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Logarithmic decay for linear damped hypoelliptic wave and
Schrödinger equations

Camille Laurent∗and Matthieu Léautaud†

February 23, 2021

Abstract

We consider linear damped wave (resp. Schrödinger and plate) equations driven by a hypoelliptic
“sum of squares” operator L on a compact manifold M and a damping function b(x). We assume the
Chow-Rashevski-Hörmander condition at rank k (at most k Lie brackets are needed to span the tangent
space) together with analyticity of M and the coefficients of L. We prove that the energy decays at
rate log(t)−

1
k (resp. log(t)−

2
k ) for data in the domain of the generator of the associated group. We

show that this decay is optimal on a family of Baouendi–Grushin-type operators. This result follows
from a perturbative argument (of independent interest) showing, in a general abstract setting, that
quantitative approximate observability/controllability results for wave-type equations imply a priori
decay rates for associated damped wave, Schrödinger and plate equations. The adapted quantitative
approximate observability/controllability theorem for hypoelliptic waves is obtained by the authors
in [LL19, LL17].

Keywords
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servability.
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1 Introduction and statements

1.1 Damped hypoelliptic evolution equations
We consider a smooth compact connected d-dimensional manifold M, endowed with a smooth positive
density measure ds. We denote by L2 = L2(M) = L2(M, ds;C) the space of complex-valued square
integrable functions with respect to this measure. Given a smooth vector field X, we define by X∗ its
formal adjoint in L2(M), that is,∫

M
X∗(u)(x)v(x)ds(x) =

∫
M
u(x)X(v)(x)ds(x), for any u, v ∈ C∞(M).

Givenm ∈ N andm smooth real vector fields X1, · · · , Xm, we consider the (Hörmander type I) hypoelliptic
operator (also called sub-Riemannian Laplacian, see e.g. [LL17, Remark 1.30])

L =

m∑
i=1

X∗i Xi. (1.1)
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Note that L is symmetric and nonnegative since (Lu, v)L2(M) =
∑m
i=1(Xiu,Xiv)L2(M) for all u, v ∈

C∞(M). Given a nonnegative (so-called damping) function b ∈ L∞(M;R+), we are interested in the first
place in asymptotic properties of the linear damped wave equation associated to (L, b), namely{

(∂2t + L + b∂t)u = 0, on (0,+∞)×M,

(u, ∂tu)|t=0 = (u0, u1), onM.
(1.2)

Solutions of (1.2) enjoy formally the following dissipation identity (obtained by taking the inner product
of (1.2) with ∂tu and integrating on (0, T )):

E(u(T ))− E(u(0)) = −
∫ T

0

∫
M
b(x)|∂tu(t, x)|2ds(x) dt, E(u) =

1

2

(
m∑
i=1

‖Xiu‖2L2(M) + ‖∂tu‖2L2(M)

)
.

We are also interested in the linear damped Schrödinger equation associated to (L, b){
(i∂t + L + ib)u = 0, on (0,+∞)×M,

u|t=0 = u0, onM,
(1.3)

for which the L2 norm is a dissipated quantity (obtained by taking imaginary part of the inner product
of (1.3) with u and integrating on (0, T )):

1

2
‖u(T )‖2L2(M) −

1

2
‖u0‖2L2(M) = −

∫ T

0

∫
M
b(x)|u(t, x)|2ds(x) dt.

Hence, in both situations, an “energy” decays, and an interesting question is to understand if it converges
to zero, and if so, at which rate.

We shall always assume throughout the paper that the family (Xi) satisfies the Chow-Rashevski-
Hörmander condition (or is “bracket generating”).

For a family F of smooth vector fields onM and ` ∈ N∗, we define Lie`(F), the Lie algebra at rank `
of the vector fields as:

• Lie1(F) = span(F);

• Lie`+1(F) = span
(

Lie`(F) ∪
{

[X,Y ];X ∈ F , Y ∈ Lie`(F)
})

.

Assumption 1.1. There exists ` ≥ 1 so that for any x ∈M, Lie`(X1, · · · , Xm)(x) = TxM. Denote then
by k ∈ N∗ the minimal ` for which this holds.

The integer k is sometimes referred to as the hypoellipticity index of L. In our notation, Lie1(X1, · · · , Xm)(x) =
span(X1, · · · , Xm)(x). Hence, elliptic operators correspond to (1.1) with k = 1, Baouendi–Grushin and
Heisenberg operators correspond to (1.1) with k = 2. We refer e.g. to [LL17, Section 1.1] for other detailed
examples.

Under Assumption 1.1, the celebrated Hörmander [Hör67] and Rothschild-Stein [RS76] theorems (see
also [BCN82] for a simpler proof) state that L is subelliptic of order 1

k , that is: there is C > 0 such that
for any u ∈ C∞(M), we have

‖u‖2
H

2
k (M)

≤ C ‖Lu‖2L2(M) + C ‖u‖2L2(M) . (1.4)

As a consequence, the operator L is selfadjoint on L2(M) with domain L : D(L) ⊂ L2(M) → L2(M).
Since H2(M) ⊂ D(L) ⊂ H

2
k (M), L has compact resolvent and thus admits a Hilbert basis of eigenfunc-

tions (ϕj)j∈N, associated with the real eigenvalues (λj)j∈N, sorted increasingly, that is

Lϕi = λiϕi, (ϕi, ϕj)L2(M) = δij , 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj → +∞. (1.5)

This allows in particular to define adapted Sobolev spaces:

HsL = {u ∈ D′(M), (1 + L)
s
2u ∈ L2(M)}, ‖u‖Hs

L
=
∥∥(1 + L)

s
2u
∥∥
L2(M)

, s ∈ R,

where f(L)u =
∑
j∈N f(λj)(u, ϕj)L2(M)ϕj .

In addition to Assumption 1.1, we shall also make the following analyticity assumption.
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Assumption 1.2. The manifoldM, the density ds, and the vector fields Xi are real-analytic.

A non-exhaustive list of classical examples of operators L encompassed by this framework is provided
in [LL17, Section 1.1]. Note that the damping function b does not need to be analytic but only L∞; in
particular our results work for b = 1ω if ω is a non-empty open subset ofM.

Motivations for studying propagation and unique continuation properties for hypoelliptic operators
arise in different physical situations. For instance, wave-type or Helmholtz-type equations involving a
hypoelliptic operator of the form (1.1) appear in the modeling of metamaterials, which are characterized
by the fact that some eigenvalues of the material parameter tensor may vanish at places. The modeling
of such materials is described for instance in [GKK+18] in connection with sub-Riemannian optics (and
with applications to antenna design and energy harvesting). We refer to this article for other related
interesting applications to ideal and approximate sub-Riemannian optics designs. Subelliptic operators of
the form (1.1) also naturally appear in several other physical contexts; we refer to [Bra14, Chapter 2] for
a presentation of some of them.

On the space H1
L × L2, the operator A =

(
0 Id
−L −b(x)

)
with D(A) = H2

L × H1
L generates a

bounded semigroup (from the Hille-Yosida theorem) and (1.2) admits a unique solution u ∈ C0(R+;H1
L)∩

C1(R+;L2). Our main results for damped hypoelliptic waves are summarized in the following two theorems.

Theorem 1.1 (Decay rates for damped hypoelliptic waves). Assume that b ∈ L∞(M) is such that b ≥ δ >
0 a.e. on a nonempty open set, together with Assumptions 1.1 and 1.2. Then, for all (u0, u1) ∈ H1

L × L2,
the associated solution to (1.2) satisfies E(u(t)) → 0. Moreover, for all j ∈ N∗, there exists Cj > 0 such
that for all (u0, u1) ∈ D(Aj), the associated solution to (1.2) satisfies

E(u(t))
1
2 ≤ Cj

log(t+ 2)j/k

∥∥Aj(u0, u1)
∥∥
H1

L
×L2 , for all t ≥ 0. (1.6)

Theorem 1.1 is actually a consequence of the following result, together with [BD08].

