The overall picture extrapolated from the set of observations described above is that CME1 and CME2 
started to interact in the inner heliosphere (roughly in the HI1 field of view and before the orbit of Venus). 
The distinct NES ejecta measured at Venus and Earth suggests that reconnection between the trailing edge 
of CME1 and the leading edge of CME2 resulted in a single flux rope that maintained the original orienta-
tion of its constituent parts. The resulting magnetic structure of interacting CMEs has been analyzed via 
simulations by, for example, Lugaz et al. (2013) and Schmidt and Cargill (2004). Two flux ropes with the 
same twist and orientation (in this case, NES) are favorably configured for magnetic reconnection during 
interaction, at least at the interface between the two, which is where antiparallel fields meet. These conclu-
sions were also found by Kilpua et al. (2019), who analyzed two interacting CMEs in June 2012 that left the 
solar corona as NES types and were observed at Venus at the beginning of their interaction and at Earth as 
a single NES flux rope. The structure observed at Saturn, if corresponding in its entirely to the merged flux 
ropes detected in the inner heliosphere, would be consistent either with a modest (< 90◦ ) counterclockwise 
rotation in the north–south direction (based on the ESW configuration retrieved from visual inspection) or 
with a ∼130◦ rotation along the equatorial plane (based on flux rope fitting) between 1 and 10 AU, possibly 
as a result of the pressure exerted by a following HSS (see also the discussion in Section 6.1).

Finally, in order to investigate how the observed structure at Saturn relates to the ones at Venus and Earth, 
we employ the magnetic field mapping technique of Good et al. (2018), used to determine the arrival time 
and magnetic field of different plasma parcels in an ejecta between radially separated spacecraft. The 
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technique takes into account expansion as a CME travels through interplanetary space, and assumes that 
each ejecta features a monotonically increasing/decreasing speed profile determined by its leading and 
trailing edge speeds (calculated on the basis of their arrival times from one location to the next). Magnetic 
field mapping results for two different structures are shown in Figure 11. The full identified magnetic ejecta 
at Venus, Earth, and Saturn (i.e., the shaded gray areas in Figures 7–9) is mapped in panel (b), whilst in 
panel (a) the smaller magnetic structure preceding the ejecta (i.e., from the dash-dotted blue lines to the 
ejecta leading edges in Figures 7 and 9) is mapped between Venus and Saturn. In both panels, the measure-
ments bounded by solid vertical lines are mapped according to the Good et al. (2018) technique, whilst the 
preceding and following data are propagated at the resulting leading and trailing edge speeds, respectively. 
In Figure 11a, it is evident that, despite a data gap at Venus, the magnetic field mapping shows good agree-
ment between the two spacecraft in all the magnetic field components. We also note that, by propagating 
the following measurements at Saturn at the resulting trailing edge speed (387 km⋅s−1 ), good agreement 
between the two data sets continues to be displayed roughly until the ejecta trailing edge at Venus and the 
start of the identified interaction region at Saturn (i.e., close to the first dashed orange line in Figure 9). This 
would suggest that the original ejecta resulting from the interaction of CME1 and CME2 may be linked to 
approximately the first third of the flux rope interval identified at Saturn, and that the full ejecta may on 
the other hand correspond to a MIR, which as mentioned in the Introduction is a dominating structure in 
the outer heliosphere. Contrarily, the magnetic field mapping in Figure 11b shows good agreement in all 
the magnetic field components between Venus and Earth, but a substantial difference in the 𝐴𝐴 𝐴𝐴𝐵𝐵 component 
at Saturn in the second half of the ejecta (which rotates from east to west). This is however not surprising, 
since the structure at Saturn was found to display a different orientation from that at Venus and Earth. Fur-
thermore, the central, more turbulent portion of magnetic field measurements found at Earth and Saturn 
appears to match relatively well. According to these results, it is not possible to establish with certainty the 
relationship between measurements at Saturn and those at Venus and Earth (i.e., whether the original flux 
rope corresponds to the full ejecta interval at Saturn or to a portion of it). We emphasise that the magnetic 

Figure 11. Magnetic field mapping between (a) Venus and Saturn for the small structure preceding the ejecta, and (b) Venus, Earth, and Saturn for the full 
ICME ejecta, using the method in Good et al. (2018). In (a) measurements at Saturn have been temporally shifted and scaled to match those at Venus. The 
dashed line marks the identified ejecta trailing edge at Venus. In (b), measurements at Venus and Saturn have been temporally shifted and their magnitudes 
have been scaled to match data taken near Earth.
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field mapping technique of Good et al. (2018) assumes monotonically increasing/decreasing speed, which 
is not a realistic assumption as far from the Sun as 10 AU, where it is likely for a CME to have accelerated/
decelerated multiple times via continued interactions with the ambient solar wind (evident also in the high 
distortion parameter found at Saturn). Nevertheless, this method appears to work well at least for a qualita-
tive comparison of structures observed in the inner and outer heliosphere.

