N
N

N

HAL

open science

From Procedures, Objects, Actors, Components,
Services, to Agents - A Comparative Analysis of the
History and Evolution of Programming Abstractions

Jean-Pierre Briot

» To cite this version:

Jean-Pierre Briot. From Procedures, Objects, Actors, Components, Services, to Agents - A Compar-

ative Analysis of the History and Evolution of Programming Abstractions. 2021. hal-03482428v1

HAL Id: hal-03482428
https://hal.sorbonne-universite.fr /hal-03482428v1

Preprint submitted on 15 Dec 2021 (v1), last revised 13 Jan 2024 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/hal-03482428v1
https://hal.archives-ouvertes.fr

From Procedures, Objects, Actors, Components, Services, to Agents
— A Comparative Analysis of
the History and Evolution of Programming Abstractions

Jean-Pierre Briot!

I Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Jean-Pierre.Briot@lip6.fr

Abstract: The objective of this chapter! is to propose some retrospective analysis of the evolution of
programming abstractions, from procedures, objects, actors, components, services, up to agents, by replacing
them within a general historical perspective. Some common referential with three axes/dimensions is chosen:
action selection at the level of one entity, coupling flexibility between entities, and abstraction level. We indeed
may observe some continuous quest for higher flexibility (through notions such as late binding, or reification of
connections) and higher level of abstraction. Concepts of components, services and agents have some common
objectives (notably, software modularity and reconfigurability), with multi-agent systems raising further con-
cepts of autonomy and coordination. notably through the notion of auto-organization and the use of knowledge.
We hope that this analysis helps at highlighting some of the basic forces motivating the progress of program-
ming abstractions and therefore that it may provide some seeds for the reflection about future programming
abstractions.

1 Introduction

Object-oriented programming, software components [4] and multi-agent systems [12, 23] are some examples of
approaches for software design and development with significant impact. Both offer abstractions for organizing
software as a combination of software elements, with a common objective of facilitating its evolution (first of
all, replacement and addition of elements). In this chapter, our initial objective is to conduct a comparative
analysis between software components and multi-agent systems®. In order to better compare them, we replace
them within some general historical perspective of the programming evolution (taking some inspiration from
20]).

There are various comparative studies between agents (and multi-agent systems) and, e.g., objects [41],
concurrent objects [28, 29] and actors [35]. This article integrates some of these analyzes and complements
them the concepts of components and of services, which, to our knowledge, has not yet been the subject of such
systematic comparative studies®. Let us also cite here, for additional information, two comparative analyzes
about different component models [19, 36] and about various multi-agent platforms and languages (based on
object-oriented, logic or component-based models) [7, 8].

2 Analysis

We have chosen a common conceptual frame of reference with three dimensions that we consider important
issues in programming and software:

o selection of the action to be performed by an entity — This indicates when and how a software* entity will
select (decide) what action to be performed, through the activation of a corresponding code. The evolution
of programming shows the need for deferring always later and further this decision (this has been coined
as “ever late binding’). In addition, for an agent, such a decision may be based, not only on the nature of
the invocation, as for classical programming languages, but also on the agent’s own knowledge and context
(e.g., by its goals), in a proactive and not only reactive manner;

IThis article has been submitted to a project of book about the French school of programming, coordinated by Bertrand Meyer.

2In the following, we will use terms, respectively, components and agents.

3 An initiative on the relations between components and multi-systems agents was the organization in France of two successive
editions of Workshop “Journées multi-agents and components” (JMAC) in 2004 and 2006, followed by a journal special issue [6].
Note that this chapter is an adaptation and revision of an original article in french [11].

4or physical, in the case of a robot.

o flexibility of the coupling between entities — This represents the ability to put in relation several software
entities. The evolution of programming shows the need to represent and manipulate such relations in-
dependently of the implementation of the entities, in order to favor dynamicity as well as the explicit
manipulation of the relations. The concept of software architecture [53], assemblage of components via
explicit connectors, represents therefore a major advance. The concept of service brings further dynamic-
ity (via the concept of discovery of services) and autonomy for the entity itself (the selection of the actual
service(s)). Multi-agent systems bring a step further and higher the reification of the architecture and of
the discipline of interaction through the concepts of organization and of interaction protocol.

e [evel of abstraction — This represents the expression level offered to the designer and to the programmer.
We can observe a progressive quest for higher-level abstractions, from the initial low-level concepts of
instruction, to abstract concepts of procedure and abstract data types, which turn out independent of
an implementation platform, and finally up to knowledge concepts, such as plan, intention, upon which
automated reasoning mechanisms can be applied.

