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Abstract 12 

1. Bioacoustics is one of the most popular methods in bat research. Bat species are 13 

identifiable through their echolocation call features (e.g. peak frequency, duration, 14 

bandwidth) but the amounts of recordings to process generally requires the help of 15 

machine learning algorithms. Yet, classifiers are only developed in some areas of the 16 

world and it may take dozens of years before they are available everywhere because 17 

reference calls are still lacking for numerous species. Our goal was to develop a 18 

universal classifier that would classify bat sonotypes according to call shape and peak 19 

frequency. 20 

2. To achieve this, we first defined eight sonotype categories that cover all bat echolocation 21 

shapes worldwide. We then trained a classifier using random forest decision trees with 22 



a database of 1,154,835 labelled sound events containing bat and non-bat sounds from 23 

four continents. After classification, we developed a process to group detected sound 24 

events according to the probability scores of their predicted sonotype category and their 25 

peak frequency. We then tested the performance of our classifier on a different set of 26 

recordings originating from five continents.  27 

3. Depending on the bat sonotype tested, the performance (area under ROC curve) of our 28 

classifier ranged between 0.77 and 0.99 for low-quality calls (SNR < 25 dB). 29 

Performance ranged between 0.89 and 1 for middle or high-quality calls (SNR ≥ 25 dB). 30 

The performance for bat feeding buzz classification ranged between 0.93 and 0.98 31 

depending on the SNR. The classifier was not developed to classify bat social calls; the 32 

majority of them were classified as a bat sonotype. 33 

4. The classifier is an open data format and can be used by anyone to study bats around 34 

the world. It can be used to spot acoustically described species but for which a classifier 35 

was not developed, and even to detect species that were not acoustically described yet. 36 

The grouping of sound events according to call sonotype and peak frequency may be 37 

used to describe bat communities and compare the composition of acoustic niches 38 

across time and space. This allows the monitoring of bats and the assessment of bat 39 

conservation issues in any region of the world. 40 

 41 

Résumé 42 

1. La bioacoustique est l’une des méthodes les plus populaires pour l’étude des Chiroptères. 43 

Les espèces de chauves-souris sont identifiables grâce aux propriétés de leurs cris 44 

d’écholocation (ex. fréquence dominante, durée, largeur de bande) mais les quantités 45 

d’enregistrements à analyser demandent généralement l’aide d’algorithmes en 46 

apprentissage machine. Cependant, les classificateurs ne sont développés que dans 47 



certaines régions du monde, et cela pourrait durer des dizaines d’années avant qu’ils ne 48 

soient disponibles partout, car les cris de référence manquent encore chez de 49 

nombreuses espèces. Notre but était de développer un classificateur universel qui 50 

classifierait les sonotypes de chauves-souris en fonction de la forme des cris et des 51 

fréquences dominantes.  52 

2. Afin de parvenir à cette fin, nous avons d’abord défini huit catégories de sonotypes qui 53 

couvrent toutes les formes d’écholocation à travers le monde. Nous avons ensuite 54 

entraîné un classificateur en utilisant des forêts d’arbres décisionnels avec une base de 55 

données de 1 154 835 évènements sonores étiquetés contenant des sons de chauves-56 

souris et de non-chauves-souris issus de quatre continents. Après classification, nous 57 

avons développé un procédé pour regrouper les évènements sonores détectés en fonction 58 

des scores de probabilité de leur catégorie de sonotype prédite et de leur fréquence 59 

dominante. Nous avons ensuite testé la performance de notre classificateur sur un jeu 60 

différent d’enregistrements issus de cinq continents.  61 

3. Selon le sonotype testé, la performance (aire sous la courbe ROC) de notre classificateur 62 

variait entre 0,77 et 0,99 pour les cris de basse qualité (SNR < 25 dB). La performance 63 

variait entre 0,89 et 1 pour les cris de qualité moyenne ou haute (SNR > 25 dB). La 64 

performance pour les buzz de capture de proie variait entre 0,93 et 0,98 en fonction du 65 

SNR. Le classificateur n’a pas été développé pour classer les cris sociaux ; la majorité 66 

d’entre eux ont été classés en sonotype de chauve-souris.  67 

4. Le classificateur est une donnée ouverte et peut être utilisé par quiconque souhaitant 68 

étudier les chauves-souris à travers le monde. Il peut être utilisé pour repérer des espèces 69 

décrites acoustiquement mais pour lesquelles il n’existe pas encore de classificateur, et 70 

même pour détecter des espèces encore non décrites acoustiquement. Le groupement 71 

d’évènement sonores en fonction du sonotype et de la fréquence dominante peut être 72 

utilisé pour décrire des communautés de chauves-souris et comparer la composition des 73 



niches acoustiques à travers le temps et l’espace. Cela permet le suivi et l’évaluation de 74 

problématiques de conservation des Chiroptères dans n’importe quelle région du monde. 75 
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Introduction 80 

Bioacoustics, a growing field in science, brings together a wide range of disciplines, from the 81 

inventory of animal species to the characterisation of soundscapes, including sound source 82 

tracking and the study of social interactions. Most of these research domains are made possible 83 

by the existence of a specific signature inherent in bioacoustic signals, which identifies a species 84 

or a group of species uniquely. In fact, animal vocalisations are designed to fulfil different 85 

functions, which may be classified into two categories: social communication on one hand (e.g. 86 

territorial marking, courtship, group gathering) and echolocation on the other hand (Obrist et 87 

al., 2010). For emitters to target conspecific receivers, social vocalisations necessarily bear 88 

features shared among individuals of the same species, even if their structure may show 89 

individual signatures, for example in mother-pup interactions (Sauvé et al., 2015; Wiley, 2006). 90 

This means that one expects at least as many different vocalisations as there is of vocally active 91 

species within an ecosystem (Sueur et al., 2012). On the other hand, echolocation signals, 92 

because of their primary function of object location and recognition for orientation or foraging, 93 

are much more subject to evolutionary convergences, and thus display much less diversity 94 

(Jones and Holderied, 2007; Schnitzler et al., 2003). For example, cetacean clicks resemble 95 

feeding buzzes of bats capturing prey (Jones, 2005; Madsen and Surlykke, 2013).  96 

