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Abstract 29 

Purpose of review 30 

Recent evidence suggests high tumor mutational burden (TMB-H) as a predictor of 31 

response to immune checkpoint blockade (ICB) in cancer. However, results in TMB-H 32 

gliomas have been inconsistent. In this article, we discuss the main pathways leading to 33 

TMB-H in glioma and how these might affect immunotherapy response. 34 

Recent findings 35 

Recent characterization of TMB-H gliomas showed that “post-treatment hypermutation” 36 

related to mismatch repair (MMR) deficiency is the most common mechanism leading to 37 

TMB-H in gliomas. Unexpectedly, preliminary evidence suggested no benefit with ICB 38 

as compared to chemotherapy in this population. In contrast, ICB response was reported 39 

in a subset of TMB-H gliomas associated with constitutional MMR or polymerase epsilon 40 

(POLE) defects (e.g., constitutional biallelic MMRd deficiency). In other cancers, several 41 

trials suggest increased ICB efficacy is critically associated with increased lymphocyte 42 

infiltration at baseline which is missing in most gliomas. Further characterization of the 43 

immune microenvironment of gliomas is needed to identify biomarkers to select the 44 

patients who will benefit from ICB. 45 

Summary 46 

Intrinsic molecular and immunological differences between gliomas and other cancers 47 

might explain the lack of efficacy of ICB in TMB-H gliomas. Novel combinations and 48 

biomarkers are awaited to increase immunotherapy response in these cancers. 49 

 50 
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Introduction 59 

Gliomas are the most common primary tumors of the central nervous system (CNS) [1]. 60 

They can affect patients of any age. They are frequently aggressive and responsible for 61 

high morbidity and mortality. The treatment of gliomas varies depending on accessibility 62 

for surgical resection, tumor grade and molecular profile. It typically includes radiation 63 

therapy and chemotherapy with alkylating agents such as temozolomide (TMZ) [2–4]. 64 

Despite these treatments, relapse is almost inevitable, especially in high-grade gliomas 65 

(HGG). Recurrent HGGs are among the most challenging cancers to treat, commonly 66 

harboring resistance to conventional, targeted therapies and immunotherapies [5].  67 

 The development of immune checkpoint blockade (ICB) has recently transformed 68 

the care of various cancer types. Intensive efforts have focused on identifying predictive 69 

biomarkers for clinical response to ICBs. Among several markers under investigation, a 70 

number of studies showed a positive correlation between ICB response rates and the 71 

presence of a high tumor mutational burden (TMB-H), defined as the number of coding 72 

mutations per megabase (Mb) across the genome [6–11]. These data as well as 73 

promising results from the Keynote-158 study led to the tumor-agnostic approval of the 74 

anti-PD1 pembrolizumab for TMB-H tumors by the Food and Drug Administration (FDA) 75 

in 2020 [12]. However, the correlation between TMB and ICB clinical benefit was mainly 76 

driven by data from a limited number of cancers such as melanoma, lung carcinomas 77 

and known mismatch repair deficient (MMR-d) cancers, and it remains unclear whether 78 

TMB-H and MMR-d are universally predictive in rare cancers not represented in these 79 

studies [13,14]. Gliomas are one of such cancers, as these tumors typically harbor a 80 

strong immunosuppressive TME [15] and conflicting data has been reported regarding 81 

their benefit from ICB, even in the presence of TMB[16–28].  82 

In this review, we discuss recent data on hypermutated gliomas, their mechanism 83 

of mutagenesis and the potential role of TMB-H as a prognostic and predictive biomarker 84 

for response to chemotherapy and immunotherapy.  85 

 86 

TMB-H in gliomas: mechanisms and potential role in predicting prognosis and 87 

response to conventional therapies. 88 

Cancer somatic mutations are caused by mutational processes of exogenous and 89 

endogenous origin which happen during development of each tumor cell and its progeny 90 

[29–32]. Each mutational process can involve components of DNA damage or 91 

modification, abnormal DNA replication or repair and generates a “mutational signature” 92 