It should be noted that these three dimensions are not completely independent: action selection may have
some impact on coupling flexibility, and the choice of abstractions and mechanisms for action selection and for
coupling are clearly related with the level abstraction. In addition, it is possible to consider action selection and
coupling uniformly, both based on a single mechanism: binding®: a) binding of the call to the effective code,
in the case of action selection, and b) binding of a link to another entity, in the case of coupling. However,
we prefer to distinguish them, because their corresponding levels are conceptually distinct (micro versus macro
vision), as well as their corresponding professions (programmer versus system architect), and their corresponding
abstractions and mechanisms (e.g., agent architecture versus interaction protocol).

3 Action Selection

The first programming languages, e.g., the first version of Fortran, consider program behavior (code) and
program state (data) within a common global data space. The different instructions are identified through their
line number. The selection of the action (to be performed) is therefore expressed globally and statically.

Structured or modular programming languages, such as Pascal and then Modula, bring some modularization
of the code, expressed under the form of procedures. The selection of the action therefore gains in abstraction,
the indication of the code to be executed being expressed via a symbolic name and no longer by a line number.
However, the association of a name of a procedure to its corresponding code remains static. In some dual
movement, data gradually gains structure and generality, thanks to the concept of abstract data structures.

Object-oriented programming languages, with pioneers such as Simula 67 and then Smalltalk, bring some
major innovation, through the reunion of some procedures and their associated data into a self-contained capsule,
named an object. Data thus become internal and private to the object and its procedures (called methods) and
message sending is the only way to invoke an object, which will activate one of its procedures.

Some decisive advance is the discipline of late binding such as in Smalltalk, i.e. the procedure to be invoked
will be determined according to the class® of the actual object invoked, and not according to the declaration
of the type of the variable that references it”. This means that the binding of the procedure, and therefore the
selection of the action, is delayed at runtime and not statically resolved at compile time, such as in C++ early
binding discipline.

Software components introduce the concept of “ready to wear, to deploy, and to use”. As opposed to an
object, which is orphan and potentially inoperative without its class as well as its parent class (superclass)
hierarchy®, a component is self-contained, with all its code and also its documentation [47]. Therefore, on the
contrary of an object, a component does not require any additional external information in order to select and
process an action.

The concept of agent introduces internal autonomy to the selection of the action. It is no more governed only
externally by the nature of the request, as for a procedure or method call, but also internally by the internal state
of the agent, or more exactly by its knowledge®, since this may include be cognitive information of the agent such
as its own goals. Therefore, an agent is no longer only reactive (to invocations) like objects, but also proactive
[41]. Thus, the concept of action selection takes its full meaning, as for a robot or a human being, who can

5See, e.g., [32).

SA class is the definition of a family of similar objects. It is the class that defines the methods (procedures) and the variables
(data model) common to the objects which will be its instances, i.e. created by/from it.

"We deliberately do not discuss here the relations between binding and typing (and sub-typing), due to the fact that they are
subtle and non consensual. For one analysis (among others), see, e.g., [17].

8For example, in the case of an object migrating to another site which would not have already loaded its associated class
hierarchy.

9The knowledge of an agent may be defined as what an agent knows about its world (including itself and other agents), this
information being described through interpretable concepts (i.e., with the potential to be able to reason about them).

