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Philippe Flandre a, and John O’Quigley b

December 9, 2021

We read with interest the paper, ”Improving testing and description of treat-
ment effect in clinical trials with survival outcomes” by Yang [1] and related
works published by Yang and Prentice [2, 3]. Alternatives to absence of treat-
ment effect on survival are most commonly framed within the proportional haz-
ards model structure. When broader alternatives of a non-proportional hazards
nature are of interest it is known that the high efficiency of the log-rank test
can be lost. One test that focuses on this issue is the test of Yang and Prentice
[3], based on the short-term and long-term hazard ratio model. The authors
argue that the test is able to detect departures from a null hypothesis of no
effect against quite broad alternatives. We recall the model on which this test is
based and the test itself. Theoretical work and simulations appear to show the
test to work well. However, it is important to underline that the test can only
be used when the placebo group is clearly defined. Failing to correctly iden-
tify which group is the placebo group can have serious consequences and lead
to erroneous conclusions. The results may not be interpretable. In situations
where we wish to compare Treatment A with Treatment B, neither of which can
be considered to correspond unambiguously to the placebo group, our advice
would be to avoid this test altogether. We give two examples before concluding
that the validity of this test hinges crucially upon a clear and sharp definition
of the placebo group.

1 Short term and long term hazard ratio model

Consider a sample of n observations for which, for the subject i, i ∈ {1, . . . , n},
the observed survival is denoted Xi. The true survival, Ti may not be observed
due to a censoring variable, Ci and we have: Xi = min(Ti, Ci). These different
outcomes can be distinguished and we have; δi = ITi≤Ci , where I is an indicator
function. It is common to broaden the setting to include covariables but we limit
our discussion to the 2-sample problem via the use of the group indicator vari-
able Zi, taking the value 1 if the ith subject is from the first group and is zero
otherwise. The data can be summarized as: {(Xi, δi, Zi) , i = 1, . . . , n} , where,
from a sampling viewpoint, the n triplets are taken to be independent and iden-
tically distributed copies of the random variable (X, δ, Z), with X = min(T,C)
and δ = IT≤C . The hazard, or instantaneous risk, function is defined by,
λ(t) = limh ↓ 0 P (Ti ∈ [t, t+ h[ | Ti ≥ t)h, t ≥ 0. and the survivorship

function is S(t) = exp
(
−
∫ t

0
λ(s)ds

)
, t ≥ 0. Our problem concerns the com-
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parison of two groups with hazards, λT (t) and λP (t) and survivorship functions,
ST (t) and SP (t) respectively. Yang and Prentice [2] suggested modelling any
potential differences between these two hazard rates by,

λT (t) = θ1θ2θ1 + (θ2 − θ1)SP (t)λP (t), 0 ≤ t ≤ T , (1.1)

where θ2 and θ1 are two positive parameters. Special cases of this model
arise under different specifications for the parameters, in particular we obtain
proportional hazards when θ2 = θ1 and the proportional odds model when
θ1 = 1. The idea of the model is to increase the flexibility of all the special
cases, in particular the proportional hazards formulation, and covers such cases
as crossing hazards for example. The model’s parameters are such that θ1 =
limt↓0 λT (t)/λP (t) and θ2 = limt↑T λT (t)/λP (t). In this way we can argue that
θ1 represents the relative risk in the short term while θ2 would correspond to
the relative risk in the long term. Estimation is carried out by working with
the partial likelihood that corresponds to the model. The authors show how to
introduce covariates into the model but, here, we limit ourselves to the 2-group
problem only.

Recall that the weighted log-rank test is based on the statistic LWn where;

LWn =

kn∑
j=1

Wn(tj)Z(tj)− E0(Z | tj)

√√√√ kn∑
i=1

Wn(ti)2V0(Z | ti), (1.2)

and in which Wn is a positive weight function defined on the interval [0, 1] and,
for technical reasons F∗t -predictable. The choice of weights allows us to obtain
tests with greater power for specific departures from a null hypothesis of absence
of effect. When the true effects, β(t), have a particular form, the power of our
test will be maximized by a choice of weights that reflect this form. The proposal
of Yang and Prentice [3] is based on an adaptive strategy that reduces to a test
close to the log-rank test when the risks show themselves to be proportional.
The test leans on the class of models proposed by these same authors [2] and
defined by Equation 1.1. We would hope for the test to have more generality
than either the log-rank test or a test based on a proportional odds model since
both of these fit into this model structure as special cases. Their proposal is
to use both the structure of the above weighted log-rank test and that of the
above model by taking as weights LW1,n and LW2,n having respective weights

W 1
n(t) = λ̂T (t)/λ̂P (t) and W 2

n(t) = λ̂P (t)/λ̂T (t), where the estimators of the

hazards in the groups receiving placebo, λ̂P or the treatment, λ̂T are based on
the model (1.1).

