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UNIFORM ROE CORONAS

BRUNO M. BRAGA, ILIJAS FARAH, AND ALESSANDRO VIGNATI

Abstract. A uniform Roe corona is the quotient of the uniform Roe
algebra of a metric space by the ideal of compact operators. Among
other results, we show that it is consistent with ZFC that isomorphism
between uniform Roe coronas implies coarse equivalence between the
underlying spaces, for the class of uniformly locally finite metric spaces
which coarsely embed into a Hilbert space. Moreover, for uniformly lo-
cally finite metric spaces with property A, it is consistent with ZFC that
isomorphism between the uniform Roe coronas is equivalent to bijective
coarse equivalence between some of their cofinite subsets. We also find
locally finite metric spaces such that the isomorphism of their uniform
Roe coronas is independent of ZFC. All set-theoretic considerations in
this paper are relegated to two ‘black box’ principles.
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1. Introduction

Given a metric space (X, d), one can define a C∗-subalgebra C∗u(X) of
the space of operators on `2(X) called the uniform Roe algebra of X. More
precisely, C∗u(X) is defined as the norm closure of the algebra of all operators
on `2(X) of finite propagation with respect to the metric d (we refer the
reader to Section 2 for precise definitions). For recent results on uniform
Roe algebras, as well as Roe algebras, see [20, 25, 26]. The motivation for
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the study of these algebras comes from its intrinsic relation with the coarse
Baum-Connes conjecture and, consequently, with the Novikov conjecture
[31]. One of the main questions about uniform Roe algebras is whether this
C∗-algebra completely determines the large scale geometry of the underlying
metric space.

Problem 1.1. (Rigidity of Uniform Roe Algebras) Let X and Y be
metric spaces such that C∗u(X) and C∗u(Y ) are isomorphic. Does it follow
that X and Y are coarsely equivalent?

Recently, much progress has been made on the rigidity problem within
the class of uniformly locally finite metric spaces. Precisely, in [26, Theo-
rem 1.8], it was shown that Problem 1.1 has a positive answer for uniformly
locally finite metric spaces with G. Yu’s property A.1 The first two authors,
improved this result in [1, Corollary 1.2]. They showed that Problem 1.1 has
a positive answer for uniformly locally finite metric spaces which coarsely
embed into a Hilbert space and for uniformly locally finite spaces such that
all ghosts projections are compact. Recall, an operator a ∈ C∗u(X) is called
a ghost if for all ε > 0 there exists a bounded F ⊂ X such that |〈aδx, δy〉| < ε
for all x and y in X \ F .2

Our objective is to understand what information about the uniform Roe
algebra is preserved after passing to the quotient by the ideal of compact
operators. Towards this end we utilize the theory of liftings for corona C∗-
algebras ([6, 9, 15, 16, 28, 29]).

Definition 1.2. Let X be a countable metric space and C∗u(X) be the
uniform Roe algebra of X. The uniform Roe corona Q∗u(X) is defined by

Q∗u(X) = C∗u(X)/K(`2(X)),

where K(`2(X)) denotes the space of all compact operators on `2(X).

The terminology is justified by the resemblance of these quotient structure
to corona C∗-algebras. The rigidity problem has a clear version for uniform
Roe coronas.

Problem 1.3. (Rigidity of Uniform Roe Coronas) Let X and Y be
metric spaces such that Q∗u(X) and Q∗u(Y ) are isomorphic. Does it follow
that X and Y are coarsely equivalent?

The study of isomorphisms between quotient algebras is intrinsically re-
lated to the search for liftings of those isomorphisms. Our notes deal with
the following notion of lift.

Definition 1.4. Let X and Y be countable metric spaces.

1Since we do not make explicit use of it, we do not properly define property A here
(see [19, §11.5] for its definition).

2A uniformly locally finite metric space X has property A if and only if all ghost
operators in C∗u(X) are compact, by [20, Theorem 1.3].
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1. A ∗-homomorphism Λ: Q∗u(X)→ Q∗u(Y ) is liftable on the diagonal if
there is a strongly continuous ∗-homomorphism Φ: `∞(X) → C∗u(Y )
which lifts Λ on `∞(X)/c0(X) (see Definition 2.5).

2. If Λ is an isomorphism, we say that it is liftable on diagonals if both Λ
and Λ−1 are liftable on the diagonal. If this is the case then we say
that Q∗u(X) and Q∗u(Y ) are liftable on diagonals isomorphic.

In order to guarantee that an automorphism is liftable on diagonals it is
often necessary to work within a theory that extends the standard Zermelo–
Fraenkel axioms for set theory, ZFC (see [6], [16], and Example 8.4). Our
rigidity results are relatively consistent with ZFC and hold under the Open
Coloring Axiom, OCAT, and Martin’s Axiom, MAℵ1 (see §2.3 for defini-
tions). These axioms are used only indirectly, via a ‘black box’ extracted
from [16]. The following is proved in §5.

Theorem 1.5. Assume OCAT and MAℵ1. Then every isomorphism be-
tween uniform Roe coronas of countable metric spaces is liftable on the di-
agonals.

Before stating our rigidity results, we need two definitions regarding the
geometry of metric spaces.

Definition 1.6. Let (X, d) be a metric space.

1. The space X is sparse if there exists a partition X =
⊔
nXn of X

into finite subsets such that d(Xn, Xm)→∞ as n+m→∞.
2. The space X yields only compact ghost projections if every ghost pro-

jection in C∗u(X) is compact.

Any locally finite metric space whose sparse subspaces yield only com-
pact ghost projections is uniformly locally finite (Lemma 2.2). Each of the
conditions ‘X yields only compact ghost projections’ and ‘X is coarsely em-
beddable into a Hilbert space’ separately implies that sparse subspaces of
X yield only compact ghost projections (for the latter, see [1, Lemma 7.3]).

The following is one of our main results, proved in §6.

Theorem 1.7. Suppose X and Y are locally finite metric spaces such that
all of their sparse subspaces yield only compact ghost projections. If Q∗u(X)
and Q∗u(Y ) are liftable on diagonals isomorphic, then X and Y are coarsely
equivalent.

By Theorem 1.5, we have the following.

Corollary 1.8. Assume OCAT and MAℵ1. Suppose X and Y are locally
finite metric spaces all of whose sparse subspaces yield only compact ghost
projections. If Q∗u(X) ∼= Q∗u(Y ), then X and Y are coarsely equivalent. �

It was proved in [30, Corollary 6.13] that the existence of an isomorphism
between C∗u(X) and C∗u(Y ) is equivalent to bijective coarse equivalence for
uniformly locally finite metric spaces X and Y with property A. The next
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result is a version of that for isomorphisms between uniform Roe coronas
which are liftable on the diagonals.

Theorem 1.9. Let X and Y be uniformly locally finite metric spaces and
assume that X has property A. The following are equivalent.

1. The uniform Roe coronas Q∗u(X) and Q∗u(Y ) are liftable on diagonals
isomorphic.

2. There exist cofinite subsets X̃ ⊆ X and Ỹ ⊆ Y such that X̃ and Ỹ
are bijectively coarsely equivalent.

By Theorem 1.5, we have the following.

Corollary 1.10. Assume OCAT and MAℵ1. Let X and Y be uniformly
locally finite metric spaces and assume that X has property A. The following
are equivalent.

1. The uniform Roe coronas Q∗u(X) and Q∗u(Y ) are isomorphic.

2. There exist cofinite subsets X̃ ⊆ X and Ỹ ⊆ Y such that X̃ and Ỹ
are bijectively coarsely equivalent. �

By translating two results of S. Ghasemi ([10, Theorem 1.2] and [9]) into
the language of uniform Roe coronas, and dropping uniform local finiteness,
we obtain the following independence result.

Theorem 1.11. There are locally finite metric spaces X and Y such that
the assertion Q∗u(X) ∼= Q∗u(Y ) is independent from ZFC.

This is a consequence of Theorem 8.1, where we construct a large family
of spaces with this property. (We should note that the spaces constructed in
Theorem 1.11 are not uniformly locally finite, and C∗u(X) and C∗u(Y ) have
noncompact ghost projections.)

Similarly, classical results of W. Rudin and S. Shelah imply that there
exists a uniformly locally finite metric space X such that the assertion ‘Every
automorphism of Q∗u(X) is liftable on the diagonals’ is independent from
ZFC (Example 8.4).

The paper is organized as follows. In §2, we present all the notation and
terminology needed for these notes. In particular, in §2.3, we present the set
theoretical axioms OCAT and MAℵ1 as well as Theorem 2.7, which is our
main tool in order to obtain Corollary 1.8 and Corollary 1.10. In §3, we show
that the liftings obtained by Theorem 2.7 are coarse-like (see Definition 3.2
below), and §4 is dedicated to the technical lemmas which depend on the
geometric properties of our metric spaces. Theorem 1.7 and Theorem 1.9
are proved in §6 and §7, respectively. At last, in §8, we construct a class of
locally finite metric spaces for which the existence of isomorphisms between
their uniform Roe coronas is independent from ZFC.

2. Preliminaries

2.1. Uniform Roe algebras and uniform Roe coronas. Given a com-
plex Hilbert space H, B(H) denotes the space of bounded operators on H,



UNIFORM ROE CORONAS 5

and K(H) the space of compact operators on H. If X is a set, `2(X) is
the complex Hilbert space of square summable sequences indexed by X,
with canonical basis {δx}x∈X . Denote by πX the canonical quotient map
πX : B(`2(X)) → B(`2(X))/K(`2(X)). The support of a ∈ B(`2(X)) is de-
fined as

supp(a) = {(x, y) ∈ X ×X : 〈aδx, δy〉 6= 0}.
Writing ∆X = {(x, x) : x ∈ X}, the algebra `∞(X) is naturally identified
with the subalgebra {a ∈ B(`2(X)) : supp(a) ⊆ ∆X)}. Given x, y ∈ X,
denote by eyx the operator in B(`2(X)) given by

eyx(δz) = 〈δz, δx〉δy,
for all z ∈ X. Given A ⊆ X, write χA =

∑
x∈A exx, so χA ∈ `∞(X).

If X is a set and X ′ ⊆ X, we identify B(`2(X ′)) with a subalgebra of
B(`2(X)) in the natural way. If (Xn)n is a sequence of disjoint subsets of
X,
∏
n B(`2(Xn)) is identified with a subalgebra of B(`2(X)).

If (X, d) is a metric space, we say that a ∈ B(`2(X)) has propagation at
most r, and write prop(a) ≤ r, if d(x, y) ≤ r whenever (x, y) ∈ supp(a).

Definition 2.1. Let X be a countable metric space. The algebraic uniform
Roe algebra C∗u[X] is the subalgebra of B(`2(X)) of all operators of finite
propagation. The uniform Roe algebra of X, C∗u(X), is the norm closure of
C∗u[X] in B(`2(X)). The uniform Roe corona is

Q∗u(X) = C∗u(X)/K(`2(X)).

It is clear that prop(a) = 0 for all metric spaces X and all a ∈ `∞(X), so
`∞(X) ⊆ C∗u(X). In particular, χA ∈ C∗u(X), for all A ⊆ X. Notice that
prop(χAbχA) ≤ prop(b) for all A ⊆ X and b ∈ B(`2(X)). We will use this
fact without any further mention.