(e.g., specific mutational pattern), which can include base substitutions, small insertions 93 

and deletions (indels), chromosome rearrangements and copy number abnormalities. 94 

Mutational signatures can be extracted from tumor sequencing data (e.g., exome or 95 
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genome sequencing) to infer the mutational processes responsible for mutations in 96 

individual samples. Mutations are sometimes associated with the production of foreign 97 

antigens (neoantigens) which are recognized by the immune system and can elicit T cell 98 

immunoreactivity.  99 

 The frequency of mutations and underlying mechanisms causing them varies 100 

greatly across cancers [13,33]. A small subset of cancers (<20% of cancers) show a 101 

markedly elevated mutation burden which is referred to as TMB-H (or hypermutation, 102 

often used for some cancers like gliomas). The mutation burden defining this varies 103 

across assays used but is generally higher than 10 mutations per Mb of genome 104 

sequenced. Exceptionally (<1% of cancers), an “ultra-hypermutated” (i.e. TMB higher 105 

than 100 mutations per Mb) is observed [13]. TMB-H is prevalent in melanoma [34] and 106 

lung cancer [35], where the increase in TMB is mainly related to environmental mutagens 107 

exposure (tobacco smoke, UV light), and associated with ICB response [36]. In gliomas, 108 

TMB-H is less common and observed in two distinct contexts associated with unique 109 

biology: de novo (i.e., hypermutation present in the newly-diagnosed tumor) and post-110 

treatment (i.e. hypermutation only found at recurrence after treatment).  111 

 112 

De novo hypermutation 113 

De novo hypermutation is found in less than 2% of all newly-diagnosed gliomas [14]. De 114 

novo hypermutation in gliomas has been reported in tumors with inherited or somatic 115 

defects of the DNA polymerases ε (POLE) and δ (POLD1) or the MMR system, which 116 

lead to the loss of polymerase proofreading or DNA replication error repair, respectively 117 

(Figure 1). Given its rarity and lack of dedicated prospective trials focusing on these 118 

patients, the management of gliomas in patients with de novo TMB-H glioma is not well 119 

codified [37]. 120 

DNA replication fidelity is primarily governed by the DNA polymerases POLE and 121 

POLD1 catalytic and proofreading domains. Germline pathogenic mutations in the 122 

exonuclease domains of polymerases POLE and POLD1 predispose to adenomatous 123 

polyps, colorectal cancer (CRC), endometrial cancer, and more rarely to other 124 

malignancies including glioblastoma [26,38], all of which are typically harboring 125 

hypermutation or ultra-hypermutation [13]. Somatic POLE defects have also been 126 

reported in glioblastoma [39]. Very little is known about the phenotype of POLE/POLD1-127 

deficient gliomas. Recent studies have suggested an association between POLE/POLD1 128 

defects, increased inflammatory infiltrates, and longer survival in gliomas, but these data 129 

need further confirmation in larger datasets [40]. 130 

The MMR system - consisting mainly of MSH2, MSH6, MLH1 and PMS2 proteins 131 

- is responsible for recognizing base-base mismatches and indels occurring during DNA 132 
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replication and recruiting proteins which excise the newly-synthetized strand before DNA 133 

is resynthesized by DNA polymerases [33]. Germline - and less commonly somatic - 134 

MMR defects have both been reported in de novo hypermutated gliomas. Constitutional 135 

(Biallelic) mismatch repair deficiency (CMMR-d) is a rare autosomal recessive disorder 136 

caused by germline biallelic MMR mutations, most commonly affecting PMS2, and 137 

characterized by early-onset cancers. Gliomas are one of the tumors commonly seen in 138 

CMMR-d patients [26,41–45]. They develop at younger age (<10 years). The histology 139 

is most commonly glioblastomas which are wild-type for other common defining driver 140 

events such as H3F3A, IDH1/2, or infant-type receptor tyrosine kinase (RTK) 141 

aberrations. The prognosis of CMMR-d patients is poor, especially once patients develop 142 

brain tumors. In a subset of patients with CMMR-d glioma, secondary hits in the 143 

polymerase POLE/POLD1 are acquired, leading to a rapid burst in the mutational burden 144 

