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We investigate the effect of the metallic character of solid substrates on solid-liquid interfacial
thermodynamics using molecular simulations. Building on the recent development of a semi-classical
Thomas-Fermi model to tune the metallicity in classical molecular dynamics simulations, we intro-
duce a thermodynamic integration framework to compute the evolution of the interfacial free energy
as a function of the Thomas-Fermi screening length. We validate this approach against analytical
results for empty capacitors and by comparing the predictions in the presence of an electrolyte with
values determined from the contact angle of droplets on the surface. The general expression derived
in this work highlights the role of the charge distribution within the metal. We further propose a
simple model to interpret the evolution of the interfacial free energy with voltage and Thomas-Fermi
length, which allows us to identify the charge correlations within the metal as the microscopic origin
of the evolution of the interfacial free energy with the metallic character of the substrate. This
methodology opens the door to the molecular-scale study of the effect of the metallic character of
the substrate on confinement-induced transitions in ionic systems, as reported in recent Atomic
Force Microscopy and Surface Force Apparatus experiments.

Significance statement The properties of solid-liquid interfaces crucially depend on the delicate
balance of interactions of fluid molecules between them and with the surface atoms. Recent ex-
periments demonstrated the dramatic effect of the metallicity of the substrate on the behavior of
confined liquids. Here we develop a method to investigate the interfacial thermodynamics as a func-
tion of the screening length within the metal using molecular simulations. We demonstrate the role
of charge correlations in the material on the interfacial free energy and provide a simple model to
capture the effects of metallicity and voltage. Our approach opens the door to the molecular-scale
study of the effect of the metallic character of the substrate on confinement-induced transitions in
ionic systems.

PACS numbers:

The properties of solid-liquid interfaces crucially depend on the delicate balance of interactions of fluid molecules
between them and with the surface atoms. For metallic surfaces, the possibility to impose the electric potential
provides a handle to control interfacial properties, e.g. in electro-wetting (as measured by the contact angle, which
reflects interfacial free energies) [1–3], electro-tunable friction [4–8], or electro-mechanical couplings between surfaces
across liquid films [9]. The wettability of electrodes also plays a role on electrochemical reactions [10] and the
surface thermodynamics of metal nanoparticles can be exploited e.g. to fabricate electrotunable nanoplasmonic
mirrors [11]. From the theoretical point of view, thermodynamic cycles and continuum electrostatics allow, for
example, understanding of the quadratic dependence of interfacial free energies with voltage.

Recent experiments have further demonstrated the dramatic effect of the metallicity of the substrate on the behavior
of ionic liquids confined under the tip of an Atomic Force Microscope (AFM) [12, 13] or in a Surface Force Apparatus
(SFA) [14], even in the absence of voltage. The observed capillary freezing could be rationalized by considering the
polarization of the metal by the liquid, usually described in terms of image charges [15–19]. This polarization depends
on the screening of the electric field within the metal and can be accounted for with the Thomas-Fermi model, which
quantifies the metallic character by introducing a Thomas-Fermi screening length, lTF . Despite its simplicity (it is
the long wave-length and static limit of Lindhard theory of screening [20]) and the limitations of the underlying free
electron gas model (e.g. to predict the work function of noble metals [21]), this approach already proved successful
to investigate the capacitance and structure of electrode-electrolyte interfaces at the mean-field level [22, 23] and to
analyze the effect of lTF on the interactions between ions at the surface [24], even though analytical calculations of
the resulting phase behavior remain out of reach beyond a simplified one-dimensional description [25].

In addition, such continuous approaches neglect molecular features that may play an important role on the interfacial
properties, such as the discrete nature of matter (on both the solid and liquid sides), which leads to the layering of the
fluid at the surface, the orientation of the solvent molecules and molecular ions, or even possible templating effects
modifying the phase behavior of the fluid. Molecular simulations have therefore become an essential tool to investigate
the interface between fluids and metallic surfaces. Even though ab initio molecular dynamics (MD), for which methods
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to control the potential of electrodes are now available [26, 27], provide the most accurate description of such systems,
even state-of-the-art studies of metal-electrolyte interfaces [28–32] are still limited to length and time scales rarely
compatible with the computation of properties such as interfacial free energies. The development of methods allowing
to impose the potential between two electrodes in classical molecular dynamics simulations [33–36] opened the way
to the molecular understanding e.g. of aqueous and non-aqueous electrochemical cells [37–39], of water and ions
on platinum surfaces [40–43] or voltage-driven transitions in ionic liquids on graphite electrodes [44, 45] (see e.g.
Refs. 46, 47 for recent reviews). The role of image charges on the interfacial properties of aqueous solutions [48] and
ionic liquids has also been examined in molecular simulations [49, 50], but the classical description remained limited
to the case of ideal conductors, corresponding to a vanishing lTF . For comparison, typical values of the Thomas-Fermi
length are 0.5 Å for good metals such as platinum and gold, or 3.6 Å for graphite [12]. We have recently extended
the constant-potential method to tune the metallicity in classical molecular simulations based on the Thomas-Fermi
model [51] and an alternative approach to account for screening within the metal with mobile charges has also been
proposed in Ref. 52. However direct computation of interfacial free energies for each lTF remains a great challenge.

Here, we investigate the influence of metallicity on interfacial free energies using molecular simulations. After
a preliminary discussion of contact angles on an insulating or metallic graphite surface, we introduce the relevant
thermodynamic quantities to measure the effects of metallicity and voltage. We then present a thermodynamic
integration method to efficiently compute the evolution of interfacial free energies with the Thomas-Fermi screening
length lTF and with voltage. We provide results for empty capacitors and full electrochemical cells consisting of an
aqueous electrolyte between graphite or gold electrodes. We finally explain the microscopic origin of the effect of
metallicity by analyzing the charge correlations within the metal.

Contact angle on insulating or metallic surfaces

We first illustrate the influence of the metallic character of the substrate on interfacial free energies by considering the
contact angle of droplets of a 1M aqueous NaCl solution on graphite. The two limits of insulating or perfectly metallic
substrates, corresponding to infinite and vanishing Thomas-Fermi length lTF , respectively (resp.), are modeled, all
other things being equal, with fixed neutral charges or fluctuating charges determined on-the-fly in order to satisfy
a constant-potential condition of the carbon atoms (see SI Appendix ). The system is shown in the metallic case
in Figs. 1a and 1b. The contact angle is determined from the equilibrium shape of the droplet, using a fit of the
liquid-vapor interface by a spherical cap (see Fig. 1c).

In order to facilitate the comparison between the insulating and metallic cases, panels 1d and 1e report the corre-
sponding one-dimensional density profiles as a function of the height z and radial distance to the droplet center of
mass r. Apart from the layered structure at the interface, the simulation results (solid lines) are very well described
by a homogeneous spherical cap (dashed lines – see SI Appendix for details). There is a significant (even though
small) effect of the metallic character of the substrate on the shape of the droplet. The contact angle is determined
from the intersection of the spherical cap with the solid-liquid interface, taken as the plane of the first maximum in
the water density profile. This leads to θ(lTF = 0) = 74.6± 0.3◦ and θ(lTF →∞) = 79.6± 0.3◦. The metallic surface
therefore behaves as more hydrophilic than the insulating one. The link with interfacial free energies is provided by
the Young equation

cos θ(lTF ) =
γSV (lTF )− γSL(lTF )

γLV
, (1)

where γSV , γSL and γLV are the solid/vapor, solid/liquid and liquid/vapor surface tensions, respectively. By intro-
ducing the difference ∆γSL(lTF ) = γSL(lTF ) − γSL(0) in the solid-liquid interfacial free energy per unit area for a
finite lTF with respect to a perfect conductor (lTF = 0), and similarly ∆γSV (lTF ) for the solid-vapor interface and
∆ cos θ(lTF ) for the contact angle, we obtain

∆γSL(lTF )−∆γSV (lTF ) = −γLV ∆ cos θ(lTF ) . (2)

