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Despite the apparent simplicity of species distribution modelling approaches, the reliability 

of their predictions depends on the application of a number of good practices regarding the 

input data and the parametrisation of algorithms. In the context of invasion biology, 

inadequate modelling procedures may lead to erroneous conclusions regarding the potential 

spread of introduced species. However, clear guidelines for implementing these 

recommendations are often lacking, confusing or simply unknown by non-modeller end-

users. Here, taking as an example the introduced land planarian Obama nungara, I fitted 

MaxEnt models applying six recommended processing steps with respect to sampling bias, 

predictor choice, training area, evaluation and hyperparameter tuning, separately or 

implemented together. I compared the resulting outputs to a model fitted with all default 

settings. All models differed from one another and from the default model, highlighting the 

importance of considering all these parameters when fitting species distribution models. 

However, the model that incorporated all fine-tuning methods was by far the most dissimilar, 

predicting much larger suitable areas globally, including in Africa where O. nungara has not 

been found so far. A closer examination suggested that it is likely a result of lower overfitting. 

This is a demonstration that modelling settings matter a lot, to the point that fined-tuned or 

default models may lead to considerably different conclusions when applied to invasive 

species. 

Keywords: Invasion biology, species distribution modelling, MaxEnt, hyperparameter tuning, Platyhelminthes, 

climate

1. Introduction 
The discipline of invasion biology frequently makes 

use of biogeography methods and theories to predict 

the potential spread of non-native species and map 

invasion susceptibility for species of concern (Elith & 

Leathwick, 2009; Venette et al., 2010). The 

approaches known as species distribution modelling 

(SDM) or ecological niche modelling (ENM) correlate 

the environmental conditions at occurrence records 

against those where the focal species is known to be 

absent (in the case of presence-absence data) or 

where its status is unknown (in the case, more 

frequent, of presence-pseudoabsence/background 

modelling). The statistical relationships obtained can 

be projected in space (and time) to produce spatial 

predictions of the potential distribution of a species 

outside its native range (Elith & Leathwick, 2009). 

Numerous research papers and applied studies have 

followed this framework in a context of invasion 

biology, both for invasion risk assessment (Bellard et 

al., 2016; Thuiller et al., 2005) and to test hypotheses 

of niche conservatism or shift (Atwater et al., 2018; 

Liu et al., 2020). 

 

 

Despite such a widespread use for at least two 

decades now (Guisan & Zimmermann, 2000), it is 

remarkable that guidelines for producing accurate 

models of species niches and distributions are still 

evolving, and that rigorous evaluations of modelling 

practices often conclude that different modelling 

settings offer different advantages in different 

contexts (Guillera-Arroita et al., 2015; Hao et al., 

2020; Morán-Ordóñez et al., 2017). This may be a 

source of confusion for inexperienced modellers, 

especially since standard modelling software 

packages and algorithms offer default settings that 

produce seemingly satisfactory results (Fourcade et 

al., 2018). However, notwithstanding these 

uncertainties, a number of known issues with SDMs 

can be, at least partly, solved with the application of 

a set of good practices (Zurell et al., 2020). For 

example, there are several possible ways to deal with 

sampling bias in the input occurrences that can avoid 

drawing erroneous conclusions because of uneven 

sampling effort (e.g. Boria et al., 2014; Fourcade et 

al., 2014; Vollering et al., 2019). Similarly, the extent 

of background data – which influences spatial 

predictions and evaluation metrics – can be 
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adequately chosen by following the appropriate 

guidelines (Barve et al., 2011). The selection of 

biologically relevant and uncorrelated environmental 

variables, as well as the choice of a meaningful 

evaluation strategy, are also important modelling 

decisions that must be carefully considered in order 

to make useful predictions (Dormann et al., 2013; 

Fourcade et al., 2018). 

The above recommendations can be applied to any 

type of statistical method used to fit SDMs. However, 

most of modern SDM studies, including in invasion 

biology, employ machine learning algorithms that 

depart from the standard, regression-based, 

statistical approaches most ecologists are trained in 

(Ryo et al., 2021). As a consequence, there are 

additional parameters, often overlooked, that can be 

chosen and that may strongly influence the resulting 

modelling outputs. Among them are, for tree-based 

methods, the number of trees to fit, or for maximum 

entropy (MaxEnt) the features classes and the 

regularisation multiplier (Merow et al., 2014; Vignali 

et al., 2020). Even though several authors have 

advocated for a strict, model-based, tuning of these 

parameters (Radosavljevic & Anderson, 2014; 

Warren & Seifert, 2011), there is evidence that this is 

not always applied in practice (Morales et al., 2017). 

The question that arises from these observations is 

thus: how much does it matter to follow these 

guidelines or not? In the context of invasion biology, 

this translates into: would predictions of the potential 

spread of non-native species vary dramatically 

between default and fine-tuned models?  

The present study was inspired by a recent paper 

published by Negrete et al. (2020), who used a 

maximum entropy approach to predict the potential 

distribution of Obama nungara, a land planarian 

native to South America, which has been recently 

found in Europe where it raised concerns about its 

possible impact on the native soil fauna (Justine et 

al., 2020). Despite the excellent occurrence dataset 

gathered by the authors and the relevance of 

conducting such a modelling study for this species, 

the whole approach seemed to be largely based on 

the raw input data and the default parameters of the 

MaxEnt software (Phillips et al., 2006). Therefore, 

one may wonder how much the article’s conclusions 

would be altered if the models were fine-tuned using 

the latest up-to-date recommendations. In this 

context, I reanalysed Negrete et al.’s (2020) dataset 

with a series of optimizations of the modelling method 

in order to produce predictions of O. nungara’s 

potential distribution that are based on a more state-

of-the-art procedure, which I compared to the output 

of a model produced with all default settings. I also 

implemented each of the tuning strategies 

individually to identify which one contributed the most 

to the divergence between fine-tuned and default 

models. Herein, I did not aim to criticize Negrete et 

al.’s (2020) study, nor did I intend to provide a 

definitive and perfect distribution model of O. 

nungara. However, my goal was to demonstrate with 

a recent example that modelling settings matter in 

fact a lot, to the point that fined-tuned or default 

models may lead to largely dissimilar conclusions 

regarding the potential spread of an introduced 

species. 

2. Methods 
Most of the methods follow those of Negrete et al. 

(2020), but at each modelling step two alternative 

approaches were tested: one that uses default 

settings such as in Negrete et al. (2020), and one that 

applies state-of-the-art recommendations to fine-

tune the model. This includes manipulating the input 

data or selecting the best fitting parameter among a 

series of models. As a result, eight different models 

were fitted: a ‘default settings’ model, a ‘fully tuned’ 

model that used all the proposed refinements, and six 

models that differ from the ‘default settings’ model by 

one tuned parameter (Table 1). 

