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ABSTRACT 37 

Brain mosaic mutations are a major cause of refractory focal epilepsies with cortical malformations 38 

such as focal cortical dysplasia, hemimegalencephaly, malformation of cortical development with 39 

oligodendroglial hyperplasia in epilepsy, or ganglioglioma. Here, we collected cerebrospinal fluid 40 

(CSF) during epilepsy surgery to search for somatic variants in cell-free DNA (cfDNA) using targeted 41 

droplet digital PCR. In 3/12 epileptic patients with known somatic mutations previously identified in 42 

brain tissue, we here provide evidence that brain mosaicism can be detected in the CSF-derived 43 

cfDNA. These findings suggest future opportunities for detecting the mutant allele driving epilepsy 44 

in CSF.  45 
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INTRODUCTION 60 

Brain somatic variants have been shown to be an important etiology of structural intractable 61 

epilepsy.1-4 We recently reported that brain mosaic variants give rise to early-onset epilepsies 62 

associated with various focal cortical malformations, including focal cortical dysplasia type 2 63 

(FCD2), hemimegalencephaly (HME), malformation of cortical development with oligodendroglial 64 

hyperplasia in epilepsy (MOGHE), and ganglioglioma (GG), a low-grade neuronal-glial tumor.2-11 65 

Epilepsy associated with these aforementioned brain lesions is commonly pharmacoresistant to 66 

antiepileptics, and surgical resection of the epileptogenic zone is often the only treatment option 67 

effective at controlling seizures. While the genetic etiology of these disorders is now mostly known, 68 

molecular diagnosis requires genomic DNA derived from resected brain tissues, thus limiting a 69 

complete genetic assessment in cases not eligible for surgery. 70 

Liquid biopsy techniques based on the sequencing of cell-free DNA (cfDNA) are emerging as non-71 

invasive methods for tumor diagnosis and progression.12 Interestingly, cerebrospinal fluid (CSF) has 72 

been shown to be a source of circulating tumor DNA released upon tumor cell death and a potentially 73 

powerful biomarker for the diagnosis and characterization of tumors of the central nervous system 74 

(CNS), such as gliomas.13-15  Moreover, aberrant neuronal death has also been observed in epilepsy 75 

patients and experimental animal models.16-18 To date, however, the clinical and diagnostic utility of 76 

liquid biopsies from patients with intractable epilepsy and brain malformations has not yet been 77 

addressed. Here, we provide evidence in epileptic patients with previously identified mutations in the 78 

brain resected tissues, that somatic mutations can be detected in the CSF-derived cfDNA collected 79 

during epilepsy surgery. 80 

 81 

 82 

 83 



 4 

METHODS 84 

Patient cohort  85 

We collected brain tissues, blood and cerebrospinal fluid (CSF) samples from a cohort of 12 patients 86 

(mean age 6.3 years at surgery) with lesional refractory epilepsy from France at the Fondation 87 

Rothschild (n=5) and South Korea at the Severance children’s hospital (n=7). Neuropathological 88 

diagnoses were established by expert pathologists according to the ILAE classification for cortical 89 

malformations and the WHO classification for tumors. The cohort comprised FCD2 (n=1), HME 90 

(n=5), MOGHE (n=3), and GG (n=3) cases. Informed consent for the use of biological samples was 91 

obtained from all patients. The study protocol received approval by the ethical committees of CPP Ile 92 

de France II (N° ID-RCB/EUDRACT-2015-A00671-48) and Severance Hospital and the KAIST 93 

Institutional Review Board and Committee on Human Research. 94 

Cerebrospinal fluid sampling and DNA extraction 95 

All CSF samples were collected after dura opening before surgery (resection or hemispherotomy). 96 

For all KR samples and FR-4 sample (8/12), CSF was collected from the subarachnoid space adjacent 97 

to the epileptogenic area; for FR-1, FR-2 and FR-3 cases, CSF was collected from the former resection 98 

cavity; for FR-5, it was collected from the inter-hemispheric fissure. The volume of collected CSF 99 

ranged from 1 to 6mL depending on the surgical site (See supplementary table for details). To remove 100 

any genomic DNA contaminant from cells, all CSF samples (except case FR-4) were centrifuged at 101 