The value of γLV is obtained from the normal and tangential components of the pressure tensor, pN and pT , in a
simulation of a slab of electrolyte in vacuum with a box length Lz in the direction perpendicular to the interfaces, as
γLV = (pN − pT )Lz/2 = 62.7 ± 0.6 mN m−1. Together with ∆ cos θ(∞) = −0.09 ± 0.01, this leads to an excess free
energy per unit area ∆γSL(∞)−∆γSV (∞) = 5.4±0.6 mN m−1 of the insulating surface with respect to the perfectly
metallic one. Note that the change in contact angle, for a given value of the free energy difference (i.e. ∆ cos θ), would
be larger if the angle θ itself were less close to 90◦. Another important aspect of metallic surfaces is the possibility to
tune the interfacial tension by applying voltage, as discussed below – opening the way to more dramatic effects such
as electrowetting.
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FIG. 1: Contact angles of aqueous NaCl solution droplets on graphite. Side (a) and top (b) views of the simulated
system. In (b), only a quarter of the liquid is shown in order to visualize the instantaneous charges (red for negative

and blue for positive) of the carbon atoms in the metallic case. (c) Two-dimensional density map as a function of
the height z and the radial dimension r; the blue points locate the position of the liquid-vapor interface, fitted to a

circle (solid black line) to determine the contact angle. The corresponding one-dimensional density profiles as a
function of the height z and radial distance to the droplet center of mass r are shown in panels (d) and (e). In both

panels, solid (resp. dashed) lines are the simulation results (resp. predictions for a homogeneous sphere), for the
insulating (solid cyan, dashed blue) and metallic (solid orange, dashed red) systems.

Interfacial free energies vs metallicity and voltage

We now turn to the more direct and systematic study of the effect of metallicity and voltage on interfacial free
energies. We consider capacitors consisting of two electrodes characterized by the same lTF and maintained at
fixed voltage ∆Ψ, separated either by vacuum or by an electrolyte (see Fig. 2 a and d), in order to estimate free
energy differences corresponding to solid-vapor (SV ) or solid-liquid (SL) interfaces, respectively. For a capacitor
characterized by a voltage-independent capacitance, the accumulated charge at a fixed voltage ∆Ψ between the
electrodes is Q = CA∆Ψ, with C the capacitance per unit area and A the electrode surface area, and the energy

stored upon charging is ∆U = Q∆Ψ
2 = CA∆Ψ2

2 . Taking into account the reversible work −Q∆Ψ performed on the
system, this provides the free energy change per unit area associated with the charge of a given capacitor

F∆Ψ
SX (lTF )− F 0

SX(lTF )

A
= −CSX(lTF )

2
∆Ψ2 , (3)

with X = L, V and CSX(lTF ) the corresponding capacitance per unit area. One can also consider the difference, for
fixed ∆Ψ, between perfectly metallic electrodes and electrodes characterized by a finite lTF

∆F∆Ψ
SX (lTF ) = F∆Ψ

SX (lTF )− F∆Ψ
SX (0) . (4)

Combined with the previous equation, this leads to

∆F∆Ψ
SX (lTF )

A
=

∆F 0
SX(lTF )

A
+
CSX(0)− CSX(lTF )

2
∆Ψ2 , (5)

(see the thermodynamic cycle in SI Appendix ). We now introduce

∆∆F∆Ψ
SX (lTF ) = ∆F∆Ψ

SX (lTF )−∆F 0
SV (lTF ) , (6)
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which can be efficiently obtained from simulations using the method presented below. Noting that for ∆Ψ = 0 V, the
two interfaces of each capacitor are identical, this quantity provides the link with the difference in interfacial tensions
and contact angle (see Eq. 2)

∆∆F 0
SL(lTF ) = −2AγLV ∆ cos θ(lTF ) . (7)

The computation of free energies using molecular simulations requires dedicated approaches, typically involving a
thermodynamic path from a reference state with known properties. One possibility is to compute the work of adhesion
of the liquid on each surface, as done in Ref. 50 to compare two models of gold in contact with an ionic liquid, in the
absence of voltage. Here, we introduce instead a thermodynamic integration approach, to efficiently compute the free
energy change, for a given capacitor and fixed voltage, as a function of the Thomas-Fermi length lTF .

Thomas-Fermi Thermodynamic Integration

The classical description of metallic electrodes at constant potential using fluctuating charges [33, 34] was recently
extended to materials characterized by a finite lTF [51]. In a nutshell, the system involves mobile molecules and
ions of the electrolyte, with N point charges at positions rN , and M immobile electrode atoms with atom-centered
Gaussian charge distributions with fluctuating magnitudes q representing the excess charge. The potential energy
UTF entering in the model Hamiltonian of the system (see SI Appendix ) can be written as

UTF (rN ,q) =
qTA(lTF )q

2
− qTB(rN ) + C(rN ) , (8)

with B the vector containing the electrostatic potentials due to the electrolyte on each electrode atom, C a scalar
consisting of all the terms not depending on the electrode charges q, and the matrix

A(lTF ) = A0 +
l2TF d

ε0
I . (9)

A0 is the electrostatic interaction matrix between electrode atoms for lTF = 0, which depends on their positions and
the width of the Gaussian distributions and takes into account the periodicity of the system imposed in molecular
simulations of condensed matter [34, 47, 53], d is the atomic density of the electrode, ε0 the vacuum permittivity and
I is the identity matrix.

In practice, the set of electrode charges is determined at each time step in order to satisfy the constant potential and
the electroneutrality constraints. Such Born-Oppenheimer (BO) dynamics suppress some charge fluctuations from
the original constant-potential ensemble, and their effect must be taken into account separately when evaluating some
properties such as the differential capacitance [36]. This is also true for the free energy, obtained from the partition
function for a system at fixed NV T∆Ψ as F (lTF ) = −kBT lnZ(lTF ). We show in SI Appendix, using thermodynamic
integration between the perfect metal case (lTF = 0) and a non-perfect metal with finite lTF and extending the
statistical mechanics derivations of Ref. 36 to non-ideal metals, that the free energy difference defined in Eq. 4 is given
by

∆F∆Ψ
SX (lTF ) = ∆FnBO(lTF ) +

lTF∫
0

dl
ld

ε0

〈
(q∗)Tq∗

〉
l,∆Ψ

, (10)

where ∆FnBO(lTF ) is the contribution beyond BO sampling, q∗ = {q1, . . . , qM} are the instantaneous electrode
charges in the BO dynamics (for simplicity, we drop the exponent when referring to individual charges), and the
ensemble average of the sum of their squares is taken at fixed screening length l and voltage ∆Ψ. Even though the
integrand can be expressed simply with the charges, its origin is the kinetic energy of the electron (treated at the
Thomas-Fermi level), as discussed in SI Appendix, and the ensemble average ensures that the effect of all electrostatic
and non-electrostatic interactions is taken into account, since they all contribute to the relative weights of microscopic
configurations explored by the system.

For the empty capacitor with ∆Ψ = 0 V, there is no BO contribution because no charges are induced on the surface.
It then follows from Eq. 10 that ∆FnBO(lTF ) = ∆F 0

SV (lTF ) only depends on the electrode configuration, i.e. neither
on the presence or absence of electrolyte nor on voltage, and therefore cancels out in differences. In particular, the
difference introduced in Eq. 6 reduces to the BO contribution to the free energy difference sampled by molecular
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dynamics:

∆∆F∆Ψ
SX (lTF )

A
=

lTF∫
0

dl
ld

ε0A
〈
(q∗)Tq∗

〉
l,∆Ψ

. (11)

Eq. 11 provides the practical expression to apply our thermodynamic integration approach as a function of the
metallicity of the electrode. It only requires a set of independent simulations for an ensemble of lTF values, during
which the integrand is straightforwardly obtained from the atomic electrode charges, thereby bypassing the expensive
computation of free energies for each lTF .