2.1 Occurrence dataset  

Occurrence records for O. nungara were collected by 

Negrete et al. (2020) from various sources, including 

citizen science programs, literature search and their 

own observations. The existence of a bias in the data 

in not known, but opportunistic records frequently 

suffer from unequal sampling effort where areas 

close to towns or roads benefit from a more complete 

survey that remote areas (Geldmann et al., 2016; 

Ruete, 2015). Several methods have been proposed 

to improve modelling performance even in the 

presence of bias, most of which involve manipulating 

either the background (Vollering et al., 2019) or the 

species’ occurrences (Boria et al., 2014). Here, I 

used the simplest approach which consists in 

subsampling the occurrence dataset in a spatial 

thinning approach to remove records that are too 

close from each other (Boria et al., 2014). The 

minimum distance between two points was set to 50 

km, because it appeared visually to be a good trade-

off between information loss and the removal of 

dense clusters of records. The subsampling was 

carried out using the ‘spThin’ R package (Aiello-

Lammens et al., 2015). The full set of occurrences as 

used in the ‘default settings’ models includes a total 

of 144 records, which has been reduced to 93 after 

spatial thinning.  

2.2 Environmental variables 

The environmental predictors used to model the 

potential distribution of O. nungara were bioclimatic 

variables obtained from the Worldclim project at a 

resolution of 5 arc-min (Hijmans et al., 2005). In their 



Manuscript published in Ecological Modelling, doi : 10.1016/j.ecolmodel.2021.109686 

3 
 

study, Negrete et al. (2020) selected a subset of the 

19 original bioclimatic variables by removing highly 

correlated variables (Pearson’s r > 0.8) and variables 

that contributed little to the first exploratory models. 

For comparison, I reused for the ‘default settings’ 

model the same set of 10 variables: BIO 1, BIO 3, 

BIO 4, BIO 6, BIO 7, BIO 9, BIO 10, BIO 11, BIO 17 

and BIO 19. However, despite the initial effort to limit 

multicollinearity in the predictors’ dataset, the 

remaining 10 bioclimatic variables still exhibited 

some high level of correlation (5 of these variables 

had a variance inflation factor (VIF) > 1000). 

Therefore, I attempted to reduce even further the risk 

of overfitting caused by multicollinearity (Dormann et 

al., 2013), by selecting through a stepwise procedure 

the set of variables (among the 10 previously 

described) such that their VIF remained < 4. In this 

case, the final set of bioclimatic variables was 

reduced to four predictors only: BIO 7, BIO 10, BIO 

17, and BIO 19. The calculation of variance inflation 

factors and the selection of variables according to 

this criterion were performed with the ‘usdm’ R 

package (Naimi et al., 2014). The same bioclimatic 

variables were also obtained for the years 2050 

(period 2041-2060) and 2070 (period 2061-2080) 

under two scenarios of climate change: the 

representative concentration pathways RCP 2.6 (the 

most optimistic) and RCP 8.5 (the most pessimistic). 

These variables were downloaded for three different 

global circulation models (GCM): CCSM4, GFDL-

CM3, and MPI-ESM-LR; the future suitability maps 

were averaged across these three GCM. 

2.3 Background data 

When using presence-only data, the environmental 

conditions at the location of occurrences are 

compared to those at a set of background points that 

represent the available environment (Phillips et al., 

2006). By default, MaxEnt samples 10,000 

background locations from the whole study area, i.e. 

if global rasters such as those from the Worldclim 

dataset are supplied, the background will cover the 

entire extent of the Earth’s land surfaces. This was 

the approach retained for the ‘default settings’ model; 

however, this is generally not recommended (Barve 

et al., 2011). Indeed, in this case, presence points are 

compared to distant locations that may provide little 

information with regard to the ecological niche of the 

species. There is, for example, little value in the 

observation that a South American species is not 

present in Greenland, where the climatic conditions 

are strikingly different and where the species was 

unlikely to disperse. Ideally, background points must 

represent locations that the species could have 

occupied given its dispersal ability, i.e. the accessible 

area (Barve et al., 2011). This accessible area is not 

straightforward to estimate for a species that is 

currently expanding because of human transport. 

However, a possible strategy for invasive species 

that are not at equilibrium with climate is to restrict 

the background area within a certain distance from 

occurrence points (Elith et al., 2010). Following this 

approach, I sampled 10,000 background locations at 

random in a radius of 500 km around occurrences. 

The exact distance was arbitrary but ensures that the 

training area comprises the region around native and 

introduced ranges (northwest Argentina, Uruguay, 

southern Brazil on the one hand, and western Europe 

on the other hand) while not extending further. 

When SDMs are used for projecting potential ranges 

in space and time, it is important to know how much 

predictions outside the training area can be trusted. 

Especially, projecting in regions characterised by 

environmental values outside those experienced in 

the region of calibration may lead to erroneous 

extrapolations. Here, in order to quantify and 

visualise extrapolations, I adopted the extrapolation 

risk analysis recommended by Owens et al. (2013), 

in the form of mobility-oriented parity (MOP) maps. 

This analysis maps the environmental similarity 

between areas of projection and the calibration area 

(i.e. background extent). MOP was computed with 

the ntbox R package (Osorio‐Olvera et al., 2020). 

2.4 Model settings 

Species distribution models for O. nungara were 

fitted using the MaxEnt algorithm, version 3.4.4, one 

of the most widespread SDM methods (Phillips et al., 

2006). Two important parameters control the 

modelling process: the features produced by MaxEnt, 

which are transformations of the predictors that can 

take different functional forms, and the regularization 

multiplier which is a penalty term implemented to limit 

model complexity and thus overfitting (Merow et al., 

2013). The default settings of MaxEnt, in versions < 

3.4.0, allow all feature classes to be combined: linear 

(L), quadratic (Q), product (P), threshold (T) and 

hinge (H), which is what I used for the ‘default 

settings’ model (Negrete et al. (2020) use MaxEnt 

3.3.3k). However, better transferability can often be 

achieved by using simpler response curves (Merow 

et al., 2014; Radosavljevic & Anderson, 2014; 

Warren & Seifert, 2011); for this reason, it is 

recommended to conduct a prior investigation of 

various combinations of feature classes. Similarly, 

although MaxEnt uses a regularization multiplier of 1 

by default, selecting a different, model-specific, 

regularization multiplier can provide better 

performance. Therefore, it is advised to select the 

combination of feature classes and regularization 

that gives the best fit while limiting overfitting. Here, I 

used the ENMeval R package (Muscarella et al., 

2014) to test all combinations of the following feature 

classes: L, LQ, H, LQH, LQHP, LQHPT and 

regularization multipliers: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 
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3.5, 4.0, 4.5, 5.0. The final model was selected as the 

one that provided the lowest Akaike Information 

Criterion (AIC).  