400g for 5 min at 4°C (FR cases) or 2000g for 5 min at 4°C followed by 10000g for 5 min at 4°C 102 

(KR cases). The supernatant was divided into 1mL aliquots and stored at -80°C. Cell-free DNA 103 

(cfDNA) samples were extracted from 1mL of CSF (except 0.5mL of CSF for KR-3 sample) with the 104 

Maxwell RSC cfDNA kit (Promega; French cohort) or the QIAamp circulating nucleic acid kit 105 

(Qiagen; South Korean cohort) and quantified using the high sensitivity dsDNA Qubit assay (Thermo 106 

Fisher Scientific). Using the same procedure described above, we also included cfDNA from 1mL of 107 

CSF, collected from the subarachnoid space after dura opening, of three other refractory epileptic 108 
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patients with FCD1, FCD2a, and TSC, to be used as mutation-negative controls in the droplet digital 109 

PCR assays. 110 

Droplet digital PCR assays and statistical analysis 111 

The droplet digital PCR (ddPCR) QX200 system (Bio-Rad) was used for variant specific detection. 112 

All cfDNA samples were first subjected to a mutation-site targeted 13 cycles preamplification (for 113 

each variant to test) with the SsoAdvanced™ PreAmp Supermix (Bio-Rad), optimized for unbiased 114 

target-specific preamplification of a limited amount of DNA, following the standard protocol for 20X 115 

TaqMan Assays. To avoid possible amplification errors, at least 2 independent preamplifications were 116 

done per sample. Diluted (1ng/µL) bulk brain DNAs were also preamplified to control for ddPCR 117 

accuracy. All ddPCR reactions were done in replicates (at least 2 replicates for controls, ≥3 for 118 

patients) using the ddPCR Supermix for probes according to the manufacturer’s protocol. ddPCR 119 

mutation detection assays FAM+HEX (Bio-Rad) were purchased to detect the following variants: 120 

MTOR p.Ser2215Phe, MTOR p.Ala1459Asp, AKT3 p.Glu17Lys, PIK3CA p.Glu545Lys, SLC35A2 121 

p.Ser212Leufs*9, SLC35A2 p.Glu254*, SLC35A2 p.Gln168*, and BRAF p.Val600Glu. In each assay, 122 

3 to 5 mutation-negative cfDNAs controls (either the mutated patients used as crossed negative 123 

controls or the 3 mutation-negative controls) were preamplified and assessed by ddPCR. In all 124 

reactions, 5U of HindIII digestion enzyme was added. Amplification products were run on a QX200 125 

droplet reader and data analyzed with the Quantasoft Analysis Pro software (version 1.0.596). To 126 

ensure sufficient sensitivity, only assays with > 100 copies/µL of WT (HEX+) DNA were kept for 127 

analysis. The VAF was calculated for each sample by the Quantasoft Analysis Pro software as the 128 

fractional abundance of mutant (FAM+) to total (wild type (HEX+) + mutant (FAM+)) DNA copies. 129 

Two-tailed t test (unequal variance) was used to assess if the average VAFs were statistically different 130 

between the mutated patient and the mutation-negative controls.  131 

 132 

 133 
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RESULTS 134 

We assembled a collection of CSF samples from 12 neurosurgery cases of FCD2, HME, MOGHE, 135 

and GG with known mosaic pathogenic variant identified in the genomic DNA from the resected 136 

frozen brain specimen (absent from blood samples indicating their brain-specificity): brain variants 137 

in genes of the mTOR pathway (PIK3CA, AKT3, MTOR) in FCD2 and HME subjects (n=6);9,10 brain 138 

somatic variants in the galactose transporter encoding gene SLC35A2 in MOGHE cases (n=3);8,9,11 139 

and the recurrent brain somatic BRAF p.Val600Glu variant in GG patients (n=3) (Table 1, Fig. 1).3,10 140 