Theorem 1.2 (Spectral properties for damped hypoelliptic waves). Assume that b ≥ δ > 0 a.e. on a
nonempty open set, together with Assumptions 1.1 and 1.2. Then, the spectrum of A contains only isolated
eigenvalues with finite multiplicity, and satisfies:

1. Sp(A) = Sp(A) and ker(A) = span{(1, 0)} (where 1 denotes the constant function),

2. Sp(A) ⊂
((
− 1

2‖b‖L∞(M), 0
)

+ iR
)
∪
(
[−‖b‖L∞(M), 0] + 0i

)
,

3. there exist C, ν > 0 such that
∥∥(is−A)−1

∥∥
L(H1

L
×L2)

≤ Ceν|s|k for all |s| ≥ 1,

4. there exist ε, ν > 0 such that Sp(A)∩Γk(ε, ν) = {0}, where Γk(ε, ν) = {z ∈ C,Re(z) ≥ −εe−ν| Im(z)|k}.

The first two points are rather standard, see [Leb96]. Item 3 is the key information in the Theorem,
and is a consequence of the main theorem in [LL17, Theorem 1.15]. The last point of the theorem states
an exponentially small spectral gap, and is a consequence of Item 3.

Combined together, Theorems 1.1 and 1.2 are the counterparts to [Leb96, Théorème 1] in the case of
the usual wave equation (k = 1, in which case no analyticity is required, and boundary conditions can be
dealt with).

Note that the fact that Sp(A) ∩ iR = {0} in Item 2 (which, in turn, implies that E(u(t)) → 0 in
Theorem (1.1) for all solutions to (1.2)) is actually a consequence of the qualitative uniqueness:(

ϕ ∈ H2
L, z ∈ C, Lϕ = zϕ onM, ϕ = 0 on ω

)
=⇒ ϕ ≡ 0 onM, (1.7)

proved by Bony [Bon69], as a consequence of the Holmgren-John theorem. Even this weaker property is
not well understood for general hypoelliptic operators if we drop Assumption 1.2, see [Bah86]. Here the
key point is the quantification of the Holmgren-John theorem proved in [LL19, LL17] (see also [LL20b] for
a survey).
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We present analogue results in the case of the damped hypoelliptic Schrödinger equation. We set
AS := iL − b with D(AS) = D(L), so that (1.3) reformulates as (∂t − AS)u = 0. Note that AS
generates a contraction semigroup (from the Hille-Yosida theorem) and (1.3) admits a unique solution
u ∈ C0(R+;L2(M)). Our main results for the damped hypoelliptic Schrödinger equation are summarized
in the following two theorems.

Theorem 1.3 (Decay rates for the damped hypoelliptic Schrödinger equation). Assume that b ∈ L∞(M)
is such that b ≥ δ > 0 a.e. on a nonempty open set, together with Assumptions 1.1 and 1.2. Then, for all
u0 ∈ L2(M), the associated solution to (1.3) satisfies u(t)→ 0 in L2(M). Moreover, for all j ∈ N∗, there
exists Cj > 0 such that for all u0 ∈ D(AjS), the associated solution to (1.3) satisfies

‖u(t)‖L2(M) ≤
Cj

log(t+ 2)2j/k

∥∥∥AjSu0∥∥∥
L2(M)

, for all t ≥ 0. (1.8)

Note that when comparing (1.8) to (1.6), the decay rate looks better (log(t+ 2)−2j/k instead of log(t+

2)−j/k) but actually consumes more derivatives: for a smooth damping function b,
∥∥∥AjSu0∥∥∥

L2(M)
' ‖u0‖H2j

L

whereas
∥∥AjU0

∥∥
L2(M)

' ‖U0‖Hj
L
×Hj−1

L
. Hence both decay rates essentially coincide for data having the

same regularity. Theorem 1.3 is a consequence of the following result, together with [BD08].

Theorem 1.4 (Spectral properties for the damped hypoelliptic Schrödinger equation). Assume that b ≥
δ > 0 a.e. on a nonempty open set, together with Assumptions 1.1 and 1.2. Then, the spectrum of AS
contains only isolated eigenvalues with finite multiplicity, and satisfies:

1. Sp(AS) ⊂
[
− ‖b‖L∞(M), 0

)
+ i[0,+∞),

2. there exist C, ν > 0 such that
∥∥(is−AS)−1

∥∥
L(L2)

≤ Ceν|s|k/2 for all s ∈ R,

3. there exist ε, ν > 0 such that Sp(AS) ∩ Γk,S(ε, ν) = ∅, where Γk,S(ε, ν) = {z ∈ C,Re(z) ≥
−εe−ν| Im(z)|k/2}.

Note that in the elliptic case k = 1, the results of Theorems 1.3, 1.4 are more or less classical, even
though we did not see them written explicitely in the literature. In this situation, analyticity is not
necessary and boundary value problems can be dealt with. Our abstract perturbative proof below works
as well, as a consequence of [LL19] (with Dirichlet boundary conditions). One can however start from the
seminal Lebeau-Robbiano estimates in this situation, see [LR95, Leb96] (see also [LRL12] for a survey) for
Dirichlet conditions and [LR97] for Neumann boundary conditions.

A similar result holds for the damped plate equation associated to (L, b){
(∂2t + L2 + b∂t)u = 0, on (0,+∞)×M,

(u, ∂tu)|t=0 = (u0, u1), onM.
(1.9)

Solutions of (1.9) also enjoy formally a similar dissipation identity

EP (u(T ))− EP (u(0)) = −
∫ T

0

∫
M
b(x)|∂tu(t, x)|2ds(x) dt, EP (u) =

1

2

(
‖Lu‖2L2(M) + ‖∂tu‖2L2(M)

)
.

The framework is quite similar to that of the wave equation. We work on the space H2
L × L2 with the

operator AP =

(
0 Id
−L2 −b(x)

)
with D(AP ) = H4

L ×H2
L. It generates a bounded semigroup and (1.9)

admits a unique solution u ∈ C0(R+;H2
L) ∩ C1(R+;L2).

Theorem 1.5 (Decay rates for damped hypoelliptic plates). Assume that b ∈ L∞(M) is such that b ≥ δ >
0 a.e. on a nonempty open set, together with Assumptions 1.1 and 1.2. Then, for all (u0, u1) ∈ H2

L × L2,
the associated solution to (1.9) satisfies EP (u(t))→ 0. Moreover, for all j ∈ N∗, there exists Cj > 0 such
that for all (u0, u1) ∈ D(AjP ), the associated solution to (1.9) satisfies

EP (u(t))
1
2 ≤ Cj

log(t+ 2)2j/k

∥∥∥AjP (u0, u1)
∥∥∥
H2

L
×L2

, for all t ≥ 0. (1.10)

4



Similar spectral statements as Theorems 1.2 and 1.4 hold for the plate equation. We leave the details
to the reader. Again, using the result of [LL19], we could also obtain a logarithmic decay in the elliptic
case k = 1 for a compact manifold with boundary and with Dirichlet boundary conditions. We do not
know if this result is new in this context. There is an important literature on the subject, and we refer to
[Leb92] and [Kom92] for exact control results (implying exponential decay of the damped equation) and
e.g. to [ADZ14] for a spectral analysis of the decay rate.

Finally, we show that the results of Theorems 1.1, 1.2, 1.3, 1.4 are optimal in general (in case k > 1;
this is already known in the elliptic case k = 1, see [Leb96, LR97]). This is also the case for Theorem 1.5
(and the associated spectral statement); we do not state the result for the sake of brevity.

Proposition 1.6. Consider the manifold with boundaryM = [−1, 1]× (R/Z), endowed with the Lebesgue
measure dx, and for k ∈ (1,+∞), define the operator L = −

(
∂2x1

+ x
2(k−1)
1 ∂2x2

)
, with Dirichlet conditions

on ∂M. Assume that supp(b) ∩ {x1 = 0} = ∅. Then, there exist C, ν > 0 and a sequence (sj)j∈N with
sj → +∞ such that∥∥(isj −A)−1

∥∥
L(H1

L
×L2)

≥ Ceνs
k
j ,

∥∥(isj −AS)−1
∥∥
L(H1

L
×L2)

≥ Ceνs
k/2
j , for all j ∈ N. (1.11)

Moreover, if for all (u0, u1) ∈ D(A), the associated solution to (1.2) satisfies

E(u(t))
1
2 ≤ f(t) ‖A(u0, u1)‖H1

L
×L2 , for all t ≥ 2,

then there is C > 0 such that f(t) ≥ C
log(t)1/k

. Similarly, if for all u0 ∈ H1
L, the associated solution to (1.3)

satisfies
‖u(t)‖L2(M) ≤ f(t) ‖ASu‖L2(M) , for all t ≥ 2,

then there is C > 0 such that f(t) ≥ C
log(t)2/k

.