(ultra-hypermutation) (Figure 1) [13,46].  145 

Lynch syndrome is an autosomal dominant disorder caused by germline 146 

heterozygous inactivating mutations of one of the MMR genes. Patients with Lynch 147 

syndrome can develop cancers after a second hit occurring in the remaining wild-type 148 

MMR allele leading to MMR loss of function, which typically occurs after the first decade 149 

of life. Patients with Lynch syndrome most commonly develop colorectal, urinary, or 150 

gynecological cancers but can also suffer from high-grade glioma [47,48]. Most gliomas 151 

arising in patients with Lynch syndrome are IDH1/2-wild-type glioblastomas and seem to 152 

have a poor prognosis, although IDH1/2-mutant astrocytomas with MMR-d have also 153 

been reported [47,49].  154 

 155 

Post-treatment hypermutation 156 

Post-treatment hypermutation is the most common cause of TMB-H in gliomas, ranging 157 

from 5-60% of gliomas depending on tumor subclass, genetics, and treatment history 158 

[50,51]. Post-treatment hypermutation is predominantly seen in gliomas which are known 159 

to be the most responsive to chemotherapy [14,50,52–56]. TMZ is an alkylating agent 160 

widely used to treat gliomas. Its mechanism of action is based on the production of an 161 

intermediate metabolite reaching high concentration in the brain and producing methyl 162 

groups in tumor cells DNA, particularly on N7 and O6 guanines residues [57]. The 163 

enzyme O6-methylguanine DNA methyltransferase (MGMT) removes the O6 guanine 164 

methyl groups (O6-meG) which are the most cytotoxic lesions [58]. The enzyme is a 165 

“suicide” protein and each MGMT protein can only repair one O6-meG residue on DNA, 166 

which means the levels of MGMT protein in cells is critical to DNA repair. MGMT 167 

promoter methylation, which silences its expression, leads to an MGMT-deficient state 168 
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(MGMT-d), and is associated with increased sensitivity to TMZ and improved prognosis 169 

in patients with glioma [59,60].  170 

In the absence of O6-meG removal (e.g. in MGMT-d tumors), replication of O6-171 

meG-containing DNA results in the insertion of a thymine opposite the O6-meG, creating 172 

a O6-meG:T mismatch that is recognized by the MMR machinery. Failed attempts to 173 

repair O6-meG:T mismatch by MMR generate DNA strand breaks, ultimately leading to 174 

cell cycle arrest and cell death. This means that TMZ cytotoxicity is critically dependent 175 

on a functional MMR pathway. Consequently, MMR-d cells (e.g. cells lacking MMR 176 

capacity due to mutations in genes encoding MMR proteins) display resistance to 177 

alkylating agents such as TMZ [14].  178 

MMR-d cells have increased burden of mutations of several types. Single base 179 

substitutions are the most common and are the mutation type reported in “TMB” most 180 

commonly calculated from sequencing. In addition, MMR deficiency also results in 181 

mutations (e.g. indels) at tandemly repeated DNA motifs (microsatellites) which lead to 182 

microsatellite instability (MSI), a well-known and widely used marker to diagnose MMR 183 

deficiency in common MMR-d cancers such as colorectal cancer [61]. The degree to 184 

which the MSI/indel repair and MMR are linked in TMB-H cancers is not well understood 185 

and in the most common MMR-d cancers they co-occur in almost all cases. 186 

In gliomas, TMZ-induced DNA damage and hypermutation is now known to be 187 

characterized by the acquisition of MMR-d mutations or other alterations but shows a 188 

lack of MSI or significantly increased indels. They also harbor a unique MMR-d 189 

mutational signature (signature 11) specific to TMZ in a setting of cells which cannot 190 

repair TMZ-related mismatches due to MMR deficiency. Interestingly, MMR-d gliomas 191 

with TMB-H also lack significant inflammatory CD8+ infiltrates compared to the most 192 