Given a countable set X, F ⊆ X, and a = (ax)x∈X ∈ `∞(X), an element
a�F ∈ `∞(X) is defined by

(a � F )x =

{
ax, if x ∈ F,
0, otherwise.

We identify `∞(F ) with the C∗-subalgebra {a ∈ `∞(X) : a�F = a} of `∞(X).

2.2. Coarse geometry of metric spaces. Let (X, d), (Y, ∂) be metric
spaces and f : X → Y . A function f is coarse if

sup{∂(f(x), f(y)) : d(x, y) ≤ t} <∞,
for all t ≥ 0, and f is called expanding if

lim
t→∞

inf{∂(f(x), f(y)) : d(x, y) ≥ t} =∞.

We say that f is a coarse embedding if it is both coarse and expanding. If Z
is a set and f, g : Z → X are maps, we say that f and g are close if

sup
z∈Z

d(f(z), g(z)) <∞.
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Two metric spaces (X, d) and (Y, ∂) are said to be coarsely equivalent if
there exist coarse functions f : X → Y and g : Y → X such that g ◦ f is
close to IdX and f ◦ g is close to IdY . Notice that this automatically implies
that f and g are expanding. The maps f and g are called coarse inverses
of each other.

If there exists a bijection f : X → Y such that both f and f−1 are coarse,
then (X, d) and (Y, ∂) are said to be bijectively coarsely equivalent.

For a metric space (X, d), x ∈ X and r ≥ 0, denote by Br(x) the d-ball
centered at x of radius r. The metric space (X, d) is said to be locally finite
if, for all r ≥ 0 and all x ∈ X, |Br(x)| < ∞, and uniformly locally finite if
supx∈X |Br(x)| <∞, for all r ≥ 0. Clearly, every locally finite metric space
is countable and, if infinite, unbounded.

The following simple lemma was promised in the introduction.

Lemma 2.2. If X is locally finite and every sparse subspace of X yields
only compact ghost projections, then X is uniformly locally finite.

Proof. Suppose X is not uniformly locally finite. Fix r <∞ such that there
are xn ∈ X satisfying |Br(xn)| ≥ n. Let Xn = Br(xn). Since X is locally
finite, by going to a subsequence we can assure that d(Xm, Xn) ≥ m+n for

all m 6= n. Then X̃ =
⋃
nXn is a sparse subspace of X.

Consider the rank 1 projection pn onto the constant functions in `2(Xn).
Its propagation is at most r and 〈pnδx, δx′〉 = 1/|Xn| for all x and x′ in Xn.

Therefore X̃ yields a noncompact ghost projection
∑

n pn. �

2.3. Set theory: forcing axioms. In this subsection we state the addi-
tional set-theoretic axioms used in the proof of Theorem 1.5. These axioms
will not be used directly in the present paper, and the reader can skip ahead
to the next subsection.

We will now state Todorčević’ Open Colouring Axiom (OCAT), intro-
duced in [27]. If X is a set, [X ]2 denotes the set of unordered pairs of
elements of X . Subsets of [X ]2 are identified with symmetric subsets of
X 2 \∆X , thus giving meaning to the phrase ‘an open subset of [X ]2’ in case
X is a topological space.

OCAT. Let X be a separable metric space. If [X]2 = K0 tK1 where K0 is
open then one of the following applies.

1. there is an uncountable Y ⊆ X such that [Y ]2 ⊆ K0, or
2. there are sets Xn ⊆ X, for n ∈ N, such that X =

⋃
nXn and [Xn]2 ⊆

K1 for all n ∈ N.

OCAT is a consequence of the Proper Forcing Axiom ([23], [14, p. 382])
and it is relatively consistent with ZFC. In a previous version of this manu-
script, we used of an apparently stronger version of OCAT known as OCA∞,
introduced in [4]. Recently OCA∞ was shown to be a consequence of OCAT

(see [17], also [8, Theorem 8.6.6]). This in particular implies that OCA∞
can be replaced with OCAT in the assumptions of [16, Theorem 9.4].
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We proceed to state Martin’s Axiom after some forcing terminology (see [14]
for many more details).

Definition 2.3. Two elements p and q of a partial order (P,≤) are com-
patible if there exists r ∈ P such that r ≤ p and r ≤ q, and incompatible
otherwise. A partial order (P,≤) is said to have the countable chain condi-
tion (ccc) if there is no uncountable set of pairwise incompatible elements
in P. A set D ⊆ P is dense if ∀p ∈ P∃q ∈ D with q ≤ p. A subset G of P is
a filter if it is upward closed and for any p, q ∈ G, there is some r ∈ G such
that r ≤ p and r ≤ q.

The following is Martin’s Axiom at the cardinal κ.

MAκ. For every poset (P,≤) that has the ccc, and every family of dense
subsets Dα ⊆ P (α < κ), there is a filter G ⊆ P such that G ∩Dα 6= ∅ for
every α < κ.

MAℵ0 is a theorem of ZFC (it is a close relative to the Baire Category
Theorem), as is the negation of MA2ℵ0 .

Both OCAT and MAℵ1 are consequences of Shelah’s Proper Forcing Ax-
iom, PFA. Unlike PFA, their relative consistency with ZFC does not require
any large cardinal assumptions (see [14, p. 376]). Each of these axioms con-
tradicts the Continuum Hypothesis. In operator algebras, forcing axioms
have been used to imply rigidity phenomena for isomorphisms of corona
C∗-algebras (see [7, §7.1], [15], [16], [29]). Notably, OCAT implies that all
automorphisms of the Calkin algebra are inner ([6, Theorem 1]). On the
other hand, the Continuum Hypothesis implies the existence of an outer
automorphism (see [18, Theorem 2.4]).

2.4. Liftings and nonmeager ideals. Our proof of Theorem 1.5 proceeds
in two stages: First by finding maps that lift a given ∗-homomorphism on
a ‘large’ set, and second, by showing that these maps actually lift it every-
where. In this subsection we isolate this largeness property.

If X is a set then I ⊆ P(X) is an ideal if it is closed under subsets and
finite unions. (In other words, it is an ideal of the Boolean ring P(X).)
An ideal I ⊆ P(X) is dense if it contains all finite subsets of X and for
every infinite S ⊆ X there is an infinite T ⊆ S with T ∈ I . This is easily
proved to be equivalent to the conjunction of I being dense in the poset
({X ′ ⊆ X : X ′ is infinite},⊆) in the sense of Definition 2.3, and I being
dense in the Cantor set topology on P(X) – i.e., P(X) is identified with 2X .
If X is countable, this topology on P(X) is compact and metric, and we can
talk about the topological properties of certain ideals.

A proof of the following classical result can be found, e.g., in [5, §3.10].

Proposition 2.4 (Jalali–Naini, Talagrand). Suppose X is countable and
I ⊆ P(X) is an ideal containing all finite subsets of X. Then I is non-
meager if and only if for every sequence {In} of disjoint finite subsets of X
there is an infinite L ⊆ N such that

⋃
n∈L In ∈ I . In particular, if I is

nonmeager, then I is dense. �
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The following definitions are essential for our approach.

Definition 2.5. Suppose A and B are C∗-algebras, I and J are two-sided,
norm-closed, self-adjoint ideals of A and B, respectively, and πI and πJ are
the corresponding quotient maps. If Λ: A/I → B/J is a ∗-homomorphism
then a map Φ: A → B is said to lift Λ if Λ(πI(a)) = πJ(Φ(a)) for all
a ∈ A (i.e., if the diagram in Fig. 1 commutes). If Z ⊆ A and the equality

A B

A/I B/J

Φ

Λ

πI πJ

Figure 1. The map Φ lifts Λ.

Λ(πI(a)) = πJ(Φ(a)) holds for all a ∈ Z, we say that Φ lifts Λ on Z/I.

The Axiom of Choice implies that every Λ is lifted by some Φ. We are
interested in the existence of lifts with additional algebraic or topological
properties, such as being a ∗-homomorphism or (in the case when A and B
are the multiplier algebras of I and J , respectively) being continuous with
respect to the strict topologies associated with I and J .

For any X, identifying `∞(X) with a C∗-subalgebra of B(`2(X)), it follows
that `∞(X) ∩ K(`2(X)) = c0(X). So, we can identify `∞(X)/c0(X) with a
C∗-subalgebra of the Calkin algebra B(`2(X))/K(`2(X)). In particular, if X
is a metric space, `∞(X)/c0(X) is a C∗-subalgebra of Q∗u(X).

Definition 2.6. Let X and Y be countable metric spaces. A ∗-homomor-
phism Λ: Q∗u(X)→ Q∗u(Y ) is almost liftable on the diagonal if there is a non-
meager ideal I on X such that some strongly continuous ∗-homomorphism
Φ: `∞(X)→ B(`2(Y )) lifts Λ on {πX(χS) : S ∈ I }.

Note that it is not required that the range of Φ is included in C∗u(Y ). On
the other hand this will always be the case (see Proposition 3.3). We can
now state the lifting theorem which will play a crucial role throughout these
notes.

Theorem 2.7. Assume OCAT and MAℵ1. Suppose X and Y are countable
metric spaces. Then every unital injective ∗-homomorphism of Λ: Q∗u(X)→
Q∗u(Y ) is almost liftable on the diagonal.

Proof. This is a special case of [16, Theorem 9.4] when k(n) = 1 for all
n, A = K(`2(Y )), and Q∗u(Y ) is identified with a subalgebra of the Calkin
algebra B(`2(Y ))/K(`2(Y )). �

We should point out that Theorem 2.7 is a very special case of [16, Theo-
rem 9.4]. The proof of the former can also be extracted from the (much eas-
ier) proof of [6, Proposition 7.1], where this was proved under the additional
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(unnecessary) assumption that Λ is the restriction of an automorphism of
the Calkin algebra.

3. Coarse-like property

In this section X will always denote a countable metric space. The main
result of the present section, Proposition 3.3, shows that the lifts `∞(X)→
C∗u(Y ) provided by Theorem 2.7 are coarse-like (see below). The following
is [1, Definition 4.3].

Definition 3.1. Let ε > 0, and k ∈ N. An operator a ∈ B(`2(X)) can be
ε-k-approximated if there exists b ∈ B(`2(X)) with propagation at most k
such that ‖a− b‖ ≤ ε. We say that b is an ε-k-approximation of a.

With this definition, an operator a ∈ B(`2(X)) is in C∗u(X) if and only if
for all ε > 0 there is k ∈ N such that a can be ε-k-approximated.

The following definition was already implicit in [1, Theorem 4.4].

Definition 3.2. Let X and Y be metric spaces, A ⊂ C∗u(X) and Φ: A →
C∗u(Y ) be a map. We say that Φ is coarse-like if for all m ∈ N and all
ε > 0 there exists k ∈ N such that Φ(a) can be ε-k-approximated for every
contraction a ∈ A with prop(a) ≤ m.

By [1, Theorem 4.4] every isomorphism Φ: C∗u(X)→ C∗u(Y ) is coarse-like.
The proof of the following proposition is inspired by [1, Theorem 4.4].

Proposition 3.3. Let X and Y be countable metric spaces. Suppose that
Φ: `∞(X)→ B(`2(Y )) is a strongly continuous ∗-homomorphism which lifts
a ∗-homomorphism Λ between the uniform Roe coronas of X and Y on a
nonmeager ideal I ⊂ P(X) containing all finite subsets of X. Then Φ is
coarse-like and the image of Φ is contained in C∗u(Y ).