For all models I extracted response curves (change 

in suitability along the range of a predictor when the 

others are kept at their median value) and variable 

contribution was assessed using both permutation 

importance and percent contribution. Models were 

projected into current and future conditions (RCP 2.6 

– 2050, RCP 2.6 – 2070, RCP 8.5 – 2050, RCP 8.5 

– 2070), and suitability maps were produced with a 

cloglog transformation, as recently recommended 

(Phillips et al., 2017), which results in suitability 

values ranging from 0 (totally unsuitable) to 1 (fully 

suitable). In order to compare modelling outputs, I 

calculated the overlap between the ‘default settings’ 

model and each of the tuned models, in current and 

future climate, using the Schoener’s D index of niche 

overlap (Rödder & Engler, 2011; Schoener, 1968).  

2.5 Evaluation of model performance 

The evaluation of the predictive performance of 

SDMs has been a topic a debate for quite a while. 

Usually this is achieved by splitting the input data into 

training and evaluation sets, and the ability of the 

model to correctly predict the evaluation dataset is 

then summarised by the area under the receiver 

operating curve (AUC), an index routinely used in the 

medical field to evaluate the discrimination ability of 

diagnostic tests (Fielding & Bell, 1997; Jiménez-

Valverde, 2012). In the ‘default settings’ model, I 

used a random k-fold approach in which 75% of the 

dataset was chosen to train the model and the 

remaining 25% were used to evaluate its 

performance. In order to make use of the entire 

dataset, this approach was repeated four times, each 

time using a different quarter of the data for 

evaluation, and I reported the mean AUC across the 

four replicates.  

Even if this approach is relatively standard, it has 

been criticized for at least two reasons: the AUC is 

not a good measure of performance in 

presence/background modelling (Jiménez-Valverde, 

2012; Lobo et al., 2008), and a random split 

generates training and evaluation sets that are not 

independent, artificially increasing the AUC (Bahn & 

McGill, 2013; Fourcade et al., 2018). Besides the 

inherent problems with AUC, a better approach is 

thus to partition the input data into spatially 

independent training and evaluation datasets. For 

this purpose, I used a spatial block approach to split 

data into four bins based on the latitude and longitude 

of occurrences, in such a way that the whole dataset 

was partitioned into four geographical rectangles 

containing equal amount of data (Radosavljevic & 

Anderson, 2014). The evaluation was then performed 

using the AUC in the same way as for the random k-

fold approach, except that now the evaluation dataset 

was always spatially independent from the training 

dataset. In addition to the apparent model 

performance, the final model predictions may also 

differ between these two alternative approaches 

because suitability maps were averaged across the 

four replicates, which were trained using different 

types of data (random subsets vs. geographically 

structured subsets).  

To complement the AUC, I calculated two alternative 

measures of model performance that were not 

reported in Negrete et al. (2020). First, I used the 

threshold-dependent true skill statistics (TSS), 

computed after applying the threshold that 

maximizes the sum of specificity and sensitivity 

(Allouche et al., 2006). Second, I also reported the 

continuous Boyce index (Hirzel et al., 2006). Both 

indices were averaged across the four evaluation 

bins. 

2.6 Suitable range area 

In order to quantify the area of suitable habitat that is 

predicted under various scenarios, the continuous 

suitability predictions must be binarized, i.e. 

converted into suitable / not suitable areas. This 

involves defining a suitability threshold below which 

the environment will be considered unsuitable for the 

species and, reciprocally, above which the species 

may be potentially present. A natural approach would 

be to define a threshold a priori, which can be for 

example 0.5 – if suitability ranges from 0 to 1 – or a 

smaller value. However, the actual suitability values 

that would correspond in nature to a switch from 

negative to positive growth rate is difficult to assess 

beforehand, and would likely depend on many 

factors, including the ecology of the species and its 

prevalence, and the modelling method (Jiménez-

Valverde & Lobo, 2007). Therefore, there are 

approaches that rely instead on the output suitability 

maps and the input occurrence data to find the most 

appropriate threshold for a given model. Here, I 

tested both a fixed threshold (set at 0.2 as in Negrete 

et al. (2020)) and a model-specific threshold that was 

defined as the threshold that maximizes the sum of 

specificity and sensitivity, as recommended by Liu et 

al. (2013). Since this threshold is model-dependent, 

and was thus computed four times per model type 

(for each cross-validation fold), I used the averaged 

threshold value to binarize the final continuous 

suitability map obtained by averaging predictions 

from each cross-validation fold. For both strategies, I 

calculated the area of suitable habitat predicted in 

each continent and each climate scenario. 

3. Results 
The performance of species distribution models for 

O. nungara was in all cases evaluated with high 
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values of AUC (> 0.8) (Table 1). Among them, the 

‘default settings’, the ‘regularisation multiplier 

selection’ and the ‘feature classes selection’ models 

reached AUC values > 0.99. The ‘fully tuned’ model, 

however, had the lowest AUC (0.81), followed by the 

‘background tuning’ model (AUC = 0.87). All other 

models had AUC > 0.98 (Table 1). 

Prediction maps of O. nungara’s potential distribution 

highlighted in all modelling settings highly climatically 

suitable areas in Europe and South America (Fig. 1). 

Specifically, France and northern Spain on the one 

hand, and the region that covers eastern Argentina, 

Uruguay and southern Brazil on the other hand, 

appeared as being among the most suitable areas at 

the global scale whatever the model considered. 

However, compared with the ‘default settings’ model, 

the ‘fully tuned’ model revealed the existence of 

suitable habitats in eastern and southern Africa, all 

along the southern coast of Australia, in central 

America, in the south of China and, more generally, 

showed larger areas of climatic suitability 

everywhere, including in Europe and south America 

(Fig. 1 and 4). Most of the other model settings 

resulted in prediction maps (in current climate) that 

largely resembled the ‘default settings’ model. There 

were, however, some regional differences, such as 

the ‘uncorrelated variables’ model that predicted 

larger suitable regions in south America (Fig. 1 and 

4). Moreover, despite the apparent agreement 

between models overall, some suitability maps had 

only limited overlap with the ‘default settings’ model 

(Table 2). Notably, the most dissimilar model was the 

‘fully tuned’ one, which exhibited an overlap < 0.5 in 

all climate scenarios (Table 2). 

Examining response curves and variable 

contributions revealed substantial differences 

between model types in their modelled relationships 

between suitability and climatic predictors, even for 

models that otherwise produced relatively similar 

output maps (Fig. 2 and 3). Looking at response 

curves, the ‘default settings’ model was mostly 

influenced by BIO 6 (the minimum temperature of the 

coldest month) and BIO 17 (the precipitation of the 

driest quarter). However, measures of variable 

importance (Fig. 2) showed instead that this model 

was determined by BIO 1 (annual mean temperature, 

according to percent contribution) or BIO 3 

(isothermality, according to permutation importance). 