Programming Monolithic Modular Object-oriented Agent-Oriented
ex: Fortran ex: Pascal ex: Java ex: AgentSpeak
Behavior Global Modular Modular Modular
State Global Modular Modular Modular
and external and internal and internal
Invocation Global External External Internal and external
(and Selection) and static and static and dynamic and dynamic
(goto) (procedure (method (ex: goal-
call) call) driven)

Table 1: Structure of entities and action selection

Abstraction level
'y
Action selection
(+ ou - late binding)
procedure method action
call call selection

Coupling fiexibility

Figure 1: Evolution of action selection

arbitrate his own action(s) at any given time, depending on both its own objectives and on information collected
(messages from other agents or/and perceptions of the environment). Arbitration can be done at a symbolic
level in cognitive agents, e.g., according to the agent intentions, in an architecture such as BDI [31]. Reactive
agents have much simpler, stimulus-based action response mechanism, close to message response mechanism in
object-oriented programming. Note that there is in fact some continuum between cognitive and reactive agents
categories, with hybrid architectures attempting at reconciling and combining the two approaches (see, e.g., the
InteRRaP hybrid architecture [38]). Last, some sub-symbolic mechanisms (without an explicit representation
of the world) for regulation, often inspired by biology (metabolism, emotions, motivation, adaptation, see, e.g.,
[62]) can also be incorporated to agents.

Reflecting on the evolution of action selection, Les Gasser proposed in 1998 as one of the fundamental
concepts of agent programming the concept of structured persistent action, in which the agent is autonomously
and persistently trying to accomplish something, independently of the way it is programmed [29]. In standard
procedural programming, the programmer explicitly controls the attempts, while the concept of structured
persistent action abstracts and encapsulates such a mechanism. More precisely, the designer provides the
description of the objective or criteria for success, as well as in general a collection of methods and recipes,
that the agent will select and control autonomously. Note that some similar mechanisms have already been
proposed, for instance declarative programming and backtrack in logic programming languages such as Prolog,
or the general concept of search. But, in our opinion, the concept of structured persistent action represents
in an interesting way the encapsulation of: a notion of choice, informations'®, an iterative control structure
(of type repeat until), and proper resources (own process or thread). In addition, we consider the interaction
of the agent with its environment to ensure some feedback over its actions and choices (e.g., through some
reinforcement learning mechanism). Last, we may observe that the selection (and therefore the choice) of the
action takes place at the moment of the action by the agent and not at the moment of the programming of the
agent. Therefore, the concept of agent is situated within the quest for “ever late binding”.

Table 1, inspired by [41], summarizes our analysis and Figure 1 illustrates it within our proposed frame of
reference.

10Some informations about the possible choices of actions related to the domain in which the agent acts. Such information can
be symbolic (beliefs, models, plans...) or not, depending on the choice of agent architecture and of representation of the world.

input port

-::umui part l
L
u

o

e [|
| H
object
component
//;’ pe / D
reference connector

Figure 2: Objects coupling versus components coupling

4 Coupling Flexibility

The modeling of the coupling between software entities is a fundamental aspect for the structuring of the
software. It actually covers several facets:

e structure: the architectural concepts (e.g., references, connectors...) for the structural coupling between
software entities;

e communication: the modes of communication between software entities, characterized mainly by: the
mode for the designation of the receiver, the mode for data transfer, and the mode for temporal coupling.

4.1 Structural Coupling

The question of the structural coupling between software entities has been initially addressed by the notion
of reference to an entity, through some means for identifying it (identifier). Therefore, one may designate a
software entity'!, in order to use it and to commaunicate its reference to other entities. This model, simple but
effective and general, survived with object-oriented programming languages.

For instance, an object A references an object B, and thus will be able to send requests to B. In practice,
the internal representation (implementation) of A includes a variable whose value is the identifier of object B.
Changing a reference is easy, by just changing the value of the variable, for instance to the identifier of a third
object C. However, we can observe that this modification can be done only internally to object A, the only one
authorized to access its private data (following the encapsulation principle).

A serious limitation occurs when we want to extend a reference, for instance so that A refers both to B and
to C (see the left part of Figure 2). Since a variable has only one value, this cannot be expressed directly. It is
therefore necessary to introduce some data structure (a collection, e.g., a list), containing B and C. The message
sending instruction must also be modified, by introducing an iterator on the collection. Overall, this implies the
modification of the internal representation of object A (in other words, to reimplement it), whereas it is only a
question of extending the reference and the coupling, initially from A to B, into from A to B and C.

The concept of software component'? brings some notable improvement to this problem by externalizing the
references, describing them as explicit output interfaces. Therefore, a component regains some symmetry at the
level of interfaces between input interfaces'® and output interfaces™ .