We asked whether brain somatic variants can be detected in cfDNA from the patients’ CSF collected 141 

from the subarachnoid or ventricle space during epilepsy surgery. Since cfDNA concentrations from 142 

CSF were generally low (mean 0.38ng/µL, range 0.05-2.7ng/µL, total amount of collected cfDNA 143 

ranged from 0.27ng to 28ng) (Supplementary Table 1), we performed a targeted preamplification for 144 

all cfDNA samples. We set up a droplet digital PCR (ddPCR) mutation detection assay to detect the 145 

presence of a given variant in the matched cfDNA sample. To exclude potential amplification bias or 146 

errors, we compared the mean VAF of patients versus mutation-negative controls. We obtained 147 

significant p-values in 3 out of 12 patients: one HME (FR-4) with a CSF cfDNA VAF of 1.358% for 148 

PIK3CA p.Glu545Lys; one GG (KR-7) with a CSF cfDNA VAF of 0.214% for BRAF p.Val600Glu, 149 

and one MOGHE (KR-4) with a CSF cfDNA VAF of 0.145% for SLC35A2 p.Gln168*. Variant allele 150 

frequencies in the brain samples ranged from 1 to 24% in the whole cohort. There was no obvious 151 

correlation between VAFs in the brain tissue and cfDNA samples.  152 

 153 

 154 

 155 

 156 

 157 
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DISCUSSION  158 

Currently, identification of brain somatic mutations relies on direct access to brain tissue from 159 

epilepsy surgery for both cortical malformations and GG lesions. Achieving a genetic diagnosis 160 

before surgery (or when surgery is not possible) may help in understanding mutation-related disease 161 

prognoses and adopting targeted therapies. We hypothesized that mutated DNA could be detected in 162 

CSF-derived cfDNA from patients with non-tumoral cortical malformations, as described for other 163 

CNS malignant tumors. By using a targeted ddPCR-based approach, we were able to detect somatic 164 

brain mutations in CSF-derived cfDNA in 3/12 (25%) surgical cases with a mean VAF of 0.57%. A 165 

recent study with a sensitivity threshold to detect down to 0.25% mutant rates, reported the detection 166 

of somatic mutations from the cfDNA of 3 cases with focal epilepsies by ddPCR, with a mean 167 

mutational burden of 6.8%: in one patient with subcortical band heterotopia  (widespread mosaic 168 

variant in LIS1 p.Lys64*, VAF at 9.4% in CSF from lumbar puncture and 13% in the blood); one 169 

patient with FCD2b (TSC1 p.Phe581His*6, VAF at 7.8% in CSF from dural puncture and 2.8% in 170 

the resected tissue); and one with GG (BRAF p.Val600Glu, VAF at 3.2% in CSF from dural puncture 171 

and 20.4% in the tumor).21  172 

Overall, these results raise several questions. First, we were not able to detect known somatic 173 

mutations in CSF cfDNA from a substantial proportion of patients, indicating that the detection of 174 

low VAF variants (<0.1%) still needs technical improvement before a clinical use of CSF for genetic 175 

testing in epileptic patients. Moreover, in current clinical practice the described approach can only be 176 

applied when the mutation is known or suspected (as for the recurrent BRAF p.Val600Glu mutation), 177 

using variant-specific approaches. Second, all CSF samples in this study were collected during brain 178 

surgery before resection (mostly from the subarachnoid space). Genetic diagnosis based on CSF-179 

derived cfDNA would require the proof-of-concept that brain-specific variants can be detected in 180 