The ‘fully tuned’ model, on the other hand, revealed 

smooth quadratic relationship with all the four 

selected predictors (Fig. 3). The ‘uncorrelated 

variables only’ model, which is fitted with the same 

reduced set of variables, showed relationships but 

with more complex functional forms, BIO 7 

(temperature annual range) being the most influential 

variable (Fig. 3). Models where the regularisation 

multiplier or the feature classes were fine-tuned 

(‘regularisation multiplier selection’ and ‘feature 

classes selection’ models), or where the dataset was 

partitioned in space (‘spatial block evaluation’ 

model), exhibited the same response with BIO 6 and 

BIO 17 as the ‘default settings’ model (Fig. 3). 

Notably, the ‘background tuning’ models displayed 

very complex relationships between climatic 

suitability and all the 10 predictors (Fig. 3). 

Selecting threshold from the model instead of a fixed 

0.2 value resulted in larger suitable areas predicted 

with the ‘default model’ (Fig. 4). This was, however, 

the opposite for the ‘fully tuned’ model where the 

fixed threshold strategy led to much larger suitable 

areas in current and future climate. Looking at the 

whole range of model settings, there did not seem to 

be a consistent tendency for a larger or smaller area 

predicted with either threshold types (Fig. 4). When 

models where projected into future scenarios of 

climate change, the ‘fully tuned’ model predicted a 

strong decrease in the area of suitable habitats in 

virtually all continents and scenarios, both for the 

fixed and model-specific thresholds. This was, 

however, associated with new suitable habitats in 

previously unsuitable regions such as northern 

Europe (Fig. 1 and 4). This ‘default settings’ model 

predicted relatively stable areas in the future (Fig. 4), 

although with a shift towards higher latitudes in the 

stronger scenarios of climate change (Fig. 1). 

Generally, most other models behaved similarly to 

the ‘default settings’ model, with only little changes in 

the amount of suitable habitat in future climate (Fig. 

4). 

4. Discussion 
The present study used as an example a recent study 

conducted by Negrete et al. (2020) that took 

advantage of a compilation of O. nungara 

occurrences in its native and introduced range to 

predict the species’ potential distribution. I attempted 

to apply the same methods as described in Negrete 

et al. (2020) to fit the ‘default model’, using raw data 

and default settings. Interestingly, although the 

output prediction maps closely match those of 

Negrete et al. (2020), there are some notable 

differences between their and my models, especially 

in terms of the predicted changes in suitable range in 

future scenarios. While Negrete et al. (2020) models 

predicted an increase in the area of suitable range in 

all future scenarios compared to current climate, I 

failed to replicate this pattern (see the ‘default model’ 

with fixed threshold in Fig. 4). This suggests that even 

slight changes in methodology, so small that they are 

in fact indiscernible, may eventually lead to different 

ecological conclusions. Here, a possible reason for 

this discrepancy could be the version of MaxEnt 

(3.3.3k vs. 3.4.4, which explicitly adopts an 

inhomogeneous Poisson process approach (Phillips 
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et al., 2017)), the implementation of the MaxEnt 

algorithm (GUI vs. run from R via the ENMeval 

package), the type of transformation of the raw output 

(logistic vs. cloglog), or any other parameter not 

documented in Negrete et al. (2020). 

This is remarkable that among the whole set of 

models tested, the ‘fully tuned’ model clearly stood 

out from the others. It was the only one that exhibited 

smooth changes in suitability across all continents 

with large areas of intermediate suitability, and that 

predicted vast climatically suitable regions in Africa. 

This is likely a sign that this model was the one that 

suffered the least from overfitting, as also evidenced 

by its simple and easy to interpret response curves 

(Merow et al., 2014). As a matter of fact, several of 

the tuning methods used here are explicitly designed 

to limit the effect of overfitting. Overfitting frequently 

arises when models are too complex (hence the 

selection of a simpler set of predictors and the fine-

tuning of feature classes and regularisation multiplier 

(Merow et al., 2014; Radosavljevic & Anderson, 

2014; Warren & Seifert, 2011)), are biased towards 

oversampled regions (which is solved here by 

spatially thinning occurrences (Aiello-Lammens et 

al., 2015; Boria et al., 2014)) or include too large and 

irrelevant calibration areas (instead of restricting the 

background to the species’ accessible area (Barve et 

al., 2011)). Despite that reducing the background 

area may lead to higher risk of extrapolating into non-

analogous climates, we observed that the new 

regions found suitable in the ‘fully tuned’ model such 

as Africa and southern Australia are not 

characterised by strong extrapolation (see Fig. S2 in 

supplementary materials). In a similar study, Morales 

et al. (2017) examined the consequences of fine-

tuning regularisation multiplier and feature classes 

compared to using default settings, for a set of 

previously published modelling studies. Very often, 

their best model used simpler response curves (e.g. 

selecting only linear or quadratic feature classes) and 

larger regularisation multiplier (up to five, compared 

to the default value of one) than the original studies, 

resulting in large differences in suitability maps. This 

suggests that many instances of overfitted 

distribution models exist in the literature, which may 

hold dangerous consequences when they are used 

in decision-making processes, such as 

underestimating invasion risk for exotic species. 

I focused here on six different types of 

parametrization that are known to affect modelling 

performance. Despite that each of them was also 

tested separately, it was difficult to conclude about 

which setting was the most influential. Looking at 

Schoener’s D values, it appears that models based 

on the restriction of background extent and 

uncorrelated variables had the lowest overlap with 

the ‘default model’. This makes sense as these 

parameters are related to the input data that are used 

to fit models, since they directly control the process 

of species’ niche modelling by determining both 

which and from where environmental values are 

sampled. In this regard, the choice of a background 

extent (Iturbide et al., 2018) and the selection of 

environmental variables (Petitpierre et al., 2017) 

have been shown to be important predictors of 

SDMs’ transferability. The second group of 

parameters that affected resemblance with the 

‘default model’ included the selection of feature 

classes and regularisation multiplier. These settings 

control the relationship between suitability and 

environmental predictors, effectively changing the 

way suitability is projected in space and time (Brun et 

al., 2020). In contrast, the spatial block evaluation 

had less impact on the resulting suitability maps, 

which again can be explained by the fact that it only 

changed the way data was partitioned (Muscarella et 

al., 2014; Radosavljevic & Anderson, 2014). The only 

strong deviation from the ‘default model’ occurred 

when all settings were fine-tuned, using altogether all 

the approaches tested in this study. Therefore, it 

seems that, although each parameter can by itself 

change MaxEnt models and their projections, this is 

the combination of all of them that generates a 

drastically different species distribution model. A 

partial implementation of these recommendations 

may thus be insufficient to produce accurate 

predictions of species’ potential distributions. 