Coupling thus becomes ezplicit, reified (i.e. coupling is made into first class entities, the connectors) and
external (to the software entities). Previous example is therefore achieved by the simple addition of a connector,
as illustrated in the right part of Figure 2.

Note that a component can have multiple interfaces (input or/and output interfaces). To be able to identify
them individually, an identifier, usually named a port, is associated to each interface. This is an important
difference with an object which has only one identifier and entry point. An interesting consequence is that
components are compositional. That is to say that a composition of several components is equivalent'® to a
component with the corresponding union of input ports and output ports. Otherwise, objects are not directly

11 Simple data in early programming languages, functions in functional programming languages, objects in object-oriented pro-
gramming languages. ..

12For a more complete analysis of the characteristics of software components and a comparison between different component
models, please see, e.g., [19] or/and [36].

13which are traditional for procedures and objects.

14 Alternatively named, respectively, provided interfaces and required interfaces.

15 Actually, we must distinguish between functional composition, which is a simple assembly of components, and structural
composition, which encapsulates a functional composition and identifies it as a new component, often referred to as a composite
component. [19] analyzes their respective binding techniques, named horizontal binding and vertical binding. We believe that the
concept of structural composition is important [52], as it provides encapsulation and hierarchy, which both proved to be useful to
control complexity. However, only a minority of component models support composite components (e.g., Fractal [15] and MALEVA
[14], but not JavaBeans [58] nor CORBA Component Model (CCM) [44]).

mrtsullamn

sanrice
SBlECIlDI’I

and Invocatio

agent|s)

1
O LamICes agen

Figure 3: Services coupling and agents coupling

compositional: a composition of several objects is not immediately equivalent to an object, as it has more than
one entry point.

Therefore, components provide an explicit architectural vision'®. Architecture description languages (ADL)
[63] are dedicated to the specification of the architecture of an application and they are indeed very different
from standard programming languages. Informations about the typing of component interfaces are used to
verify correctness of the assembly, i.e. the conformity between the interfaces which are brought in relation.
Different types of connectors are usually considered and correspond to different architectural styles (e.g, layered,
pipes and filters, broadcast of events. .. [53]) and their associated communication protocols. Connectors can also
represent non-functional properties (such as distribution, quality of service, etc.) and therefore have their own
semantics [3].

In order to express not only specifications about the types of data (typing information) but also about the
behavior of components, notions of contracts have been proposed. For instance, [5] considers four successive
levels of contracts: syntactic, behavioral, synchronization, and quality of service. Depending on the case, they
can be guaranteed, verified or negotiated. The syntactic level is based on a type system. The behavioral level is
usually based on assertions (the three main types being: pre-conditions, postconditions, and invariants). But,
compared to the use of assertions within a program, the idea of contracts is to specify them in a modular way
and wvisible through the interfaces of a component, in order to be able to specify properties that can engage
more than one software entity [37].

The concept of service of service-oriented architectures architectures (SOA)'7 extends coupling with dynam-
icity, and moreover autonomy, via discovery and dynamic selection of other services (as shown in the left part
of Figure 3). Coupling between entities is therefore no longer only managed by the designer of the application,
but by the entities themselves, i.e., through self-organization. For instance, an electronic travel agency service,
looking for services to perform subtasks (e.g., flight reservation, hotels, etc.), will thus be able to identify, se-
lect'®, and contract sub-services. Therefore, services are subject to more or less elaborate descriptions, which are
made available (published), e.g., through directory of services, similar to telephone numbers yellow pages. For
web services, UDDI (Universal Description, Discovery and Integration) and WSDL (Web Services Description
Language) standards [18] specify, respectively, directories and descriptions of services.

Multi-agent systems further extend dynamicity and autonomy by trading some syntactic coupling (following
some typing discipline) for some semantic coupling, based on knowledge (via abstractions such as: task, plan
and intention) and some social organization of work (via abstractions such as: organization, role, norm and
negotiation).

An organization specifies the different roles constituting it (e.g., roles of producer, consumer and broker) and
their relationships (e.g., dependency and hierarchy). A role can be played by one or more agents and the same
agent can also possibly play more than one role simultaneously. Note that an agent referencing a role subsumes
a reference to all the agents fulfilling (at the time of the interaction) this role!® (see the right part of Figure 3).