Nonetheless, unlike in dolphins, the numerous foraging strategies extant in bats today, tied to 97 



specific echolocation call structures, make the unique identification of most bat species in a 98 

community possible thanks to the differences in the frequency, duration and shape of their 99 

echolocation calls (Au, 1997; Walters et al., 2013). Indeed, among the more than 1,400 extant 100 

bat species, food resources include fruits, insects, nectar, vertebrates, fish and blood (Wilson 101 

and Mittermeier, 2019). Even among species exploiting a similar trophic resource (e.g. 102 

insectivorous bats), adaptation to prey led to different echolocation and foraging strategies.   103 

Three distinct signal structures are used by bats, each suited for a specific task: narrowband 104 

signals for long-range detection of the target, broadband signals for target localisation and 105 

classification, and long constant frequency signals with Doppler-shift compensation for 106 

detection and classification of fluttering insects (Schnitzler and Kalko, 2001). From these three 107 

categories, a multitude of combinations are used by bats (Collen, 2012; Jones and Teeling, 108 

2006). These different combinations can be referred to as ‘sonotypes’ (Fidelino and Gan, 2019; 109 

Fraser et al., 2020; López-Baucells et al., 2019; Ochoa et al., 2000), independently of signal 110 

frequency. 111 

Acoustic monitoring of bats, thanks to its high cost-effectiveness, is gaining popularity all over 112 

the world, among scientists, conservation organisations, land managers or private consultancies. 113 

Bat inventories are carried out to study species richness and abundance, which necessitates 114 

several nights to obtain a near to exhaustive assessment (Fraser et al., 2020; Richardson et al., 115 

2019). With dozens of nights of data accumulated across different study sites, the help of 116 

automated acoustic identification becomes necessary.  117 

Several tools using machine learning were developed in the last years to detect and identify 118 

species of a given country or a biogeographical area (Bas et al., 2017; Chen et al., 2020; 119 

Kobayashi et al., 2021; Mac Aodha et al., 2018; Nocera et al., 2019; Obrist and Boesch, 2018; 120 

Rydell et al., 2017; Zamora-Gutierrez et al., 2016). This automated identification process can 121 

be used with success when combined with either manual validation or a statistical sorting based 122 



on the associated confidence indexes, depending on the objectives of the study (Barré et al., 123 

2019; López-Baucells et al., 2019). Obviously, it is only possible to identify a species if its 124 

reference calls are present in the training set of the classifier, which restricts the usage of these 125 

softwares to specific areas. Free or commercially available bat classifiers currently only cover 126 

the Neotropics, North America and/or Europe. These developments are correlated with the 127 

degree of knowledge available in different regions of the world, and it might take several 128 

decades before auto-ID softwares are made available for Africa, Asia, South-America or 129 

Australia (Walters et al., 2013). Yet, conservation issues are such that acoustic monitoring is 130 

utterly needed to assess the state of bat populations and design conservation plans accordingly.  131 

Our goal was to build a universal bat classifier that could be used anywhere in the world. To 132 

train a taxonomic classifier for all extant species, it is necessary to possess a sample of all 133 

combinations of call sonotypes and frequencies used by bats around the world. Lacking this 134 

resource, we chose to approach this task in two steps: first training a classifier with bat 135 

sonotypes independently of call frequency, and then grouping these sonotypes after 136 

classification according to their frequency.   137 

Choosing a universal definition of bat call types – or sonotypes – is a very difficult enterprise, 138 

although some attempts have been carried out, such as in Jones and Teeling (2006). However, 139 

this classification arbitrarily distinguishes long from short calls, when call duration is greatly 140 

influenced by the echolocation task performed (e.g. foraging vs. commuting) (Holderied, 2006), 141 

which may lead to confusions. Moreover, this basic classification does not represent the full 142 

diversity of echolocation calls. For instance, it is not clear how the echolocation calls of 143 

Pteronotus davyi (constant frequency followed by frequency modulation and constant 144 

frequency again) should be classified according to this study. A second attempt by Collen (2012) 145 

started from the latter study and added more classes. Here again, this classification is not 146 

satisfactory, because it also uses the criterion of call duration, and because some species may 147 

be classified in several of those categories depending on the echolocation task they perform. 148 



Therefore, a novel approach is needed to guarantee exhaustiveness and avoid any confusion. 149 

Gathering sound references covering all combinations between acoustic types and frequency 150 

domains existing in the world is not possible. However, gathering a sufficiently large diversity 151 

of acoustic types so that bat calls could be robustly identified independently from absolute 152 

frequency is a feasible task. Our objectives were thus (1) to develop a comprehensive 153 

framework to classify the different bat sonotypes occurring worldwide, (2) to build a classifier 154 

of bat sonotypes, (3) after classification, to group calls of similar frequency inside the same 155 

acoustic sequence to isolate species recorded simultaneously and displaying the same sonotype, 156 

and (4) to test the efficiency of this classifier. The purpose of our tool was to be used for passive 157 

or active acoustic monitoring, in which it is common practice to count the number of sequences 158 

(i.e. recordings of a certain time interval) containing one or more bat calls of a given species 159 

(Fraser et al., 2020). 160 

Material and methods 161 

Definition of bat sonotypes 162 

We first conducted a literature review of the diversity of bat sonotypes occurring in the world 163 

(Arias-Aguilar et al., 2018; Barataud, 2015; Barataud et al., 2013; Collen, 2012; Fenton and 164 

Bell, 1981; Lopez-Baucells et al., 2016) and completed this literature review with our own bat 165 

acoustic surveys in Europe, South-East Asia, Central Africa, South-America, the Neotropics 166 

and North-America. It appeared that any bat echolocation call may be conveniently divided into 167 

a maximum of three consecutive elements, where the main element can be preceded by a prefix 168 

and followed by a suffix (see Fig. 1). Each of those elements may contain one of the structures 169 

described by Schnitzler and Kalko, (2001), namely a narrowband (quasi-constant frequency, 170 

QCF), a broadband (frequency modulation, FM) or a constant frequency (CF) signal, produced 171 

by bats to achieve different echolocation tasks. FM may be upward (FMu) or downward (FMd). 172 