Although I highlighted the need for fine-tuning SDMs, 

this recommendation is not necessarily 

straightforward to apply. Some tools have been 

developed recently to test a range of parameters, in 

order to select the ‘best’ combination of settings in 

SDM studies. The first of this kind is certainly 

ENMeval (Muscarella et al., 2014), which I used in 

this study, that provides an automatic way of running 

multiple MaxEnt models differing by their feature 

classes and regularisation parameters. Since then, 

other tools have applied the same approach to other 

SDM methods, such as the SDMtune (Vignali et al., 

2020) and biomod2 (Thuiller et al., 2009) R packages 

that allow tuning e.g. the number of trees in random 

forest or boosted regression trees algorithms. 

However, these procedures imply that there is an 

objective way to select the best parameters among a 

set of models. Originally, this type of model selection 

has been performed using AIC (Warren & Seifert, 

2011), which is also the approach I employed here. 

Unfortunately, information metrics may be 

inappropriate to assess the predictive performance of 

SDMs (Velasco & González-Salazar, 2019). The 

alternative is to compare models by their AUC; 

despite being widely used, AUC is also a poor 

predictor of model performance and transferability 

(Fourcade et al., 2018; Lobo et al., 2008). In this 

regard, what I considered here as the best model (the 
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‘fully tuned model’) was not evaluated particularly 

well with regard to its AUC, but also using alternative 

measures of performance, even if they were 

computed based on spatially-independent 

partitioning of data. There is thus a need to develop 

better guidelines for model selection in a SDM 

context. 

Some of the settings used here to fine-tune models 

were in part subjective. For example, the choice of a 

maximum VIF for selecting uncorrelated variables is 

entirely up to the modeller’s decision since there is 

no universally accepted threshold. Ideally, SDMs 

should be fitted using environmental predictors that 

have a recognised effect of the species’ ecology 

(Fourcade et al., 2018; Petitpierre et al., 2017). As 

shown here, such a choice changes the way species’ 

presence correlates with the environment, which may 

strongly influence model transferability. The same 

subjectivity often exists in the choice of the training 

area and in the thinning distance for filtering 

occurrences. There are also alternative methods to 

deal with sampling bias (e.g. thinning in 

environmental space (Castellanos et al., 2019), 

manipulating the background (Vollering et al., 2019), 

etc.) that may eventually lead to different predictions 

of suitability. Finally, it must be noted that many SDM 

algorithms exists besides MaxEnt which I used here 

as a comparison with Negrete at al. (2020). Each of 

these alternative methods may provide different 

outcomes, such that ensemble approaches are 

sometimes favoured (Thuiller et al., 2009). However, 

it is not necessarily proven that ensemble modelling 

always gives better results than fine-tuned individual 

SDMs (Hao et al., 2020); in this case, it can be 

argued that expert-knowledge of the modelled 

species and of modelling tools are of crucial 

importance. 

Despite the fact that this study was intended to be a 

modelling exercise applied to a methodological 

question, it provides some interesting insights into O. 

nungara invasion ecology. In contrast to Negrete at 

al. (2020), the fine-tuned model I developed revealed 

a large invasion potential in Africa in current and 

future climate. Since the species has not, to date, 

been detected on the continent, it may be essential 

to monitor carefully the introduction of exotic plants 

that may be a pathway for invasion in Africa. Another 

important outcome of the model is that a large part of 

central and south America, including the Brazilian 

Atlantic forest, appeared suitable, and not only the 

region that covers Uruguay and eastern Argentina, 

where the species has been observed (Negrete et al., 

2020). It may reflect the limited dispersal ability of the 

species that constrains its natural range in a smaller 

region or, alternatively, O. nungara may occupy a 

larger range that currently thought. Luckily, these 

large areas of invasion risk in current climate are 

predicted to decline relatively strongly in the future; 

even the currently suitable regions will shift 

northwards, which may contribute to extirpate the 

species from already invaded areas. Of course, the 

distribution that the species can actually reach 

depends on economic activity and trade networks 

that largely determine its medium- and large-scale 

dispersal (Justine et al., 2020). In this regard, 

incorporating dispersal constraints directly in the 

modelling process can help in defining realistic 

suitable ranges that avoid overprediction (Mendes et 

al., 2020).  

5. Conclusion 
The use of species distribution modelling approaches 

has grown enormously in the last twenty years (Elith 

& Leathwick, 2009; Guisan & Zimmermann, 2000); 

these methods have become standard in the analysis 

of distribution patterns and for predicting future range 

shifts for invasive species or under a changing 

climate. Paralleling this growth, methodological 

developments have resulted in a profusion of 

methods and recommendations for fitting models 

(e.g. Guillera-Arroita et al., 2015; Merow et al., 2013; 

Zurell et al., 2020), in such a way that it may be 

difficult to choose a modelling approach that 

unambiguously follows the latest up-to-date 

standards (especially since such standards do not 

necessarily exist). Here, I showed that different ways 

of processing data and choosing modelling settings 

may lead to contrasted predictions of the potential 

spread of an introduced flatworm species, O. 

nungara. Especially, failure to implement a suite of 

established recommendations – i.e. using raw data 

and default settings of the MaxEnt algorithm – 

conducted models to underestimate the area that the 

species can occupy. 

Acknowledgments 
This research did not receive any specific grant from 

funding agencies in the public, commercial, or not-

for-profit sectors. I thank Lisandro Negrete and his 

collaborators for having provided an interesting 

example to discuss issues related to SDM/ENM 

methodology, and for having made their data 

available. 

References 
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, 

A., Vilela, B., & Anderson, R. P. (2015). spThin: 

An R package for spatial thinning of species 

occurrence records for use in ecological niche 

models. Ecography, 38(5), 541–545. 

https://doi.org/10.1111/ecog.01132 

Allouche, O., Tsoar, A., & Kadmon, R. (2006). 

Assessing the accuracy of species distribution 

models: Prevalence, kappa and the true skill 



Manuscript published in Ecological Modelling, doi : 10.1016/j.ecolmodel.2021.109686 

8 
 

statistic (TSS). Journal of Applied Ecology, 43(6), 

1223–1232. https://doi.org/10.1111/j.1365-

2664.2006.01214.x 

Atwater, D. Z., Ervine, C., & Barney, J. N. (2018). 

Climatic niche shifts are common in introduced 

plants. Nature Ecology & Evolution, 2, 34–43. 

https://doi.org/10.1038/s41559-017-0396-z 

Bahn, V., & McGill, B. J. (2013). Testing the 

predictive performance of distribution models. 

Oikos, 122(3), 321–331. 

https://doi.org/10.1111/j.1600-

0706.2012.00299.x 

Barve, N., Barve, V., Jimenez-Valverde, A., Lira-

Noriega, A., Maher, S. P., Peterson, A. T., 

Soberón, J., & Villalobos, F. (2011). The crucial 

role of the accessible area in ecological niche 

modeling and species distribution modeling. 