7. Conclusions
In this work, we have analyzed the eruption and evolution of two CMEs (CME1 and CME2) that left the Sun 
on April 28, 2012 just a few hours apart. After observing their early evolution through the solar corona, we 
found indications of interaction in HI imagery, and we eventually identified signatures of a single ejecta at 
the in-situ locations that we considered (Venus, Earth, and Saturn), suggesting that the two eruptions had 
merged. This study represents the first detailed analysis of the magnetic structure of CME flux ropes from 
the Sun to 10 AU, taking advantage of remote-sensing observations of the Sun, its corona, and interplane-
tary space, as well as in-situ measurements at three planets. Whilst the chirality of CME1 and CME2 at the 
Sun and of the flux rope ejecta detected in situ was found to be consistently right-handed, the flux rope type 
presented some changes. At the Sun, CME1 erupted as a NES flux rope and CME2 displayed a high-to-in-
termediate inclination (between ESW and NES). At Venus and Earth, the single observed ejecta was of type 
NES, whilst at Saturn we found a structure featuring an ESW rotation that is consistent with a rotation on 
either the meridional or the equatorial plane. We could not determine with certainty whether the ejecta that 
we identified at Saturn consisted entirely of material from CME1 and CME2, or whether additional material 
was gathered on the way to 10 AU, thus forming a MIR.

The CME propagation models that we used to estimate the impact locations of CME1 and CME2 (which 
were treated as a single, merged structure) across the heliosphere provided useful insights necessary to 
interpret the in-situ observations, and were reasonably well-timed compared to the actual measurements. 
However, in-depth understanding of how CME magnetic fields evolve throughout interplanetary space and 
interact with other CMEs or the ambient solar wind still remains an arduous task. In the case of the events 
under study, an “intermediate” observer between Earth and Saturn, perhaps around 5 AU, may have helped 
shed more light on the evolution of solar transients beyond 1 AU, especially as it may have been possible to 
catch the ICME ejecta at the beginning of its interaction with the following HSS. Nevertheless, this study 
remarks the importance of multi-point studies of CMEs and the advantages to be gained by analyzing data 
from both heliospheric and planetary missions, which are necessary steps to undertake in order to deepen 
our current understanding of the structure and evolution of solar transients in the outer heliosphere.

Data Availability Statement
The HELCATS catalogues are available at https://www.helcats-fp7.eu. Images and additional informa-
tion on the 28 April 2012 CME(s) are available at https://www.helcats-fp7.eu/catalogues/event_page.
html?id=HCME_A__20120428_01 (STEREO-A viewpoint) and https://www.helcats-fp7.eu/catalogues/
event_page.html?id=HCME_B__20120428_02 (STEREO-B viewpoint). Enlil simulation results have been 
provided by the Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center 
through their public Runs on Request system (http://ccmc.gsfc.nasa.gov). The full Enlil simulation results 
are available at https://ccmc.gsfc.nasa.gov/database_SH/Erika_Palmerio_031021_SH_3.php (run id: Eri-
ka_Palmerio_031021_SH_3). The NASA–Wind ICME list can be found at https://wind.nasa.gov/ICME-
index.php. Solar disc and coronagraph data from SDO, SOHO, and STEREO are openly available at the 
Virtual Solar Observatory (VSO; https://sdac.virtualsolar.org/). These data were processed and analysed 
trough SunPy (SunPy Community et  al.,  2015,  2020), IDL SolarSoft (Freeland & Handy,  1998), and the 
ESA JHelioviewer software (Müller et al., 2017). Level-2 processed STEREO/HI data were obtained from 
the UK Solar System Data Centre (UKSSDC; https://www.ukssdc.ac.uk/solar/stereo/data.html). VEX data 
are openly available at ESA's Planetary Science Archive (PSA; Besse et al., 2018), accessible at https://ar-
chives.esac.esa.int/psa. These data were processed and analysed with the aid of the irfpy library (https://
irfpy.irf.se/irfpy/index.html). Wind data are publicly available at NASA's Coordinated Data Analysis Web 
(CDAWeb) database (https://cdaweb.sci.gsfc.nasa.gov/index.html/). NMDB data are publicly available at 

https://www.helcats-fp7.eu
https://www.helcats-fp7.eu/catalogues/event_page.html?id=HCME_A__20120428_01
https://www.helcats-fp7.eu/catalogues/event_page.html?id=HCME_A__20120428_01
https://www.helcats-fp7.eu/catalogues/event_page.html?id=HCME_B__20120428_02
https://www.helcats-fp7.eu/catalogues/event_page.html?id=HCME_B__20120428_02
http://ccmc.gsfc.nasa.gov
https://ccmc.gsfc.nasa.gov/database_SH/Erika_Palmerio_031021_SH_3.php
https://wind.nasa.gov/ICMEindex.php
https://wind.nasa.gov/ICMEindex.php
https://sdac.virtualsolar.org/
https://www.ukssdc.ac.uk/solar/stereo/data.html
https://archives.esac.esa.int/psa
https://archives.esac.esa.int/psa
https://irfpy.irf.se/irfpy/index.html
https://irfpy.irf.se/irfpy/index.html
https://cdaweb.sci.gsfc.nasa.gov/index.html/
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http://www.nmdb.eu. Cassini data are openly available at the Planetary Plasma Interactions (PPI) Node of 
NASA's Planetary Data System (PDS), accessible at https://pds-ppi.igpp.ucla.edu. All in-situ spacecraft data 
can also be found on the Automated Multi-Dataset Analysis (AMDA; Génot et al., 2021) tool at the address 
http://amda.irap.omp.eu. Solar wind data propagated with the Tao et al. (2005) model can be browsed at the 
AMDA website and at the HelioPropa tool, accessible at http://heliopropa.irap.omp.eu.
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