common MMR-d cancers [14,62–64], even when the latter are located in the CNS 193 

[65,66]. 194 

 195 

Origins of MMR-d cells in post-treatment gliomas and clinical implications 196 

The highest rates of TMB-H have been reported in the most chemosensitive subtypes 197 

where MGMT promoter methylation is more common (e.g., IDH1/2-mutant astrocytomas 198 

and oligodendrogliomas). While recent studies help to define post-treatment TMB-H 199 

gliomas as an MMR-d cancer, a question that remains unaddressed is whether pre-200 

existing MMR-d cells are selected for after treatment response or whether the initial MMR 201 

mutations are induced by TMZ in cells and selected for during treatment, or a 202 

combination of both processes. Although it is difficult to ascertain the origins of post-203 

treatment MMR deficiency in individual samples, indirect data suggests that in a subset 204 

of samples TMZ induces mutations which cause MMR-d in cells. This is for instance 205 
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showed by the fact that the MMR-d inducing hotspot mutation most frequently found in 206 

post-treatment hypermutated gliomas (~15%) is an MSH6 T1219I mutation with 207 

dominant negative effect found exceptionally in patients with Lynch syndrome [67–71]. 208 

This variant results from a C > T transition similar to TMZ-associated lesions and is 209 

inducible in in vitro models chronically exposed to TMZ [14].  210 

 Conflicting data has been reported regarding the prognosis of post-treatment 211 

hypermutation. While the GLASS study found no prognostic significance [56,72], two 212 

retrospective studies suggested that post-treatment hypermutated might have a worse 213 

prognosis from recurrence when compared to non-hypermutated recurrences. However, 214 

since secondary MMR defects occur in tumors most sensitive, and potentially with the 215 

greatest beneficial responses to TMZ, the deleterious effect of secondary MMR 216 

deficiency (poor prognosis after relapse) is unlikely to outweigh its positive effects. These 217 

results therefore do not argue for the use of TMZ vs nitrosourea-based protocols (e.g. 218 

PCV) in lower grade gliomas, especially given that randomized trial data demonstrated 219 

survival benefit with TMZ in both IDH1/2-wild-type and -mutant tumors [73,74].  220 

 Regarding treatment response, while data regarding radiation therapy or 221 

chemoradiation is currently insufficient [75], consistent evidence shows that MMR-d or 222 

TMB-H in gliomas are both predictive biomarkers for resistance to single-agent TMZ. 223 

Interestingly, experimental data from models and indirect evidence from clinical samples 224 

suggest that at least a subset of MMR-d tumors might retain sensitivity to nitrosoureas 225 

such as CCNU [14,57,76,77]. This observation might explain at least in part the 226 

superiority of the TMZ/CCNU combination with radiation compared to standard 227 

chemoradiation with TMZ recently reported in a randomized trial of newly-diagnosed 228 

MGMT-d glioblastomas [78]. Further research is needed to address whether the 229 

TMZ/CCNU combination or PCV might reduce the risk of post-treatment hypermutation 230 

and to characterize the unique resistance mechanisms associated with this combination. 231 

Another area of ongoing investigation is whether PARP inhibition might restore TMZ 232 

sensitivity in MMR-d glioma cells and therefore prevent the development of post-233 

treatment hypermutation [79]. 234 

 235 

Treatment of hypermutated gliomas with ICB  236 

The concept that TMB-H tumors are capable of presenting immunogenic neoantigens is 237 

well established [6]. Neoantigens are recognized and processed by dendritic cells which 238 

recruit lymphocytes against tumor neoantigens. In this context, ICB treatment enables 239 

lymphocyte proliferation (anti-CTLA-4) and prevents lymphocyte inactivation (anti-PD-240 

1/PDL-1). Melanoma [80], NSCLC [81] and MMR-d tumors with MSI [82] are the classic 241 

examples of TMB-H benefiting from ICB, but clinical data in hypermutated glioma as well 242 
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as other cancer types has been so far inconsistent. Research for biomarkers predicting 243 

ICB response in the context of hypermutation is an area of intensive investigation 244 