Recall that for k ∈ N∗, the operator L = −
(
∂2x1

+ x
2(k−1)
1 ∂2x2

)
satisfies precisely Assumption 1.1.

The first statement of the proposition is a consequence of [BCG14, Section 2.3] as reformulated in [LL17,
Proposition 1.14]. It proves the optimality in general of Item 3 in Theorem 1.2. The second part of the
statement is a corollary of the first one, together with [BD08], and proves optimality of (1.6) and (1.8).

Let us finally mention related known decay results for damped evolution equations driven by a hypoel-
liptic operator.

First, a reformulation of the result of [Let20] (e.g. combined with [Har89]) in the present context states
that if

span(X1(x), · · · , Xm(x)) 6= TxM
for x in a dense subset ofM, andM\ supp(b) 6= ∅, then uniform decay does not hold: there is no function
f : R+ → R+ with f(t) → 0 such that E(u(t)) ≤ f(t)E(u(0)). This contrasts with the Riemannian
case [RT74, BLR92], and gives in this context a stronger interest to the result of Theorem 1.1 as compared
to the Riemannian counterpart. In a genuine sub-Rimannian/hypoelliptic setting, unifrom decay never
holds, and the best we can hope for is semi-uniform decay in the sense of [Leb96, BD08], which is precisely
what we prove.

Second, one may however notice that logarithmic decay as in Theorem 1.1 is not always optimal.
Combining for instance [BS19, Theorem 1] together with [AL14, Theorem 2.3] implies that Cj

log(t+2)j/k

in (1.6) can be replaced by Cj
tj/2

(and this is probably not optimal) in the geometric setting of Proposition 1.6
if b(x1, x2) = 1(a,b)(x2), for any a < b.

Similarly, logarithmic decay in Theorem 1.3 is not always optimal. For instance [BS19, Theorem 1]
(together with classical equivalence between observability for the conservative system and uniform stabiliza-
tion for the damped system) implies that in the geometric setting of Proposition 1.6 if b(x1, x2) = 1(a,b)(x2)
for a < b, then uniform decay holds, that is: there are C, γ > 0 such that ‖u(t)‖L2 ≤ Ce−γt ‖u0‖L2 for all
solutions to (1.3).

Let us finally remark that all proofs below rely on the approximate observability/controllability of
the hypoelliptic wave equation with optimal cost. The latter result is proved by the authors in [LL17].
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It is interesting to notice that in the elliptic case (k = 1 in the discussion above), the approximate
observability/controllability of the wave equation (proved in [LL19]) with optimal (exponential) cost allows
to recover many known control results obtained with Carleman estimates. In particular, it implies

1. null-controllability of the heat equation with optimal short-time behavior, as proved in [EZ11]
and [LL18, Proposition 1.7] (the original result is [LR95, FI96]),

2. approximate observability/controllability of the heat equation with optimal (exponential) cost [LL17,
Chapter 4] (the original result is [FCZ00]),

3. optimal logarithmic decay for the damped wave equation, see Theorem 1.1 for k = 1 (the original
result is [Leb96, LR97]).

Here, we provide a proof of the last point in a general framework presented in Section 1.2 below, and
deduce counterparts for hypoelliptic equations using [LL17].

Remark 1.7. All equations considered in this paper are linear. It would be very interesting to extend
our results to a nonlinear context. The literature on the nonlinear damped wave equation for the usual
Laplacian is huge and we refer e.g. to the recent [JL20] for a survey. In the process of proving a stabilization
result for nonlinear hypoelliptic equations, there are however several important obstacles, especially for
large data solutions. Most of the results for the usual wave equation rely on very strong geometric
assumptions on the damping zone (like multiplier conditions or at least the Geometric Control Condition
of [BLR92]). To the authors’ knowledge, even in that classical setting, without any further assumption on
the damping region, the decay to zero of solutions to nonlinear damped wave equations is an open problem.
The article [JL20] deals with related problems for semilinear waves, but in geometric situations in which
the decay rate of the linear damped wave equation is strong enough and in particular, integrable in time.
Unfortunately, the decay rates we obtain in the present paper (without any geometric assumption) is of the
form 1

log(2+t)α , and hence far from being integrable. Therefore, it does not fit in the abstract framework
of [JL20].

1.2 From approximate control to damped waves : abstract setting
As already mentioned, we prove all above results in an abstract operator setting. This allows us to stress
links between the cost of approximate controls and a priori decay rates for damped waves. This follows
the spirit of e.g. [Har89, BZ04, Phu01, Mil05, Mil06, TW09, EZ11, AL14, CPS+19], exploring the links
between different equations and their control properties (i.e. observability, controllability, stabilization...).
Here, we follow closely [AL14].

Let H and Y be two Hilbert spaces (resp. the state space and the observation/control space) with
norms ‖·‖H and ‖·‖Y , and associated inner products (·, ·)H and (·, ·)Y . We denote by A : D(A) ⊂ H → H
a nonnegative selfadjoint operator with compact resolvent, and B ∈ L(Y ;H) a bounded control operator.
We recall that B∗ ∈ L(H;Y ) is defined by (B∗h, y)Y = (h,By)H for all h ∈ H and y ∈ Y . We define
H1 = D(A

1
2 ), equipped with the graph norm ‖u‖H1

:= ‖(A + Id)
1
2u‖H , and its dual H−1 = (H1)′ (using

H as a pivot space) endowed with the norm ‖u‖H−1
:= ‖(A+ Id)−

1
2u‖H .

In applications to Theorems 1.1-1.2-1.3-1.4, we take H = Y = L2(M), A = L and B = B∗ is
multiplication by the function

√
b.

We introduce in this abstract setting the wave equation{
∂2t u+Au = F,

(u, ∂tu)|t=0 = (u0, u1),
(1.12)

the damped wave equation {
∂2t u+Au+BB∗∂tu = 0,

(u, ∂tu)|t=0 = (u0, u1),
(1.13)

and the damped Schrödinger equation{
i∂tu+Au+ iBB∗u = 0,

u|t=0 = u0.
(1.14)
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Definition 1.8. Given T > 0 and a function G : R+ → R+, we say that the wave equation (1.12) with
F = 0 is approximately observable from B∗ in time T with cost G if there is µ0 > 0 such that for all
(u0, u1) ∈ H1 ×H, the associated solution u to (1.12) with F = 0 satisfies

‖(u0, u1)‖H×H−1
≤ G(µ) ‖B∗u‖L2(0,T ;Y ) +

1

µ
‖(u0, u1)‖H1×H , for all µ ≥ µ0. (1.15)

According to [Rob95] or [LL20a, Appendix], this is equivalent to approximate controllability (ε close)
with cost G(1/ε). This is satisfied for the usual wave equation in a general context with B∗ = 1ω,
G(µ) = Ceνµ, for all T > 2 supx∈M dg(x, ω) (where dg is the Riemannian distance), as proved in [LL19].
For the hypoelliptic wave equation, we proved in [LL17, Theorem 1.15] that this is satisfied for B∗ = 1ω,
G(µ) = Ceνµ

k

, for all T > 2 supx∈M dL(x, ω) (where dL is the appropriate sub-Riemannian, see [LL17,
Equation (1.11)] distance and k the hypoellipticity index of L).