Before proving Proposition 3.3, we need a lemma. This lemma will also
be important in §5 and §6.

Lemma 3.4. Suppose X and Y are countable metric spaces and Φ: `∞(X)→
C∗u(Y ) is a strongly continuous ∗-homomorphism. Then for every b ∈ K(`2(Y ))
and every ε > 0 there exists a finite F ⊆ X such that for all a ∈ `∞(X) with
‖a‖ ≤ 1 we have

max
(
‖bΦ(a�(X \ F ))‖ , ‖Φ(a�(X \ F ))b‖

)
< ε.

Proof. Suppose the conclusion fails for some b ∈ K(`2(Y )) and ε > 0. With-
out loss of generality, say ‖b‖ = 1. Let (Xn)n be a sequence of finite subsets
of X such that X =

⋃
nXn and Xn ⊂ Xn+1 for all n ∈ N. Pick a sequence

of contractions (an)n in `∞(X) such that an belongs to B(`2(X \Xn)) and

max
(
‖bΦ(an)‖ , ‖Φ(an)b‖

)
≥ ε,

for all n ∈ N. Without loss of generality, by going to a subsequence, we can
assume that ‖bΦ(an)‖ ≥ ε for all n ∈ N.
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Since b is compact, pick a finite E ⊆ X such that ‖χEbχE− b‖ < ε/2. So,

‖χEΦ(ana
∗
n)χE‖ = ‖χEΦ(an)‖2 ≥ ‖χEbχEΦ(an)‖2 ≥ ε2/4

for all n ∈ N. For each n ∈ N, let cn = ana
∗
n, so cn ∈ B(`2(X \Xn)). Since

E is finite and Φ is strongly continuous, by going to a further subsequence,
assume that ‖χEΦ(cn�Xn+1)χE‖ ≥ ε2/8 for all n ∈ N. Define c ∈ `∞(X) by
letting

c(i) =

{
cn�Xn+1(i), if n ∈ N and i ∈ Xn+1 \Xn,

0, if i ∈ X0.

So,
∑

n cn�Xn+1 converges in the strong operator topology to c. Since E is
finite and Φ is strongly continuous, the sum

∑
n χEΦ(cn�Xn+1)χE converges

in norm to χEΦ(c)χE ; contradiction, since infn ‖χEΦ(cn�Xn+1)χE‖ > 0. �

Proof of Proposition 3.3. Since (X, d) is a countable metric space, in order
to simplify notation, assume that X = N and that d is an arbitrary metric
on N. Suppose that the conclusion fails. Fix ε > 0 such that for every
m there exists a ∈ `∞(X) with ‖a‖ ≤ 1 such that Φ(a) cannot be ε-m-
approximated.

Claim 3.5. For every finite F ⊆ X and every m ∈ N there is a contraction
a ∈ `∞(X \ F ) such that Φ(a) cannot be ε/2-m-approximated. Moreover, a
can be chosen to have finite support.

Proof. Suppose otherwise, and fix offenders, say m ∈ N and a finite F ⊂ X.
Since F is finite, the unit ball of `∞(F ) is compact. By the metric space
instance of [1, Lemma 4.8] there exists m such that Φ(a) can be ε/2-m-
approximated for every contraction a ∈ `∞(F ). But every contraction
b ∈ `∞(X) can be written as bF + bX\F for contractions bF ∈ `∞(F )
and bX\F ∈ `∞(X \ F ). Therefore, each of Φ(bF ) and Φ(bX\F ) can be
ε/2-m-approximated, and [1, Lemma 4.5] implies that Φ(b) can be ε-m-
approximated. Since b ∈ `∞(X) was arbitrary, we have a contradiction.

We now prove the second statement in the claim. Let a ∈ `∞(X \F ) such
that Φ(a) cannot be ε/2-m-approximated and let (Xn)n be a sequence of
finite subsets of X such that X =

⋃
nXn and Xn ⊂ Xn+1 for all n ∈ N. So,

limn Φ(aχXn) = Φ(a) in the strong operator topology. By [1, Lemma 4.7],
there is n ∈ N such that Φ(aχXn) cannot be ε/2-m-approximated. �

By the claim above, there exist a sequence (Fm)m of disjoint finite sub-
sets of X and a sequence of contractions (am)m such that am ∈ `∞(Fm)
and Φ(am) cannot be ε-m-approximated for all m ∈ N. Since Φ lifts Λ
on a nonmeager ideal I ⊆ P(N), by Theorem 2.4 there exists an infinite
S ⊆ N such that for all L ⊆ S we have

⋃
n∈L Fn ∈ I , and therefore

πY (Φ(
∑

n∈L an)) ∈ Q∗u(Y ). Since all compact operators on `2(Y ) belong to
C∗u(Y ), this implies Φ(

∑
n∈L an) ∈ C∗u(Y ) for all L ⊆ S. Since Φ is strongly

continuous,
∑

n∈L Φ(an) strongly converges to Φ(
∑

n∈L an) ∈ C∗u(Y ) for all
L ⊆ S.
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Let (Yn)n be a sequence of finite subsets of Y such that Y =
⋃
n Yn and

Yn ⊂ Yn+1 for all n ∈ N. By Lemma 3.4, we can pick an infinite L ⊆ S such
that ‖χYnΦ(am)‖ ≤ 2−n−m for all n < m in L. Since each am is compact,
each Φ(am) is compact as well. So, going to a further infinite subset of S if
necessary, assume that ‖χYmΦ(an)− Φ(an)‖ ≤ 2−n−m for all n ≤ m in L.

Let a =
∑

m∈L am. Then πY (Φ(a)) = Λ(πY (a)) and Φ(a) ∈ C∗u(Y ). Fix
an operator c ∈ C∗u[Y ] of finite propagation such that ‖Φ(a) − c‖ < ε/2.
Then

‖Φ(am)− χYm\Ym−1
c‖ ≤ ‖Φ(am)− χYm\Ym−1

Φ(a)‖+ ε/2.

Since ‖χYmΦ(am)−Φ(am)‖ → 0 and ‖χYm−1Φ(am)‖ → 0 as m→∞, we have
that ‖Φ(am) − χYm\Ym−1

Φ(a)‖ → 0 as m → ∞, hence lim supm ‖Φ(am) −
χYm\Ym−1

c‖ ≤ ε/2. Since prop(χYm\Ym−1
c) ≤ prop(c), this contradicts the

fact that am cannot be ε-m approximated for all m ∈ N. �

4. Geometric conditions on metric spaces

Theorem 1.7 applies to every pair of metric spaces such that all of their
sparse subspaces yield only compact ghost projections. In this section, we
prove some technical results which depend on this geometric condition.

The conclusion of the following result should be compared with the no-
tion of an isomorphism C∗u(X) → C∗u(Y ) being rigid (see [1, §1], or [26,
Lemma 4.6]).

Proposition 4.1. Let X be a metric space such that all of its sparse sub-
spaces yield only compact ghost projections. Let (pn)n be an orthogonal
sequence of non-zero finite rank projections in C∗u(X) such that

∑
n∈M pn

converges in the strong operator topology to an element in C∗u(X) for all
M ⊆ N. Then

δ = inf
n

sup
x,y∈X

|〈pnδx, δy〉| > 0.

Proof. Suppose that the conclusion fails. By going to a subsequence of (pn)n,
we may assume that supx,y∈X |〈pnδx, δy〉| < 2−n for all n ∈ N.

Claim 4.2. By going to a subsequence of (pn)n, there exists a sequence
(Xn)n of disjoint finite subsets of X and a sequence of projections (qn)n
such that

1. d(Xk, Xm)→∞ as k +m→∞,
2. ‖pn − qn‖ < 2−n, and
3. qn ∈ B(`2(Xn)), for all n ∈ N.

Proof. We construct sequences (qk)k, (Xk)k and (nk)k by induction as fol-
lows. Since p0 has finite rank, pick a projection q0 with finite support such
that ‖p0 − q0‖ < 2−1 and set n0 = 0. Pick a finite X0 ⊆ X such that
supp(q0) ⊆ X0 ×X0. Fix k > 0 and assume that Xj , nj and qj have been
defined, for all j ≤ k − 1.
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Let Z = {x | d(x,
⋃
j≤k−1Xj) ≤ k}. Since

⋃
j≤k−1Xj is finite, so is

Z. Moreover d(X \ Z,
⋃
j≤k−1) > k. Since

∑
n pn strongly converges to an

operator in B(`2(X)), for all large enough m we have ‖χZpm‖ < 2−k−2. Fix
such m. For a sufficiently large finite Xk ⊆ X \ Z the operator

a = χXkpmχXk

is a positive contraction and it satisfies ‖a − pm‖ < 2−k−1. Therefore the
spectrum Sp(a) of a is included in [0, 2−k−1]∪ [1−2−k−1, 1] and the function
f : Sp(a) → {0, 1} defined by f(t) = 0 if t < 1/2 and f(t) = 1 if t > 1/2 is
continuous. By the continuous functional calculus, qk = f(a) is a projection
and ‖qk − a‖ < 2−k−1. Therefore ‖qk − pm‖ < 2−k. In addition, we have
qk ∈ C∗(a) ⊆ χXkC∗u(X)χXk , and therefore supp(qk) ⊆ X2

k as required.
Let nk = m. This describes the recursive construction of the sequences

(qk)k, (Xk)k and (nk)k, and completes the proof. �

Pass to a subsequence of (pn)n and let (Xn)n and (qn)n be given by
the claim above. Since ‖pn − qn‖ < 2−n,

∑
n(pn − qn) is compact, which

implies
∑

n(pn−qn) ∈ C∗u(X). Since
∑

n pn converges in the strong operator
topology to an element in C∗u(X), so does

∑
n qn. Therefore, since

∑
n qn ∈⊕

n B(`2(Xn)), it follows that
∑

n qn ∈ C∗u(X̃), where X̃ =
⊔
nXn.

Let us notice that
∑

n qn is a noncompact ghost projection. Indeed,
∑

n qn
is clearly a noncompact projection. Also, since ‖pn − qn‖ < 2−n, it follows
that supx,y∈X |〈qnδx, δy〉| < 2−n+1 for all n ∈ N. So,

∑
n qn is a ghost projec-

tion (see [1, Claim 2 in proof of Theorem 6.1] for details); contradiction. �

The next result will be essential in the proof of Proposition 6.1.

Lemma 4.3. Let X be a metric space and let (pn)n be an orthogonal se-
quence of finite rank projections in B(`2(X)) such that

1. Each pn has rank strictly greater than 1,
2. The sum

∑
n∈S pn converges in the strong operator topology to an

element of C∗u(X), for every S ⊆ N, and
3. infn∈N supx∈X ‖pnδx‖ > 0.

Then there exist an infinite M ⊆ N and sequences of non-zero projections
(qn)n and (wn)n such that qn+wn = pn for all n ∈ N, and both

∑
n∈S qn and∑

n∈S wn converge in the strong operator topology to an element of C∗u(X),
for every S ⊆M .

We point out that, by Proposition 4.1, (3) above is satisfied automatically
if all sparse subspaces of X yield only compact ghost projections.