The difficulty with Equation 1.1 becomes quickly apparent upon inspection.
If we use the equation to express placebo in terms of treatment, rather than
treatment in terms of placebo, then we find ourselves with an entirely different
model. This is unlike anything we are used to seeing in say linear regression,
logistic regression or Cox regression where, if we change the group definition
from (0,1) to (1,0), then, while the sign of the regression coefficient may change,
its magnitude will remain the same. Any statistical test will be unchanged. As
we will see in the examples of the following section, not only can such a change
in coding lead to changes in the results, these changes can be very large. Indeed,
there are examples where the method will lead to a conclusion of a good fit with
one coding but a very poor fit with another. All interpretation is lost if we allow

2



for a change of group coding. For this reason the placebo group needs to be
unambiguously defined and it needs to be systematically attributed the coding
zero.

2 Practical examples of changes in coding
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Figure 1: Kaplan-Meier curves of the trial conducted by the Gastrointestinal
Tumor Study Group comparing chemotherapy alone with chemotherapy and
radiation therapy in the treatment of locally unresectable gastric cancer.

Our first illustration comes from the paper of Yang [1] and corresponds to
the second example from that paper. The Gastrointestinal Tumor Study Group
conducted a trial comparing chemotherapy alone with chemotherapy and radi-
ation therapy in the treatment of locally unresectable gastric cancer [4]. Each
treatment arm had 45 patients, of which 2 observations from the chemother-
apy group and 6 observation from the combination group were censored. These
data are also provided publicly with the YPmodel package. The coding for the
chemotherapy group was represented by Z = 0 whereas for the coding for the
chemotherapy and radiotherapy group was given by Z = 1. The data were
analyzed by Yang [1] and the log-rank test has a p value of 0.64, a value which
remains unchanged by a change in coding. The adaptative weighted log-rank
test (LRAD) gives a p value of 0.035 using the resampling method with 1 mil-
lion repetitions. The residual based goodness-of-fit test gives a p−value of 0.10
while the contrast based goodness-of-fit results in a p−value of 0.60 [5]. Now,
if we reverse the coding so that Z = 1 for chemotherapy alone while Z = 0 for
chemotherapy and radiotherapy, then we find a p−value of 0.08 for the LRAD
test, in contrast to the 0.035 found with the original coding, indicating no sig-
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nificant difference between the two randomized groups (Table). As concerns
the goodness-of-fit tests, we find, under the new coding, that the residual based
goodness-of-fit test gives a p−value of 0.64 while the contrast based goodness-
of-fit results in a p−value of 0.35.
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Figure 2: Kaplan-Meier curves for the kidney dialysis trial comparing surgically
placed catheter with percutaneous placement of catheter.

Our second illustration comes from a trial on kidney dialysis. The details
can be found in Lin and Xu [6]. The purpose of this example is to show that
in a situation where there is no clearly defined placebo group then we are not
able to interpret the results. This trial was designed to assess the time to first
exit-site infection (in months) in patients with renal insufficiency. There are
two treatment groups. Forty-three patients utilized a surgically placed catheter
(Group I), and 76 patients utilized a percutaneous placement of their catheter
(Group II). Catheter failure was the primary reason for censoring. Briefly, cuta-
neous exit-site infection was defined as a painful cutaneous exit site and positive
cultures, or peritonitis. We are interested in testing if there is a statistically sig-
nificant difference in the time to cutaneous exit-site infection between patients
whose catheter was placed surgically and the patients who had their catheters
placed percutaneously. As just mentioned, it is not at all clear that either of
these groups could be unambiguously taken to be the placebo group.

The log-rank test leads to p = 0.11, a value which, once again, is unaltered by
any change in coding. In the first instance, for patients who utilized a surgically
placed catheter the coding Z = 1 was used whereas we took Z = 0 for patients
who utilized a percutaneous placement of their catheter. In this case, the LRAD
is not statistically significant with p = 0.14. The residual-based goodness-of-
fit test produced the value p = 0.009 indicating a strong departure from the
proportional hazards assumption. If we reverse the coding so that now Z = 0
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Table 1: Analysis using the short-term and long-term model in two examples.
Gastric data: coding 1/0 chemotherapy group (Z = 0) and chemotherapy +
radiotherapy group (Z = 1); inverse for coding 0/1. Kidney dialysis data:
coding 1/0 surgically placed catheter (Z = 1) and percutaneous placement of
catheter (Z = 0); inverse for coding 0/1.

p values

Study coding LRAD goodness of fit test
Gastric 1/0 0.04 0.10

0/1 0.08 0.64
Kidney Dialysis 1/0 0.14 0.01

0/1 0.04 0.41

for patients who utilized a surgically placed catheter and Z = 1 for patients who
utilized a percutaneous placement of their catheter we find very different results.
Under the reversed coding, the LRAD test indicates a significant difference
between the two groups with p = 0.04. Unlike the goodness-of-test obtained
under the orginal coding, under the new coding the residual-based test does not
indicate a departure from the proportional hazards assumption with p = 0.41. In
this case both conclusions - (1) there exists a difference between the treatments
and (2), the proportional hazards assumption appears reasonable, are turned
on their head by a simple change of coding. Since we do not know which group
ought be considered the placebo group, we are not able to interpret the results
of the tests.
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