Ecological Modelling, 222(11), 1810–1819. 

https://doi.org/10.1016/j.ecolmodel.2011.02.011 

Bellard, C., Leroy, B., Thuiller, W., Rysman, J.-F., & 

Courchamp, F. (2016). Major drivers of invasion 

risks throughout the world. Ecosphere, 7(3), 

e01241. https://doi.org/10.1002/ecs2.1241 

Boria, R. A., Olson, L. E., Goodman, S. M., & 

Anderson, R. P. (2014). Spatial filtering to reduce 

sampling bias can improve the performance of 

ecological niche models. Ecological Modelling, 

275, 73–77. 

https://doi.org/10.1016/j.ecolmodel.2013.12.012 

Brun, P., Thuiller, W., Chauvier, Y., Pellissier, L., 

Wüest, R. O., Wang, Z., & Zimmermann, N. E. 

(2020). Model complexity affects species 

distribution projections under climate change. 

Journal of Biogeography, 47(1), 130–142. 

https://doi.org/10.1111/jbi.13734 

Castellanos, A. A., Huntley, J. W., Voelker, G., & 

Lawing, A. M. (2019). Environmental filtering 

improves ecological niche models across multiple 

scales. Methods in Ecology and Evolution, 10(4), 

481–492. https://doi.org/10.1111/2041-

210X.13142 

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., 

Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., 

Lafourcade, B., Leitão, P. J., Münkemüller, T., 

McClean, C., Osborne, P. E., Reineking, B., 

Schröder, B., Skidmore, A. K., Zurell, D., & 

Lautenbach, S. (2013). Collinearity: A review of 

methods to deal with it and a simulation study 

evaluating their performance. Ecography, 36(1), 

27–46. https://doi.org/10.1111/j.1600-

0587.2012.07348.x 

Elith, J., Kearney, M., & Phillips, S. J. (2010). The art 

of modelling range-shifting species. Methods in 

Ecology and Evolution, 1(4), 330–342. 

https://doi.org/10.1111/j.2041-

210X.2010.00036.x 

Elith, J., & Leathwick, J. R. (2009). Species 

distribution models: Ecological explanation and 

prediction across space and time. Annual Review 

of Ecology Evolution and Systematics, 40(1), 

677–697. 

https://doi.org/10.1146/annurev.ecolsys.110308.

120159 

Fielding, A. H., & Bell, J. F. (1997). A review of 

methods for the assessment of prediction errors 

in conservation presence/absence models. 

Environmental Conservation, 24(1), 38–49. 

https://doi.org/10.1017/S0376892997000088 

Fourcade, Y., Besnard, A. G., & Secondi, J. (2018). 

Paintings predict the distribution of species, or the 

challenge of selecting environmental predictors 

and evaluation statistics. Global Ecology & 

Biogeography, 27, 245–256. 

https://doi.org/10.1111/geb.12684 

Fourcade, Y., Engler, J. O., Rödder, D., & Secondi, 

J. (2014). Mapping species distributions with 

MAXENT using a geographically biased sample 

of presence data: A performance assessment of 

methods for correcting sampling bias. PLoS ONE, 

9(5), e97122. 

https://doi.org/10.1371/journal.pone.0097122 

Geldmann, J., Heilmann-Clausen, J., Holm, T. E., 

Levinsky, I., Markussen, B., Olsen, K., Rahbek, 

C., & Tøttrup, A. P. (2016). What determines 

spatial bias in citizen science? Exploring four 

recording schemes with different proficiency 

requirements. Diversity and Distributions, 22(11), 

1139–1149. https://doi.org/10.1111/ddi.12477 

Guillera-Arroita, G., Lahoz-Monfort, J., Elith, J., 

Gordon, A., Kujala, H., Lentini, P., McCarthy, M., 

Tingley, R., & Wintle, B. (2015). Is my species 

distribution model fit for purpose? Matching data 

and models to applications. Global Ecology and 

Biogeography, 24(3), 276–292. 

https://doi.org/10.1111/geb.12268 

Guisan, A., & Zimmermann, N. E. (2000). Predictive 

habitat distribution models in ecology. Ecological 

Modelling, 135(2–3), 147–186. https://doi.org/Doi 

10.1016/S0304-3800(00)00354-9 

Hao, T., Elith, J., Lahoz‐Monfort, J. J., & Guillera‐

Arroita, G. (2020). Testing whether ensemble 

modelling is advantageous for maximising 

predictive performance of species distribution 

models. Ecography, 43(4), 549–558. 

https://doi.org/10.1111/ecog.04890 

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, 

P. G., & Jarvis, A. (2005). Very high resolution 

interpolated climate surfaces for global land 

areas. International Journal of Climatology, 

25(15), 1965–1978. 

https://doi.org/10.1002/joc.1276 

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & 

Guisan, A. (2006). Evaluating the ability of habitat 

suitability models to predict species presences. 

Ecological Modelling, 199(2), 142–152. 

https://doi.org/10.1016/j.ecolmodel.2006.05.017 



Manuscript published in Ecological Modelling, doi : 10.1016/j.ecolmodel.2021.109686 

9 
 

Iturbide, M., Bedia, J., & Gutiérrez, J. M. (2018). 

Background sampling and transferability of 

species distribution model ensembles under 

climate change. Global and Planetary Change, 

166, 19–29. 

https://doi.org/10.1016/j.gloplacha.2018.03.008 

Jiménez-Valverde, A. (2012). Insights into the area 

under the receiver operating characteristic curve 

(AUC) as a discrimination measure in species 

distribution modelling. Global Ecology and 

Biogeography, 21(4), 498–507. 

https://doi.org/10.1111/j.1466-

8238.2011.00683.x 

Jiménez-Valverde, A., & Lobo, J. M. (2007). 

Threshold criteria for conversion of probability of 

species presence to either-or presence-absence. 

Acta Oecologica, 31, 361–369. 

https://doi.org/10.1016/j.actao.2007.02.001 

Justine, J.-L., Winsor, L., Gey, D., Gros, P., & 

Thévenot, J. (2020). Obama chez moi! The 

invasion of metropolitan France by the land 

planarian Obama nungara (Platyhelminthes, 

Geoplanidae). PeerJ, 8, e8385. 

https://doi.org/10.7717/peerj.8385 

Liu, C., White, M., & Newell, G. (2013). Selecting 

thresholds for the prediction of species 

occurrence with presence-only data. Journal of 

Biogeography, 40(4), 778–789. 

https://doi.org/10.1111/jbi.12058 

Liu, C., Wolter, C., Xian, W., & Jeschke, J. M. (2020). 

Most invasive species largely conserve their 

climatic niche. Proceedings of the National 

Academy of Sciences, 117(38), 23643–23651. 

https://doi.org/10.1073/pnas.2004289117 

Lobo, J. M., Jimenez-Valverde, A., & Real, R. (2008). 