Proof of Lemma 4.3. By the hypothesis, there are δ > 0 and a sequence
(xn)n in X such that ‖pnδxn‖ > δ for all n ∈ N. Using the C∗-equality, we
have that

‖pnexnxnpn‖ = ‖pnexnxn‖2 = ‖pnδxn‖2 ≥ δ2,
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for all n ∈ N. For n ∈ N, set

qn = pnexnxnpn/‖pnexnxnpn‖.

Then qn is a rank 1 projection and qn ≤ pn. Since qn has rank 1, qn < pn.
Set wn = pn − qn. We are left to show that there is an infinite M such that
both

∑
n∈S qn and

∑
n∈S wn converges in the strong operator topology to

elements of C∗u(X), for all S ⊆M .

Claim 4.4. There exists an infinite M ⊆ N such that
∑

n∈L qn strongly
converges to an operator in C∗u(X) for every L ⊆M .

Proof. First, by going to a subsequence, assume that α = limn ‖pnexnxnpn‖
exists. Notice that α ≥ δ. Also, since all pn have finite rank, we can find an
infinite M ⊆ N such that

(1) ‖pnexmxm‖ < 2−m−n

for all distinct m,n ∈M .
Fix L ⊂ M . Define a = α−1

∑
n∈L pn and c =

∑
m∈L exmxm , so a, c ∈

C∗u(X). Notice that the operator aca−
∑

n∈L qn is compact. Indeed, by (1),
this follows from the fact that∑

n∈L
(α−1pnexnxnpn − qn)

is compact. At last, since a and c belong to C∗u(X), so does
∑

n∈L qn. �

Since wn = pn−qn for all n ∈ N, Claim 4.4 implies that
∑

n∈Lwn ∈ C∗u(X)
for every L ⊆M and the conclusion follows. �

5. From almost lifts to lifts

In this section, we prove Theorem 1.5. The proof of the following resem-
bles the techniques used in [16, Proposition 8.5 and Lemma 8.7], and shows
that in case the underlying map Λ between quotients is an isomorphisms,
almost lifts are indeed lifts (see Definition 2.5 and 2.6).

Proposition 5.1. Suppose X and Y are countable metric spaces and Λ is
an isomorphism between their uniform Roe coronas which is almost liftable
on the diagonal. Then Λ is liftable on the diagonal.

Proof. Let Φ: `∞(X)→ B(`2(Y )) be a strongly continuous ∗-homomorphism
which almost lifts Λ on the diagonal. Fix a nonmeager ideal I ⊆ P(X) such
that Φ lifts Λ on {πX(χS) : S ∈ I }.

We shall prove that the following conditions hold.

1. If q ∈ Q∗u(Y ) commutes with πY (Φ(χS)) for all S ∈ I then q com-
mutes with πY (Φ(χS)) for all S ⊆ X,

2. πY (Φ(1)) = 1.
3. Φ lifts Λ on `∞(X)/c0(X).
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(1) Suppose the statement fails for q ∈ Q∗u(Y ) and pick b ∈ C∗u(Y ) with
q = πY (b). Fix S ⊆ X and ε > 0 such that ‖[q, πY (Φ(χS))]‖ > ε. We shall
find sequences F (n) and Y (n), for n ∈ N that satisfy the following.

4. The sets F (n) are finite and disjoint subsets of S.
5. The sets Y (n) are finite and disjoint subsets of Y .
6. The following hold for all m 6= n.

(a) ‖Φ(χF (m))χY (n)‖ < 2−m−nε,

(b) ‖Φ(χF (m))bχY (n)‖ < 2−m−nε, and
(c) ‖χY (n)[b,Φ(χF (n))]χY (n)‖ > ε.

Note that we have

7. Φ(χS) =
∑

x∈S Φ(χ{x})

where the series on the right-hand side converges in the strong topology.
Since ‖[q, πY (Φ(χS))]‖ > ε, we can find a finite Y (1) ⊂ Y large enough to
have ‖χY (1)[b,Φ(χS)]χY (1)‖ > ε. Since the series in (7) strongly converges
to Φ(χS), we can find a finite F (1) ⊂ S large enough to satisfy (6c) for
n = 1.

By applying Lemma 3.4 with b being each of χY (1), bχY (1), and χY (1)b, we
obtain a finite subset E ⊂ X such that for all L ⊆ X \E all of Φ(χL)χY (1),

χY (1)Φ(χL), Φ(χL)bχY (1), and χY (1)bΦ(χL) have norm smaller than 2−3ε.
With S′ = S\E we have ‖[b,Φ(χS′)]‖ ≥ ‖[q, πY (Φ(χX′))]‖ > ε, and we can

find a finite Y (2) ⊆ Y \Y (1) large enough to satisfy ‖χY (2)[b,Φ(χS′)]χY (2)‖ >
ε. Since the series in (7) strongly converges to Φ(χS), we can find a finite
F (2) ⊆ S′ large enough to satisfy (6c) for n = 2.

Proceeding in this manner, we construct the sequences F (n), and Y (n)
with the required properties.

Since I is nonmeager and contains all finite sets, by Proposition 2.4
there is an infinite L ⊆ N such that F =

⋃
j∈L F (j) belongs to I . Hence,

by our assumptions, q commutes with πY (Φ(χF )). However, (6) implies that
[b,Φ(χF )] is not compact; contradiction.

(2) Suppose for a contradiction that b := 1 − Φ(1) is not compact.
Lemma 3.3 implies b ∈ C∗u(Y ) and therefore q := πY (b) is a nonzero projec-
tion in Q∗u(Y ).

Since q commutes with πY (Φ(a)) for all a ∈ `∞(X) and Φ lifts Λ on I ,
Λ−1(q) commutes with πX(χS) for all S ∈ I . By 1, Λ−1(q) commutes with
χS for all S ⊆ N. The canonical copy of `∞(X) is a masa 3 in B(`2(X)),
therefore by Johnson-Parrott’s Theorem ([12], see also [8, Theorem 12.3.2])
`∞(X)/c0(X) is a masa in the Calkin algebra, and therefore in Q∗u(X). This
implies that Λ−1(q) is a projection in `∞(X)/c0(X). Fix S ⊆ N such that
Λ−1(q) = πX(χS).

Since I is nonmeager, it is dense (Theorem 2.4), hence there exists an
infinite S′ ⊆ S such that S′ ∈ I . Since χS′ ≤ 1, it follows that Φ(χS′)b is
compact, hence πY (Φ(χS′))q = 0. On the other hand, S′ ∈ I implies that

3A masa is a maximal abelian self-adjoint subalgebra
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πY (Φ(χS′)) = Λ(πX(χS′)) ≤ q and πY (Φ(χS′)) = 0. This is a contradiction,
since S′ is infinite.

(3) We will show that πY (Φ(χS)) = Λ(πX(χS)) for all S ⊆ X.
Consider P(X) with respect to the compact metric topology inherited

from 2X . Also consider the unit ball of B(`2(Y )) with respect to the strong
operator topology. It is a Polish space, and it has the unit ball of K(`2(Y ))
as a Borel subset (e.g., [6, Lemma 2.5]).

Since Φ is strongly continuous, the function

P(X) 3 L 7→ Φ(χL) ∈ B(`2(Y ))

is continuous. Let F : C∗u(X) → C∗u(Y ) be any lifting for Λ and fix S ⊆ X.
Since Φ(χS) and F (χS) are fixed, the ideal

IS = {T ⊆ X : Φ(χT )(Φ(χS)− F (χS)) ∈ K(`2(Y ))}

is, as a continuous preimage of a Borel set, Borel itself. For every T ∈ I
each of Φ(χT )Φ(χS)−Φ(χS∩T ), Φ(χT )−F (χT ), and F (χT )F (χS)−F (χS∩T )
is compact. Therefore, I ⊆ IS .

Suppose X /∈ IS . Since IS is a proper Borel ideal that includes all
finite subsets of X, it is meager (see e.g., [5, §3.10]). This implies that I is
meager; contradiction.

Therefore X ∈ IS and

Φ(1)(Φ(χS)− F (χS)) ∈ K(`2(Y )).

This, together with 2, implies that Φ(χS)−F (χS) ∈ K(`2(Y )). Since S was
arbitrary, (3) follows. This concludes the proof. �

We can now prove our lifting result.

Proof of Theorem 1.5. Assume OCAT and MAℵ1 , and fix an isomorphism
Λ between the uniform Roe coronas of countable metric spaces X and Y .
By Theorem 2.7, Λ is almost liftable on the diagonal. By Proposition 5.1,
Λ is liftable on the diagonal. �

6. From lifts to coarse equivalence

This section is devoted to the proof of Theorem 1.7. As a corollary to
Theorem 1.5 and Theorem 1.7, we also obtain Corollary 1.8.

Proposition 6.1. Suppose X and Y are countable metric spaces and Λ is
an isomorphism between the uniform Roe coronas of X and Y . Moreover,
let Φ: `∞(X) → B(`2(Y )) be a strongly continuous ∗-homomorphism which
almost lifts Λ on the diagonal and such that

inf
x∈X′

sup
y∈Y
‖Φ(exx)δy‖ > 0

for some cofinite X ′ ⊆ X. Then Φ(exx) is a rank 1 projection for cofinitely
many x ∈ X.
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Proof. Let X ′ ⊆ X be as in the statement of the lemma. In particular,
Φ(exx) 6= 0 for all x ∈ X ′. It remains to prove that Φ(exx) has rank not
greater than 1 for cofinitely many x ∈ X ′. Suppose otherwise and fix a
sequence (xn)n in X of distinct elements such that pn = Φ(exnxn) has rank
at least 2 for all n ∈ N. As X ′ is cofinite in X, discarding some elements if
necessary, we can assume that (xn)n is a sequence in X ′. Proposition 5.1 im-
plies that Φ lifts Λ on `∞(X)/c0(X) and therefore

∑
n∈S pn ∈ C∗u(Y ) for all

S ⊆ N. By Lemma 4.3 there are an infinite set M ⊆ N and nonzero projec-
tions (qn)n with qn < pn and q =

∑
n∈M qn ∈ C∗u(X). Since q commutes with

Φ[`∞(X)], πY (q) commutes with Λ(`∞(X)/c0(X)). Since `∞(X)/c0(X) is
a masa in Q∗u(X), and Λ is an isomorphism, Λ(`∞(X)/c0(X)) is a masa in
Q∗u(Y ) and we have that πY (q) ∈ Λ(`∞(X)/c0(X)). On the other hand,
‖πY (q − Φ(χS))‖ ≥ 1 for all S ⊆ N; contradiction. �

Lemma 6.4 below will allow us to define maps f : X → Y and g : Y → X
which will witness that X and Y are coarsely equivalent. This lemma, as well
as the auxiliary Lemma 6.3, have the following mouthful of an assumption
as the starting point.

Assumption 6.2. Suppose (X, d) and (Y, ∂) are countable metric spaces
and Λ: Q∗u(X) → Q∗u(Y ) is an isomorphism which is liftable on diagonals.
Let Φ: `∞(X) → C∗u(Y ) and Ψ: `∞(Y ) → C∗u(X) be strongly continuous
∗-homomorphisms which lift Λ on `∞(X)/c0(X) and Λ−1 on `∞(Y )/c0(Y ),
respectively.