We thus chose to describe the diversity of sonotypes based on this method and found the 173 



occurrence of eight different sonotypes (Table 1 and supplementary file 1). We chose to not 174 

create sonotype classes based on the presence of multiharmonics, because harmonics are more 175 

or less perceivable depending on recording quality, which may lead to confusions. We however 176 

quantified the intensity of potential harmonics with ancillary variables so that users can access 177 

this information: we selected the maximum value among the ratios of the average amplitude 178 

between the elements whose frequency is 1/2, 1/3, 2/3, 4/3, or twice that of the DSE and the 179 

amplitude of the DSE (these ratios are named Ramp); we used the 90 % percentile of this value 180 

among the calls of the same groups (see section post-classification grouping). Positive values 181 

are usually associated with harmonics. 182 

Figure 1 here 183 

Fig. 1: Illustration of the method for the definition of bat sonotypes with three examples on a 184 
sonogram (time as a function of frequency). The upper sonotype is a call divided into a 185 
frequency modulated (FM) prefix and a main quasi-constant frequency (QCF) element. The 186 
sonotype in the middle is a call containing only a main FM element. The lower sonotype is a 187 
call divided into an FM prefix, a main constant frequency (CF) element and an FM suffix. 188 

 
 
Table 1: Description of bat sonotypes. FM: Frequency modulated; CF: Constant frequency; 
QCF: Quasi-constant frequency; d: downward; u: upward. See Fig. 1 for the definition of prefix, 
main element and suffix. 
 189 
Sonotype Prefix Main element Suffix Sonogram Example species 

FMd-QCF Downward 
FM or none QCF - 

 

Pipistrellus pipistrellus, 
Lasurius borealis 

FMu-QCF Upward FM QCF - 
 

Promops centralis 

QCF-FMd - QCF Downward 
FM or none  

Peropteryx macrotis, 
Molossus molossus 

CF-FMd - CF Downward 
FM  

Hiposideros commersoni, 
Noctilio leporinus 

FMu-QCF-FMd Upward FM QCF Downward 
FM  Cormura brevirostris 



FMu-CF-FMd Upward FM CF Downward 
FM  

Rhinolophus 
ferrumequinum, 

Pteronotus cf. parnellii 

FMd - Downward FM - 

 

Myotis nattereri, 
Carollia perspicillata 

CF-FMd-CF CF Downward FM CF  Pteronotus personatus 

 190 

Species used most of the time a single sonotype. If more than one sonotype was displayed by a 191 

species – which was the case in Promops centralis, Molossops sp., Chaerephon sp. and 192 

Molossus sp. – we only labelled the dominant sonotype to build the classifier (see 193 

supplementary file 1). Within a sonotype, shapes could vary significantly due to changes in call 194 

duration and bandwidth (see example in Fig. 2), but the curvature still corresponded to the 195 

description of Table 1. When call duration was extremely short, e.g. in FMd-QCF inferior to 3 196 

ms, call shape necessarily resembled a FMd (Fig. 2), but we still labelled it as FMd-QCF.  197 

Figure 2 here 198 

Fig. 2: Example of shape variation for sonotype "FMd-QCF" represented as sonogram. 199 

Call labelling 200 

Our sound database contains passive and active recordings of free-flying bats as well as 201 

recordings of released individuals after capture (individuals were measured and identified in 202 

hand). Different acoustic recorders were used for these recordings and they are listed in 203 

supplementary file 1. This table also lists the country in which recordings were made. 90 % of 204 

the sounds labelled to build the classifier originated from Europe (France, Spain, Croatia, 205 

Lithuania, Poland and the United Kingdom) but also from other regions of the world, such as 206 

South-America (Uruguay, French Guiana), Central America (Costa Rica), Africa (Benin) and 207 

Middle-East (Turkey) (see Fig. 3).  208 



Figure 3 here 209 

Fig. 3: Map of the origin of the call library used to build the classifier. Numbers indicate the 
number of DSE (detected sound events) labelled and used. Black circles: bat DSE. White circles: 
non-bat DSE. 
 
We used the Tadarida-L 2.1 software (https://github.com/YvesBas/Tadarida-L) to detect and 210 

label reference calls. This software includes a detection function to isolate detected sound 211 

events (DSE), originating from a single acoustic source, in both frequency and time (see Bas et 212 

al. (2017) for more details). Each species name was then associated with a sonotype in a 213 

separate table.  214 

Bat feeding buzzes (Griffin et al., 1960) – a series of more than five calls of very short intervals 215 

(less than 10 milliseconds) produced by bats at an attempt of prey capture – were also labelled 216 

and constituted an additional acoustic class (different from a sonotype). These sequences are 217 

usually preceded by a gradual acceleration of rhythm and followed by a sudden resumption of 218 

a similar rhythm to that before the acceleration. Non-bat sounds were also labelled as additional 219 

acoustic classes. They include ground-crickets, bush-crickets, grasshoppers, bees, beetles, 220 

cicadas, flies, frogs, moths, other insects, other mammals, birds, and noise (electrical or 221 

mechanical).  222 

In total, we labelled 321,132 DSE belonging to 9,245 recordings of 121 bat species or groups. 223 

We also labelled 833,703 DSE belonging to 13,625 recordings of 153 non-bat species or noise 224 

types (see supplementary file 1 in which the column N_DSE indicates the number of DSE 225 

labelled). 226 

Building of the classifier 227 

We used Tadarida-C (https://github.com/YvesBas/Tadarida-C) on R (R Core Team, 2013) to 228 

assemble the table containing the acoustic parameters of all labelled DSE and to build the 229 

classifier. Tadarida-C builds classifiers based on the random forest method for machine learning 230 

https://github.com/YvesBas/Tadarida-L
https://github.com/YvesBas/Tadarida-C


(see Bas et al. (2017) for more details). We used all of the acoustic features measured by 231 

Tadarida-L to build the classification trees (see the list at https://github.com/YvesBas/Tadarida-232 