Our main results can be divided in several steps. Firstly we have

Proposition 1.9. Let G : R+ → R+ be such that G(µ) ≥ c0
µ > 0 for µ ≥ µ0. Assume that there is T > 0

such that the wave equation (1.12) with F = 0 is approximately observable from B∗ in time T with cost G
in the sense of Definition 1.8. Then, we have(

λ ∈ C, v ∈ D(A), Av = λ2v, B∗v = 0
)

=⇒ v = 0, (1.16)

and there is λ0 > 0 such that for all α > 0,

‖v‖H ≤
K

α
(λ+

√
2 + α)G(λ+

√
2 + α)

(
‖B∗v‖Y + C

∥∥(A− λ2)v
∥∥
H

)
, for all v ∈ D(A), λ ≥ λ0.

(1.17)

with K =
√
T + c−10 and C > 0 a constant depending only on B and T .

Note that in this statement,
√

2 can be replaced by 1 at the cost of a slightly longer proof, and λ0 is the
µ0 given in the definition of approximate observability. In most applications we have in mind, G(µ) ≈ eνµk

and the estimate is better for smaller values of α. In a situations in which one would have G(µ) ≈ µγ ,
then a better choice of α would be α ≈ λ, so that (1.17) remains a bound of order G(λ). Note also that
since A is a nonnegative selfadjoint operator with compact resolvent, (1.16) is only interesting for λ2 ∈ R+

(but this information is not useful in the proof).

Secondly, we assume that for some function G and some λ0 > 0 we have

‖v‖H ≤ G(λ)
(
‖B∗v‖Y +

∥∥(A− λ2)v
∥∥
H

)
, for all v ∈ D(A), λ ≥ λ0. (1.18)

This is precisely (1.17) with G(λ) = K(1+C)
α (λ+

√
2+α)G(λ+

√
2+α). From Estimate (1.18), we deduce the

sought spectral properties for the damped operators (resolvent estimates and localization of the spectrum
linked to the function G). See Section 2.3 for the damped Schrödinger equation and Section 2.4 for the
damped wave equation. Note that a direct application of Proposition 1.9 gives in the context of hypoelliptic
operators.

Corollary 1.10. With the notations of Section 1.1, assume that b ∈ L∞(M) is such that b ≥ δ > 0 a.e.
on a nonempty open set, together with Assumptions 1.1 and 1.2. Then, (1.7) is satisfied and there is ν > 0,
C > 0 and λ0 > 0 such that,

‖v‖L2(M) ≤ Ce
νλk
(
‖bv‖L2(M) +

∥∥(L− λ2)v
∥∥
L2(M)

)
, for all v ∈ H2

L, λ ≥ λ0.

This corollary states a stronger version of the Eigenfunction tunneling estimates of [LL17, Theorem 1.12]
(which is the same statement for solutions to (L− λ2)v = 0). Note that the constant ν is (essentially) the
same as in the cost of approximate controls in [LL17, Theorem 1.15].

Thirdly, we deduce from the spectral properties the sought decay estimates (respectively in Sections 2.3
and 2.4 for the damped Schrödinger and wave equations) using the Batty-Duyckaerts theorem, which we
now recall.
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Theorem 1.11 (Batty and Duyckaerts [BD08]). Let (etB)t≥0 be a bounded C0-semigroup on a Banach
space X , generated by B.

Assume that
∥∥etB(Id +B)−1

∥∥
L(X )

≤ f(t) with f ∈ C0([0,+∞)) decreasing to 0. Then iR ∩ Sp(B) = ∅
and there are C, λ0 > 0 such that∥∥(iλ− B)−1

∥∥
L(X )

≤ 1 + Cf−1
(

1

2(|λ|+ 1)

)
, for all λ ∈ R, |λ| ≥ λ0.

Conversely, suppose that iR ∩ Sp(B) = ∅ and∥∥(is− B)−1
∥∥
L(X )

≤ M(|s|), s ∈ R, (1.19)

where M : R+ → R∗+ is a non-decreasing function on R+. Then, setting

Mlog(s) = M(s)
(

log(1 + M(s)) + log(1 + s)
)
, (1.20)

for all j ∈ N∗, there exists Cj , Tj > 0 such that,∥∥etBB−j∥∥L(X )
≤ Cj

M−1log

(
t
Cj

)j , for t ≥ Tj ,

where M−1log : R+ → R+ denotes the inverse of the strictly increasing function Mlog.

We refer to [Duy15, CS16] for alternative proofs of the result of [BD08]. Note that on a Hilbert space
(which is the case here) Mlog in the result can be replaced by M if it is polynomial at infinity, according
to [BT10, Theorem 2.4] (see also [CPS+19] and the references therein for generalizations of [BT10]).

To conclude this introductory section, let us briefly describe the contents of the end of the article,
namely Section 2. In Section 2.1, we explain in the abstract functional setting how approximate observ-
ability/controllability statements (Definition 1.8) imply “free-resolvent” estimates like (1.18) (proving in
particular Proposition 1.9). Then, in Section 2.2, we deduce (still in the abstract functional framework)
from these “free-resolvent” estimates a resolvent estimate for damped wave-type or Schrödinger-type op-
erators. The proofs of abstract setting analogues of Theorems 1.4 and 1.3 (resp. Theorems 1.2 or 1.1) for
the Schrödinger (resp. wave) equation are completed in Section 2.3 (resp. Section 2.4). Analogue state-
ments and proofs for the damped plate-type equations are deduced in Section 2.5. Finally, the optimality
statements of Proposition 1.6 in the case of particular hypoelliptic operators on the square are proved in
Section 2.6.

Acknowledgements. The first author is partially supported by the Agence Nationale de la Recherche (ANR)
under grant SRGI ANR-15-CE40-0018. The second author is partially supported by the ANR under grant
SALVE ANR-19-CE40-0004. Both authors are partially supported by the ANR under grant ISDEEC
ANR-16-CE40-0013.

2 Proof of the results

2.1 From approximate observability of waves to a free resolvent estimate with
an observation term: Proof of Proposition 1.9

From approximate observability, we deduce the following (seemingly more general) result, concerning
Equation (1.12) with a general right hand-side F .

Proposition 2.1. Let T > 0 and a function G : R+ → R+. Assume that the wave equation (1.12) with
F = 0 is approximately observable from B∗ in time T with cost G, in the sense of Definition 1.8. Then,
there are µ0, C > 0 such that for all F ∈ L2(0, T ;H) and (u0, u1) ∈ H1 × H, the associated solution u
to (1.12) satisfies

‖(u0, u1)‖H×H−1
≤ G(µ)

(
‖B∗u‖L2(0,T ;Y ) + C ‖F‖L2(0,T ;H)

)
+

1

µ
‖(u0, u1)‖H1×H , for all µ ≥ µ0. (2.1)
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Note that the constant µ0 is actually the same as in Definition 1.8 and that C depends only on T and
‖B∗‖L(Y ;H).

Proof. According to the linearity of (1.12), we decompose u as u = u0 + uF where u0 is the solution
to (1.12) for F = 0 and uF is the solution to (1.12) with (u0, u1) = (0, 0).

First, according to the assumption, Definition 1.8 applies to the function u0, so that (1.15) reads:

‖(u0, u1)‖H×H−1
≤ G(µ)

∥∥B∗u0∥∥
L2(0,T ;Y )

+
1

µ
‖(u0, u1)‖H1×H , for all µ ≥ µ0. (2.2)

Second, to estimate uF , we perform classical energy inequalities for (1.12). We rewrite (1.12) as

(∂2t +A+ Id)uF = uF + F, (uF , ∂tu
F )|t=0 = (0, 0). (2.3)

Taking the inner product of this equation with ∂tu
F (assuming at first that F ∈ L2

loc(R;H1) and thus
uF ∈ C0(R;D(A)) ∩ C1(R;H1) ∩ C2(R;H)) implies

1

2

d

dt

(∥∥∂tuF∥∥2H +
∥∥uF∥∥2

H1

)
≤
(∥∥uF∥∥

H
+ ‖F‖H

) ∥∥∂tuF∥∥H .
Writing Ẽ(t) = 1

2

(∥∥∂tuF∥∥2H +
∥∥uF∥∥2

H1

)
, this yields Ẽ′(t) ≤ 2Ẽ(t)+‖F‖2H . The Gronwall lemma together

with the vanishing initial data in (2.3) imply

sup
t∈[0,T ]

∥∥uF (t)
∥∥2
H
≤ sup
t∈[0,T ]

Ẽ(t) ≤ CT ‖F‖2L2(0,T ;H) .