Lemma 6.3. Suppose X,Y,Λ,Φ, and Ψ are as in Assumption 6.2. Let
X ′ ⊆ X, ε > 0, and f : X ′ → Y . If ‖Φ(exx)ef(x)f(x)‖ > ε for all x ∈ X ′,
then

{x ∈ X ′ : ‖Ψ(ef(x)f(x))exx‖ < ε− δ}
is finite for all δ > 0. On the other hand, if ‖Ψ(ef(x)f(x))exx‖ > ε for all
x ∈ X ′, then

{x ∈ X ′ : ‖Φ(exx)ef(x)f(x)‖ < ε− δ}
is finite for all δ > 0.

Proof. Suppose the first statement fails for δ > 0 and pick a sequence (xn)n
in X ′ such that ‖Ψ(ef(xn)f(xn))exnxn‖ < ε− δ for all n. Since Φ is a strongly
continuous ∗-homomorphism and ‖Φ(exx)ef(x)f(x)‖ > ε for all x ∈ X ′, by
going to a subsequence, we can assume that (f(xn))n is a sequence of distinct
elements. Therefore, by Lemma 3.4 and passing to a further subsequence,
we can assume that

max
(∥∥Φ(exnxn)ef(xm)f(xm)

∥∥ ,∥∥Ψ(ef(xn)f(xn))exmxm
∥∥) < 2−m−n−1ε

whenever n 6= m. Let

q =
∑
n

ef(xn)f(xn) and p =
∑
n

Φ(exnxn).
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Then ‖πY (pq)‖ ≥ ε by hypothesis, but∥∥Λ−1(πY (pq))
∥∥ =

∥∥∥∥∥Λ−1(πY (Φ
(∑

n

exnxn

)
))Λ−1(πY (q))

∥∥∥∥∥
=

∥∥∥∥∥πX((∑
n

exnxn
)
Ψ(q)

)∥∥∥∥∥
= lim sup

n

∥∥Ψ(ef(xn)f(xn))exnxn
∥∥

< ε− δ,

a contradiction.
The second statement follows analogously. �

Lemma 6.4. Suppose X,Y,Λ,Φ, and Ψ are as in Assumption 6.2. Suppose
in addition that

inf
x∈X′

sup
y∈Y
‖Φ(exx)δy‖ > 0

for some cofinite X ′ ⊆ X. Then there exist δ > 0, a cofinite X ′′ ⊆ X ′, and
a map f : X ′′ → Y such that

‖Φ(exx)ef(x)f(x)‖ ≥ δ and ‖Ψ(ef(x)f(x))exx‖ ≥ δ,

for all x ∈ X ′′.

Proof. Let X ′ be as in the statement of the lemma, and pick δ > 0 and
f : X ′ → Y such that ‖Φ(exx)ef(x)f(x)‖ ≥ δ for all x ∈ X ′. By Lemma 6.3,
replacing δ by a smaller δ if necessary, we can pick a cofinite X ′′ ⊆ X ′ such
that f � X ′′ has the required property. �

Our next goal is to prove that the maps given by Lemma 6.4 are coarse.
First, we need a simple lemma.

Lemma 6.5. Let H be a Hilbert space, p, q, a, b, c ∈ B(H) and β ∈ R.
Assume that p, q, a and βb are projections, a has rank 1, c = ac, and
c∗c = b. Then

‖pcq‖ =
√
β · ‖ap‖ · ‖bq‖.

In particular, if a = b = c, it follows that ‖paq‖ = ‖ap‖ · ‖aq‖.

Proof. The C∗-equality gives that ‖pcq‖2 = ‖pcqc∗p‖. Since a is a rank
1 projection and cqc∗ = acqc∗a, there exists a positive λ ∈ R such that
λa = cqc∗. Therefore, using the C∗-equality, it follows that

‖pcq‖2 = λ · ‖pap‖ = λ · ‖ap‖2.

Using C∗-equality unsparingly, we can compute λ. Indeed,

λ = ‖cqqc∗‖ = ‖cq‖2 = ‖qc∗cq‖ = ‖qbq‖ = β · ‖bq‖2.

This finishes the proof. �
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Lemma 6.6. Suppose X,Y,Λ,Φ, and Ψ are as in Assumption 6.2. Suppose
in addition that

inf
x∈X′

sup
y∈Y
‖Φ(exx)δy‖ > 0

for some cofinite X ′ ⊆ X. Then for all r, δ > 0 there exists s > 0 such that
for all x1, x2 ∈ X and all y1, y2 ∈ Y the following holds:

If d(x1, x2) ≤ r, ‖Φ(ex1x1)ey1y1‖ ≥ δ, and ‖Φ(ex2x2)ey2y2‖ ≥ δ, then
∂(y1, y2) ≤ s.

Proof. Suppose otherwise. Then there exist r, δ > 0, sequences (x1
n)n and

(x2
n)n in X, and sequences (y1

n)n and (y2
n)n in Y such that d(x1

n, x
2
n) ≤ r,

‖Φ(ex1nx1n)ey1ny1n‖ ≥ δ, ‖Φ(ex2nx2n)ey2ny2n‖ ≥ δ, and ∂(y1
n, y

2
n) ≥ n for all n ∈ N.

Let X1 = {x1
n}n, X2 = {x2

n}n, Y1 = {y1
n}n, and Y2 = {y2

n}n.

Claim 6.7. The sets X1, X2, Y1 and Y2 are infinite.

Proof. Since {∂(y1, y2) : y1 ∈ Y1, y2 ∈ Y2} is unbounded, Y1 ∪ Y2 is infinite.
Hence Y1 or Y2 must be infinite.

Since X is locally finite, X2 ⊆ {x ∈ X : ∃x1 ∈ X1, d(x, x1) ≤ r}, and
X1 ⊆ {x ∈ X : ∃x2 ∈ X2, d(x, x2) ≤ r}, we conclude that X1 is finite if and
only if X2 is finite.

Also, if X1 is finite, then so is Y1. Indeed, as Φ(exx) is compact for
all x ∈ X, the set {y ∈ Y : ‖Φ(exx)eyy‖ ≥ δ} is finite for all x ∈ X.
Moreover, since

∑
x∈X Φ(exx) converges in the strong operator topology,

the set {x ∈ X : ‖Φ(exx)eyy‖ ≥ δ} is finite for every y ∈ Y . In particular,
X1 is finite if and only if Y1 is finite. Similarly, X2 is finite if and only if Y2

is finite. This finishes the proof. �

By Proposition 6.1, we can assume that Φ(ex1nx1n) and Φ(ex2nx2n) have
rank 1 for all n. By Lemma 3.4, and going to a subsequence if necessary,
we can find a sequence of finite disjoint subsets (Zn)n of Y , and sequences
of rank 1 projections (an)n and (bn)n such that ‖an − Φ(ex1n,x1n)‖ < 2−n,

‖bn − Φ(ex2n,x2n)‖ < 2−n, and an, bn ∈ B(`2(Zn)) for all n ∈ N. By going to
a subsequence, assume that ‖aney2ny2n‖ ≥ δ/2 and ‖bney1ny1n‖ ≥ δ/2 for all
n ∈ N.

Let s =
∑

n ex2nx1n . Then s ∈ B(`2(X)) and prop(s) = supn d(x1
n, x

2
n) ≤ r.

Pick e ∈ C∗u(Y ) which satisfies πY (e) = Λ(πX(s)).

Claim 6.8. limn ‖anebn − χZneχZn‖ = 0.

Proof. Since s = s(
∑

n ex1nx1n) and s = (
∑

n ex2nx2n)s, we have that both
(
∑

n Φ(ex2nx2n))e − e and e(
∑

n Φ(ex1nx1n)) − e are compact. Hence, since∑
n(an − Φ(ex2nx2n)) and

∑
n(bn − Φ(ex1nx1n)) are compact, it follows that

(
∑

n an)e − e and e(
∑

n bn) − e are compact. Therefore, it follows that
limn ‖χZnebn − χZneχZn‖ = 0 and limn ‖aneχZn − χZneχZn‖ = 0. Since
χZnbn = bn and anχZn = an, the claim follows. �

Claim 6.9. limn ‖χ{y2n}anebnχ{y1n}‖ = 0.
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Proof. First notice that, since e ∈ C∗u(Y ) and limn ∂(y1
n, y

2
n) =∞, it follows

that limn ‖χ{y2n}eχ{y1n}‖ = 0. In particular,

lim
n
‖χ{y2n}χZneχZnχ{y1n}‖ ≤ lim

n
‖χ{y2n}eχ{y1n}‖ = 0.

Therefore, by Claim 6.9, limn ‖χ{y2n}anebnχ{y1n}‖ = 0. �

Claim 6.10. lim infn ‖anebn‖ > 0.

Proof. If the claim fails, pick an infinite M ⊂ N such that
∑

n ‖anebn‖ <∞.
So,

∑
n∈M anebn is compact. Going to a further infinite M ⊂ N if necessary,

assume also that ‖anebm‖ < 2−n−m for all n,m ∈ M with n 6= m. So,∑
n∈M anebn − (

∑
n∈M an)e(

∑
n∈M bn) is compact.

Therefore, as

(
∑

n∈M ex2nx2n)s(
∑

n∈M ex1nx1n) =
∑

n∈M ex2nx1n

is not compact, and as
∑

n∈M (an−Φ(ex2nx2n)) and
∑

n∈M (bn−Φ(ex1nx1n)) are
compact, this shows that

πY

( ∑
n∈M

anebn

)
= πY

( ∑
n∈M

an

)
πY (e)πY

( ∑
n∈M

bn

)
= πY

( ∑
n∈M

Φ(ex2nx2n)
)
πY (e)πY

( ∑
n∈M

Φ(ex1nx1n)
)

= Λ ◦ πX
(( ∑

n∈M
ex2nx2n

)
s
( ∑
n∈M

ex1nx1n

))
is nonzero; contradiction. �

Let γ = infn ‖anebn‖, so γ > 0. Pick n ∈ N large enough to satisfy
‖χ{y2n}anebnχ{y1n}‖ < γδ2. Since bn is a rank 1 projection, bne

∗anebn = βbn
for some positive β ∈ R. By choice of γ, it follows that β = ‖anebn‖2 ≥ γ2.
Applying Lemma 6.5 with c = anebn, a = an, b = βbn, p = χ{y2n}, and
q = χ{y1n}, we have that

‖χ{y2n}anebnχ{y1n}‖ =
√
β · ‖anχ{y2n}‖ · ‖bnχ{y1n}‖ ≥

γδ2

4
;

contradiction. �

We now show that a more technical version of Theorem 1.7 holds. This
is useful since it does not impose any geometric restrictions on either X or
Y .

Theorem 6.11. Let X and Y be u.l.f. metric spaces and Λ : Q∗u(X) →
Q∗u(Y ) be an isomorphism. Moreover, suppose there are strongly continuous
∗-homomorphisms Φ : `∞(X) → C∗u(Y ) and Φ : `∞(Y ) → C∗u(X) which lift
Λ on `∞(X)/c0(X) and `∞(Y )/c0(Y ), respectively, and such that

inf
x∈X′

sup
y∈Y
‖Φ(exx)δy‖ > 0 and inf

y∈Y ′
sup
x∈X
‖Ψ(eyy)δx‖ > 0
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for some cofinite subsets X ′ ⊆ X and Y ′ ⊆ Y . Then X and Y are coarsely
equivalent.

