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The ability to engineer the properties of quantum optical states is essential for quantum informa-
tion processing applications. Here, we demonstrate tunable control of spatial correlations between
photon pairs produced by spontaneous parametric down-conversion. By shaping the spatial pump
beam profile in a type-I collinear configuration, we tailor the spatial structure of coincidences be-
tween photon pairs entangled in high dimensions, without effect on intensity. The results highlight
fundamental aspects of spatial coherence and hold potential for the development of quantum tech-
nologies based on high-dimensional spatial entanglement.

I. INTRODUCTION

High-dimensional quantum entanglement is an essen-
tial resource for advancing fundamental research and
quantum technologies [1]. In this respect, two-photon
states entangled in transverse spatial position and mo-
mentum exhibit high-dimensional entanglement and have
been intensively investigated in the last decade. They are
at the basis of many quantum imaging approaches, in-
cluding ghost imaging [2], sub-shot-noise [3], resolution-
enhanced [4–6] imaging and quantum lithography [7].
In quantum communications, high-dimensional spatial
entanglement has been exploited to develop quantum
cryptography protocols with higher information capac-
ity [8, 9] and increased noise resilience [10] by projecting
photons onto spatial modes carrying angular momentum
(OAM), but also by measuring them in their position-
momentum bases [11, 12]. All these applications strongly
rely on the two-photon states properties, including their
spatial entanglement structure that generally determines
the capacities of the quantum-based technique. For ex-
ample, it defines the information bound in certain high-
dimensional quantum communication schemes [13] and
the spatial resolution in quantum imaging scheme [14].
However, most experimental processes used to produce
entangled pairs are not flexible and adjusting pairs prop-
erties to their specific use is often a challenging task.

The most used technique for producing entangled pho-
ton pairs is spontaneous parametric down-conversion
(SPDC). In SPDC, the properties of down-converted
light are entirely set by the type and geometry of the non-
linear crystal and the pump beam characteristics [15].
Therefore, photon pairs with the desired joint probabil-
ity distribution (JPD) may not be collected directly at
the output of the crystal. The question that arises is
how to manipulate independently different aspects of the
JPD of entangled photon pairs produced by SPDC and,
importantly, the sought-after methods that work for any
pump wavelength and any nonlinear crystal.
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Numerous methods have been developed to control the
type and structure of correlations of down-converted pho-
tons. The majority of them concern the time-frequency
aspects of the JPD, including some based on an appropri-
ate selection of the nonlinear crystal length and its dis-
persive properties [16–18], and others on spectral control
of the pump [19] and down-converted light [20]. To shape
the spatial structure of the JPD, most approaches act di-
rectly on the down-converted photons, such as wavefront
shaping [21, 22], quantum interferometers [23, 24], meta-
surfaces [25, 26] and rotating diffusers [27]. Recently, par-
tial control of the spatial JPD has been achieved through
spatial shaping of the pump beam profile, for example
to produce entangled Airy photons [28], compensate for
optical aberrations [29], and to influence its OAM [30]
and position-momentum degree of entanglement [31, 32].
However, a generic method to deterministically control
the spatial JPD of entangled photon pairs remains a chal-
lenge.

In this work, we propose a novel experimental ap-
proach based on wavefront shaping of the SPDC pump
beam to produce entangled photon pairs with tunable
spatial correlations in high dimension.

II. PUMP-SHAPING AND THE TWO-PHOTON
STATE

We place ourselves in a usual context for SPDC, that is
we assume that the pump laser and down-converted fields
are monochromatic, have a well defined polarization and
can be faithfully described in the paraxial approximation.
In this regime, the two-photon state can be expressed as
[33]:

|Ψ〉 =

∫ ∫
dq1dq2Φ(q1,q2) |q1〉 |q2〉 (1)

with the normalized angular spectrum of the two-photon
state Φ (q1,q2) given by

Φ (q1,q2) = Vp (q1 + q2)Vc (q1 − q2) (2)

with
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• Vp the normalized angular spectrum of the pump

• Vc (q) = 1
π

√
2L
K sinc

(
L|q|2
4K

)
with L the length of

the nonlinear crystal and K wave number of the
pump field

It is straightforward to see in equation 2 that the angular
spectrum of the pump directly shapes that of the two-
photon state. In this work, we aim at manipulating the
pump angular spectrum through spatial pump shaping
in order to engineer the angular spectrum of the two-
photon state. For this shaping to be observed, it should
modulate frequencies such that q1 − q2 does not belong
to the kernel of Vc. Depending on the crystal parameters,
this condition offers some freedom for the observation of
spatial modulations. As an illustration, we now present
an analytical solution for the case of a Bessel-Gauss pump
beam [34, 35].