L/blob/master/Manual_Tadarida-L.odt), except for features directly related to absolute 233 

frequency, because we wanted to define sonotypes independently of frequency. Nonetheless, to 234 

help distinguish birds from bats in the lowest frequencies, we added a binary feature, which 235 

took the value of 1 if the frequency of the master point (the highest amplitude value among the 236 

elements within the DSE defines the master point) was superior to 17 kHz where most bat calls 237 

and only harmonics of bird calls occur, or 0 in the other case. We kept features related to relative 238 

frequency (e.g. bandwidth, which is maximal frequency minus minimum frequency) to build 239 

the classification trees. 240 

Classification 241 

We modified Tadarida-C (see Ta_Tc_Sonotype.R and ClassifC1_Sonotype.R) to discard DSE 242 

below 8 kHz, which is the lowest peak frequency known to be emitted by a bat (Leonard and 243 

Fenton, 1984). We also discarded DSE suspected to be from the same bat call as the previous 244 

DSE, but separated by a short silence due to heterogeneous sound propagation. For this, we 245 

removed all DSE that were separated from the previous DSE by less than 5 ms. 246 

Before classification, calls suspected to be higher harmonics of another DSE were discarded by 247 

excluding calls starting and ending simultaneously to DSE of a lower frequency and a higher 248 

amplitude. Nonetheless, the information of a call having a harmonic still exists in Tadarida 249 

features. Therefore, bat calls were classified taking into account the presence of their harmonics. 250 

To discard DSE suspected to be harmonics, we isolated DSE that occurred simultaneously and 251 

only kept the one with the highest amplitude. 252 

We used Tadarida-C to obtain predictions of the acoustic identity (i.e. the bat and non-bat 253 

acoustic classes) of each DSE. Each DSE prediction is accompanied by a prediction probability 254 

for each of the possible acoustic classes present in the table containing the acoustic parameters 255 



of all labelled DSE. 256 

Our R scripts for this section and the next one can be found at 257 

[https://doi.org/10.5281/zenodo.5483030] (folder ‘Sonotypes’).  258 

Post-classification grouping of detected sound events 259 

Our goal was to build a ready-to-use classifier for bat activity surveys. Since the majority of 260 

them are based on the quantification of sequences (or files) containing one or more bat calls of 261 

the same species (Fraser et al., 2020), we followed the same process. We processed each wav 262 

file separately. We modified Tadarida-C (see AggContacts_Sonotype.R) to group DSE after 263 

classification. This section aimed to group DSE belonging to the same species according to 264 

their classification probability score, following the algorithm of Tadarida-C (Bas et al., 2017), 265 

but also according to their peak frequencies (Fpeak), i.e. each group of DSE in a file will 266 

eventually be identified uniquely by an acoustic class combined with a peak frequency. Thus, 267 

if several species are present, several groups of DSE are expected.  268 

For this, several rounds were conducted until each DSE were attributed a group (see Fig. 4). At 269 

each round, the most probable acoustic class in the file was identified by selecting the best 270 

prediction probability score. The acoustic class containing this best score was defined as 271 

“dominant” for the current round.  272 

At each round we applied the density function of the stats package of R (with 30% of the default 273 

bandwidth) to the Fpeak of all DSE within the file to obtain their probability distribution and 274 

isolate their modes. The presence of different DSE of different frequencies in a file translates 275 

into the presence of different modes. For instance, if three species produce calls in three 276 

different frequency ranges, three peaks (i.e. modes) will appear in the density plot (see chart in 277 

Fig. 4). We then selected the mode closest to the Fpeak of the DSE with the best prediction 278 

probability score and called it “dominant mode”. If only one DSE remained per file, the 279 



dominant mode took the value of the Fpeak of the remaining DSE. All DSE with a Fpeak within a 280 

5 kHz range of the dominant mode and with a probability score in the dominant acoustic class 281 

superior to 0.05 were attributed a final ID corresponding to the dominant acoustic class and 282 

stored for output. All other DSE were processed in the next round until there was no DSE left. 283 

We chose to use this conservative approach to avoid false positives, i.e. sonotype identification 284 

supported only by inconsistent probabilities. Before grouping, each DSE was associated to a 285 

prediction probability score for each acoustic class; after grouping, the final prediction 286 

probability score of a group of DSE of a given acoustic class is the highest score among the 287 

DSE of this group for this acoustic class. 288 

Figure 4 here 289 

Fig. 4: Example of the post-classification grouping of detected sound events. All files are 
processed at each round. DSE: Detected Sound Event. AC: probability score of the Acoustic 
Class. Fpeak: frequency at the maximum energy.  
 290 

Instructions on how to download and how to use the classifier are available in the README 291 

file at [https://doi.org/10.5281/zenodo.5483030] (folder ‘Sonotypes’).  292 

Classifier performance 293 

We tested the efficiency of the classifier on recordings from study sites that were not used to 294 

build the classifier. These new recordings originated from six regions of the world, namely 295 

Europe (France), North-America (United States of America), Central-America (Costa Rica), 296 

South-America (French Guiana), Asia (Cambodia) and Africa (Benin) (see supplementary file 297 

2 and Fig. 5). For each region, we used recordings originating from three different locations. 298 

The mean distance between locations within the same country was 241 km (min = 14 km, max 299 

= 944 km). On each location, we used full-night or partial-night recordings (i.e. first hours of 300 

the night), in which files were cut to have a maximum duration of 5 seconds.  301 



Figure 5 here 302 

Fig. 5: Map of the origin of study sites sampled to assess the performance of the classifier. 
 303 

The last output of the classifier is a table (see supplementary table 3 at 304 

[https://figshare.com/articles/dataset/Validation_table_for_the_bat_sonotype_classifier/15149305 

523] and its column description in supplementary table 4) in which each line corresponds to a 306 

group of DSE of the same file which were grouped together according to their acoustic class 307 

and their peak frequency (see previous section). To test the efficiency of the classifier for each 308 

bat sonotype, for feeding buzzes, and for the most common non-bat classes (bush-crickets, noise 309 

and bird), we did a stratified random selection of 5 files per detected acoustic class at each 310 

location. The random selection was stratified according to the time of the night and the 311 

probability scores to ensure a representativity of the variety of sounds analysed and of the 312 

efficiency of the classifier. It could happen that less than 5 files per acoustic class were available. 313 