Proof. By Lemma 6.4, there exist δ > 0, a cofinite X ′ ⊆ X, a cofinite
Y ′ ⊆ Y , f : X ′ → Y and g : Y ′ → X such that

1. ‖Φ(exx)ef(x)f(x)‖ ≥ δ, for all x ∈ X ′,
2. ‖Ψ(ef(x)f(x))exx‖ ≥ δ, for all x ∈ X ′,
3. ‖Ψ(eyy)eg(y)g(y)‖ ≥ δ, for all y ∈ Y ′, and
4. ‖Φ(eg(y)g(y))eyy‖ ≥ δ, for all y ∈ Y ′.

Moreover, since Φ and Ψ are strongly continuous, there exist cofinite subsets
X ′′ ⊆ X ′ and Y ′′ ⊆ Y ′ such that f(X ′′) ⊆ Y ′ and g(Y ′′) ⊆ X ′.

Since f and g satisfy 1 and 3 above, respectively, Lemma 6.6 implies that
f � X ′ and g � Y ′ are coarse. Since X ′ and Y ′ are cofinite and since X and
Y are locally finite, this shows that f and g are coarse.

Let us verify that g ◦ f and f ◦ g are close to IdX and IdY , respectively.
Since f and g satisfy 1 and 4 above and since g(Y ′′) ⊆ Y ′, it follows that

‖Φ(eg(y)g(y))ef(g(y))f(g(y))‖ ≥ δ and ‖Φ(eg(y)g(y))eyy‖ ≥ δ,

for all y ∈ Y ′′. So, Lemma 6.6 implies that

sup{∂(y, f ◦ g(y)) : y ∈ Y ′′} <∞.
Since Y \ Y ′′ is finite, this shows that f ◦ g is close to the identity IdY .
Similar arguments show that g ◦ f is close to IdX . �

Proof of Theorem 1.7. Let Λ : Q∗u(X)→ Q∗u(Y ) be an isomorphism which is
liftable on the diagonals. We only need to notice that the hypothesis of The-
orem 6.11 are satisfied for Λ : Q∗u(X)→ Q∗u(Y ). As Λ is liftable on the diag-
onals, there are strongly continuous ∗-homomorphisms Φ : `∞(X)→ C∗u(Y )
and Ψ : `∞(Y ) → C∗u(X) which lift Λ on `∞(X)/c0(X) and `∞(Y )/c0(Y ).
For the last condition, notice that, by the lifting property of Φ, we must
have that (Φ(exx))x∈X are non-zero finite rank projections for cofinitely
many x ∈ X. Therefore, as all sparse subspaces of X yield only compact
ghost projections, Proposition 4.1 implies that

inf
x∈X′

sup
y∈Y
‖Φ(exx)δy‖ > 0

for some cofinite X ′ ⊆ X. The argument for Ψ is exactly the same, so we
are done by Theorem 6.11. �

7. Bijective coarse equivalence

In this section we assume that our metric spaces satisfy a stronger geo-
metric condition known as the operator norm localization property, ONL. If
X and Y satisfy ONL, then the existence of an isomorphism between Q∗u(X)
and Q∗u(Y ) which is liftable on diagonals implies that X and Y are cofinitely
bijectively coarsely equivalent. In the class of uniformly locally finite metric
spaces ONL is equivalent to G. Yu’s property A ([22, Theorem 4.1]).
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Definition 7.1. A metric space X has the operator norm localization prop-
erty (ONL) if for all ε ∈ (0, 1) and all s > 0 there exists r > 0 such that
for every operator a ∈ C∗u(X) with prop(a) ≤ s there exists a unit vector
ξ ∈ `2(X) with diam{x ∈ X : 〈ξ, δx〉 6= 0} ≤ r such that ‖aξ‖ ≥ (1− ε)‖a‖.

The next lemma is the only instance in this section where the fact that
the metric spaces have ONL is actively used.

Lemma 7.2. Suppose X and Y are metric spaces, and Y has the ONL. Let
Φ: `∞(X)→ C∗u(Y ) be a coarse-like map. For all γ > 0 and all ε > 0 there
exists r > 0 such that for all contractions a ∈ `∞(X) and all B ⊆ Y with
‖χBΦ(a)‖ > γ, there exists D ⊆ Y with diam(D) < r such that

‖χB∩DΦ(a)‖ ≥ (1− ε)‖χBΦ(a)‖.

Proof. Fix γ > 0 and ε > 0, and let δ = εγ/3. Since Φ is coarse-like,
there exists s > 0 such that Φ(a) is δ-s-approximated for all contractions
a ∈ `∞(X). In particular, χBΦ(a) is δ-s-approximated for all B ⊆ Y . Fix a
contraction a ∈ `∞(X) and B ⊆ Y with ‖χBΦ(a)‖ > γ. Then, there exists
b ∈ C∗u(Y ) with prop(b) ≤ s such that

‖b− χBΦ(a)‖ ≤ δ

γ
‖χBΦ(a)‖.

Since Y has ONL, there exist r > 0 and a unit vector ξ ∈ `2(Y ) (depending
only on δ and s, i.e., on γ and ε) such that diam{y ∈ Y : ξ(y) 6= 0} ≤ r and
‖b∗ξ‖ ≥ (1 − δ/γ)‖b∗‖. Therefore, letting D = diam{y ∈ Y : ξ(y) 6= 0}, it
follows that ‖χDb‖ ≥ (1− δ/γ)‖b‖.

We conclude that

‖χB∩DΦ(a)‖ ≥ ‖χDb‖ − ‖χDb− χDχBΦ(a)‖

≥
(

1− δ

γ

)
‖b‖ − ‖b− χBΦ(a)‖

≥
(

1− δ

γ

)
‖χBΦ(a)‖ − 2‖b− χBΦ(a)‖

≥
(

1− 3δ

γ

)
‖χBΦ(a)‖.

By our choice of δ, we are done. �

7.1. Finding a bijective coarse equivalence. This section has been in-
spired by methods developed in [30, §4]. In it we prove Theorem 1.9, that if
X and Y are uniformly locally finite metric spaces, X has ONL, and their
uniform Roe coronas are liftable on diagonals isomorphic, then X and Y
have cofinite subspaces that are bijectively coarsely equivalent.

Assumption 7.3. Throughout this subsection we fix the following objects.

• Two uniformly locally finite metric spaces (X, d) and (Y, ∂) with the
ONL and an isomorphism Λ: Q∗u(X)→ Q∗u(Y ).
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• Strongly continuous ∗-homomorphisms Φ : `∞(X) → C∗u(Y ) and Ψ :
`∞(Y )→ C∗u(X) which witness that Λ is liftable on diagonals.
• Cofinite subsets X ′ ⊆ X and Y ′ ⊆ Y such that Φ(exx) and Ψ(eyy)

are rank 1 projections for all x ∈ X ′ and y ∈ Y ′, respectively.

Also, throughout this section, given y ∈ Y , x ∈ X, A ⊆ X, B ⊆ Y , and
δ > 0, we let

Xy,δ = {x ∈ X : ‖Ψ(eyy)exx‖ ≥ δ}, XB,δ = ∪y∈BXy,δ,

Yx,δ = {y ∈ Y : ‖Φ(exx)eyy‖ ≥ δ}, YA,δ = ∪x∈AYx,δ.
Before proving Theorem 1.9, we need several lemmas regarding Xy,δ and

Yx,δ.

Lemma 7.4. For all ε > 0 there exists δ > 0 such that

1. ‖Φ(exx)χYx,δ‖ ≥ 1− ε, for all x ∈ X ′, and

2. ‖Ψ(eyy)χXy,δ‖ ≥ 1− ε, for all y ∈ Y ′.

Proof. We only prove 1. Fix ε > 0. Since Y has ONL, by Lemma 7.2, there
exists r > 0 such that for all x ∈ X ′ there exists Cx ⊆ Y with diam(Cx) < r
such that ‖Φ(exx)χCx‖2 ≥ 1 − ε/2. For each x ∈ X ′, pick a unit vector
ξx ∈ `2(X) such that Φ(exx) = 〈·, ξx〉. It follows that

‖Φ(exx)χA‖ = ‖χAΦ(exx)‖ = ‖χAξx‖,
for all A ⊆ Y . In particular, ‖χCxξx‖2 ≥ 1− ε/2, for all x ∈ X ′.

Let N = supy∈Y |Br(y)| and pick a positive δ smaller than
√
ε/(2N). By

the definition of Yx,δ, for all x ∈ X ′ and all y ∈ Y \ Yx,δ, it follows that
|ξx(y)| = ‖Φ(exx)eyy‖ < δ. Therefore, since |Cx| ≤ N , it follows that

‖Φ(exx)χYx,δ‖
2 =

∑
y∈Yx,δ

|ξx(y)|2

≥
∑

y∈Cx∩Yx,δ

|ξx(y)|2

=
∑
y∈Cx

|ξx(y)|2 −
∑

y∈Cx\Yx,δ

|ξx(y)|2

≥ 1− ε

2
− δ2N ≥ 1− ε,

for all x ∈ X ′. �

Before Lemma 7.6, we need a general lemma regarding the interaction
between the liftings Φ: `∞(X)→ C∗u(X) and Ψ: `∞(Y )→ C∗u(Y ).

Lemma 7.5. Let (an)n and (bn)n be bounded sequences in `∞(X) and
`∞(Y ), respectively. Furthermore, assume that both (an)n and (bn)n are
sequences with disjoint finite supports. Then

lim inf
n

∣∣∣‖anΨ(bn)‖ − ‖Φ(an)bn‖
∣∣∣ = 0.
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Proof. Since both (an)n and (bn)n are bounded sequences with disjoint sup-
ports,

∑
n∈M an and

∑
n∈M bn converges in the strong operator topology,

for all M ⊂ N. Since Φ and Ψ are strongly continuous ∗-homomorphisms,
and since both (an)n and (bn)n are sequences with finite disjoint supports,
Lemma 3.4 implies that, by going to a subsequence, we can assume that
‖anΨ(bm)‖ ≤ 2−n−m and ‖Φ(an)bm‖ ≤ 2−n−m for all n 6= m,∥∥∥πX(∑

n

anΨ(bn)
)∥∥∥ = lim sup

n
‖anΨ(bn)‖

and ∥∥∥πX(∑
n

Φ(an)bn

)∥∥∥ = lim sup
n
‖Φ(an)bn‖.

In particular,

πX

(( ∑
n∈M

an

)( ∑
n∈M

Ψ(bn)
))

= πX

( ∑
n∈M

anΨ(bn)
)

and

πY

(( ∑
n∈M

Φ(an)
)( ∑

n∈M
bn

))
= πY

( ∑
n∈M

Φ(an)bn

)
.

By going to a further subsequence, we can assume that limn ‖anΨ(bn)‖ and
limn ‖Φ(an)bn‖ exist. Therefore, it follows that∥∥∥πX(∑

n

anΨ(bn)
)∥∥∥ =

∥∥∥Λ ◦ πX
(∑

n

anΨ(bn)
)∥∥∥

=
∥∥∥Λ ◦ πX

(∑
n

an

)
Λ ◦ πX

(∑
n

Ψ(bn)
)∥∥∥

=
∥∥∥πY (∑

n

Φ(an)
)
πY

(∑
n

bn

)∥∥∥
=
∥∥∥πY (∑

n

Φ(an)bn

)∥∥∥,
and we are done. �

Lemma 7.6. For all ε > 0 there exists δ > 0 such that

‖Ψ(χB)(1− χXB,δ)‖ < ε and ‖Φ(χA)(1− χYA,δ)‖ < ε,

for all finite subsets B ⊆ Y ′ and A ⊆ X ′. In particular, if ε ∈ (0, 1), then
|B| ≤ |XB,δ| and |A| ≤ |YA,δ| for all B ⊆ Y ′ and A ⊆ X ′.