[11,83,84]. A recent pan-cancer study was able to categorize TMB-H tumors in two 245 

groups with distinct pattern of ICB response [85]. The first group, enriched with ICB 246 

responders, consisted of tumors in which increased TMB was associated with a great 247 

number of CD8+ lymphocytes infiltrates. In contrast, the second group showed no 248 

correlation between increased TMB and CD8+ infiltration. Of note, the latter group 249 

represents the majority of cancers including TMB-H gliomas [16]. These important results 250 

clearly indicate TMB is not a universal predictive marker and suggests that additional 251 

biomarkers are required to appropriately select the patients most likely to benefit from 252 

immunotherapy. 253 

 254 

Current data in de novo and post-treatment hypermutated gliomas 255 

ICBs as a treatment has not shown improvement compared to standard of care in newly-256 

diagnosed and recurrent glioblastomas, although the majority of patients included in 257 

these trials were TMB-low gliomas [86]. Unfortunately, similar results have been 258 

observed even in TMB-H gliomas now. Indeed, while reports suggested that a subset of 259 

hypermutated gliomas might benefit from ICB [17], recent retrospective analyses of 260 

hypermutated or MMR-d gliomas - mostly post-treatment - treated with anti-PD1 261 

suggested that the use of ICB does not translate into clinical benefit (Table 1) [14,24]. 262 

Nevertheless, given their retrospective nature, further confirmation of these results in 263 

prospective studies is warranted (NCT03718767, NCT02658279, NCT04145115). 264 

In contrast, in de novo TMB-H gliomas ICB has shown encouraging results 265 

reported in series studies [17,20] and in several case reports [17,19,21,22,26–28]. These 266 

findings were confirmed in a recent non-peer reviewed pre-print [20]. In this study, the 267 

authors analyzed the responses to ICBs of pediatric CMMR-d patients, including patients 268 

with glioma. Interestingly, in a subset of tumors with additional POLE/POLD1 defects, 269 

significant recruitment of inflammatory CD8+ cells and ICB benefit was observed. Even 270 

though CMMR-d gliomas response to ICBs was lower than in other tumor types 271 

developed in the same patients, it remained in appearance superior to the one of TMB-272 

low gliomas [20].  273 

 274 

Potential explanations for the low response rates in gliomas 275 

A number of unique characteristics of hypermutated gliomas with other MMR-deficient 276 

tumors could at least in part explain the lack of response to ICB. First, the lack of clonal 277 

MSI and predominantly subclonal mutational burden of gliomas with post-treatment 278 

hypermutation could be associated with the absence of effective immune responses 279 



Prost et al. 

against tumor neoantigens [10,14,83,87]. Interestingly, patients with CMMR-d are more 280 

likely to harbor POLE/POLD1 defects which lead to ultra-hypermutation and 281 

accumulation of indels which are much more immunogenic neoantigens [88] (Table 1). 282 

This might explain the presence of CD8+ cells expressing PDL-1 and increased rate of 283 

benefit from ICB in this setting. Furthermore, the absence of significant T lymphocyte 284 

infiltrates and ICB response even in some gliomas with de novo MMR-d gliomas (Lynch 285 

syndrome) suggest that beyond the nature of tumor neoantigens, specificities in the 286 

immunosuppressive microenvironment of gliomas - especially in the population of 287 

immunosuppressive microglial and macrophage cells which are the dominant immune 288 

TME cell types in glial tumors [15] - contribute significantly to gliomas ICB resistance. A 289 

proposed mechanism of resistance in non-responders derived from the study of 290 

preclinical models is the expansion of Treg (FOX3P+) and macrophages in the tumor 291 

microenvironment [89]. In this study, increased CD8+ infiltrates and INF-γ signaling was 292 

observed in the responders, suggesting that additional biomarkers might enable further 293 

subgrouping hypermutated gliomas and identifying ICB responders. The benefit of 294 

neoadjuvant PD1 inhibitors may support this as surgery is known to increase the levels 295 

of macrophages within the tumors.  296 

 297 

Conclusions 298 

Recent studies have improved our understanding of the mechanisms responsible for 299 