For each file checked, we browsed all acoustic classes detected and noted the occurrence of 314 

false positives, true positives, and false negatives. Files could contain the same acoustic class 315 

several times but in different frequency modes and we checked each of them. For this, we 316 

visualised the file sonograms on Syrinx (John Burt, USA). If the true nature of the acoustic 317 

class was ambiguous (e.g. in the case of low signal to noise ratios), to avoid confirmation bias 318 

resulting from a personal interpretation of the call identity, we did not classify it as a positive 319 

or a negative and left it unchecked. If the file was too noisy to check it without ambiguity from 320 

the checker’s perspective, or if there were many overlapping calls, we left the file apart and did 321 

not check it (see Figure A1 in the supplementary information file for the distribution of SNR 322 

across checked and unchecked groups of DSE and see Figure A2 in the supplementary 323 

information file for examples of sonograms). We checked files containing obvious bat social 324 

calls (see Chaverri et al., 2018) apart and results are presented separately since our sonotype 325 

classification was not designed to cover all the complexity of those social calls. For this analysis, 326 



we only checked the groups of calls in the file that corresponded to social calls. We checked 327 

them as if they were echolocation calls, i.e. if the call had an FMd shape and was classified as 328 

such, we considered it a true positive. We classified calls whose shape was not listed in Table 1 329 

as “complex”. 330 

All checked sound sequences are available at 331 

[https://figshare.com/articles/media/Sounds_used_to_validate_an_automatic_classifier_of_bat332 

_sonotypes/15141201]. 333 

We used receiver operator characteristic (ROC) curves to assess the efficiency of the classifier 334 

for the different acoustic classes. These curves are created using the rate of true and false 335 

positives. Since our classifier is probabilistic, the ROC curves take the probability of 336 

classification into account. As explained in the previous section, the probability of classification 337 

of a group is the highest score among the DSE of this group for the predicted acoustic class. We 338 

made one ROC curve for each of three different classes of signal-to-noise ratios (SNR) to take 339 

into account the recording quality. More precisely, for each acoustic class identified by the 340 

classifier within a file, we calculated the median value of calls maximum amplitudes. The 341 

median value gives a less important weight to outliers and is thus more representative of the 342 

majority of the calls in a file. We then created three amplitude classes: <25 dB, 25-75 dB, 343 

and >75 dB SNR. We calculated the area under the curve (AUC) to provide a numerical 344 

summary of the performance of the classifier.  345 

The efficiency of the segregation of species according to the frequency modes (see Fig. 4) could 346 

not be assessed quantitatively since we do not have a perfect knowledge of bat acoustic 347 

identification in all countries sampled. Therefore, we could not assess whether two different 348 

species were put in the same frequency mode or not. We thus described whether all calls 349 

originating from the same individual – based on the similarity of calls and on the inter-call 350 

duration – were classified in the same group (i.e. one species) or if they were classified in 351 



several groups of frequency modes (i.e. several species). If calls were seemingly produced by 352 

the same individual and yet segregated in two frequency modes, we noted in what 353 

circumstances this occurred. 354 

Results 355 

Efficiency of the classifier 356 

The percentage of files in which not a single DSE was found by Tadarida – or which only 357 

contained DSE below 8 kHz and were thus discarded by Tadarida – is equal to 7.1 %. In the 358 

rest of the dataset, we considered 715 files according to our stratified random sampling design. 359 

54 files were considered separately as they contained social calls. 47 files (444 groups of calls) 360 

were too noisy to be checked. In the remaining 614 files, we checked 3,575 groups of calls 361 

classified by the classifier (see Table A3 in the supplementary information file). In these files, 362 

we noticed 3 false negative groups: three FMd-QCF. In the 614 files that were checked, 239 363 

groups of calls were left unchecked because the true nature of the acoustic class was ambiguous 364 

(e.g. in the case of low signal to noise ratios).  365 

ROC curves and their AUC (area under the curve) show that the highest performance of the 366 

classifier is for the sonotype FMu-CF-FMd, and that this performance is very little affected by 367 

call amplitude (Fig. 6). The classifier has a similar performance for CF-FMd-CF calls, however, 368 

the sample size is very low for this sonotype (n=21). The classifier shows the worst performance 369 

for the sonotype QCF-FMd when calls have an amplitude lower than 25 dB (AUC = 0.78), but 370 

the AUC for this sonotype varies between 0.92 and 0.94 when call amplitude is 25 dB or louder. 371 

The classifier has a very high performance for buzzes, and this performance is very little 372 

affected by call amplitude (AUC between 0.93 and 0.98). 373 

Figure 6 here 
 
Fig. 6: Receiver operating characteristic (ROC) curves between the confidence score of the 
false positive rate (FPR) and the true positive rate (TPR) for each acoustic class. Grey shades 



represent the median of the maximal amplitude among the calls classified as the sonotype that 
was checked: light grey <25 dB, dark grey 25-75 dB, black >75 dB. AUC (Area under the curve) 
is a proxy of the performance of the classifier. N = number of groups of calls. Detailed ROC 
curves for each country are also provided in the appendix (Figures A3 – A8 in the 
supplementary information file). Micro- and macro-averaged ROC curves are shown in Figure 
A9 in the supplementary information file. FM = frequency modulated. QCF = quasi-constant 
frequency. CF = constant frequency. d = downward. u = upward. The summary of this figure 
can be found in Table A1 in the supplementary information file. 
 