Empty capacitor

We first consider the case of an empty capacitor, consisting of two graphite electrodes of surface area A, each with
n = 50 layers with interplane distance a, separated by a range of distances L between the first atomic planes (see
Fig. 2a), held at a potential difference ∆Ψ = 1 V. In such a system, the total charge on each electrode is well predicted
by continuum theories, the charge per plane decreases exponentially within the electrode (with a decay length lTF )
and is homogeneous within each atomic plane [51]. By further assuming that the number of planes is large, one
can write the charge per plane (indexed by k ∈ [[1,∞[[ in each electrode) as Qk = ±Qe−(k−1)a/lTF (1 − e−a/lTF ).
Introducing m the number of atoms per plane, related to the atomic density of the electrode by d = m/aA, and the
capacitance CSV (lTF ) = ε0/(L + 2lTF ) corresponding to a vacuum slab and two Thomas-Fermi electrodes in series,
Eq. 11 finally leads to

∆∆F∆Ψ
SV (lTF )

A
= 2ε0∆Ψ2

lTF∫
0

dl
1

(L+ 2l)2
f
(a
l

)
, (12)

where f(x) = 1
x

∑∞
k=1 e

−2(k−1)x(1 − e−x)2 = (1−e−x)2

x(1−e−2x) comes from summing over the electrode planes. In the

continuum limit (a → 0), this expression simplifies to ∆∆F∆Ψ
SV (lTF ) ≈ ε0AlTF∆Ψ2/L(L + 2lTF ), consistently with

Eqs. 5-6. For insulating materials (lTF → ∞), the difference with respect to perfect conductors further reduces to
∆∆F∆Ψ

SV (∞) ≈ ε0A∆Ψ2/2L.
Results from the calculations with explicit electrode atoms are given in Fig. 2b-c for the average

〈
(q∗)Tq∗

〉
/A and

the free energy difference per unit area as a function of the Thomas-Fermi length. The evolution of ∆∆F∆Ψ
SV (lTF ) as

a function of both lTF and L is very well described by Eq. 12. We have also checked the quadratic dependence of the
result with the voltage ∆Ψ (values for ∆Ψ = 2 V are given in Fig. S1 in SI Appendix ). We finally note that in the
absence of an electrolyte, for this typical voltage of 1 V the order of magnitude of the change in free energy per unit
area due to a change in metallicity is small compared e.g. to the liquid-vapor surface tension of water γLV or even to
∆γSL(∞)−∆γSV (∞) deduced from the contact angles (see Eq. 2).

Electrochemical cell

We now move to the more complex case of an electrochemical cell consisting of the same graphite electrodes (with
only n = 5 planes, which reduces the accessible range of lTF values) separated by a distance L, with a 1M NaCl
aqueous solution as electrolyte, in the absence of voltage (∆Ψ = 0 V). In contrast to conventional dielectric capacitors,
there is no electric field in the system beyond the interfacial regions even under applied voltage, due to the screening
of the field by the electric double layers (see Fig. S2 in SI Appendix ). This system is shown in Fig. 2d, while the
results for the evolution of

〈
(q∗)Tq∗

〉
/A and of ∆∆F 0V

SL /A as a function of lTF are shown in panels 2e-f. ∆∆F 0V
SL

increases with lTF , with a shape similar to but different from ∆∆F 1V
SV , and is more than an order of magnitude larger

than the latter. The solid line in panel 2f corresponds to an empirical fit of the form (see also Eq. 18 below)

∆∆F 0V
SL (lTF )

A
= 2kBT

lTF∫
0

dl
1

γ0 + γ2l2
f
(a
l

)
, (13)

with f defined below Eq. 12, and where γ0 and γ2 are two parameters adjusted on
〈
(q∗)Tq∗

〉
/A (panel 2e). At

this stage, we will only emphasize that its extrapolation for lTF →∞ is consistent with the value obtained from the
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FIG. 2: Thomas-Fermi Thermodynamic Integration (TFTI). (a) Empty capacitor consisting of two graphite
electrodes at ∆Ψ = 1 V, separated by a variable distance L ranging from 60.0 to 300.0 Å corresponding to different
colors in panels b and c. (b) Average sum of the square of the atomic electrode charges, per unit area, as a function
of lTF . (c) Free energy difference per unit area ∆∆F 1V

SV (lTF )/A due to a change in the Thomas-Fermi length (see
Eq. 6), as a function of lTF , computed from Eq. 11. (d) Capacitor consisting of two graphite electrodes at

∆Ψ = 0 V, separated by a distance L = 56.2 Å, and a 1M NaCl aqueous solution. (e) Same as panel b for the
aqueous capacitor. (f) Free energy difference per unit area ∆∆F 0V

SL (lTF )/A and asymptotic prediction from contact
angles using Eq. 7 (for the difference between metallic and insulator, with lTF = 0 and lTF →∞, respectively). In
panels b-c and e-f, open circles are simulation data, while solid lines are the analytical expression Eq. 12 for panel c

(and corresponding for b) and a fit of the form Eq. 13 for panel f (and corresponding for e), with parameters
adjusted on the simulation data of panel e.

difference in contact angles, also indicated as a dashed line in panel 2f. This further validates our thermodynamic
integration approach to compute free energy differences as a function of lTF . In addition, the transition from metallic
to insulating behavior occurs mainly for lTF in the range of a few Å. To illustrate the general applicability of this
method on a different system, we also investigated a model electrochemical cell consisting of two gold electrodes with
their (100) face in contact with a 1M NaCl aqueous solution (see snapshot in Fig. 3). The comparison with the
graphitic system, provided in Fig. S3 of SI Appendix, shows a similar trend and a difference in magnitude mainly due
to the lower atomic density of gold, highlighting the impact of the geometry on the interfacial free energy difference.

Effect of voltage on interfacial free energies

Fig. 3 illustrates the effect of voltage ∆Ψ on the interfacial free energy, for the previous gold/1 M NaCl cell. The
free energy difference ∆F∆Ψ

SL (lTF ) with respect to the case of a perfect conductor (see Eq. 4) follows the expected
quadratic dependence on voltage and is in perfect agreement with the prediction Eq. 5, using the capacitances C(0)
and C(lTF ) obtained from the average charge of the electrodes (the same capacitance is obtained at 1 and 2 V).
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FIG. 3: Effect of voltage ∆Ψ. Free energy change ∆F∆Ψ
SL (lTF ) with respect to the case of a perfect conductor (see

Eq. 4) as a function of ∆Ψ in the case of an electrochemical cell consisting of a 1M NaCl aqueous electrolyte
between gold electrodes (see inset). Results are shown per unit area, after subtraction of the value in the absence of
voltage, ∆F 0

SL(lTF ). The simulation results (symbols) are shown for several values of the Thomas-Fermi length lTF ,
indicated by their color, and compared to the quadratic prediction Eq. 5 (lines) using the capacitances per unit area

determined from the average charge.

Microscopic origin: the role of lateral correlations

Overall, the above results demonstrate the relevance of molecular simulations combined with our thermodynamic
integration as a function of lTF in order to investigate the effect of metallicity and voltage on interfacial free ener-
gies. Importantly, Eq. 11, derived from statistical-physical considerations, emphasizes the role of the atomic charge
distribution within the metal. In the following, we further exploit the possibilities offered by molecular simulations
to investigate the microscopic origin of this charge distribution and the effect of metallicity on the latter.

Metallicity changes lateral charge correlations in the solid

The heterogeneity of the charge distribution within the metal reflects both the structure of the interfacial fluid
and how the metal is polarized by each source. While the structure of water in the first adsorbed layer hardly
depends on the screening length lTF (see Figs. S4 and S5 in SI Appendix ), the latter has a large influence on the
charge distribution, as illustrated for the first electrode plane in Figs. 4a and 4b, for the previous graphite-aqueous
NaCl systems (with a four times larger surface area), at ∆Ψ = 0V . Fig. 4c then shows the corresponding in-plane
charge-charge correlation function gqq(r) = 〈δq(r)δq(0)〉 /

〈
δq2
〉
, with δq = q−〈q〉 the local deviation from the average

charge in the first electrode plane (see SI Appendix for more details). The decay of gqq(r) is slower for larger lTF ,
consistently with the decay of the charge distribution inside the metal induced by an external point charge [51]. In
order to quantify the extent of these lateral correlations, we introduce the correlation surface

Scorr =

∫ ∞
0

gqq(r)2πrdr , (14)

which will be discussed below. Similar quantities can be defined for each electrode plane k. For a homogeneous charge
distribution (as in empty capacitors), Scorr → ∞, while for a completely random charge distribution, Scorr = S1 =
A/m, the area per atom. In practice, for a perfect metal (lTF = 0), the correlation length corresponding to Scorr

reflects that of the interfacial fluid [35]. Fig. 4d shows the running integral corresponding to Eq. 14. Even though
the finite box size does not allow to reach a plateau for large r, the inset shows that the value of the running integral
at half the box size is roughly independent of the latter and the corresponding value will be used in the discussion
below.