First, in many SPDC experimental conditions, the sinc
function in 2 can be approximated by a Gaussian func-
tion [36], such that

Vc (q) ' δ exp

(
−δ

2 |q|2

2

)
(3)

with δ ' 0.257
√
L/4K. At its waist, i.e. z = 0, a Bessel-

Gauss beam of order l can be expressed as

BG(r, φ, 0; l) = AJl(krr) exp(ilφ) exp(− r
2

w2
g

). (4)

with Jl the lth Bessel function of the first kind. Its an-
gular spectrum is given by [37]:

VBGp (q, φq, 0; l) =il−1
wg
w0

exp(ilφq) exp(−q
2 + k2r
w2

0

)

× Il
(

2krq

w2
0

)
(5)

with w0 = 2/wg and Il is the lth order modified Bessel
function of the first kind. Thus, for a pump beam of the
0th order Bessel-Gauss beam, the two-photon state can
be expressed analytically:

Φ (q1,q2) =
πδ

kr

−iw2
g

2
exp(−4

|q1 + q2|2 + k2r
w2
g

)

× I0
(

8kr |q1 + q2|
w2
g

)
exp

(
−δ

2 |q1 − q2|2

2

)
.

(6)

Even though not all angular spectrum functions allow
for such analytical decompositions, numerical integra-
tion easily allows the tailoring of the pump spatial profile
for given two-photon state spatial properties. However,
the space of accessible two-photons states through pump
shaping is fundamentally limited in terms of symmetries
by the fact that the angular spectrum is a function of
q1 + q2.

III. EXPERIMENT

Figure 1. A spatially monomode, low-power, continuous wave
laser whose angular spectrum is tailored using a SLM and a
4-f system and injected into a BBO crystal in a type-I SPDC
configuration. Using two different lenses (fa

3 and fb
3 ), the

near- and far-field of the crystal can be measured.

To observe the effect of pump shaping on the two-
photon state, we used the experimental setup described
in Figure 1. A pump beam at 405 nm is spatially modu-
lated using a spatial light modulator (SLM) and imaged
onto the front surface of a β-barium borate (BBO) crys-
tal. The pump beam is filtered out using a narrow band
filter at 810nm. The distance between the crystal and the
camera sensor d was finely tuned so that by positioning
the imaging lens of focal length f3 precisely half-way and
switching between two different lenses a and b, we could
image the near-field of the crystal plane (2f-2f configura-
tion with fa3 = d/4) or its far-field (f-f configuration with
f b3 = d/2). We used an EMCCD camera (Andor iXon)
operated in photon counting mode to measure photon
correlations, following the procedure described in [38].

IV. RESULTS

The spatial profile of the pump beam was engineered to
produce a variety of two-photon states. By displaying an
axicon profile on the SLM, the beam pumping the crys-
tal can be shaped into a Bessel-Gauss beam [39, 40]. In
Figure 2 (a), we illuminate the crystal with a Fourier-
transformed Bessel-Gauss beam and observe that the
down-converted photons’ autoconvolution is shaped into
a Bessel function. The autoconvolution is defined as the
projection of the joint probability distribution of pho-
ton pairs in the sum-coordinate basis {x1 + x2, y1 + y2}.
Likewise, when pumping directly with a Bessel-Gauss
beam (Figure 2(b)), the obtained autoconvolution is the
Fourier transform of a Bessel function, which is a ring-
shaped function. By displaying a checker-board pattern
(Figure 2(c)) or a random pattern (Figure 2(d)), the au-
toconvolution is likewise shaped as the Fourier transform
of the pumping angular spectrum.

To further illustrate correlations engineering of the
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Figure 2. Autoconvolutions for different pump profiles with
SLM profiles in inset. In (a), the pump beam is shaped to
the Fourier transform of a Bessel beam, i.e. ring-shaped and,
in (b), directly as a Bessel beam. In (c), a checker board is
displayed, while in (d) we display a random pattern. In each
case, the autoconvolution measured for the down-converted
photons corresponds to the pump beam’s angular spectrum.

down-converted photons, we also measured the photon
correlations between pairs of symmetric rows of the cam-
era, as shown in Figure 3. An element (kx1, kx2) there-
fore corresponds to the joint probability of detecting one
photon at k1 = (kx1, ky1) together with the second pho-
ton at k2 = (kx2,−ky1) (summed over all ky1). In
Figure 3 (a), the strong antidiagonal is a signature of
momentum conservation between photons produced by
SPDC in the classical case of a Gaussian pump. In the
case of a Bessel-Gauss pump (Figure 3(b)), we clearly
observe shaping of the photon correlations by a split of
the antidiagonal. Indeed, in a Bessel beam, pump pho-
tons all possess the same momentum in absolute value:
having fixed ky1 + ky2 = 0, the conservation of momen-
tum allows for two different solutions kx2 = −kx1 ± |kp|,

which correspond to the two antidiagonals.

V. CONCLUSION

We demonstrate a versatile approach for spatial cor-
relations engineering of SPDC photon pairs. It is fully
compatible with, and could easily be integrated in any
conventional type-I SPDC setup, and should also readily
be applicable to other pair production processes such as
type-II SPDC and atomic vapor systems. This approach
also exhibits the advantage of maintaining the down-
converted photon rate: indeed, the losses introduced are
only affecting the pump beam and can easily be compen-
sated by an increase in pump power. Tomography of the
down-converted field, in the fashion of [41], is necessary

Figure 3. Average of the photon correlations between sym-
metric rows of the cameras for all ky1 = −ky1. (a): Gaussian
pump. Clear anticorrelation in the momentum of the down-
converted photons is present as expected. (b): Bessel-Gauss
pump. The antidiagonal is here split in two, demonstrating
the possibility of correlation properties engineering.

to completely characterize the produced states.
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