The confusion matrix (Table 2) shows confusions between acoustic classes. Bush-crickets were 374 

classified 47 % of the time as a non-bat (other than bush-cricket), 7 % of the time as a bat 375 

sonotype, and 10 % of the time as a buzz. FMd-QCF were classified 19 % of the time as FMd, 376 

which happened very often when individuals produced very short calls. QCF-FMd were 377 

classified 21 % of the time as FMd-QCF, which happened often for calls with extremely small 378 

FMd at the end (short bandwidth). Non-bat DSE were classified 11 % of the time as bat or buzz; 379 

bat or buzz DSE were classified 4.6 % of the time as non-bat. 380 

Performance of the frequency-based grouping of detected sound events within acoustic 381 

classes  382 

DSE emitted by one bat species were most of the time grouped in one unique frequency group 383 

except for three cases: species producing calls with alternating frequencies with a difference of 384 

more than 10 kHz in peak frequency (e.g. Molossus molossus) appeared in two different 385 

frequency groups; buzzes emitted by one species were grouped on average in 1.6 different 386 

groups (maximum = 4); FMd calls emitted by one species were grouped on average in 3 387 

different groups (maximum = 7).  388 

Bat social calls 389 

80 % of the 111 checked social calls were classified as a bat sonotype that matched their shape 390 

(Table A2 in the supplementary information file). Among the remaining 20 %, 31 calls could 391 

not be assigned to one of the classes of Table 1 and we thus described them as “complex calls”. 392 

55 % of these 31 complex calls were classified by the classifier as FMd-QCF. It must be noted 393 



that 67 % of the files containing social calls that were checked belonged to the same study site 394 

(Valley of fire, USA) and were social calls of Tadarida brasiliensis. If this site is removed, 54 % 395 

of the 37 checked social calls were classified by the classifier as a bat sonotype that matched 396 

their shape (results not shown). Among the remaining 46 %, 17 calls were “complex calls”. 40 % 397 

of these 17 complex calls were classified by the classifier as FMd-QCF. 398 



Table 2: Confusion matrix between acoustic classes identified by the classifier and after manual checking for groups of calls with an SNR (signal to noise 
ratio) superior or equal to 25 dB. These results do not take the probability index associated with the automated classification into account. FM = frequency 
modulated. QCF = quasi-constant frequency. CF = constant frequency. d = downward. u = upward. For the confusion matrix of all calls (all SNR) see 
Table A3 in the supplementary information file. 
 

SNR ≥ 25 dB 

Identification from 
automated 

classification 

Identification after manual checking 

bird bush-
cricket buzz CF-

FMd 

CF-
FMd-

CF 
FMd FMd-

QCF 

FMu-
CF-

FMd 

FMu-
QCF 

FMu-
QCF-
FMd 

noise 
other 
insect 
or frog 

QCF-
FMd 

Total 
groups of 

calls 
bird 2 2 0 0 0 0 4 0 0 0 0 0 1 9 

bush-cricket 0 93 1 0 0 2 2 0 0 0 5 0 2 105 
buzz 0 26 63 0 0 1 3 0 0 0 13 0 0 106 

CF-FMd 0 1 0 8 0 0 0 0 0 0 0 0 1 10 
CF-FMd-CF 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

FMd 0 4 6 4 0 134 56 0 0 0 28 0 6 238 
FMd-QCF 0 6 0 1 3 7 192 0 0 3 6 1 17 236 

FMu-CF-FMd 0 2 0 2 0 1 2 6 0 0 6 0 0 19 
FMu-QCF 1 1 0 0 0 0 3 0 4 0 0 0 1 10 

FMu-QCF-FMd 0 3 0 0 0 0 6 0 3 15 1 0 5 33 
noise 0 116 1 3 0 3 7 0 0 1 563 0 2 696 

other insect or frog 0 2 0 0 0 0 1 0 0 0 0 0 0 3 
QCF-FMd 1 0 0 0 1 0 15 0 0 2 1 0 45 65 

Total groups of calls 4 256 71 18 5 148 291 6 7 21 623 1 80 1531 
 
 



Discussion 354 

The framework that we developed to classify the different bat sonotypes is a quick and easy 355 

approach to distinguish the main bat acoustic strategies occurring worldwide, without having 356 

to collect an exhaustive sound reference database of the local species calls. Because the 357 

definition of sonotypes does not take call duration into account, this objective tool avoids the 358 

classification of the same species in different sonotypes, excepted in the very few species 359 

emitting alternating call shapes (e.g. Promops centralis). 360 

Classifier performance 361 

The performance of our classifier was tested with success on recordings from bat communities 362 

from five different continents (Fig. 5). The rate of false negatives (i.e. calls that were not at all 363 

classified) was close to zero; a similar result was obtained in another assessment of the 364 

performance of Tadarida for another classifier (Barré et al., 2019). Thus, users can be confident 365 

that they will not miss sound events of interest. 366 

It must be noted that most bat classifiers have a relatively high SNR threshold for classification, 367 

below which classification is not provided (Obrist and Boesch, 2018; Stahlschmidt and Brühl, 368 

2012). This is not the case with Tadarida that aimed at detecting almost all hearable bat calls, 369 

only 3 bat sequences not being detected on 646 files. Here, bat sonotypes were classified with 370 

an AUC superior to 0.9 for signals of good quality (SNR > 25 dB), and with an AUC superior 371 

to 0.7 for signals of low quality (SNR < 25 dB). Moreover, the performance was tolerant to low 372 

SNR for the three sonotypes containing a CF element and for feeding buzzes. Although call 373 

duration and bandwidth influenced the success of bat sonotypes classification, since for instance 374 

short FMd-QCF were often classified as FMd, confusions between bats and non-bats were close 375 

to insignificant.  376 

The sonotype FMd led to multiple groups although produced by only one individual, which is 377 



due to high variability in the peak frequency. Additionally, species using alternated frequencies 378 

led to multiple groups. These results can be adjusted by users by changing the tolerance to 379 

frequency input used to make groups of calls. 380 

Among species using FMd, important differences exist in the way how energy is distributed 381 

among call harmonics; in the family of Phyllostomidae and in the genus Plecotus 382 

(Vespertilionidae), the same amount of energy is emitted in the different harmonics, while in 383 

the genus Myotis (Vespertilionidae), energy is stronger on the fundamental frequencies (Jones 384 

and Teeling, 2006). These differences are not accounted for by our classifier. However, to help 385 

users in this task, the potential presence of harmonics detected by Tadarida-L is shown in a 386 

dedicated column of the output (i.e. Ramp90, for which positive values are usually associated 387 

with harmonics). 388 

A possible amelioration of sonotype classification lies in deep learning methods, that showed 389 

encouraging results in bat acoustic identification (Chen et al., 2020; Kobayashi et al., 2021; 390 

Mac Aodha et al., 2018). However, to our knowledge, there is still no extensive comparison 391 

between deep learning and random forest approaches for the classification of bat echolocation 392 

calls.  393 

Usage perspectives 394 

Although our method cannot approach the performance of a classifier trained to identify calls 395 

at the species level in specific bat communities (e.g. Ayala-Berdon et al., 2020; Barré et al., 396 