Proof. We first show the statement for Ψ as above. Suppose it fails. Then
there exists ε ∈ (0, 1/2) and a sequence (Bn)n of finite subsets of Y ′ such
that ‖Ψ(χBn)(1− χXBn,1/n)‖ ≥ 2ε, for all n ∈ N.

Claim 7.7. For every n ∈ N and every finite F ⊆ Y there exists a finite
B ⊆ Y \ F such that ‖Ψ(χB)(1− χXB,1/n)‖ > ε.
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Proof. If not, then there are n ∈ N and a finite F ⊆ Y such that for
every finite B ⊆ Y \ F we have ‖Ψ(χB)(1 − χXB,1/n)‖ ≤ ε. This implies

‖Ψ(χB)(1− χXB,1/m)‖ ≤ ε for all finite B ⊆ Y \ F and all m > n. Since F

is finite, pick m > n large enough to satisfy ‖Ψ(χD)(1 − χXD,1/m)‖ < ε for
all D ⊆ F . This implies that

‖Ψ(χBm)(1− χXBm,1/m)‖ ≤ ‖Ψ(χBm∩F )(1− χXBm,1/m)‖
+ ‖Ψ(χBm\F )(1− χXBm,1/m)‖

≤ ‖Ψ(χBm∩F )(1− χXBm∩F,1/m)‖
+ ‖Ψ(χBm\F )(1− χXBm\F,1/m)‖

< 2ε;

contradiction. �

By Claim 7.7, redefining the sequence (Bn)n, we assume that (Bn)n is a
sequence of disjoint finite subsets of Y ′ such that ‖Ψ(χBn)(1−χXBn,1/n)‖ > ε,

for all n ∈ N. For each n ∈ N, let An = X \XBn,δ.
Since (Bn)n is a disjoint sequence of finite subsets and ‖Ψ(χBn)χAn‖ > ε

for all n, Lemma 3.4 allows us to pick a sequence (Xn)n of disjoint finite
subsets of X such that ‖Ψ(χBn)χAn∩Xn‖ > ε/2 for all n ∈ N. By Lemma
7.5, it follows that

lim inf
n

∣∣∣‖Ψ(χBn)χAn∩Xn‖ − ‖χBnΦ(χAn∩Xn)‖
∣∣∣ = 0.

Therefore, by going to a subsequence, we assume that

inf
n
‖χBnΦ(χAn∩Xn)‖ ≥ ε/4.

By Lemma 7.2, there exists r > 0 and a sequence (Dn)n of subsets of Y such
that diam(Dn) < r and

‖χBn∩DnΦ(χAn∩Xn)‖ ≥ (1− ε)‖χBnΦ(χAn∩Xn)‖,

for all n ∈ N. Using ‖Ψ(χBn)χAn∩Xn‖ > ε/2 for all n ∈ N and applying
Lemma 7.5 once again, by going to a further subsequence, we can assume
that

(∗) ‖Ψ(χBn∩Dn)χAn∩Xn‖ ≥ (1− 2ε)‖Ψ(χBn)χAn∩Xn‖,

for all n ∈ N.
Since Y is uniformly locally finite and supn diam(Dn) ≤ r, there ex-

ists N ∈ N such that supn |Dn| < N . Pick θ > 0 small enough to have

4Nθ1/2 < ε(1 − 2ε). By Lemma 7.4, pick n ∈ N large enough to satisfy
‖Ψ(eyy)χXy,1/n‖ ≥ 1−θ for all y ∈ Y ′. Since, for all y ∈ Y ′, Ψ(eyy) is a rank

1 projection, then Ψ(eyy)χXy,1/nΨ(eyy) = λΨ(eyy) for some λ ≥ (1 − θ)2,

and therefore ‖Ψ(eyy)(1− χXy,1/n)‖ < 2θ1/2 for all y ∈ Y ′. It follows that
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‖Ψ(χBn∩Dn)χAn∩Xn‖ ≤ ‖Ψ(χBn∩Dn)χAn‖(∗∗)

≤
∑

y∈Bn∩Dn

‖Ψ(eyy)(1− χXy,1/n)‖

≤ 4θ1/2|Dn|

≤ ε(1− 2ε)

2
,

for all n ∈ N. Therefore, inequalities (∗) and (∗∗) imply that

‖Ψ(χBn)χAn∩Xn‖ ≤
ε

2

for all n ∈ N; contradiction.
We are left to show that, if ε ∈ (0, 1) then |B| ≤ |XB,δ| for all B ⊆ Y ′. Fix

δ > 0 given by the first statement of the lemma for any ε ∈ (0, 1). Notice
that |B| = rank Φ(χB) and |XB,δ| = rankχXB,δ . Suppose rank Φ(χB) >
rankχXB,δ . Then, since corank(1 − χXB,δ) = rankχXB,δ , the images of
the projections 1 − χXB,δ and Φ(χB) have non-empty intersection. Hence,
‖Φ(χB)(1− χXB,δ)‖ = 1; contradiction. �

Lemma 7.8. There exists δ > 0, an injection g : Y ′ → X and an injection
f : X ′ → Y such that g(y) ∈ Xy,δ and f(y) ∈ Yx,δ for all y ∈ Y ′ and all
x ∈ X ′.

Proof. By symmetry, we only show the existence of g : Y ′ → X. Let δ be
given by Lemma 7.6 for some ε ∈ (0, 1). Define a map α : Y ′ → P(X) by
letting α(y) = Xy,δ for all y ∈ Y ′. Since XB,δ = ∪y∈Bα(y), the choice of δ
gives that

|B| ≤ |XB,δ| =
∣∣∣ ⋃
y∈B

α(y)
∣∣∣.

Therefore, by Hall’s marriage theorem, the required injection exists. �

Proof of Theorem 1.9. Assume (1), i.e., X and Y are uniformly locally finite
metric spaces such that X has property A, and Q∗u(X) and Q∗u(Y ) are liftable
on the diagonals isomorphic. Since a uniformly locally finite metric space has
property A if and only if its uniform Roe algebra is nuclear ([24, Theorem
5.3]), C∗u(X) is nulcear and so is Q∗u(X). Therefore, Q∗u(Y ) is nuclear and
since K(`2(Y )) is nuclear, so is C∗u(Y ). So, Y has property A. By [22,
Theorem 4.1], X and Y have ONL. Hence, by Propositions 4.1 and 6.1 we
have Φ, Ψ, X ′, and Y ′ as in Assumption 7.3 (we use here that (Φ(exx))x∈X
and (Ψ(eyy))y∈Y are non-zero finite rank projections for cofinitely many
elements).

Let f : X ′ → Y and g : Y ′ → X be the injections given by Lemma 7.8.
By Lemma 6.3 there exist cofinite subsets X ′′ ⊆ X ′ and Y ′′ ⊆ Y ′ such that

inf
x∈X′′

‖Ψ(ef(x)f(x))exx‖ > 0 and inf
y∈Y ′′

‖Φ(eg(y)g(y))eyy‖ > 0.
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Since f and g are injective, f−1(Y \Y ′′) and g−1(X \X ′′) are finite. Hence,
König’s proof of the Cantor–Schröder–Bernstein theorem gives us cofinite
subsets X̃ ⊆ X, Ỹ ⊆ Y , and a bijection h : X̃ → Ỹ such that for each
x ∈ X̃, either x ∈ X ′′ and h(x) = f(x) or x ∈ Im(g) and h(x) = g−1(x).
This implies that

‖Φ(exx)eh(x)h(x)‖ ≥ δ and ‖Ψ(eyy)eh−1(y)h−1(y)‖ ≥ δ

for all x ∈ X̃ and all y ∈ Ỹ . By Lemma 6.6, both h and h−1 are coarse. So
h is a coarse equivalence, and (2) holds.

Say (2) holds. Let X ′ ⊂ X and Y ′ ⊂ Y be cofinite subsets and f : X ′ →
Y ′ be a bijective coarse equivalence. Define a linear map U : `2(X ′)→ `2(Y ′)
by letting Uδx = δf(x) for all x ∈ X ′. Since f is a coarse equivalence, it
follows that the map a ∈ C∗u(X ′) 7→ UaU∗ ∈ C∗u(Y ′) is an isomorphism (cf.
[1, Theorem 8.1]). Therefore, since X ′ ⊂ X and Y ′ ⊂ Y are cofinite, this
induces an isomorphism between Q∗u(X) and Q∗u(Y ), and (1) holds. �

8. Independence results

In this section we present two independence results, Theorem 8.1 and
Example 8.4. The results of [9] and [10] imply the existence of countable
discrete metric spaces X and Y such that the assertion Q∗u(X) ∼= Q∗u(Y ) is
independent from ZFC. Theorem 1.11 is an immediate consequence of the
following theorem.

Theorem 8.1. There exists a family G of continuum many locally finite
metric spaces such that the following holds.

1. The Continuum Hypothesis implies Q∗u(X) ∼= Q∗u(Y ) for all X and Y
in G.

2. OCAT + MAℵ1 implies Q∗u(X) 6∼= Q∗u(Y ) for all distinct X and Y in
G.

This theorem is really a reformulation of results of Ghasemi and McKen-
ney into the language of uniform Roe algebras and coronas.

A metric d on N2 is defined as follows (writing m̄ = (m0,m1) for an
element of N2):

d(m̄, n̄) =


m0 + n0 + 1, if m0 6= n0

1, if m0 = n0 and m1 6= n1

0, if m̄ = n̄.

Definition 8.2. Fix g : N→ N, and define

X(g) = {m̄ : m1 ≤ g(m0)} and Mg =
∏
n

Mg(n)(C)/
⊕
n

Mg(n)(C).

We view X(g) as a subspace of (N2, d). If g is unbounded, (X(g), d) is
not uniformly locally finite because the j-th vertical column has cardinality
g(j) and diameter 1. However, X(g) is locally finite. Let

D[g] = {a ∈ B(`2(X(g)) : 〈aem̄, en̄〉 6= 0⇒ m0 = n0}.



UNIFORM ROE CORONAS 27

Lemma 8.3. For every g : N→ N we have C∗u(X(g)) = C∗(D[g],K(`2(X(g))))
and Q∗u(X(g)) ∼=Mg.

Proof. First of all note that D[g] is a von Neumann algebra, and it is iso-
morphic to

∏
nMg(n). Also D[g]∩K(`2(X(g))) =

⊕
nMg(n). Therefore it is

enough to prove the first assertion to get the second one.
Since d(m̄, n̄) ≤ 1 when m0 = n0, we have

D[g] ⊆ {a ∈ B(`2(X(g))) : prop(a) ≤ 1}.
On the other hand, fix n ∈ N: if a ∈ B(`2(X(g))) is such that prop(a) ≤ n,
notice that 〈aem̄, en̄〉 6= 0 implies that m0 = n0 or m0, n0 ≤ n. With
Zn = {(m1,m2) ∈ X(g) : m1 ≥ n}, we have that

aχZn ∈ D[g] and a− aχZn ∈ K(`2(X(g))).