Two important capacities of an organization are its dynamicity and its autonomy (self-organization and self-
reorganization). Some dynamic reorganization can be triggered: in a top-down manner, e.g., the reorganization
of a robotic football team?® according to a more defensive strategy on the initiative of the coach [33]; or in a
bottom-up manner, with the dynamic formation (and then dissolution) of a micro-organization of type “one-two”
on the initiative of some player agent [20]. Examples of abstract models of organizations are AGR [24] and
MOISE+ [33].

As for services, multi-agent systems also often use various mechanisms for putting agents into relation: by

16The notion of software architectures [53] of an application focuses on the logic of the coupling between the components,
independently of their internal implementation.

7Including in particular web services [18].

18Tn general, according to various criteria (e.g., availability, price, flexibility...).

19This mechanism of abstract role designation of the receiver will be analyzed in Section 4.2.1.

20As in the RoboCup contest [34].

some intermediary agents, directory agents, or facilitator agents guided by the content of the message (e.g., in
KQML [25]); or by some selecting and contracting mechanism, as, e.g., the contract net protocol [56]%.

To conclude, note that the software architectures and components communities started to support automatic
reconfiguration, e.g., for nomadic applications [21]. But the knowledge and social-oriented approach of multi-
agent systems is more ambitious, and therefore also more difficult to verify. We thus find out some classic
dilemma between the growing needs for flexibility, through some delegation of initiative, and the needs to ensure
some guarantees on the operability of the system.

4.2 Communication Coupling

The expression of the mode of communication between software entities includes several important characteristics
(sub-facets). We consider here the three main ones:

e how to designate the receiver(s), e.g., point to point, multi-point, indexed by content, via the environ-
ment. . .;

e the mode for data transfer, e.g., unidirectional, bidirectional with value return, via a shared space. . .;

e the temporal coupling (in other words, the way communications are synchronized), e.g., synchronous,
asynchronous, with an anticipated response (future), coordinated by a protocol. . .

4.2.1 Designation of the Receiver

The mode of communication between objects is fundamentally point to point, i.e. one to one and with explicit
designation of the receiver of the message. Components introduce multi-point communication, as an output of
a component can be connected to more than one component. An interesting type of connector is the event
broadcasting connector, corresponding to the publish-subscribe architectural style [53]. It offers an indirect and
dynamic management of connections by the components themselves, through a mechanism of subscription of a
component to the event broadcaster. This type of mechanism?? became widespread (e.g., in applications based
on standard objects) although it remains very representative of the concept of connector between software
components, defined and manipulated externally to them (as it has been analyzed in Section 4.1).

The shared spaces (repositories) architectural style, illustrated by, e.g., blackboards and tuple-spaces (for
instance, the LINDA model [30]), introduces a mode of designation of the receiver totally implicit, since it will
be indezed by the actual content of the message. In this model, active entities (e.g., processes or agents) can
insert and inder structured data within the shared space. Data will be consumed opportunistically by active
entities looking for the corresponding data patterns.

Services, and moreover multi-agent systems, generalize mechanisms of indirect and dynamic designation,
through some contracting protocols or the consultation of broker or directories agents (as it has been presented
in Section 4.1). Services or agents can therefore dynamically select their own interlocutor. Some more implicit
mechanism is the notion of facilitator, guided by the content of the message [35] (e.g., in KQML [25], to be
analyzed in Section 5.2). Another type is the abstract designation of a receiver through a role, as, e.g., in the
AGR (agent group role) organizational model [24]. In such role-based models, agents usually designate some
role (e.g., midfielder or striker, in a RoboCup football organization), rather than some specific agent, as the
receiver of a communication. As a consequence, all the agents fulfilling this role at the time of communication
will receive the information (see the right part of Figure 3).

Last, in certain types of multi-agent systems, in which the environment (physical or not)?? is explicitly mod-
eled, the agents can communicate via the environment, though inserting specific data, for example pheromones
for ant-based algorithms. Note that, moreover, there is a current trend in multi-agent systems for promoting
the environment as a first-class abstraction®* [60].