As a consequence, boundedness of B∗ yields∥∥B∗uF∥∥
L2(0,T ;Y )

≤ ‖B∗‖L(Y ;H)

∥∥uF∥∥
L2(0,T ;H)

≤ ‖B∗‖L(Y ;H) CT ‖F‖L2(0,T ;H) .

Recalling that u0 = u− uF and combining this estimate with (2.2) yields for all µ ≥ µ0

‖(u0, u1)‖H×H−1
≤ G(µ)

∥∥B∗(u− uF )
∥∥
L2(0,T ;Y )

+
1

µ
‖(u0, u1)‖H1×H

≤ G(µ)
(
‖B∗u‖L2(0,T ;Y ) + CB,T ‖F‖L2(0,T ;H)

)
+

1

µ
‖(u0, u1)‖H1×H ,

which concludes the proof of the proposition.

From this result, we deduce a proof of Proposition 1.9 as a direct corollary.

Proof of Proposition 1.9. For v ∈ D(A) and λ ∈ C, we may apply the result of Proposition 2.1 to the
function u(t) = cos(λt)v which satisfies (1.12) with

u0 = v, u1 = 0, F (t) = cos(λt)(−λ2 +A)v.

We first remark that the assumption of (1.16) implies F = 0 and B∗u = 0, and hence (2.1) reads
‖v‖H ≤

1
µ ‖v‖H1

for all µ ≥ µ0. Letting µ converges to +∞ yields the conclusion of (1.16).

Let us now prove (1.17). Still for u(t) = cos(λt)v, we have

‖B∗u‖2L2(0,T ;Y ) ≤ T ‖B
∗v‖2Y , ‖F‖2L2(0,T ;H) ≤ T

∥∥(−λ2 +A)v
∥∥2
H
.

Estimate (2.1) thus implies for all λ ≥ 0, µ ≥ µ0

‖v‖H ≤ G(µ)
√
T
(
‖B∗v‖Y + C

∥∥(A− λ2)v
∥∥
H

)
+

1

µ
‖v‖H1

. (2.4)

We now remark that

(Av, v)H − λ
2 ‖v‖2H =

(
(A− λ2)v, v

)
H
≤
∥∥(A− λ2)v

∥∥
H
‖v‖H .

9



Hence, we deduce

‖v‖2H1
= ((A+ 1)v, v)H ≤ (λ2 + 1) ‖v‖2H +

∥∥(A− λ2)v
∥∥
H
‖v‖H

≤ (λ2 + 2) ‖v‖2H +
∥∥(A− λ2)v

∥∥2
H
.

Plugging this into (2.4) yields, for all µ ≥ µ0 and λ ≥ 0,

‖v‖H ≤ G(µ)
√
T
(
‖B∗v‖Y + C

∥∥(A− λ2)v
∥∥
H

)
+

1

µ

(∥∥(A− λ2)v
∥∥
H

+ (λ+
√

2) ‖v‖H
)
.

We let α > 0 and choose µ = µ(λ) = max{λ +
√

2 + α, µ0} so that to absorb the last term in the right
handside, implying for all λ ≥ 0,(

1− λ+
√

2

λ+
√

2 + α

)
‖v‖H ≤ G(µ(λ))

√
T
(
‖B∗v‖Y + C

∥∥(A− λ2)v
∥∥
H

)
+

1

µ(λ)

∥∥(A− λ2)v
∥∥
H
.

We then take λ ≥ µ0 so that µ(λ) = λ+
√

2+α ≥ µ0. This implies 1
µ(λ)

∥∥(A− λ2)v
∥∥
H
≤ c−10 G(µ(λ))

∥∥(A− λ2)v
∥∥
H

and thus, for λ ≥ µ0,
α

µ(λ)
‖v‖H ≤ G(µ(λ))

√
T
(
‖B∗v‖Y + C

∥∥(A− λ2)v
∥∥
H

)
+ c−10 G(µ(λ))

∥∥(A− λ2)v
∥∥
H
.

This concludes the proof of the proposition.

We finally give a proof of Corollary 1.10.

Proof of Corollary 1.10. By assumption, b ≥ δ > 0 on a non empty open set ω. Since M is compact,
supx∈M dL(x, ω) is finite. For the hypoelliptic wave equation on H = Y = L2(M), we proved in [LL17,
Theorem 1.15] that (1.15) is satisfied for A = L, Bω = B∗ω = multiplication by 1ω, G(µ) = Ceνµ

k

, for all
T > 2 supx∈M dL(x, ω) (where dL is the appropriate sub-Riemannian distance and k the hypoellipticity
index of L). Since ‖1ωu‖L2(M) ≤ δ−1 ‖bu‖L2(M), the same inequality with different constants remains
true with B = B∗ = multiplication by b. Thus, we deduce from Proposition 1.9 that (1.18) is satisfied
(after having fixed α = 2−

√
2) with G(λ) = K(1 + C)(λ+ 2)G(λ+ 2) = C(λ+ 2)eν(λ+2)k .

2.2 From the free resolvent estimate with an observation term to damped
resolvent estimates

In this section, we start from an estimate for A with an observation term like (1.17), and deduce associated
estimates for damped operators.

For later use (see Sections 2.3 and 2.4 below), we introduce the operators:

Qλ = −i(AS − iλ) = A− λ+ iBB∗,

Pλ = P (iλ) = A− λ2 + iλBB∗,

both with domain D(Qλ) = D(Pλ) = D(A).

Proposition 2.2. Let G1, G2 ≥ 0, λ > 0, and v ∈ D(A), and assume

‖v‖H ≤ G1 ‖B∗v‖Y +G2

∥∥(A− λ2)v
∥∥
H
. (2.5)

Then we have

‖v‖H ≤
(

(G1λ
− 1

2 +G2

√
2 ‖B‖L(Y ;H))

2 + 2
√

2G2

)
‖Pλv‖H , (2.6)

‖v‖H ≤
(

(G1 +G2

√
2 ‖B‖L(Y ;H))

2 + 2
√

2G2

)
‖Qλ2v‖H . (2.7)

In particular, given G : R+ → R+ such that G(µ) ≥ c0 > 0 on R+ and λ0 ≥ 1, if (1.18) is satisfied,
then writing K = (1 +

√
2 ‖B‖L(Y ;H))

2 + 2
√

2c−10 , we have

‖v‖H ≤ KG(|λ|)2 ‖Pλv‖H , for all v ∈ D(A), λ ∈ R, |λ| ≥ λ0, (2.8)

‖v‖H ≤ KG
(√
λ
)2 ‖Qλv‖H , for all v ∈ D(A), λ ≥ λ20. (2.9)
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Note that when passing from (1.17) to (2.8) and (2.9), we change G to G2, which is a loss in general;
this is linked to the fact that the proof of Proposition 2.2 consists only in a very rough estimate, treating
the damping terms iBB∗ and iλBB∗ as remainders.

Proof of Proposition 2.2. We only prove the result for Pλ, the analogue proof for Qλ is identical.
First, we remark that, under the above assumptions, we have

λ ‖B∗v‖2Y = λ (BB∗v, v)H = Im (Pλv, v)H ≤ ‖Pλv‖H ‖v‖H . (2.10)

Second, we notice that (A− λ2)v = Pλv − iλBB∗v and thus, using (2.10),∥∥(A− λ2)v
∥∥2
H
≤ 2 ‖Pλv‖2H + 2λ ‖BB∗v‖2H ≤ 2 ‖Pλv‖2H + 2 ‖B‖2L(Y ;H) λ ‖B

∗v‖2Y
≤ 2 ‖Pλv‖2H + 2 ‖B‖2L(Y ;H) ‖Pλv‖H ‖v‖H .