This shows that D[g] +K(`2(X(g))) = C∗u(X). �

Proof of Theorem 1.11. By [10, Theorem 1.2] there exists a strictly increas-
ing function k : N→ N such that whenever g : N→ N is a strictly increasing
function whose range is included in the range of k then the Continuum Hy-
pothesis implies Mg

∼=Mk. Partition the range of k into infinite sets, An,
for n ∈ N. For B ⊆ N let fB the the function whose range is equal to⋃
n∈B An and let G = {X(fB) : B ⊆ N}.
If B and B′ are distinct subsets of N then the symmetric difference of the

ranges of the functions fB and fB′ is infinite, and by the equivalence of (1)
and (2) of [10, Theorem 1.2] the coronas MfB ad MfB′ are not isomorphic
in the model constructed in [9, Corollary 1.1], or in any model of ZFC in
which OCAT + MAℵ1 holds (see [15, Corollary 1.7]). �

All spaces in G are coarsely equivalent to the subspace {n2 : n ∈ N} of N.
We conclude by showing how some well-known results directly translate

into an independence result about uniform Roe coronas.

Example 8.4. There exists a uniformly locally finite metric space X such
that the assertion ‘Every automorphism of Q∗u(X) is liftable on diagonals’
is independent from ZFC.

Let X be {n2 : n ∈ N} with the metric inherited from N. Then C∗u(X) is
the algebra generated by `∞(X) and K(`2(X)), and Q∗u(X) ∼= `∞(N)/c0(N).
This is the abelian C∗-algebra whose spectrum is homeomorphic to the
Čech–Stone remainder (corona) of N, βN \ N. An automorphism Φ of
`∞(X)/c0(X) is liftable on diagonals if and only if it has a lift which is
a ∗-homomorphism. This is equivalent to asserting that the dual map
Φ∗ : βN \ N → βN \ N has a continuous extension to a map from βN to
βN. Since every such map is determined by its restriction to N, there are
only 2ℵ0 such (so-called ‘trivial’) automorphisms of `∞(N)/c0(N).

It remains to see that the assertion ‘all autohomeomorphisms of βN \ N
are trivial’ is independent from ZFC. In [21] W. Rudin used the Continuum

Hypothesis to construct 22ℵ0 nontrivial automorphisms of βN \ N and S.
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Shelah proved that is relatively consistent with ZFC that all automorphisms
are trivial ([23]).

Two additional (and related) curiosities about the uniform Roe corona
from Example 8.4 are worth noting. First, it has a unital embedding into
itself that is almost liftable on the diagonal, but not liftable on the diagonal:
take the special case of [5, Example 3.2.1] where I = J1 = J2 = Fin, the
ideal of finite subsets of N. This gives an injective endomorphism of the
Boolean algebra P(N)/Fin. By combining Stone duality with the Gelfand–
Naimark duality, one obtains an embedding as required. An example of
a surjective ∗-homomorphism `∞/c0 → `∞/c0 that (in our terminology)
cannot be lifted by a ∗-homomorphism was constructed (in ZFC!) in [3].

9. Concluding remarks

We conclude by stating some problems related to our work that remain
open.

The coarse Baum–Connes conjecture is directly related to the variant
of the uniform Roe algebra C∗u(X) called the Roe algebra, C∗(X). The
algebraic Roe algebras and the Roe algebras are algebras of operators on
`2(X,H) for an infinite-dimensional separable Hilbert space H. They are
defined like their uniform analogs, but the matrix entries exx′ are allowed to
be arbitrary compact operators on H (see e.g., [26, §2]). Every Roe algebra
C∗(X) contains the compact operators, and the Roe corona, Q∗(X), is the
quotient of C∗(X) over the ideal of all compact operators.

Problem 9.1. (Rigidity of Roe Coronas) Let X and Y be metric spaces
such that Q∗(X) and Q∗(Y ) are isomorphic. Does it follow that X and Y
are coarsely equivalent?

The second natural occurring problem is the one of lifting isomorphisms
between uniform Roe coronas to isomorphisms of uniform Roe algebras. It
is not difficult to find an example of uniformly locally finite metric spaces
such that all of their sparse subspaces yield only compact ghost projections
and Q∗u(X) and Q∗u(Y ) are liftable on diagonals isomorphic, but C∗u(X) and
C∗u(Y ) are not isomorphic. In particular, the isomorphism cannot be lifted
by an isomoprhism between C∗u(X) and C∗u(Y ). However, if X ′ ⊆ X is a
cofinite subspace of X then Q∗u(X) and Q∗u(X ′) can be naturally identified,
and the counterexample alluded to in this paragraph does not answer the
following question.

Question 9.2. Suppose X and Y are uniformly locally finite metric spaces
such that all of their sparse subspaces yield only compact ghost projections
and Λ: Q∗u(X)→ Q∗u(Y ) is an isomorphism liftable on diagonals. Are there
cofinite X ′ ⊆ X and Y ′ ⊆ Y such that Λ can be lifted to an isomorphism
between C∗u(X ′) and C∗u(Y ′)?

A natural line of attack on this problem leads to a noncommutative variant
of the concept of a (balanced) near action extensively studied in [2]. A near
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action of a group Γ on a set X is a group homomorphism from Γ into S∗(X),
defined to be the quotient of the group SX of all permutations of X modulo
the normal subgroup of finitely supported permutations. A near action is
said to be realizable if it can be lifted to a group homomorphism from Γ into
SX ([2, Definition 4.A.4]).4

A noncommutative near action of a group Γ on a set X is a group
homomorphism F : Γ → N (`∞(X)/c0(X)), the normalizer of the masa
`∞(X)/c0(X) in the Calkin algebra Q(`2(X)). It is balanced if F (g) has
Fredholm index zero (i.e., can be lifted to a unitary in B(`2(X))) for ev-
ery g ∈ Γ. It is realizable if it can be lifted to a homomorphism from Γ
into the unitary group of N (`∞(X)), the normalizer of `∞(X) in B(`2(X)).
Clearly, being balanced is a necessary condition for realizability. Suppose
that Λ: Q∗u(Γ) → Q∗u(Γ′) is an isomorphism liftable on the diagonal by
Φ: `∞(Γ) → C∗u(Γ′). Let ι : Q∗u(Γ′) → Q(`2(Γ′)) be the identity embed-
ding. Recall that the canonical unitaries in C∗u(Γ) are those of the form
ug, for g ∈ Γ, where ugδh = δgh. Each of these has Fredholm index 0.
Also, for a unitary in the normalizer of `∞(Γ), having Fredholm index zero
is coded by its conjugation action on the masa. Therefore ι ◦ Λ gives a
noncommutative balanced near action FΛ of Γ on a countable set X, where
X = {Φ(χ{g}), g ∈ Γ} is the countable set associated with the lift of the
image of `∞(Γ), so that Φ[`∞(Γ)] = `∞(X).

Lemma 9.3. Suppose that Λ: Q∗u(Γ) → Q∗u(Γ′) is an isomorphism liftable
on the diagonal, and let FΛ be the associated noncommutative balanced near
action as above. Then FΛ is realized if and only if Λ can be lifted by a
∗-homomorphism.

Proof. Let Φ: `∞(Γ)→ C∗u(Γ′) be the lift of Λ on the diagonal and let X be
as in the paragraph preceding the lemma. So, Φ : `∞(Γ)→ `∞(X).

Suppose that Λ can be lifted by a ∗-homomorphism Ψ: C∗u(Γ)→ C∗u(Γ′).
Since any two atomic masas in Q(`2(Γ′)) are unitarily equivalent, we can fix
a unitary w in B(`2(Γ′)) such that Adw ◦ Ψ and Φ agree on `∞(Γ). Then
(denoting the canonical unitary in C∗u(Γ) associated with g ∈ Γ by ug) the
group homomorphism g 7→ Adw(Ψ(ug)) realizes FΛ.

For the converse direction, assume that g 7→ ug realizes FΛ. We need to
verify that this group homomorphism is compatible with Φ. For a ∈ `∞(Γ)
we have ugau

∗
g = g.a, where g.a(δh) = a(δg−1h). Also,

vgΦ(a)v∗g = Φ(g.a).

The algebraic uniform Roe algebra C∗u[Γ] consists of sums of the form
∑

g∈Γ agug,

where ag ∈ `∞(Γ) and only finitely many of ag are nonzero. For such sum,
define

Ψ(
∑

g agug) =
∑

g Φ(ag)vg.

4The requirement of being balanced is, in this context, naive (see the discussion in [2,
§1.B and §1.D]), but dropping it in our case would only lead to unnecessary complications.
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The fact that g 7→ vg is a group homomorphism, together with the pre-
vious displayed formula and routine calculations, implies that Ψ defines a
∗-homomorphism. Clearly, Λ(πΓ(a)) = πΓ′(Ψ(a)) for all a ∈ C∗u[Γ], and we
can extend Ψ to a lift of Λ. �

By the freeness property, every noncommutative balanced near action
of a free group is realizable. This observation, together with Lemma 9.3,
implies that Question 9.2 has a positive answer in the case when X is the
free group Fn with the Cayley graph metric for some finite n.

The following observation is taken from [11].

Example 9.4. There exists a nonrealizable noncommutative balanced near
action of Z2 on N. We will find unitaries ua and ub in N (`∞(Z2)) such that
uaub − ubua is compact, but there are no commuting unitaries va and vb in
N (`∞(Z2)) such that both ua − va and ub − vb are compact. Define ua by
its action on the basis by uaδ(m,n) = δ(m,n+1) for all (m,n) ∈ Z2. Similarly,
define ub by ubδ(m,n) = δ(m+1,n) if m ≤ |n| and

ubδ(m,n) = exp(πi(m− |n|)/m)δ(m+1,n)

if m > |n|. It is straightforward to check that uaub − ubua is compact. A
moment of thought reveals that for every m and k ≥ 0 we have

(ub)
kδ(m,0) = (−1)kδ(m+k,0)

and yet
(ua)

−k(ubua)
kδ(m,0) = δ(m+k,0).

This readily implies that if va and vb are unitaries in N (`∞(Z2)) such that
both ua− va and ub− vb are compact, then va and vb cannot be commuting.

The required near action is defined by sending the generators of Z2 to
π(ua) and π(ub).

We emphasize that Example 9.4 does not imply that the answer to Ques-
tion 9.2 in case when X is Z2 with the Cayley graph metric is negative.
Indeed, this is the case since we do not know whether the near action of
Example 9.4 is of the form FΛ for some appropriate Λ.

Lastly, we focus on generalizations of Theorem 1.11 in presence of uniform
local finiteness.

Question 9.5. Are there uniformly locally finite spaces X and Y such
that the existence of an isomorphism between their uniform Roe coronas is
independent from ZFC?

For any two countable metric spaces X and Y , the assertion ‘X is coarsely
equivalent to Y ’ is unlikely to be independent from ZFC. This is because it
is equivalent to the assertion that there are f : X → Y and g : Y → X that
satisfy certain first-order conditions. A statement of this form (so-called
Σ1

1 statement) has the same truth value in all transitive models of ZFC
(see e.g., [13, Theorem 13.15] for a stronger result). Strictly speaking, this
does not imply that the assertion ‘X is coarsely equivalent to Y ’ cannot be
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undecidable; instead it shows that the conventional set-theoretic methods
cannot show its undecidability.
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