4.2.2 Data Transfer

The mode for data transfer in object-oriented programming is bidirectional, with some return of value®>. It is
inherited from the procedural or functional call. It corresponds (as we will see in Section 4.2.3) to a synchronous
call, i.e. with the sender suspending its activity while waiting for the completion of the processing of the request
by the receiver.

211t will be discussed in Section 4.2.3 and is illustrated in Figure 5.

22The subscription criteria and the distribution method may vary, see, e.g., the classification proposed in [22].

23 Algorithms based on ants and their pheromones can be used as a general meta-heuristic optimization method (see, e.g., [2]),
the environment having then no longer relation with a physical reality.

24There is also a similar trend for promoting entities without internal goals and characterized by a function as first-class entities
named artefacts, which are manipulated (use, selection or construction) by agents [46].

25Unless the programmer explicitly specifies that there is no return value, e.g., in Java using the special data type void which
represents the absence of data.

-

event diffusion
Evant
Sourcel

Receptaclel

Receptacle2

event dil&‘

-

invocations
{procedure calls)

invocations
{procedure calls)

Figure 4: CCM component model

The actor model [1] introduces some unidirectional (and asynchronous, see Section 4.2.3)2. Data transfer is
carried out only one-way from the sender to the receiver. If the receiver wants to return a value, it must be done
explicitly by sending another message. Some languages based on actors, as for instance ABCL (Actor-Based
Concurrent Language) [61], provide the programmer with a choice between a one-way asynchronous message
send and a two-way synchronous call>”. Component models, such as CORBA component model (CCM) [44]%8
often also propose these two modes of data transfer: bidirectional though a procedure call (via input and output
interfaces, named facets and receptacles in CCM), and unidirectional though by event diffusion (via event sources
and sinks), see Figure 4.

The shared spaces architectural style (see the previous paragraph Designation of the Receiver) introduces
a mode of data transfer, indirect, via some mediation structure and the distinction between production and
consumption.

Services are generally based on simple invocation protocols, in particular for web services. One of the main
reasons for the success of web services is likely their easy deployment on top of the widespread web infrastructure
and its HTTP protocol. The SOAP protocol [18] (originally the acronym for “Simple Object Access Protocol”)
supports both bidirectional and unidirectional modes.

Multi-agent systems generally offer the unidirectional (and asynchronous) transfer mode of actors but ex-
pressed within more elaborate agent communication languages which allow to specify with precision and details
the nature of the information to be communicated (as it will be presented in Section 5.2).

Last, some possible communication via an environment (by adding, removing, or consuming data) represents
some indirect mode of data transfer.

4.2.3 Temporal Coupling (Synchronization)

The original communication model between software entities (in a sequential and centralized world) is the
procedural or functional call with return of a value. The sender activity is suspended during the processing of
the request by the receiver. A direct transposition into a concurrent setting sticks to these principles, with
the sender waiting for the call to be completed — this is referred to as synchronous transmission. A direct
transposition into a distributed setting is represented by the RPC (Remote Procedure Call), also synchronous.
The actor model [1] introduces an asynchronous mode of communication as its foundation, i.e. without
waiting for the message to be processed — and before that, to be received — by the receiver. Asynchronous
communication is more appropriate to a concurrent or/and distributed setting (due to the potential latency of
the communication network, this avoids waiting for the delivery of the message to the receiver, as well as its
availability to process it). Therefore, the actor model assumes the existence of a mailbox for each actor, which
will store the messages in the order of the arrival (FIFO type discipline). The actor model thus introduces some
temporal decoupling between sending, receiving, processing start, and processing completion of the message. As
indicated in Section 4.2.2, some actor-based languages, such as ABCL, can provide both one-way asynchronous
and two-way synchronous communication (and even other modes, such as the promise/anticipation of the
response — often named future®® — which we will not develop here, see [61]). Note that Scala is an example

26This was motivated by the concurrent and moreover distributed nature of the model, in order to avoid unnecessary and
unbounded waiting for an acknowledgement of data transfer completion.

27Various types of such actor-based and object-oriented concurrent programming abstractions (action selection, activity, commu-
nication and synchronization) have been jointly modeled within the object-oriented framework Actalk [9, 10].