From charge correlations to interfacial free energies

We now use the above microscopic information on the charge distribution to derive a simple model of the surface
free energy to understand its evolution with lTF and with voltage. Starting from Eq. 11, we group the sum of the
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FIG. 4: Effect of metallicity on lateral charge correlations. Instantaneous charge distribution (color bar in units of
the elementary charge e) on the first electrode plane for lTF = 0.0 Å (a) and lTF = 4.5 Å (b), for a 1M NaCl /

graphite capacitor at ∆Ψ = 0 V. Charge-charge radial distribution function gqq(r) in the first atomic plane (c) and
its integral

∫ r
0
gqq(r

′)2πr′dr′ (d) for a range of lTF values. The inset of panel (d) shows the integral of gqq for
lTF = 0.0 for the main simulation box (solid line) and for one with double size in the x and y directions (dashed

line, corresponding to the snapshots a and b).

square of atomic charges
〈
(q∗)Tq∗

〉
by planes and express, within each plane k, the contribution of each atom to the

sum as
〈
q2
k

〉
= 〈qk〉2 +

〈
δq2
k

〉
. The first term is simply 〈Qk〉2 /m2, with the average charge of the plane and the number

of atoms per plane. For the second, we introduce αk = m
〈
δq2
k

〉
/
〈
δQ2

k

〉
to relate the atomic charge fluctuations to

that of the plane. We then consider the charge QS = m
A
∫∫
S dS δq(r) of a surface element S much larger than the

correlation length and approximate (see Ref. 35)

〈
(δQS)2

〉
=
(m
A

)2
∫∫
S

dS ′
∫∫
S

dS 〈δq(r)δq(r′)〉

≈
(m
A

)2

S
〈
δq2
〉 ∫ ∞

0

gqq(r)2πrdr , (15)

by introducing the relative position r in polar coordinates and extending the integral to infinity. Applying this
relation to a whole electrode plane with area A and introducing the correlation surface Eq. 14, we obtain αk =
S1/Scorr,k. Summing over the m atoms in each plane, and over the planes of both electrodes leads to

〈
(q∗)Tq∗

〉
≈

2
∞∑
k=1

[
〈Qk〉2
m +

〈δQ2
k〉S1

Scorr,k

]
. We then make two assumptions, discussed below, (i) that the charge decays exponentially

within the electrode, to relate the charge of each plane to the total charge Q of the electrode, and (ii) that the
correlation surface is the same in all planes. Performing the sums over planes as for the empty capacitor, we obtain〈

(q∗)Tq∗
〉

A
≈ 2S1a

lTF
f

(
a

lTF

)[
(Cint∆Ψ)

2
+
kBTC

BO
diff

Scorr

]
(16)

using the function f defined below Eq. 12 and that the total charge can be expressed using the integral capacitance
per unit area Q = CintA∆Ψ, while its fluctuations provide the electrolyte (Born-Oppenheimer) contribution to the
differential capacitance per unit area [36] as CBOdiff =

〈
δQ2

〉
/(kBTA). Introducing the above results in Eq. 11 finally

yields

∆∆F∆Ψ
SL (lTF ) = ∆∆F 0V

SL (lTF ) + B∆Ψ2 (17)
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FIG. 5: From charge correlations to interfacial free energies. (a) Differential capacitance CBOdiff as a function of the
Thomas-Fermi length lTF computed from the electrode charge fluctuations at ∆Ψ = 0.0 V, for a 1M NaCl /

graphite capacitor (open black circles); the line is a fit (see section From Charge Correlations to Interfacial Free
Energies) used in panels (c) and (d). (b) Correlation surface Scorr obtained from the charge-charge correlation

function (see Eq. 14); the solid red line is a fit (see section From Charge Correlations to Interfacial Free Energies)
used in panels (c) and (d), while the dashed black line indicates the area per atom S1 = A/m and the dash-dotted
black line the constant value Scorr(lTF = 0). Average squared charges per unit area 〈(q∗)Tq∗〉/A (c) and interfacial

free energy difference per unit area ∆∆F 0V
SL (lTF )/A (d): simulation results (symbols) are compared to the

predictions of Eqs. 16 and 18 (solid red line) using the fits of panels (a) and (b) or neglecting the dependence of
Scorr with lTF , i.e. assuming perfectly metallic (Scorr(lTF ) = Scorr(0), dash-dotted line), homogeneous (Scorr →∞,

dotted line) or uncorrelated (Scorr = S1, dashed line) charge distributions.

where

∆∆F 0V
SL (lTF )

A
=

2kBT

ε0

lTF∫
0

dl
CBOdiff (l)

Scorr(l)
f
(a
l

)
, (18)

and B = 2A
ε0

lTF∫
0

dl Cint(l)
2f
(
a
l

)
−−−→
a→0

A
ε0

lTF∫
0

dl Cint(l)
2. In the continuum limit (a → 0), we find that Eq. 17 reduces

to Eqs. 4, 5 and 6 when 1/Cint(lTF ) = 1/Cint(0) + 2lTF /ε0, which corresponds to an ideal capacitor in series with two
Thomas-Fermi electrodes.

Beyond the potential-dependent part, the present analysis highlights the deep connection between the interfacial
free energy and the charge correlations within the metal, as evident from the presence of the correlation surface Scorr

in Eq. 18. This simple model only requires the evolution of the differential capacitance CBOdiff and Scorr with lTF to
compute ∆∆F 0V

SL (lTF )/A. Results from simulations at ∆Ψ = 0 V are shown in Figs. 5a and 5b, respectively, together

with empirical fits of the form CBOdiff = ε0/(γ
′
0 +2lTF +γ′1/(γ

′
2 + lTF )) and Scorr =

√
γ′′0 + γ′′2 l

2
TF for further use. When

the Thomas-Fermi length increases, the capacitance decreases due the delocalization of the charge deeper inside
the surface which screens the potential (consistently with the equivalent circuit picture of capacitors in series, often
introducing a so-called “quantum capacitance” to describe the properties of the metal [18, 54]); this delocalization
also manifests laterally with an increase in the correlation area.

Fig. 5c then compares
〈
(q∗)Tq∗

〉
/Ameasured in simulations to the approximation Eq. 16 using the above-mentioned

fits of CBOdiff and Scorr. Also shown are the predictions of this approximation when neglecting the dependence of
Scorr with lTF , i.e. assuming perfectly metallic (Scorr(lTF ) = Scorr(0)), homogeneous (Scorr → ∞) or uncorrelated
(Scorr = S1, the surface per atom) charge distributions. Even though some deviations are observed for small lTF , the
agreement is remarkable when considering Scorr(lTF ), unlike either of the two extreme distributions. Fig. 5d finally
shows the same comparison for ∆∆F 0V

SL (lTF ), now with Eq. 18. The deviations are now more evident for large lTF ,
due to the accumulation of errors upon integration, but the semi-quantitative agreement obtained when considering
Scorr(lTF ), compared to the dramatic failure of both the random and homogeneous distributions and even assuming
that the correlations are the same as in the perfect metal case, confirms the crucial role of charge correlations within
the metal on the evolution of the interfacial free energy with lTF .
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As noted above, the transition from metallic to insulating behavior of the interfacial free energies occurs mainly
for lTF in the range of a few Å. Translating the correlation area into an effective correlation length lcorr(lTF ) =√
Scorr(lTF )/π (which corresponds to approximating gqq(r) by a Heaviside function), we find that this range corre-

sponds to a change from lcorr ≈ 1.9 Å for lTF = 0 to lcorr ≈ 5.0 Å for lTF = 4.5 Å. We can compare this to the
position of the first maximum of the two-dimensional (2D) radial distribution function of water molecules in contact
with the surface, r2D

OO ≈ 2.7 Å (see Fig. S4 in SI Appendix ). This supports the conclusion that the transition for the
free energy corresponds to a change from a regime where the charge correlations reflect the structure of the liquid to
another where the poor screening within the metal gradually homogenizes the charge distribution.