TMB-H in gliomas and its potential role as prognostic and predictive biomarker. Efforts 300 

are ongoing to determine the optimal strategy for use of radiation therapy and 301 

chemotherapy in the context of TMB-H. Areas of investigation include the development 302 

of non-invasive biomarkers to monitor hypermutation and the investigation of novel 303 

therapeutic strategies that will prevent MMR-d acquisition in the most chemosensitive 304 

such as oligodendrogliomas (e.g. by using CCNU or PARP inhibition in combination with 305 

TMZ) to determine whether preventing TMB-H development might improve patients 306 

outcome. As regard immunotherapy strategies, response and clinical benefit is driven by 307 

a sum of complex factors which cannot be explained only with the number of mutations 308 

in tumor exomes. Neoantigen quality seems determinant to responses as well as the 309 

presence of effectors immune cells in the TME. Approaches aimed at increasing both 310 

tumor infiltration by cytotoxic lymphocytes are therefore likely both necessary in order to 311 

improve the response to immunotherapy in gliomas. Among several current strategies 312 

under investigation, IL-12 gene therapy combined with ICB showed safety and biological 313 

efficacy (production of IFN-γ) in HGG patients including one patient with post-treatment 314 

hypermutation [22,90].  315 

 316 
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Key points 317 

TMB-H in gliomas is observed in two distinct contexts associated with unique biology: de 318 

novo and post-treatment.  319 

De novo TMB-H is observed in tumors with inherited or somatic defects of the DNA 320 

polymerases POLE/POLD1 or the MMR system. 321 

TMZ together with MMR-d is responsible for TMB-H and resistance in post-treatment 322 

gliomas. 323 

TMB-H MMR-d gliomas harbor unique characteristics (e.g., low lymphocyte infiltration) 324 

compared to other cancers where MMR-d is common.  325 

ICBs response in TMB-H is uncommon except in rare contexts such as CMMR-d. 326 
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Figures and tables legends 642 

Figure 1. Characteristics associated with de novo (top) and post-treatment 643 

(bottom) TMB-H in gliomas. Frequency and distribution across ages represent 644 

adults/adolescents/infants. De novo TMB-H tumors are rare and related to young 645 

patients. In these tumors, the driver MMR/POLE mutations can be inherited or somatic. 646 

TMB-H is found in the newly-diagnosed tumor. The combination of increased TMB, 647 

increased indels burden (often observed in POLE-deficient tumors), and increased tumor 648 

infiltration by T cells make these tumors more likely to benefit from ICBs, although the 649 

relative contribution of each individual factor is unknown. Post-treatment TMB-H tumors 650 

are strongly related to the use of TMZ in chemotherapy sensitive tumors (eg MGMT-d). 651 

TMB-H is only found in the recurrent (post-chemotherapy) tumor. Increased tumor 652 

infiltration and ICB response in this context are both rare.  653 

 654 

 655 

Table 1. Case reports and series of TMB-H gliomas and CNS tumors treated with 656 

ICB and other immunotherapy approaches.  657 
§ Defined by prolonged disease control or radiological response as assessed by authors. 658 

A subset of patients in the Morgenstern et al. study [20] showed tumor control after initial 659 

flare.  660 
† Post-nivolumab progression data from patient reported in the Bouffet et al. 2016 study 661 

[17].  662 
†† POLE deficiency assessed based on mutational signature analysis. PFS of 9.9 months 663 

and OS of 21.6 months reported for the overall dataset.  664 

* PFS and OS not available for POLE-deficient vs POLE-proficient cases. PFS of 9.9 665 

months and OS of 21.6 months reported for the overall dataset.  666 

Abbreviations: IDH1/2-mut, IDH1/2-mutant; MMR-d, MMR-deficient; POLE-d, POLE-667 

deficient; TMZ, temozolomide; RT, radiation therapy; PFS, progression free survival; OS, 668 

overall survival; na, not available 669 



Table 1.Case reports and series of TMB-H gliomas and CNS tumors treated with ICB and other im    

§ Defined by prolonged disease control or radiological response as assessed by authors. A subset o               

† Post-nivolumab progression data from patient reported in the Bouffet et al. 2016 study [17].