Plugging the last two estimates in (2.5) yields

‖v‖H ≤ (G1λ
− 1

2 +G2

√
2 ‖B‖L(Y ;H)) ‖Pλv‖

1
2

H ‖v‖
1
2

H +G2

√
2 ‖Pλv‖H .

Writing

(G1λ
− 1

2 +G2

√
2 ‖B‖L(Y ;H)) ‖Pλv‖

1
2

H ‖v‖
1
2

H ≤ 1

2
(G1λ

− 1
2 +G2

√
2 ‖B‖L(Y ;H))

2 ‖Pλv‖H +
1

2
‖v‖H ,

allows to absorb the last term in the left hand-side and implies

1

2
‖v‖H ≤

1

2
(G1λ

− 1
2 +G2

√
2 ‖B‖L(Y ;H))

2 ‖Pλv‖H +G2

√
2 ‖Pλv‖H .

This concludes the proof of (2.6), and (2.8) corresponds to the case G1 = G2 = G(λ). Also, we notice that
for λ ∈ R, P−λu = Pλu, so the statement for λ ≥ λ0 implies that for λ ≤ −λ0. Finally, the proof of (2.7)
is similar to that of (2.6) (beware that it should be written for Qλ2 and not Qλ), and (2.9) follows from
changing λ2 into λ.

Note that another advantage of Proposition 2.2 is that it is flexible enough to support perturbations
of the operator A by lower order terms. This was used in [JL20] where the perturbation comes from the
linearization of a nonlinear equation. See also [CPS+19, Bur19] for recent related perturbation results.

2.3 Damped Schrödinger-type equations
There are not many references concerning the damped Schrödinger equation. So let us start from the
beginning. We set AS := iA−BB∗ with D(AS) = D(A), so that (1.14) reformulates as (∂t −AS)u = 0.

The compact embedding D(A) ↪→ H implies that AS has a compact resolvent. First spectral properties
of AS are described in the following lemma.

Lemma 2.3. The spectrum of AS contains only isolated eigenvalues and we have∥∥(z Id−AS)−1
∥∥
L(H)

≤ 1

Re(z)
, for Re(z) > 0, (2.11)∥∥(z Id−AS)−1

∥∥
L(H)

≤ 1

| Im(z)|
, for Im(z) < 0. (2.12)

Moreover, assuming (Au = zu,B∗u = 0) =⇒ u = 0, we have

Sp(AS) ⊂ [−‖B∗‖2L(H;Y ), 0) + i[0,+∞).

Proof. The structure of the spectrum comes from the fact that AS has a compact resolvent (since so does
A, and BB∗ is bounded). Now, for a general z ∈ C, we have

‖(z Id−AS)u‖H ‖u‖H ≥ Re ((z Id−AS)u, u)H = Re(z) ‖u‖2H + ‖B∗u‖2H ≥ Re(z) ‖u‖2H ,
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which yields (2.11). The statement (2.12) comes from

‖(AS − z Id)u‖H ‖u‖H ≥ Im ((AS − z Id)u, u)H = (Au, u)H − Im(z) ‖u‖2H ≥ − Im(z) ‖u‖2H .

Finally given z ∈ Sp(AS), there is u ∈ D(A)\{0} such that ASu = zu. Taking inner product with u yields

z ‖u‖2H = (ASu, u)H = i(Au, u)H − ‖B∗u‖2H .

In particular,

Re(z) = −
‖B∗u‖2H
‖u‖2H

∈ [−‖B∗‖2L(H) , 0], Im(z) =
(Au, u)H

‖u‖2H
≥ 0.

Now if Re(z) = 0, this implies B∗u = 0 and hence zu = ASu = iAu. The assumption then yields u = 0,
which contradicts the fact that u is an eigenvector. Thus Sp(AS) ∩ iR = ∅.

We then deduce straightforwardly from Proposition 2.2 and Lemma 2.3 the following result.

Theorem 2.4. Let G : R+ → R+ be such that G(µ) ≥ c0 > 0 on R+, λ0 ≥ 1, and assume (1.18). Then
there exists K > 1 (the same as in Proposition 2.2), such that

‖(iλ Id−AS)−1‖L(H) ≤ KG
(√
λ
)2
, for all λ ≥ λ20,

Sp(AS) ∩ ΓG,S = ∅,

where ΓG,S =

{
z ∈ C, Im(z) ≥ λ20,Re(z) ≥ − 1

KG
(√

Im(z)
)2}. Finally, assuming further (1.16), there exists

another constant K̃ ≥ K such that

‖(iλ Id−AS)−1‖L(H) ≤ K̃G
(√
|λ|
)2
, for all λ ∈ R,

Sp(AS) ∩ Γ̃G,S = ∅,

where Γ̃G,S =

{
z ∈ C,Re(z) ≥ − 1

K̃G
(√
| Im(z)|

)2}.
Proof. The first point is a rewriting of (2.9) in Proposition 2.2. The second point comes from the general
fact that ∥∥(z Id−AS)−1

∥∥
L(H)

≥ 1

dist(z,Sp(AS))
. (2.13)

A simple proof of this inequality in the present context uses that the spectrum is discrete and only consists
in eigenvalues. Hence, writing Sp(AS) = {zj , j ∈ N} and denoting by ψj a normalized eigenfunction
of AS associated to zj , we have

∥∥(z Id−AS)−1
∥∥
L(H)

≥
∥∥(z Id−AS)−1ψj

∥∥
L(H)

=
∥∥(z − zj)−1ψj

∥∥
L(H)

=

|z − zj |−1, and the result follows from taking the supremum in j ∈ N. Hence, we have for λ ≥ λ20,

dist(iλ, Sp(AS)) ≥
∥∥(iλ Id−AS)−1

∥∥−1
L(H)

≥
(
KG

(√
λ
)2)−1

,

which, together with the localization of the spectrum in Lemma 2.3, proves the second point.
For the last point, Lemma 2.3 ensures that λ 7→ ‖(iλ Id−AS)−1‖L(H) is a well defined continuous

function on R, which is bounded by 1
|λ| for λ < 0. On the interval (−∞, λ20], it is therefore bounded

by a constant C0 ≤ C0c
−2
0 G

(√
|λ|
)2. This gives the expected estimates for all λ ∈ R with another

K̃ = max
(
K,C0c

−2
0

)
.

Again, (2.13) proves the spectral gap near the imaginary axis.

As a consequence, we deduce the following decay.
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Theorem 2.5. Let λ0 ≥ 1, G : R+ → R+ be a nondecreasing function such that G(0) > 0, and as-
sume (1.16) and (1.18). Then, for all j ∈ N∗, there are Cj , Tj > 0 such that for all u0 ∈ D(AjS) and
associated solution u of (1.14),

‖u(t)‖H ≤
Cj

M−1log

(
t
Cj

)j ∥∥∥AjSu0∥∥∥H , for all t ≥ Tj ,

where Mlog is defined in (1.20) with M(λ) = G
(√
λ
)2.

Again, Mlog in the result can be replaced by M if it is polynomial at infinity, according to [BT10,
Theorem 2.4].

Proof. This is a direct corollary of Theorem 2.4 and Theorem 1.11 applied to the operator B = AS in
the Hilbert space X = H. We have also used that if M is a positive nondecreasing function, K > 0, and
N = KM, then Nlog ≤ Mlog if K ≤ 1 and Nlog ≤ K

(
1 + log(K)

log(1+M(0))

)
Mlog if K ≥ 1. Changing M into KM

in Theorem 1.11 thus only changes the values of the constants Cj in the result.

We may now conclude the proofs of Theorems 1.3 and 1.4.

Proof of Theorems 1.3 and 1.4. Corollary 1.10 implies that (1.18) is true with G(µ) = Ceνµ
k

. Then,
Theorem 2.4 implies Theorem 1.4. Indeed, taking into account (1.16), we then obtain that the resolvent
is bounded on the positive imaginary axis by a constant times M(λ) = G

(√
λ
)2

= Ce2ν
+λk/2 (after having

changed the constants slightly).
Finally, we obtain

Mlog(λ) = Ce2ν
+λk/2

(
log
(
1 + Ce2ν

+λk/2
)

+ log(1 + λ)
)
≤ Ce2ν

+λk/2

(after having changed the constants slightly), and thus M−1log(t) ≥ c log(t)2/k for large t. Theorem 2.5
implies Theorem 1.3.