Discussion

In order to explain the remaining difference between the exact result Eq. 11 and the approximation Eq. 18, we
examine the assumptions that allowed us to obtain this simple expression. Beyond the convergence of the integral
defining Scorr (Eq. 14) for a finite-size system, discussed above, the convergence of the estimate of the integrand in
Eq. 11 (reached within a few ns, see Fig. S6 in SI Appendix ) and the possible errors due to the numerical integration in
Eq. 11 that can be reduced systematically by increasing the number of simulated lTF values, we have assumed that the
charge decays exponentially within the electrode, with a decay length lTF . Such an assumption is consistent, for the
average charge in each plane, with the observation that for a finite voltage the average potential decays exponentially
within the electrodes (as shown for gold electrodes in Ref. 51). For the charge fluctuations also considered in the
present model, we test it for ∆Ψ = 0V by considering 〈δQ2

k〉/〈δQ2〉, reported for a range of lTF values and a 1M NaCl
/ graphite capacitor in Fig. 6a. The exponential assumption is satisfied, except for very small lTF (smaller than the
interplane distance a), and the corresponding decay length is lTF /2, as expected.

FIG. 6: Testing the assumptions of the model for a 1M NaCl / graphite capacitor at ∆Ψ = 0.0 V. (a) Ratio between
the variance of the charge of each plane k and that of the total charge of the electrode,

〈
δQ2

k

〉
/
〈
δQ2

〉
, for a range of

lTF values from 0.0 to 4.5 Å indicated by the colorbar; the lines are analytical predictions for an exponential decay,
with a the interplane distance and a decay length lTF /2. (b) In-plane charge-charge radial distribution function gqq
as a function of the distance r for lTF = 4.5 Å for the different planes of the electrodes, where k is the atomic plane

index from 1, in contact with the electrolyte (black circles) to 5 (light grey small circles). (c) Ratio S1/Scorr as a
function of m

〈
δq2

1

〉
/
〈
δQ2

1

〉
in the first atomic plane, for a range of lTF shown in the colorbar. The solid black line

corresponds to y = x while the dashed line is a fit of the form y = γx.

We further assumed that the correlation surface Scorr,k is the same in all electrode planes and used the value Scorr

measured in the first plane in contact with the liquid. Fig. 6b shows the charge-charge correlation function in the five
planes for lTF = 4.5 Å and clearly demonstrates that this assumption is not accurate. Its shortcomings are however
mitigated by the exponential decay of the contribution of each plane. Finally, we introduced the correlation surface
to link the atomic charge fluctuations to those of each plane, which required assuming in particular that the area
of the electrode, A ≈ 1250 Å2, is much larger than Scorr: Fig. 5b confirms that this is indeed the case. The ratio
m
〈
δq2

1

〉
/
〈
δQ2

1

〉
can also be estimated directly and is compared to S1/Scorr in Fig. 6c. While the agreement is not

quantitative, the linear correlation with a slope ≈ 1.2 clearly supports our microscopic interpretation of the effect of
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metallicity on the interfacial free energy, via the lateral charge correlations within the metal. We further note that
the Thomas-Fermi screening length also influences the dynamics of the charge induced in the metal (see Fig. S6 in
SI Appendix ), but interpreting these changes in terms of the effect of metallicity on the dynamics of the interfacial
electrolyte remains an open challenge requiring further investigation.

Even though a comprehensive molecular simulation study of the crystallisation of ionic liquids remains out of the
scope of this work, we finally examine the implications of our semi-analytical model, Eq. 18, whose assumptions do
not depend on the nature of the electrolyte considered in the present work, for the interpretation of the experiments
of Ref. 12. The link between interfacial free energies and the shift in the melting/crystallization temperature induced
by the interactions with the walls is provided by the Gibbs-Thomson equation [55, 56], which involves the difference in
surface tension ∆γ = γLW − γSW between the liquid and the walls and between the solid and the walls, respectively.
For a given electrode, we anticipate that the capacitance of the cell is smaller for the solid phase, which behaves as a
dielectric material, than for the liquid phase, which can rearrange to form electric double layers. While it will be more
challenging to determine numerically in molecular simulations, we also expect a larger correlation surface for the solid
than for the liquid. Both effects concur to indicate, according to Eq. 18, that the free energy penalty due to a finite
lTF is smaller for the solid ionic phase compared to the liquid one. The above argument suggests that, all other things
being equal, increasing lTF should decrease the length at which freezing is observed – in contrast to experimental
observations. In experiments, many features beyond lTF change when considering different surfaces (from mica to Pt
via graphite and doped Si) and the ability to change the screening length independently of other material properties
offers an opportunity to disentangle the various effects, within the Thomas-Fermi model. The above conclusion based
on our semi-analytical model remains to be confirmed by future MD simulations, but we note that it is consistent
with more recent experiments suggesting that the change in mechanical properties may be associated with a glassy
behavior rather than proper phase transition [13].

Conclusion

A thermodynamic integration method as a function of the Thomas-Fermi length allowed us to investigate the effect
of the metallic character of solid substrates on interfacial free energies using molecular simulations. This approach
was validated against analytical results for empty capacitors and by comparing the predictions in the presence of an
electrolyte with values determined from the contact angle of droplets on the surface. The general expression derived
in this work highlights the role of the charge distribution within the metal. We proposed a simple semi-analytical
model to interpret the evolution of the interfacial free energy with voltage and Thomas-Fermi length, which allowed
us to identify the charge correlations within the metal as the microscopic origin of the evolution of the interfacial free
energy with the metallic character of the substrate.

This methodology offers avenues for the molecular-scale study of the effect of the metallic character of the substrate
on confinement-induced transitions in ionic systems, as reported in AFM and SFA experiments, with the possibility
to investigate the relative stability of interfacial crystals with respect to their melt. A quantitative comparison with
experiments might require a more refined description of the interface, e.g. to capture differences between good metals
such as Au and Pt due to non-electrostatic effects that play a role on the interfacial structure, hence on the polarization
of the metal [32], or the presence of adsorbed ions [57]. Such features may be better described using ab initio MD
simulations [58] or hydrid quantum mechanics/molecular mechanics and multiscale approaches to compute solvation
free energies [59] or to investigate wetting [60] and the link between surface thermodynamics and slippage [61], even
though recent studies suggest that reparameterizing classical models can already provide a step in this direction [62, 63].
Nevertheless, the possibility to systematically assess the effect of the screening length allows to go beyond the analytical
calculations for a 1D ionic crystal near a substrate [25] to the full three-dimensional interface, both in solid and liquid
phases, and to analyze the effect of lateral correlations. Since the charge distribution is known to have a large impact
on solid-liquid friction [64], one could also consider the possibility to extend the present approach to examine the effect
of metallicity on dynamical properties. More generally, the present work contributes from a molecular perspective
to a broader endeavor to understand interfaces between solvent-based electrolytes and ionic liquids with good metals
or carbon surfaces, which are already exploited e.g. for energy storage in supercapacitors [65], energy conversion via
metal nanolayers [66], or blue energy harvesting and desalination applications [67, 68].

Materials and methods

We perform molecular dynamics simulations of capacitors with two electrodes consisting of atoms bearing a Gaussian
charge distribution, separated by vacuum or by an aqueous sodium chloride electrolyte; we also consider droplets of
the same electrolyte on a single electrode. The electrode atoms charges are either kept constant and equal to zero
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or determined at each time step in order to satisfy a constant potential and an electroneutrality constraints using
the conjugate gradient method [36]. The constant potential simulations account for the electronic polarization of
the metal and we use an implementation introducing the Thomas-Fermi screening length to tune the metallicity of
the metal [51]. All simulations are performed using the MetalWalls code [69] and simulation details, including the
description of the systems, the computation of interactions and the constant-potential ensemble are available in the SI
Appendix. The analysis of the electrode atom charges was performed using in-house Python scripts and provides the
capacitance from the total charge of the electrodes, the charge-charge radial distribution functions and corresponding
correlation lengths, and the integrand of Eq. 11 resulting in the free energy as a function of the Thomas-Fermi length.