CSF obtained from lumbar puncture (thus in a pre-surgical assessment) and may require multiplexing 181 

ddPCR assays targeting recurrent variants. Third, it remains unknown whether mutated cells found 182 
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in FCD2/HME (e.g. dysmorphic neurons and balloon cells) and MOGHE samples undergo cell death 183 

and therefore release their DNA. 184 

Recent advances have shown that tumor-derived cfDNA in CSF samples can be used as a biomarker 185 

for monitoring tumor progression and response to therapy.15 Brain surgery is not always effective in 186 

treating seizures since only 30-50% of patients are seizure-free after the first surgery and multiple 187 

resections are needed in some cases. 20 Identification of mutated brain DNA in CSF may be of use in 188 

predicting possible seizure relapse and personalized therapy. Thus, this work opens new avenues for 189 

improving the diagnostic workflow of patients with various brain malformations and research on the 190 

pathological mechanisms and progression of refractory focal epilepsies. 191 
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Table 1. Genetic findings in cfDNA and brain tissue samples 254 

Patient  

ID 

Pathological 

Diagnosis 

Age at CSF 

collection 

Gene 
Brain VAF 

(%) 

Mean cfDNA 

VAF  

(%) 

Mean cfDNA 

VAF from 

negative controls  

(%) 

p-value 

HGVSp 

FR-4¶ HME  12.4y 
PIK3CA 

23 1.358 0.066 < 0.0001ǂ 
p.Glu545Lys 

KR-7 GG 17.3y 
BRAF 

4 0.214 0.073 0.0015ǂ 
p.Val600Glu 

KR-4 MOGHE 4.2y 
SLC35A2 

18 0.145 0.053 0.0014ǂ 
p.Gln168* 

FR-5 MOGHE 7.8y 
SLC35A2 

23 0.000 0.000 NA 
p.Ser212Leufs*9 

KR-2 HME 0.7y 
AKT3 

4 0.019 0.018 0.9205 
p.Glu17Lys 

KR-5 GG 7.1y 
BRAF 

24 0.064 0.073 0.7443 
p.Val600Glu 

FR-1 FCD2 11.3y 
MTOR 

1 0.031 0.039 0.4398 
p.Ser2215Phe 

KR-3 MOGHE 5.2y 
SLC35A2 

16 0.000 0.003 0.3388 
p.Glu254* 

KR-1 HME 0.1y 
MTOR 

23 0.059 0.039 0.3312 
p.Ser2215Phe 

FR-3 HME 3.6y 
AKT3 

12 0.033 0.018 0.1398 
p.Glu17Lys 

FR-2 HME 1.4y 
MTOR 

9 0.019 0.008 0.0560 
p.Ala1459Asp 

KR-6 GG 7.1y 
BRAF 

13 0.021 0.073 0.0014$ 
p.Val600Glu 

 255 

FCD2: Focal cortical dysplasia type 2, HME: Hemimegalencephaly, MOGHE: Malformation of cortical 256 

development with oligodendroglial hyperplasia in epilepsy, GG: Ganglioglioma, VAF: variant allele 257 

frequency, ǂ: p-values referring to significant positive result, NA: Not applicable, ¶: FR-4 CSF sample was not 258 

centrifuged prior freezing, therefore a cellular genomic DNA contamination cannot be excluded, $: the 259 

significant p-value obtained in KR-6 highlights a significant lower VAF in the patient compared to the controls, 260 

thus confirming the absence of mutation detection. None of the variants was detected in the matched blood 261 

samples. Patients (except FR-4) were previously reported: KR-3 and KR-4 8,11; FR-1, FR-2 and FR-3 9; FR-5 262 

9,11; KR-1, KR-2, KR-5 and KR-7 10; KR-6 7,10. 263 

 264 

265 
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 266 

Figure 1. Representative ddPCR 2D scatter plot for the targeted detection of mutant alleles.  267 

2D fluorescence amplitude plot shows wild-type-only droplets (HEX+ green circles), mutant-only droplets 268 

(FAM+ blue circles), double-negative droplets containing no targeted DNA templates (gray circles) and 269 

double-positive droplets containing both WT and mutant DNA templates (orange circles) from bulk brain 270 

DNA, and cfDNA for the three positive cases and mutation-negative controls. Each plot is a representation 271 

of the mean VAF. VAF: Variant Allele Frequency. Plots were generated in R using the ggplot2 package. 272 

 273 