2019; Obrist and Boesch, 2018), it is very convenient to discriminate different bat guilds 397 

(Denzinger and Schnitzler, 2013) in any geographical context. First, sonotypes can be used to 398 

separate the main acoustic strategies, such as flutter detecting foragers (FMu-CF-FMd, CF-399 

FMd or CF-FMd-CF structures) versus gleaning foragers (FMd structure) versus aerial foragers 400 

(FMd-QCF, FMu-QCF, QCF-FMd or FMu-QCF-FMd structures) (Denzinger and Schnitzler, 401 

2013). Then, frequencies may be used to separate species according to their spatial niche, such 402 



as open space foragers (< 30 kHz) versus edge space foragers (between 30 and 60 kHz) 403 

(Denzinger and Schnitzler, 2013; Kalko et al., 2008; Roemer et al., 2019). If, as we expect, 404 

species diversity matches the diversity of sonotype-frequency combinations, our classifier 405 

might be used to assess the state of bat communities anywhere in the world (e.g. Fidelino and 406 

Gan, 2019). 407 

Another use of our classifier is to detect species that were described acoustically in geographical 408 

areas for which no specific classifier was developed and reference recordings are still scarce. 409 

Using our classifier, it is possible to target the species sonotype and frequency range in large 410 

amounts of recordings. The classifier can even be used for species that have not been described 411 

acoustically yet since they will be classified according to their sonotype and peak frequency. 412 

Detecting undocumented species will be especially facilitated in areas where few sympatric 413 

species are extant, e.g. on islands, deserts, or high latitudes (Barataud and Giosa, 2013; Mifsud 414 

and Vella, 2019; Walters et al., 2013; Ziegler et al., 2016). 415 

Finally, it is possible to specifically study bat foraging behaviour using the “buzz” acoustic 416 

class of our classifier. Possible applications are the comparison of foraging activity across 417 

habitats, management practices and seasons (Ancillotto et al., 2021; Froidevaux et al., 2017; 418 

Toffoli and Rughetti, 2020; Weier et al., 2018), the study of pest regulation by bats (Charbonnier 419 

et al., 2021, 2014; Rodríguez-San Pedro et al., 2020; Salvarina et al., 2018), or of group foraging 420 

and competition (Gager, 2019; Lewanzik et al., 2019; Roeleke et al., 2020). 421 
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Supplementary Information File 

 

Figure A 1: Distribution of the SNR (signal-to-noise ratio) of the groups of DSE (detected sound 
events) of the different datasets; the x axis shows values between 0 and 100 and the y axis is in 
the logarithmic scale. The vertical lines and their associated values show the median value of 
each dataset. Ambiguous DSE were left unchecked but originate from checked files (i.e. the 
other DSE of this file were checked), whereas no DSE originating from noisy files were 
checked.
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Figure A 2: Example of different sonograms of the dataset used to test the performance of the classifier. A-F: full-length files checked during the test. G-H: full-
length files rejected by the checker for the test because they were too noisy or had too many overlapping calls. I-Q: isolated example calls retrieved from the 
checked files for the sonotypes CF-FMd (I), CF-FMd-CF (J), FMd (K), FMd-QCF (L), FMu-CF-FMd (M), FMu-QCF (N), FMu-QCF-FMd (O), QCF-FMd (P) 
and for the buzz (Q). *: The sonogram in M3 is the result when a call is produced with a frequency greater than the sample rate; the result is an inversed acoustic 
signal; the classifier was built using similar sounds for training. Sonograms were produced using Syrinx (John Burt, USA; FFT window type Hanning with 
transform size adapted to sample rate to obtain comparable graphical settings). 
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Figure A 3: Receiver operating characteristic (ROC) curves between the confidence score of 
false positive rate (FPR) and true positive rate (TPR) for each bat sonotype for Benin. Grey 
shades represent the median of the maximal amplitude among the calls classified as the 
sonotype that was checked: light grey <25 dB, dark grey 25-75 dB, black >75 dB. AUC (Area 
under curve) is a proxy of the performance of the classifier. N = number of groups of calls. FM 
= frequency modulated. QCF = quasi-constant frequency. CF = constant frequency. d = 
downward. u = upward. 
  



   

  

 

 
Figure A 4: Receiver operating characteristic (ROC) curves between the confidence score of 
false positive rate (FPR) and true positive rate (TPR) for each bat sonotype for Cambodia. Grey 
shades represent the median of the maximal amplitude among the calls classified as the 
sonotype that was checked: light grey <25 dB, dark grey 25-75 dB, black >75 dB. AUC (Area 
under curve) is a proxy of the performance of the classifier. N = number of groups of calls. FM 
= frequency modulated. QCF = quasi-constant frequency. CF = constant frequency. d = 
downward. u = upward. 
  



   

   

  

 

Figure A 5: Receiver operating characteristic (ROC) curves between the confidence score of 
false positive rate (FPR) and true positive rate (TPR) for each bat sonotype for Costa Rica. Grey 
shades represent the median of the maximal amplitude among the calls classified as the 
sonotype that was checked: light grey <25 dB, dark grey 25-75 dB, black >75 dB. AUC (Area 
under curve) is a proxy of the performance of the classifier. N = number of groups of calls. FM 
= frequency modulated. QCF = quasi-constant frequency. CF = constant frequency. d = 
downward. u = upward.  



 
 

   

 

 

 

 
Figure A 6: Receiver operating characteristic (ROC) curves between the confidence score of 
false positive rate (FPR) and true positive rate (TPR) for each bat sonotype for France. Grey 
shades represent the median of the maximal amplitude among the calls classified as the 
sonotype that was checked: light grey <25 dB, dark grey 25-75 dB, black >75 dB. AUC (Area 
under curve) is a proxy of the performance of the classifier. N = number of groups of calls. FM 
= frequency modulated. QCF = quasi-constant frequency. CF = constant frequency. d = 
downward. u = upward.  