2.4 Damped wave-type equations: semigroup setting and end of the proofs
We now turn Estimate 2.8 in Proposition 2.2 into a resolvent estimate for the generator of the damped
wave group, and then into an energy decay for (1.13). We equip H = H1 ×H with the norm

‖(u0, u1)‖2H = ‖(A+ Id)
1
2u0‖2H + ‖u1‖2H ,

and define the seminorm
|(u0, u1)|2H = ‖A 1

2u0‖2H + ‖u1‖2H .

Of course, if A is coercive on H, | · |H is a norm on H equivalent to ‖ ·‖H. We define the energy of solutions
of (1.13) by

E(u(t)) =
1

2

(
‖A 1

2u‖2H + ‖∂tu‖2H
)

=
1

2
|(u, ∂tu)|2H.

The damped wave equation (1.13) can be recast on H as a first order system{
∂tU = AU,
U |t=0 = t(u0, u1),

U =

(
u
∂tu

)
, A =

(
0 Id
−A −BB∗

)
, D(A) = D(A)×H1. (2.14)

The compact embeddings D(A) ↪→ H1 ↪→ H imply that D(A) ↪→ H compactly, and that the operator A
has a compact resolvent. First, spectral properties of A are described in the following lemma borrowed
from [Leb96, AL14]. We define the following quadratic family of operator

P (z) = A+ z2 Id +zBB∗, z ∈ C, D(P (z)) = D(A). (2.15)
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Lemma 2.6 (Lemma 4.2 of [AL14]). The spectrum of A contains only isolated eigenvalues and, pro-
vided (1.16) is satisfied, we have

Sp(A) ⊂
((
− 1

2
‖B∗‖2L(H;Y ), 0

)
+ iR

)
∪
(

[−‖B∗‖2L(H;Y ), 0] + 0i
)
,

with ker(A) = ker(A)×{0}. Moreover, the operator P (z) in (2.15) is an isomorphism from D(A) onto H
if and only if z /∈ Sp(A).

This lemma leads us to introduce the spectral projector of A onto the spectral subspace of A associated
to the eigenvalue 0, namely

Π0 =
1

2iπ

∫
γ

(z Id−A)−1dz ∈ L(H),

where γ denotes a positively oriented circle centered on 0 with a radius so small that Sp(A)∩ γ = ∅ and 0
is the single eigenvalue of A in the interior of γ. The projector Π0 and ker(A) are linked by the following
classical lemma.

Lemma 2.7. Under the assumptions of Lemma 2.6, we have range(Π0) = ker(A) = ker(A)× {0}.

Proof. We only need to check that there is no generalized eigenfunction (equivalently, no Jordan block)
associated to the eigenvalue 0. Given {e0, · · · , ek} a basis of ker(A), and setting ψj = (ej , 0), the set
{ψ0, · · · , ψk} forms a basis of ker(A) according to Lemma 2.6. Assuming ker(A) ( range(Π0) implies that
there is a generalized eigenfunction φ = (u0, u1) ∈ D(A) and j ∈ {0, · · · , k} such that Aφ = ψj . Recalling
the form of A, this is equivalent to u1 = ej and −Au0 − BB∗u1 = 0. Taking the inner product in H of
this with u1 = ej , this implies

0 = −(u0, Aej)H = −(Au0, ej)H = (BB∗ej , ej)H = ‖B∗ej‖2Y .

We obtain a contradiction with (1.16) since ej 6= 0. This proves the lemma.

We set Ḣ = (Id−Π0)H and equip this space with the norm

‖(u0, u1)‖2Ḣ := |(u0, u1)|2H = ‖A 1
2u0‖2H + ‖u1‖2H ,

and associated inner product. This is indeed a norm on Ḣ since ‖(u0, u1)‖Ḣ = 0 is equivalent to (u0, u1) ∈
ker(A) × {0} = Π0H. Besides, we set Ȧ = A|Ḣ with domain D(Ȧ) = D(A) ∩ Ḣ. Remark that Sp(Ȧ) =

Sp(A) \ {0} and thus Sp(Ȧ) ∩ iR = ∅.

Lemma 2.8 (Lemma 4.3 of [AL14]). The operator Ȧ generates a contraction C0-semigroup on Ḣ, denoted
(etȦ)t≥0. Moreover, the operator A generates a bounded C0-semigroup on H, denoted (etA)t≥0 and the
unique solution to (1.13) is given by (u, ∂tu)(t) = etA(u0, u1). Finally, we have

etA = etȦ(Id−Π0) + Π0, for all t ≥ 0. (2.16)

Once we have put the abstract damped wave equation (1.13) in the appropriate semigroup setting, it
remains to:

1. deduce from (1.17)-(1.18) a resolvent estimate for Ȧ,

2. relate this resolvent estimate to a decay estimate for etȦ, and

3. deduce the decay of the energy for (1.13).

Step 1 is achieved thanks to the following result from [AL14].

Lemma 2.9 (Lemma 4.6 of [AL14]). There exist C > 1 such that for s ∈ R, |s| ≥ 1,

C−1‖(is Id−Ȧ)−1‖L(Ḣ) −
C

|s|
≤ ‖(is Id−A)−1‖L(H) ≤ C‖(is Id−Ȧ)−1‖L(Ḣ) +

C

|s|
, (2.17)

C−1|s|‖P (is)−1‖L(H) ≤ ‖(is Id−A)−1‖L(H) ≤ C
(
1 + |s|‖P (is)−1‖L(H)

)
. (2.18)
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As a corollary of this together with Proposition 2.2, we deduce the following result.

Theorem 2.10. Let G : R+ → R+ be such that G(µ) ≥ c0 > 0 on R+, λ0 ≥ 1, and assume (1.18). Then
there exists K > 1 such that

‖(iλ Id−A)−1‖L(H) ≤ K|λ|G(|λ|)2, for all λ ∈ R, |λ| ≥ λ0,
‖(is Id−Ȧ)−1‖L(Ḣ) ≤ K|λ|G(|λ|)2, for all λ ∈ R, |λ| ≥ λ0,

Sp(Ȧ) ∩ ΓG = ∅, Sp(A) ∩ ΓG = ∅,

where ΓG =
{
z ∈ C, | Im(z)| ≥ λ0,Re(z) ≥ − 1

K| Im(z)|G(| Im(z)|)2

}
.

Finally, assuming further (1.16), there exists another constant K̃ ≥ K such that

‖(is Id−Ȧ)−1‖L(Ḣ) ≤ K̃ 〈λ〉G(|λ|)2, for all λ ∈ R,

Sp(Ȧ) ∩ Γ̃G = ∅, Sp(A) ∩ ΓG = {0},

where Γ̃G =
{
z ∈ C,Re(z) ≥ − 1

K̃〈Im(z)〉G(| Im(z)|)2

}
.

Proof of Theorem 2.10. The first two points are corollaries of (2.8) in Proposition 2.2 combined with
Lemma 2.9.

The last point comes from Sp(Ȧ) = Sp(A)\{0}, together with the general fact that
∥∥∥(z Id−Ȧ)−1

∥∥∥
L(H)

≥
1

dist(z,Sp(Ȧ))
(see (2.13) in the proof of Theorem 2.4). Hence, we have for λ ∈ R, |λ| ≥ λ0,

dist(iλ,Sp(Ȧ)) ≥
∥∥∥(iλ Id−Ȧ)−1

∥∥∥−1
L(H)

≥
(
K|λ|G(|λ|)2

)−1
,

which, together with the localization of the spectrum in Lemma 2.6, proves the statement about the
region free of spectrum. The proof concerning the compact zone follows the same way as in the proof of
Theorem 2.4, using that, as already noticed, Sp(Ȧ) ∩ iR = ∅.

Step 2 is achieved as a consequence of Theorem 1.11 applied to the operator B = Ȧ in the Hilbert
space X = Ḣ.