AUC: a misleading measure of the performance 

of predictive distribution models. Global Ecology 

and Biogeography, 17(2), 145–151. 

https://doi.org/10.1111/j.1466-

8238.2007.00358.x 

Mendes, P., Velazco, S. J. E., Andrade, A. F. A. de, 

& De Marco, P. (2020). Dealing with 

overprediction in species distribution models: 

How adding distance constraints can improve 

model accuracy. Ecological Modelling, 431, 

109180. 

https://doi.org/10.1016/j.ecolmodel.2020.109180 

Merow, C., Smith, M. J., Edwards, T. C., Guisan, A., 

McMahon, S. M., Normand, S., Thuiller, W., 

Wüest, R. O., Zimmermann, N. E., & Elith, J. 

(2014). What do we gain from simplicity versus 

complexity in species distribution models? 

Ecography, 37, 1267–1281. 

https://doi.org/10.1111/ecog.00845 

Merow, C., Smith, M. J., & Silander, J. A. (2013). A 

practical guide to MaxEnt for modeling species’ 

distributions: What it does, and why inputs and 

settings matter. Ecography, 36, 1058–1069. 

https://doi.org/10.1111/j.1600-

0587.2013.07872.x 

Morales, N. S., Fernandez, I. C., & Baca-Gonzalez, 

V. (2017). MaxEnt’s parameter configuration and 

small samples: Are we paying attention to 

recommendations? A systematic review. PeerJ, 

5, e3093. https://doi.org/10.7717/peerj.3093 

Morán-Ordóñez, A., Lahoz-Monfort, J. J., Elith, J., & 

Wintle, B. A. (2017). Evaluating 318 continental-

scale species distribution models over a 60-year 

prediction horizon: What factors influence the 

reliability of predictions? Global Ecology and 

Biogeography, 26, 371–384. 

https://doi.org/10.1111/geb.12545 

Muscarella, R., Galante, P. J., Soley-Guardia, M., 

Boria, R. a, Kass, J. M., Uriarte, M., & Anderson, 

R. P. (2014). ENMeval: An R package for 

conducting spatially independent evaluations and 

estimating optimal model complexity for Maxent 

ecological niche models. Methods in Ecology and 

Evolution, 5(11), 1198–1205. 

https://doi.org/10.1111/2041-210X.12261 

Naimi, B., Hamm, N. a S., Groen, T. a, Skidmore, A. 

K., & Toxopeus, A. G. (2014). Where is positional 

uncertainty a problem for species distribution 

modelling? Ecography, 37(2), 191–203. 

https://doi.org/10.1111/j.1600-

0587.2013.00205.x 

Negrete, L., Francavilla, M. L., Damborenea, C., & 

Brusa, F. (2020). Trying to take over the world: 

Potential distribution of Obama nungara 

(Platyhelminthes: Geoplanidae), the Neotropical 

land planarian that has reached Europe. Global 

Change Biology, 26(9), 4907–4918. 

https://doi.org/10.1111/gcb.15208 

Osorio‐Olvera, L., Lira‐Noriega, A., Soberón, J., 

Peterson, A. T., Falconi, M., Contreras‐Díaz, R. 

G., Martínez‐Meyer, E., Barve, V., & Barve, N. 

(2020). ntbox: An r package with graphical user 

interface for modelling and evaluating 

multidimensional ecological niches. Methods in 

Ecology and Evolution, 11(10), 1199–1206. 

https://doi.org/10.1111/2041-210X.13452 

Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, 

E. E., Barve, N., Soberón, J., Ingenloff, K., Lira-

Noriega, A., Hensz, C. M., Myers, C. E., & 

Peterson, A. T. (2013). Constraints on 

interpretation of ecological niche models by 

limited environmental ranges on calibration 

areas. Ecological Modelling, 263(July), 10–18. 

https://doi.org/10.1016/j.ecolmodel.2013.04.011 

Petitpierre, B., Broennimann, O., Kueffer, C., 

Daehler, C., & Guisan, A. (2017). Selecting 

predictors to maximize the transferability of 

species distribution models: Lessons from cross-

continental plant invasions. Global Ecology and 

Biogeography, 26(3), 275–287. 

https://doi.org/10.1111/geb.12530 



Manuscript published in Ecological Modelling, doi : 10.1016/j.ecolmodel.2021.109686 

10 
 

Phillips, S. J., Anderson, R. P., DudÍk, M., Schapire, 

R. E., & Blair, M. E. (2017). Opening the black 

box: An open-source release of Maxent. 

Ecography, 40, 887–893. 

https://doi.org/10.1111/ecog.03049 

Phillips, S. J., Anderson, R. P., & Schapire, R. E. 

(2006). Maximum entropy modeling of species 

geographic distributions. Ecological Modelling, 

190(3–4), 231–259. 

https://doi.org/10.1016/j.ecolmodel.2005.03.026 

Radosavljevic, A., & Anderson, R. P. (2014). Making 

better Maxent models of species distributions: 

Complexity, overfitting and evaluation. Journal of 

Biogeography, 41(4), 629–643. 

https://doi.org/10.1111/jbi.12227 

Rödder, D., & Engler, J. O. (2011). Quantitative 

metrics of overlaps in Grinnellian niches: 

Advances and possible drawbacks. Global 

Ecology and Biogeography, 20(6), 915–927. 

https://doi.org/10.1111/j.1466-

8238.2011.00659.x 

Ruete, A. (2015). Displaying bias in sampling effort of 

data accessed from biodiversity databases using 

ignorance maps. Biodiversity Data Journal, 3, 

e5361. https://doi.org/10.3897/BDJ.3.e5361 

Ryo, M., Angelov, B., Mammola, S., Kass, J. M., 

Benito, B. M., & Hartig, F. (2021). Explainable 

artificial intelligence enhances the ecological 

interpretability of black-box species distribution 

models. Ecography, 44, 199–205. 

https://doi.org/10.1111/ecog.05360 

Schoener, T. W. (1968). The Anolis lizards of Bimini: 

Resource partitioning in a complex fauna. 

Ecology, 49(4), 704–726. 

https://doi.org/10.2307/1935534 

Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. 

B. (2009). BIOMOD - a platform for ensemble 

forecasting of species distributions. Ecography, 

32(3), 369–373. https://doi.org/10.1111/j.1600-

0587.2008.05742.x 

Thuiller, W., Richardson, D. M., Pyšek, P., Midgley, 

G. F., Hughes, G. O., & Rouget, M. (2005). Niche-

based modelling as a tool for predicting the risk of 

alien plant invasions at a global scale. Global 

Change Biology, 11(12), 2234–2250. 

https://doi.org/10.1111/j.1365-

2486.2005.001018.x 

Velasco, J. A., & González-Salazar, C. (2019). 