†† POLE deficiency assessed based on mutational signature analysis. 

* PFS and OS not available for POLE-deficient vs POLE-proficient cases. PFS of 9.9 months and OS o        

Abbreviations: IDH1/2-mut, IDH1/2-mutant; MMR-d, MMR-deficient; POLE-d, POLE-deficient; TMZ               

Study IDH1/2-mut MMR-d Stage Prior TMZ

POLE-deficient

[17] Bouffet et al. 2016 (n=2) 0 (0%) 2 (100%) Recurrence 1 (50%)

[26] Johanns et al. 2017 (n=1) 0 (0%) NA Recurrence 1 (100%)

[28] Larouche et al. 2018 (n=1) † 0 (0%) 1 (100%) Recurrence 1 (100%)

[27] Anghileri et al. 2021 (n=1) ††  0 (0%) 1 (100%) Recurrence 1 (100%)

[19] Sathornsumetee et al. 2021 (n=1) 0 (0%) NA Recurrence 1 (100%)

[20] Morgenstern et al. 2021 (n=19) na 19 (100%) na na

POLE-proficient

[14] Touat et al. 2020 (n=11) 3 (27.2%) 11 (100%) Recurrence 11 (100%)

[22] McCord et al. 2021 (n=1) 1 (100%) 1 (100%) Recurrence 1 (100%)

[20] Morgenstern et al. 2021 (n=8) na 8 (100%) na na

POLE status na

[24] Lombardi et al. 2020 (n=13) 4 (30.7%) 13 (100%) na 13 (100%)

[21] Rittberg et al. 2021 (n=1) 1 (100%) 1 (100%) Primary 0 (0%)

[27] Alharbi et al. 2018 (n=1) na 1 (100%) Recurrence 1 (100%)

[20] Morgenstern et al. 2021 (n=4) na 4 (100%) na na



                mmunotherapy approaches.  

               of patients in the Tabori et al. study [20] showed tumor control after init  

                 of 21.6 months reported for the overall dataset.

       Z, temozolomide; RT, radiation therapy; PFS, progression free survival; O      

Prior RT Clinical benefit § PFS months OS months

2 (100%) 2 (100%) 9; 11 NA

1 (100%) 1 (100%) 2 NA

1 (100%) 1 (100%) 30 months, ongoing 30 months, ongoing

1 (100%) 1 (100%) 13 80,4

1 (100%) 1 (100%) 15 20

na 13 (68.4%) na * na *

11 (100%) 0 (0%) 1,38 8,07

1 (100%) 0 (0%) 2 na

na 1 (12.5%) na * na *

13 (100%) 0 (0%) 2,2 5,4

0 (0%) 1 (100%) 20 NA

1 (100%) 1 (100%) 10 na

na 3 (75%) na * na *



                            tial flare.

                OS, overall survival; na, not available

Notes

Both patients had combined MMR-d and POLE-d (CMMR-d); one of patients is 
included in Larouche et al. [86] 

Patient with germline POLE deficiency

Response to combined nivolumab and ipilimumab after progression on 
nivolumab
De novo TMB-H patient with high lymphocyte infiltration and high burden of 
clonal variants in both primary and recurrent tumor samples

Clinical benefit with combined bevacizumab and pembrolizumab

Higher TMB, indel burden, T-cell infiltration and PDL1 expression in tumors with 
combined MMR-d and POLE-d as compared to MMR-d only tumors

De novo (5) and post-treatment (6) TMB-H samples

Loss of MMR-d clones after local IL-12 and anti-PD-1 combination therapy

Significantly less response seen compared to POLE-deficient cases

Neither TMB nor CD8+ T-cell infiltration associated with pembrolizumab activity

CMMR-d patient

CMMR-d patient

Tumor sequencing data not available. 2 Lynch and 2 CMMR-d patients
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