Data availability

MetalWalls [69], the MD code used for this study, is available open-source at https://gitlab.com/ampere2/metalwalls.

Input files and raw data used for the figures have been deposited in Zenodo [70] (https://doi.org/10.5281/zenodo.5658485).
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We thank Mathieu Salanne, Lydéric Bocquet, Benôıt Coasne and David Limmer for useful discussions. This project
was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 863473). This work was supported by the French National Research Agency (Labex
STORE-EX [Laboratory of excellency for electrochemical energy storage], Grant ANR-10-LABX-0076, and project
NEPTUNE (From weak to strong non-equilibrium transport of fluids at the nanoscale), Grant ANR-17-CE09-0046-02).

We acknowledge high-performance computing resources granted by GENCI (Grand Équipement National de Calcul
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Supporting Information

Contact angles

Contact angles were determined from density maps in the (r, z) plane (see Fig. 1c of the main text), with r the
radial distance to the center of mass of the droplet and z the height with respect to the first graphite layer. The
liquid-vapor interface is located from the points where the average local density is equal to half of the bulk density
ρ0 at the center of the droplet (in blue on Fig. 1c of the main text). This set of points is then fitted using a circle
of radius RC and centered in (r = 0, z = zC) and the value of the contact angle θ is obtained by the intersection of
this fit with the interface plane, taken as the position of the first water layer zW = 3.12 Å. This choice has a small
influence on the contact angle values, which is within the errorbars and does not modify the conclusions of the study.

For a homogeneous sphere of density ρ0, radius RC and centered in (r = 0, z = zC), cut by a plane in z = z0 (taken
empirically at zW /2), the corresponding one-dimensional densities are given by

ρ(z) = ρ0π(R2
C − (z − zC)2) (19)

ρ(r) = ρ0

(
zC − z0 +

√
R2
C − r2

)
, (20)

shown along with the simulation results in Fig. 1d-e of the main text.

Derivation of the Thomas-Fermi Thermodynamic Integration (TFTI) method

We consider a system of N mobile atoms of electrolyte, with positions rN and momenta pN , and M electrode
atoms that carry a Gaussian charge distribution with fluctuating magnitude q = {q1, q2, . . . , qM}, in a finite volume
V , at a temperature T and a fixed voltage ∆Ψ between the electrodes. The free energy associated with a change in
Thomas-Fermi (TF) screening length lTF is computed starting from the definition of free energy F∆Ψ = −β−1 lnZ,
with Z the partition function corresponding to the NV T∆Ψ ensemble. From Ref. 51, the extended TF Hamiltonian
is

H(rN ,pN ,q) = K(pN ) + U0(rN ) +
qTATFq

2
− qTB , (21)

where K is the kinetic energy and U0 contains the electrostatic interactions within the electrolyte, the non-electrostatic
terms (typically represented by simple Lennard-Jones potentials to capture short-range repulsion and long-range
dispersion interactions) within the electrolyte and with the electrode atoms, and a constant term involving the energy
of the Fermi level. Furthermore, B is the vector of electrostatic potentials due to the electrolyte on each electrode
atom and we introduced a modified symmetric matrix

ATF ≡ A(lTF ) = A0 +
l2TF d

ε0
I , (22)

with A0 the symmetric M ×M matrix describing the electrode-electrode electrostatic interactions for a perfect metal
(lTF = 0), d is the atomic density, ε0 the vacuum permittivity and I the M×M identity matrix. Even though the term
involving lTF can be expressed as a function of the charges q within the extension of constant-potential simulations
to the Thomas-Fermi model of Ref. 51, its origin is not electrostatic but the kinetic energy of the electrons. Because
the Hamiltonian is quadratic in the charges q, the statistical mechanics framework derived in Ref. 36 remains valid
for the extended constant potential TF simulations.

In the present work, we introduce a new thermodynamic integration approach in order to predict the evolution of
the free energy as a function of the Thomas-Fermi length, lTF , given by

∆F∆Ψ(lTF ) = F∆Ψ(lTF )− F∆Ψ(0) = ∆F∆Ψ,BO(lTF ) + ∆FnBO(lTF ) , (23)

where the separation into Born-Oppenheimer (BO) and non-BO contributions is possible thanks to the factorization of
the partition function Z = KZBO, where K arises from the suppressed charged fluctuations in the BO approximation
(see Ref. 36 for the derivation of this result in the case lTF = 0). Since the non-BO term depends only on the
electrode, i.e. neither on the presence or absence of electrolyte nor on voltage, it cancels in all differences considered
in the main text. We provide here a derivation of the expression given in the main text for the BO part of the free
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energy. We first write the free energy difference, at fixed voltage, between lTF = 0 (perfect metal) and a finite lTF ,
as the integral of its derivative with respect to lTF

∆F∆Ψ,BO(lTF ) = F∆Ψ,BO(lTF )− F∆Ψ,BO(0) =

lTF∫
0

dl

(
∂F∆Ψ,BO

∂l

)
NV T∆Ψ

. (24)

Using the expression of the partition function in the BO ensemble (see Ref. 36), ZBO, the derivative of F∆Ψ,BO =
−β−1 lnZBO with respect to lTF reads(
∂F∆Ψ,BO

∂lTF

)
= −β−1(ZBO)−1

∫
drN e−βU0(rN ) β

2

(
∂(q∗)TATFq∗

∂lTF

)
e
β
2 (q∗)TATFq∗

= −1

2

〈(
∂(q∗)TATFq∗

∂lTF

)〉
,

(25)

where q∗ is the set of charges that enforce both the constant-potential and electroneutrality constraints

q∗(rN ) = A−1
TF

[
B + Ψ− χ(rN )E

]
, (26)

where we used the Lagrange multiplier χ defined in Ref. 36 and E = {1, . . . , 1} is a vector of size M . Noticing that
ATF and q∗ depend on lTF explicitly but that B and Ψ don’t, and using standard rules for derivation and matrix
algebra, we then write

∂

∂lTF

[
(q∗)TATFq∗

]
=

∂

∂lTF

[
(q∗)TATFA−1

TFATFq∗
]

=
∂

∂lTF
[ATFq∗]

T
A−1
TF [ATFq∗]

=

[
∂(ATFq∗)

∂lTF

]T
A−1
TF [ATFq∗] + [ATFq∗]

T

(
∂A−1

TF

∂lTF

)
[ATFq∗] + [ATFq∗]

T
A−1
TF

[
∂(ATFq∗)

∂lTF

]
=

[
− ∂χ

∂lTF
E

]T
q∗ +

[
(q∗)TATF

](
−A−1

TF

∂ATF

∂lTF
A−1
TF

)
[ATFq∗] + (q∗)T

[
− ∂χ

∂lTF
E

]
= 0 + (q∗)T

(
−2lTF d

ε0
I

)
q∗ + 0 = −2lTF d

ε0
(q∗)Tq∗ (27)

where we used Eq. 26 from the second to third line and the electroneutrality condition ETq∗ = 0 from the third to
fourth line. Introducing this result in Eqs. 25 and 24, we finally obtain:

∆F∆Ψ,BO(lTF ) = F∆Ψ,BO(lTF )− F∆Ψ,BO(0) =

lTF∫
0

dl
ld

ε0

〈
(q∗)Tq∗

〉
NV T∆Ψ,l

. (28)

We note that this quantity is positive, i.e. that the free energy increases from the perfect metal case to one charaterized
by a finite lTF . While the expression for the interfacial free energy difference only involves the distribution of the
charges, it is not limited to and in fact differs from a purely electrostatic contribution. Indeed, the above derivation
shows that the integrand comes from the derivative of a term in the energy which arises from the kinetic energy of the
electron. The ensemble average ensures that the effect of all electrostatic and non-electrostatic interactions is taken
into account, since they all contribute to the relative weights of microscopic configurations explored by the system.