Finally, Step 3 is a consequence of the following elementary Lemma 2.11, linking the energy of solutions
to the abstract damped wave equation (1.13) to the norm of the semigroup

(
etȦ
)
t≥0.

Lemma 2.11. For all j ∈ N∗, U0 ∈ D(Aj) such that Π0U0 6= U0, and associated solution u of (1.13), we
have

E(u(t))
1
2 |AjU0|2H

=
|etAU0|2H
|AjU0|2H

=
‖etȦU̇0‖2Ḣ
‖ȦjU̇0‖2Ḣ

, where U̇0 = (Id−Π0)U0.

In particular, setting fj(t) :=
∥∥∥etȦȦ−j∥∥∥

L(Ḣ)
for j ∈ N∗, we have for all U0 ∈ D(Aj) and associated

solution u of (1.13),

E(u(t)) ≤ 1

2
fj(t)

2‖AjU0‖2H, for all t ≥ 0.

Proof. This is essentially [AL14, Lemma 4.4]. Recalling that AU0 = ȦU̇0, we have

E(u(t)) =
1

2

(
‖A 1

2u(t)‖2H + ‖∂tu(t)‖2H
)

=
1

2
|etAU0|2H =

1

2
|etȦU̇0 + Π0U0|2H =

1

2
‖etȦU̇0‖2Ḣ,

‖ȦjU̇0‖2Ḣ = |AjU0|2H,

which yields the first statement. The second one follows from the fact that | · |H ≤ ‖·‖H.

As a consequence, we deduce the following decay.
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Theorem 2.12. Let λ0 ≥ 1, G : R+ → R+ be a nondecreasing function such that G(0) > 0, and
assume (1.16) and (1.18). Then, for all j ∈ N∗, there are Cj , Tj > 0 such that for all U0 ∈ D(Aj) and
associated solution u of (1.13),

E(u(t))
1
2 ≤ Cj

M−1log

(
t
Cj

)j ∥∥AjU0

∥∥
H , for all t ≥ Tj ,

where Mlog is defined in (1.20) with M(λ) = 〈λ〉G(λ)2.

Again, Mlog in the result can be replaced by M if it is polynomial at infinity, according to [BT10,
Theorem 2.4].

Proof. This is a direct corollary of Theorem 2.10, Theorem 1.11 applied to X = Ḣ and B = Ȧ, together
with Lemma 2.11 (and a remark in the proof of Theorem 2.5).

We conclude this paragraph with the proofs of Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. Again, Corollary 1.10 implies the unique continuation property (1.7) (that
is (1.16) in the present context) together with (1.18) with G(µ) = Ceνµ

k

. With this estimate at hand,
Theorem 1.1 is an application of Theorem 2.12 with M(λ) = 〈λ〉G(λ)2 ≤ Ce2ν

+λk (after having changed
the constants slightly), while Theorem 1.2 is implied by Lemma 2.6 and Theorem 2.10.

2.5 Damped plate-type equations
The plate equation actually fits into the “wave-type” framework. Indeed, the abstract plate equation{

∂2t u+A2u+BB∗∂tu = 0,

(u, ∂tu)|t=0 = (u0, u1),
(2.19)

is actually a particular case of the abstract equation (1.13) applied with the operator A2 (instead of A)
which is still nonnegative selfadjoint with compact resolvent. In this case, we define H2 = D(A), equipped
with the graph norm ‖u‖H2

:= ‖(A2 + Id)
1
2u‖H , and its dual H−2 = (H2)′ (using H as a pivot space)

endowed with the norm ‖u‖H−2
:= ‖(A2 + Id)−

1
2u‖H .

The natural space is then H = H2 ×H with the norm

‖(u0, u1)‖2H = ‖(A2 + Id)
1
2u0‖2H + ‖u1‖2H ,

and the seminorm
|(u0, u1)|2H = ‖Au0‖2H + ‖u1‖2H .

The associated energy is

EP (u(t)) =
1

2

(
‖Au‖2H + ‖∂tu‖2H

)
=

1

2
|(u, ∂tu)|2H.

In order to transfer the properties of A to A2, we will only need the following simple lemma.

Lemma 2.13. Assume (1.18) is satisfied. Then, we have

‖v‖H ≤ G(
√
λ)
(
‖B∗v‖Y + λ−1

∥∥(A2 − λ2)v
∥∥
H

)
, for all v ∈ D(A2), λ ≥ λ20. (2.20)

Proof. Since A is a nonnegative operator, we have
∥∥(A+ λ2)w

∥∥
H
≥ λ2 ‖w‖H for all w ∈ D(A). Applying

this to w = (A− λ2)v gives
∥∥(A2 − λ4)v

∥∥
H
≥ λ2

∥∥(A− λ2)v
∥∥
H
. This, combined with (1.18) implies

‖v‖H ≤ G(λ)
(
‖B∗v‖Y +

∥∥(A− λ2)v
∥∥
H

)
≤ G(λ)

(
‖B∗v‖Y +

1

λ2
∥∥(A2 − λ4)v

∥∥
H

)
. (2.21)

This is the expected result up to changing λ into
√
λ.
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Lemma 2.13 implies that if (1.18) is satisfied, the assumptions of Theorem 2.12 are satisfied for the
operator A2 with GP (λ) = G(

√
λ). Moreover, since A is a nonnegative selfadjoint operator with compact

resolvent, the eigenfunctions of A2 are those of A. In particular, if (1.16) is true for A, it is also true for
A2. It directly gives the following result.

Theorem 2.14. Let G : R+ → R+ be such that G(µ) ≥ c0 > 0 on R+, λ0 ≥ 1, and assume (1.16)
and (1.18). Assume further that G is nondecreasing. Then, for all j ∈ N∗, there are Cj , Tj > 0 such that
for all U0 ∈ D(Aj) and associated solution u of (2.19),

EP (u(t))
1
2 ≤ Cj

M−1log

(
t
Cj

)j ∥∥∥AjPU0

∥∥∥
H
, for all t ≥ Tj ,

where Mlog is defined in (1.20) with M(λ) = 〈λ〉G
(√
λ
)2.

Proof of Theorem 1.5. Thanks to Corollary 1.10, (1.18) is true with G(µ) = C(µ + 2)eν(µ+2)k . Theorem
1.5 is then an application of Theorem 2.14 with M(λ) = 〈λ〉G(

√
λ)2 ≤ Ce2ν

+λk/2 (after having changed
the constants slightly).

2.6 Lower bounds: proof of Proposition 1.6
Proof of Proposition 1.6. According to [LL17, Proposition 1.14] (which relies on [BCG14, Section 2.3]),
since supp(b) ∩ {x1 = 0} = ∅, there exist C, c0 > 0 and a sequence (λj , ϕj) ∈ R+ × C∞(M) such that

Lϕj = λjϕj , ϕj |∂M = 0, ‖ϕj‖L2(M) = 1, λj → +∞, ‖ϕj‖L2(supp(b)) ≤ Ce−c0λ
k
2
j .

As a consequence, concerning the damped Schrödinger resolvent, we have

‖(AS − iλj)ϕj‖L2(M) = ‖(iL− b− iλj)ϕj‖L2(M) = ‖bϕj‖L2(M) ≤ ‖b‖L∞ Ce
−c0λ

k
2
j .

This implies the second estimate in (1.11) with sj = λj .
Concerning the damped wave resolvent, recalling the definition of P (z) in (2.15), we write∥∥∥P (i√λj)ϕj∥∥∥

L2
=
∥∥∥(L− λj + i

√
λjb
)
ϕj

∥∥∥
L2

=
∥∥∥√λjbϕj∥∥∥

L2
≤
√
λj ‖b‖L∞ Ce

−c0λ
k
2
j .

With sj =
√
λj , this implies

∥∥P (isj)ϕj∥∥L2 ≤ sjCe
−c0skj , and using (2.18) in Lemma 2.9 proves the first

estimate in (1.11).

The last part of the Proposition follows from (1.11) together with the first implication in Theorem 1.11
(and, in case of damped waves, equivalence between the resolvents of A et Ȧ in (2.17) in Lemma 2.9).
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