 
 

   

   

  

 

   
Figure A 7: Receiver operating characteristic (ROC) curves between the confidence score of 
false positive rate (FPR) and true positive rate (TPR) for each bat sonotype for French Guiana. 
Grey shades represent the median of the maximal amplitude among the calls classified as the 
sonotype that was checked: light grey <25 dB, dark grey 25-75 dB, black >75 dB. AUC (Area 
under curve) is a proxy of the performance of the classifier. N = number of groups of calls. FM 
= frequency modulated. QCF = quasi-constant frequency. CF = constant frequency. d = 
downward. u = upward. 
  



   

 

 

 

 
Figure A 8: Receiver operating characteristic (ROC) curves between the confidence score of 
false positive rate (FPR) and true positive rate (TPR) for each bat sonotype for the United States 
of America. Grey shades represent the median of the maximal amplitude among the calls 
classified as the sonotype that was checked: light grey <25 dB, dark grey 25-75 dB, black >75 
dB. AUC (Area under curve) is a proxy of the performance of the classifier. N = number of 
groups of calls. FM = frequency modulated. QCF = quasi-constant frequency. CF = constant 
frequency. d = downward. u = upward. 
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Figure A 9: Micro-averaged (a) and macro-averaged (b) receiver operating characteristic (ROC) 
curves between the confidence score of false positive rate (FPR) and true positive rate (TPR) 
for all bat sonotypes. Grey shades represent the median of the maximal amplitude among the 
calls classified as the sonotype that was checked: light grey <25 dB, dark grey 25-75 dB, 
black >75 dB. AUC (Area under curve) is a proxy of the performance of the classifier. 
 
  



Table A 1: Summary table of the AUC (area under curve) for each acoustic class and each SNR 
(signal-to-noise ratio). 
 

SNR (dB) Acoustic class AUC 

<25 
 
 
 

bird 0.93 
bush-cricket 0.73 

buzz 0.93 
CF-FMd 0.98 

CF-FMd-CF 0.98 
FMd 0.84 

FMd-QCF 0.83 
FMu-CF-FMd 0.98 

FMu-QCF 0.9 
FMu-QCF-FMd 0.93 

moth 0.73 
noise 0.83 

25-75 
 
 
 

other-mammal 0.85 
QCF-FMd 0.78 

bird 0.85 
bush-cricket 0.77 

buzz 0.95 
CF-FMd 0.92 

CF-FMd-CF 0.99 
FMd 0.93 

FMd-QCF 0.9 
FMu-CF-FMd 1 

FMu-QCF 0.98 
FMu-QCF-FMd 0.94 

moth NA 
noise 0.89 

other-mammal 0.99 

>75 
 

QCF-FMd 0.94 
bird NA 

bush-cricket 0.82 
buzz 0.98 

CF-FMd 1 
CF-FMd-CF NA 

FMd 0.97 
FMd-QCF 0.89 

FMu-CF-FMd 1 
FMu-QCF 1 

FMu-QCF-FMd 0.99 
moth NA 
noise 0.89 

other-mammal NA 
QCF-FMd 0.92 

 
 
 



Table A 2: Confusion matrix of social calls between acoustic classes identified by the classifier 
and after manual checking for groups of calls of any SNR. These results do not take the 
probability index associated with the automated classification into account. FM = frequency 
modulated. QCF = quasi-constant frequency. CF = constant frequency. d = downward. u = 
upward.  

All SNR – social calls 

Identification from 
automated 

classification 

Identification after manual checking 

buzz CF-FMd complex FMd FMd-
QCF 

FMu-QCF-
FMd 

Total 
groups of 

calls 
bird 0 0 1 0 0 0 1 

bush-cricket 5 1 5 2 0 0 13 
buzz 17 0 0 0 0 0 17 

CF-FMd 0 4 1 0 0 0 5 
FMd 3 0 1 25 1 0 30 

FMd-QCF 0 0 17 9 8 0 34 
FMu-CF-FMd 0 0 1 0 0 0 1 

FMu-QCF 0 0 2 0 0 0 2 
FMu-QCF-FMd 0 0 0 0 0 1 1 

noise 1 0 0 2 0 0 3 
QCF-FMd 1 0 3 0 0 0 4 

Total groups of calls 27 5 31 38 9 1 111 
 



Table A 3: Confusion matrix between acoustic classes identified by the classifier and after manual checking for groups of calls of any SNR. These results 
do not take the probability index associated with the automated classification into account. FM = frequency modulated. QCF = quasi-constant frequency. 
CF = constant frequency. d = downward. u = upward. The three false negatives (FMd-QCF) are not shown. 
 

All SNR 

Identification from 
automated 

classification 

Identification after manual checking 

bird bush-
cricket buzz CF-

FMd 

CF-
FMd-

CF 
FMd FMd-

QCF 

FMu-
CF-

FMd 

FMu-
QCF 

FMu-
QCF-
FMd 

noise 
other 
insect 
or frog 

QCF-
FMd 

Total 
groups 

of 
calls 

bird 36 69 0 0 0 0 27 0 0 0 19 3 4 158 
bush-cricket 5 291 3 0 0 3 8 0 0 2 13 1 6 332 

buzz 0 47 72 0 0 1 4 0 0 0 17 0 0 141 
CF-FMd 0 1 0 14 0 0 0 0 0 0 0 0 1 16 

CF-FMd-CF 0 0 0 0 10 0 0 0 0 0 0 0 0 10 
FMd 0 48 6 5 0 171 99 2 0 1 77 0 8 417 

FMd-QCF 3 39 1 2 8 9 324 2 2 12 19 2 34 457 
FMu-CF-FMd 0 18 1 7 1 2 5 39 0 3 15 1 5 97 

FMu-QCF 1 2 0 0 0 0 11 0 5 0 0 0 3 22 
FMu-QCF-FMd 1 16 0 0 1 3 24 0 4 40 10 3 12 114 

noise 2 314 1 4 0 5 21 1 0 1 1329 1 12 1691 
other insect or frog 0 9 0 0 0 0 2 0 0 0 0 3 1 15 

QCF-FMd 3 5 0 0 1 1 29 0 0 3 3 0 60 105 
Total groups of calls 51 859 84 32 21 195 554 44 11 62 1502 14 146 3575 
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