Akaike information criterion should not be a “test” 

of geographical prediction accuracy in ecological 

niche modelling. Ecological Informatics, 51, 25–

32. https://doi.org/10.1016/j.ecoinf.2019.02.005 

Venette, R. C., Kriticos, D. J., Magarey, R. D., Koch, 

F. H., Baker, R. H. A., Worner, S. P., Gómez 

Raboteaux, N. N., McKenney, D. W., 

Dobesberger, E. J., Yemshanov, D., De Barro, P. 

J., Hutchison, W. D., Fowler, G., Kalaris, T. M., & 

Pedlar, J. (2010). Pest Risk Maps for Invasive 

Alien Species: A Roadmap for Improvement. 

BioScience, 60(5), 349–362. 

https://doi.org/10.1525/bio.2010.60.5.5 

Vignali, S., Barras, A. G., Arlettaz, R., & Braunisch, 

V. (2020). SDMtune: An R package to tune and 

evaluate species distribution models. Ecology 

and Evolution, 10(20), 11488–11506. 

https://doi.org/10.1002/ece3.6786 

Vollering, J., Halvorsen, R., Auestad, I., & Rydgren, 

K. (2019). Bunching up the background betters 

bias in species distribution models. Ecography, 

42(10), 1717–1727. 

https://doi.org/10.1111/ecog.04503 

Warren, D. L., & Seifert, S. N. (2011). Ecological 

niche modeling in Maxent: The importance of 

model complexity and the performance of model 

selection criteria. Ecological Applications, 21(2), 

335–342. https://doi.org/10.1890/10-1171.1 

Zurell, D., Franklin, J., König, C., Bouchet, P. J., 

Dormann, C. F., Elith, J., Fandos, G., Feng, X., 

Guillera‐Arroita, G., Guisan, A., Lahoz‐Monfort, J. 

J., Leitão, P. J., Park, D. S., Peterson, A. T., 

Rapacciuolo, G., Schmatz, D. R., Schröder, B., 

Serra‐Diaz, J. M., Thuiller, W., … Merow, C. 

(2020). A standard protocol for reporting species 

distribution models. Ecography, 43(9), 1261–

1277. https://doi.org/10.1111/ecog.04960 



Manuscript published in Ecological Modelling, doi : 10.1016/j.ecolmodel.2021.109686 

11 
 

Table 1: Summary of model settings and evaluation of the models. Model performance was evaluated with the area 

under the receiver operating curve (AUC), the true skill statistics (TSS) and the continuous Boyce index (CBI) using 

random k-fold or spatial block cross-validation approaches. Values of evaluation metrics are averaged across the 

four evaluation folds. 

Model name Model description AUC TSS CBI 

Default settings 
Fitted with raw input data and all MaxEnt default settings (feature classes: LQHPT, 
regularisation multiplier = 1, all 10 variables, all 144 occurrences, background points 
sampled globally, model evaluated through random k-folds) 

0.992 0.939 0.900 

Fully tuned 

Fitted with all up-to-date recommendations (see below for details): spatial thinning 
of occurrences, incorporation of uncorrelated variables only, background sampled 
close to observed occurrences, evaluation conducted in spatial blocks, model 
selection to find the best feature classes (LQ) and regularisation multiplier (0.5) 

0.807 0.555 0.855 

Spatial thinning 
Same as 'default settings', except that occurrence data were filtered so that they are 
all separated by at least 50 km (final, spatially thinned, dataset: 93 occurrences) 

0.988 0.938 0.864 

Uncorrelated 
variables only 

Same as 'default settings', except that a subset of bioclimatic variables was used in 
modelling in such a way that their variance inflation factor was < 4 (final set of 
predictors: BIO 7, BIO 10, BIO 17 and BIO 19) 

0.984 0.902 0.844 

Background 
tuning 

Same as 'default settings', except that background points were selected at random 
within 500 km of occurrence locations 

0.869 0.635 0.818 

Spatial block 
evaluation 

Same as 'default settings', except that occurrences were split into training/evaluation 
sets using a spatial black approach 

0.987 0.931 0.639 

Feature classes 
selection 

Same as 'default settings', except that feature classes were selected from the best 
fitted model across multiple models (tested: L, LQ, H, LQH, LQHP, LQHPT; 
selected: LQHP) 

0.993 0.952 0.881 

Regularisation 
multiplier selection 

Same as 'default settings', except that the regularisation multiplier was selected from 
the best fitted model across multiple models (tested: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 
4.0, 4.5, 5.0, selected: 2) 

0.992 0.932 0.925 

 

 

Table 2: Overlap between default and each fined-tuned model, calculated using Schoener’s D niche overlap index. 

  

Fully 

tuned 

Spatial 

thinning 

Uncorrelated 

variables only 

Background 

tuning 

Spatial block 

evaluation 

Feature 

classes 

selection 

Regularisation 

multiplier selection 

Current 0.372 0.882 0.604 0.709 0.907 0.794 0.858 

RCP 2.6 - 2050 0.435 0.888 0.595 0.746 0.920 0.820 0.854 

RCP 2.6 - 2070 0.440 0.891 0.598 0.749 0.922 0.821 0.856 

RCP 8.5 - 2050 0.455 0.892 0.590 0.760 0.920 0.823 0.846 

RCP 8.5 - 2070 0.464 0.895 0.567 0.765 0.922 0.816 0.835 
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Figure 1: Suitability maps for O. nungara obtained from each of the eight MaxEnt models (see Table 1 for settings), 

in current climate (left column) and in future climate (two right columns) under the RCP 8.5 scenario. Projections 

under the RCP 2.6 scenario are available in Supplementary materials, Figure S1. 

 

 

Figure 2: Variable importance obtained from each of the eight models (see Table 1 for settings), calculated using 

either percent contribution or permutation importance. 
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Figure 3: Modelled response curves obtained from each of the eight models (see Table 1 for settings), showing the 

relationship between environmental suitability and each predictor when the others are set at their mean values. 

 

 

Figure 4: Predicted suitable area obtained from each of the eight models (see Table 1 for settings), in current (grey 

bar) and future (coloured bars) climate, when continuous suitability values were converted to binary predictions 

using the threshold that maximises specificity and sensitivity (top) or a fixed threshold of 0.2 (bottom). 
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Supplementary materials  

 

Figure S1: Suitability maps for O. nungara obtained from each of the eight MaxEnt models (see Table 1 for settings), 

in current climate (left column) and in future climate (two right columns) under the RCP 2.6 scenario. Projections 

under the RCP 8.5 scenario are available in Supplementary materials, Figure S1. 
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Figure S2: Extrapolation risk analysis represented as Mobility-Oriented Parity (MOP) maps. Colour scale shows 

the similarity between the climatic conditions at each grid cell (in current climate) and the climatic conditions in the 

training data. Areas of strict extrapolation are displayed in red. 

 

 

 

 

 