Thermodynamic cycle

In the main text, we introduce various free energy differences associated with different processes, in particular
changing the voltage ∆Ψ or the Thomas-Fermi length lTF . This is illustrated in the following thermodynamic cycle,
changing the screening length vertically and charging or discharging the capacitor horizontally:

{lTF = 0,∆Ψ = 0}
F∆Ψ
SX (lTF = 0)− F 0

SX(lTF = 0)
−−−−−−−−−−−−−−−−−−−−−−−−→ {lTF = 0,∆Ψ}

−∆F 0
SX(lTF )

x
y∆F∆Ψ

SX (lTF )

{lTF ,∆Ψ = 0} ←−−−−−−−−−−−−−−−−−−−
−F∆Ψ

SX (lTF ) + F 0
SX(lTF )

{lTF ,∆Ψ}
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where the subscripts SX can refer to the empty capacitor (SV = solid-vapor) or to the full electrochemical cell
(SL = solid-liquid). We also introduce the difference ∆∆F∆Ψ

SX (lTF ) = ∆F∆Ψ
SX (lTF ) − ∆F 0

SV (lTF ). For the empty
capacitor with ∆Ψ = 0 V, ∆F 0

SV (lTF ) has no BO contribution because for zero voltage with no electrolyte, no charges
are induced on the surface. It therefore follows that ∆F 0

SV (lTF ) = ∆FnBO(lTF ) for the given set of (fixed) electrodes

and, using Eq. 23 above, that ∆∆F∆Ψ
SX (lTF ) = ∆F∆Ψ,BO

SX (lTF ) corresponds to the sole BO contribution to the free
energy difference, i.e. that obtained directly from the BO sampling in constant-potential simulations (see Eq. 11 of
the main text).

Methods

For constant-potential simulations, electrode atoms bear a Gaussian charge distribution of fixed width η−1 = 0.56 Å
and magnitude determined at each time step to enforce the constant potential and global electroneutrality constraints
using a matrix inversion method (for electrochemical cells) or a conjugate gradient method (for empty capacitors and
drop simulations). We consider TF lengths lTF ranging from 0.0 to 15.0 Å for the empty capacitor and from 0.0 to
5.0 Å in the presence of aqueous NaCl electrolyte, to ensure that the depth na of the electrodes, with n the number
of atomic planes and a the interplane distance, is larger than lTF . We use two-dimensional boundary conditions (no
periodicity in the z direction), with 2D Ewald summation to compute electrostatic interactions in the presence of
Gaussian charges [34, 53] and a cutoff of 17.0 Å for both the non-electrostatic interactions, described by truncated
shifted Lennard-Jones (LJ) potentials, and the short range part of the Coulomb interactions. Water is modeled by the
SPC/E force field [71], while LJ parameters for Na+ and Cl− are taken from Ref. 72 and those for carbon and gold
electrode atoms are from Refs. 73 and 74, respectively; LJ parameters between different atom types are computed
using the the Lorentz-Berthelot mixing rules.

For graphite capacitors, each electrode consists of n = 50 (resp. 5) planes for empty capacitors (resp. electrochemical
cells) separated by a = 3.354 Å, with 480 carbon atoms per plane (surface area A = 34.101 × 36.915 Å2); larger
simulation boxes were also studied with A = 68.202×73.830 Å2. The atomic density is therefore dgraphite = 0.11 Å−3.
Contact angle measurements are made by equilibrating a drop of electrolyte on a single electrode of surface area
A = 102.302 × 110.745 Å2 (4320 carbon atoms per plane) and only n = 3 planes, using constant zero charges or a
constant potential condition. The uncertainty reported on the contact angles is the standard error among 5 blocks of
the simulations. For gold-like electrodes, the box length in both the x and y directions is Lx = Ly = 36.630 Å with

162 atoms per atomic plane, corresponding to an atomic density dgold = 0.06 Å−3. The structure is face-centered

cubic with a lattice parameter of 4.07 Å and a (100) surface in contact with the electrolyte. The electrodes consist
of n = 10 planes, separated by a = 2.035 Å and held at a potential difference of ∆Ψ = 0, 1 or 2 V. In all cases,
the electrolyte is composed of 2160 water molecules and 39 NaCl ion pairs. The capacitor simulation boxes are
equilibrated at atmospheric pressure for 500 ps by applying a constant force to the electrodes (treated as rigid bodies)
with lTF = 0.0 Å; the electrodes separation is then fixed to the equilibrium value (for which the density in the middle
of the liquid slab is equal to its bulk value) L = 56.2 Å for graphite electrodes and L = 50.7 Å for gold electrodes. For
empty graphite capacitors we consider a range of distances from 20.0 to 300.0 Å. Simulations are run with a timestep
of 1 fs and the temperature is set at 298 K using a Nosé-Hoover chain thermostat. Capacitor simulations are run for at
least 6 ns (those with the larger surfaces for 750 ps), while drop simulations are run for 3 ns. Differential capacitances
are computed from the fluctuations of the total charge [35, 36] and errorbars estimated using the standard errors
on the variance corrected for data correlations. All simulations are performed using the molecular dynamics code
MetalWalls [69].

Water structure in the first adsorbed layer on graphite

Fig. 10 reports the 2D oxygen-oxygen radial distribution function for water molecules in the first layer adsorbed on
each electrode, for a range of lTF , in a 1M NaCl / graphite capacitor. The results are identical for all the considered
lTF values, with in particular a first maximum for a radial distance ≈ 2.7 Å. Fig. 11 further shows that the orientation
of water molecules in the same layers, quantified by the distribution cos θ, with θ the angle between the molecular
dipole and the normal to the electrode surfaces also slightly depends on the Thomas-Fermi screening length.
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Lateral charge correlations

The lateral charge correlations are quantified using the in-plane charge-charge radial distribution function gqqk (r),
defined as

gqqk (r) =

〈
δq∗j,k(r)δq∗i,k(0)

〉〈
δq∗2i,k

〉 =
A

2πrm
〈
δq∗2i,k

〉 〈 m∑
i=1

∑
j>i

δq∗i,kδq
∗
j,kδ(rij − r)

〉
, (29)

where k indicates the plane index, A is the surface area, m the number of atoms per plane and rij is the radial distance

between electrode atoms i and j belonging to the kth plane.
〈
δq∗2i,k

〉
is the average individual charge fluctuation in

plane k. Here qi,k is the magnitude of the Gaussian charge distribution located at ri (the 3D shape of the Gaussian
distributions is not taken into account), so that gqqk is a charge-weighted 2D radial distribution function between sites
– hence the normalization by 2πrm/A.

Dynamical properties and convergence of averages

The Thomas-Fermi length lTF also influences dynamical properties. This is illustrated in Fig. 12a, which shows
the autocorrelation of the total electrode charge, Q, in the case of a 1M NaCl / graphite capacitor at ∆Ψ = 0 V,
for a range of lTF . As already observed on gold electrodes [51], the total charge fluctuations decay faster when lTF
increases. While a detailed interpretation of the charge fluctuations in terms of the dynamics of the electrolyte remains
a challenging question, such a faster decorrelation reflects the weaker interactions of the electrolyte with the more
diffuse charge induced within the electrode.

In the context of the present study of interfacial free energies, it is also of interest to consider the fluctuations of
the sum of the squared charges, (q∗)Tq∗, which appears in the integrand leading to the free energy as a function of
lTF (see Eq. 11 of the main text). Its autocorrelation, shown in Fig. 12b, also decays faster with increasing lTF , even
though the effect is less pronounced than for the total charge. This last point also explains why the time required
to converge the static average

〈
(q∗)Tq∗

〉
is comparable for all considered values of lTF : As shown in Fig. 12c, which

reports the relative error on this quantity,
[〈

(q∗)Tq∗
〉
t
−
〈
(q∗)Tq∗

〉
∞

]
/
〈
(q∗)Tq∗

〉
∞, as a function of the trajectory

length t, in all cases the error is already of the order of 1% with a few 10-100 ps and
〈
(q∗)Tq∗

〉
is well converged in

a few ns.



17

FIG. 7: (a) Average sum of the square of the atomic electrode charges, per unit area, as a function of lTF . (b) Free
energy difference per unit area ∆∆F 2V

SV (lTF )/A due to a change in the Thomas-Fermi length (see Eq. 6 of the main
text), as a function of lTF , computed from Eq. 28. Values are shown for an empty capacitor consisting of two

graphite electrodes at ∆Ψ = 2 V, separated by a variable distance L ranging from 60.0 to 300.0 Å corresponding to
different colors in panels a and b. Open circles are simulation data, while solid lines are the analytical expression

Eq. 12 of the main text for panel b and the corresponding one for panel a.
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FIG. 8: Electric field profile, computed by integrating the average charge density ρel(z) with respect to the position
z across the cell, for a 1M NaCl / graphite capacitor at ∆Ψ = 0 V (a) and 2 V (b), for a range of lTF indicated by

the color bar. There is no average electric field in the bulk region of the capacitor, as expected.
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FIG. 9: Thomas-Fermi Thermodynamic Integration (TFTI): comparison between graphite and gold. (a) Average
sum of the square of the atomic electrode charges, per unit area, as a function of lTF . (b) Free energy difference per
unit area, at 0 V, ∆∆F 0V

SL (lTF )/A. Both panels compare results for the graphite-1M NaCl cell (open circles and red
lines – snapshot in figure 2d of the main text) and the gold-1M NaCl cell (open squares and green lines – snapshot

in figure 3 of the main text). The solid lines are fits of the form Eq. 13 of the main text for panel a (and
corresponding for b), with parameters adjusted on the simulation data of panel a.

FIG. 10: Lateral correlations between water molecules in the first layer adsorbed on each electrode in a 1M NaCl /
graphite capacitor at ∆Ψ = 0 V. The figure shows the 2D radial distribution function of oxygen atoms, for a range

of lTF indicated by the color bar. All curves are superimposed.
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FIG. 11: Orientation of water molecules in the first layer adsorbed on each electrode in a 1M NaCl / graphite
capacitor at ∆Ψ = 0 V. The figure shows the distribution of cos θ, with θ the angle between the molecular dipole

and the outward normal to the electrode surfaces, for a range of lTF indicated by the color bar.
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FIG. 12: Effect of lTF on dynamical properties and the convergence of averages. Normalized autocorrelation
function (ACF), defined as C(t) = 〈A(0)A(t)〉 /〈A2〉, of the total charge A = Q (a) and of the sum of the squared

charges A = (q∗)Tq∗ (b). (c) Evolution of the relative error
[〈

(q∗)Tq∗
〉
t
−
〈
(q∗)Tq∗

〉
∞

]
/
〈
(q∗)Tq∗

〉
∞ as a function

of the trajectory length t (the error is computed relative to the largest simulation time t∞ = 6 ns). All results are
shown for a 1M NaCl / graphite capacitor at ∆Ψ = 0 V, for a range of lTF indicated by the color bar.
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[13] A. Lainé, A. Niguès, L. Bocquet and A. Siria, Physical Review X, 2020, 10, 011068.
[14] L. Garcia, L. Jacquot, E. Charlaix and B. Cross, Faraday Discussions, 2017, 206, 443–457.
[15] R. R. Netz, Physical Review E, 1999, 60, 3174–3182.
[16] A. Arnold, K. Breitsprecher, F. Fahrenberger, S. Kesselheim, O. Lenz and C. Holm, Entropy, 2013, 15, 4569–4588.
[17] K. Breitsprecher, K. Szuttor and C. Holm, J. Phys. Chem. C, 2015, 119, 22445–22451.
[18] A. A. Kornyshev, N. B. Luque and W. Schmickler, J. Solid State Electrochem., 2014, 18, 1345–1349.
[19] A. A. Lee and S. Perkin, J. Phys. Chem. Lett., 2016, 7, 2753.
[20] N. Ashcroft and N. Mermin, Solid State Physics, Holt, Rinehart and Winston, 1976.
[21] N. D. Lang and W. Kohn, Physical Review B, 1971, 3, 1215–1223.
[22] A. Kornyshev and M. Vorotyntsev, Surface Science, 1980, 101, 23–48.
[23] A. A. Kornyshev, W. Schmickler and M. A. Vorotyntsev, Phys. Rev. B, 1982, 25, 5244–5256.
[24] C. C. Rochester, A. A. Lee, G. Pruessner and A. A. Kornyshev, ChemPhysChem, 2013, 14, 4121–4125.
[25] V. Kaiser, J. Comtet, A. Niguès, A. Siria, B. Coasne and L. Bocquet, Faraday Discuss., 2017, 199, 129–158.
[26] N. Bonnet, T. Morishita, O. Sugino and M. Otani, Phys. Rev. Lett., 2012, 109, 266101.
[27] F. Deißenbeck, C. Freysoldt, M. Todorova, J. Neugebauer and S. Wippermann, Physical Review Letters, 2021, 126, 136803.
[28] J. Lan, J. Hutter and M. Iannuzzi, The Journal of Physical Chemistry C, 2018, 122, 24068–24076.
[29] J. Lan, V. V. Rybkin and M. Iannuzzi, The Journal of Physical Chemistry Letters, 2020, 11, 3724–3730.
[30] S. Sakong and A. Groß, Physical Chemistry Chemical Physics, 2020, 22, 10431–10437.
[31] J.-B. Le, A. Chen, L. Li, J.-F. Xiong, J. Lan, Y.-P. Liu, M. Iannuzzi and J. Cheng, JACS Au, 2021, 1, 569–577.
[32] P. Li, J. Huang, Y. Hu and S. Chen, The Journal of Physical Chemistry C, 2021, 125, 3972–3979.
[33] J. I. Siepmann and M. Sprik, J. Chem. Phys., 1995, 102, 511–524.
[34] S. K. Reed, O. J. Lanning and P. A. Madden, J. Chem. Phys., 2007, 126, 084704.
[35] D. T. Limmer, C. Merlet, M. Salanne, D. Chandler, P. A. Madden, R. van Roij and B. Rotenberg, Phys. Rev. Lett., 2013,

111, 106102.
[36] L. Scalfi, D. T. Limmer, A. Coretti, S. Bonella, P. A. Madden, M. Salanne and B. Rotenberg, Phys. Chem. Chem. Phys.,

2020, 22, 10480–10489.
[37] A. P. Willard, S. K. Reed, P. A. Madden and D. Chandler, Faraday Discuss., 2009, 141, 423–441.
[38] C. Merlet, B. Rotenberg, P. A. Madden and M. Salanne, Phys. Chem. Chem. Phys., 2013, 15, 15781–15792.
[39] M. A. Pounds, M. Salanne and P. A. Madden, Mol. Phys., 2015, 113, 2451–2462.
[40] D. T. Limmer, A. P. Willard, P. Madden and D. Chandler, Proc. Natl. Acad. Sci. U.S.A., 2013, 110, 4200–4205.
[41] A. P. Willard, D. T. Limmer, P. A. Madden and D. Chandler, J. Chem. Phys., 2013, 138, 184702.
[42] D. T. Limmer, A. P. Willard, P. A. Madden and D. Chandler, J. Phys. Chem. C, 2015, 119, 24016–24024.
[43] J. A. Kattirtzi, D. T. Limmer and A. P. Willard, Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 13374–13379.
[44] C. Merlet, D. T. Limmer, M. Salanne, R. van Roij, P. A. Madden, D. Chandler and B. Rotenberg, J. Phys. Chem. C, 2014,

118, 18291–18298.
[45] B. Rotenberg and M. Salanne, J. Phys. Chem. Lett., 2015, 6, 4978–4985.
[46] M. V. Fedorov and A. A. Kornyshev, Chem. Rev., 2014, 114, 2978—3036.
[47] L. Scalfi, M. Salanne and B. Rotenberg, Annual Review of Physical Chemistry, 2021, 72, 189.
[48] C. Y. Son and Z.-G. Wang, Proceedings of the National Academy of Sciences, 2021, 118, e2020615118.
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