28Note that an example of a more recent component model (also an industry standard), also integrated into a service-oriented
architecture, is CSA (Composite Services Architecture) [39]. However, we have chosen here to illustrate our analysis through the
CCM model, for its historical and pedagogical value.

29Future is a type of eager evaluation, also coined as wait by necessity [16], the exact opposite of lazy evaluation.

FIPA-ContractNet-Protocol)

refuse

propose

reject-proposal

accept-proposal

failure

inform-done : inform

Inform-result : inform

Figure 5: Contract net protocol. Figure reproduced from FIPA Contract Net Interaction Protocol Specification,
Foundation for Intelligent Physical Agents, 2002.

of a programming language that integrates functional, object-oriented, and actor programming [42]. Last, for
an analysis about the different ways of mapping the object-oriented programming model to concurrent and
distributed programming requirements, please refer, e.g., to [13].

Agent communication languages (ACL), in particular FIPA3® ACL [26], allow the specification of a protocol
associated with a communication. The protocol specifies the coordination of valid message exchanges between
agents. Temporal coupling is therefore expressed in a relatively general manner and with an arbitrary number
of messages and agents. Example of families of agent protocols are: interaction (e.g., inform, request...),
coordination (such as a simple or iterated call for proposals — see below), negotiation, auction (e.g., English or
Dutch, with an increasing or decreasing initial price). A classic example of a multi-agent protocol is the call
for proposals (also named the contract net protocol). Figure 5 shows the corresponding interaction diagram (as
specified by FIPA [26]). Successive phases are: the broadcast of the initial call by the initiator (also named
contractor), where cfp stands for call for proposals) to the participants; various proposals (or refusals) made
by the participants — controlled by some deadline (timeout) for responding —; the acceptance (or rejection) of a
proposal by the initiator; and finally the communication by the selected participant (also named sub-contractor)
about the finalization and the result (or the failure) to process his proposal.

Web services also offer analog coordination mechanisms, also named choreography. The Web Services Chore-
ography Description Language (WS-CDL) has been initially defined with this intent by the W3C3!, but it has
been replaced by the BPEL (Business Process Execution Language) and BPNM (Business Process Model and
Notation) standards [40].32.

Table 2 summarizes the evolution of coupling according to the 2 main facets: structure and communica-
tion, the latter with its 3 sub-facets: designation of the receiver(s), data transfer mode, and temporal coupling

(synchronization). Figure 6 illustrates it within our proposed frame of reference3?.

30FIPA is the acronym for the Foundation for Intelligent Physical Agents, an IEEE Computer Society standards organization
that promotes agent-based technology and the interoperability of its standards with other technologies [27].

31The World Wide Web Consortium standard [59].

32We will not detail here the characteristics of services and Web services, which are the subject of standards and numerous
technical specifications (see, e.g. [18] and [48], as well as [49] for an agent perspective on web services) because that would be the
subject of another article.

33Note that the coupling flexibility evolution is not completely linear: actors have been proposed before components but their
respective main focuses are different (respectively, concurrency and architecture); web services have been proposed after multi-agent
systems.

Coupling Objects Actors Components Services Agents
Structure Implicit Implicit Explicit Implicit Implicit
internal internal external volatile external
(references) (references) (connectors) (invocations) (roles)
Commu-
nication
Receiver(s) Point to point | Point to point Multi-point Multi-point Multipoint
designation explicit explicit explicit dynamic explicit
or implicit (discovery or implicit
(publish- and selection) (role
subscribe) designation)
Data Bi- Uni- Bi- or uni- Bi- or uni- Uni-
Transfer directional directional directional directional directional
(value return) direct (events) direct
direct or indirect
direct (environment)
Synchro- Synchronous Asynchronous | Synchronous Synchronous Asynchronous
nization or or or
asynchronous | asynchronous protocol
Table 2: Coupling nature
Abstraction level

components

services

agents

Coupling flexibility

A

Figure 6: Coupling flexibility evolution

Action selection
{+ ou - late binding)

5 Abstraction Level

The history of programming begins with concepts very close to the machine (instructions, integers...), then
progressively identifies some higher level abstractions (procedure, function, data structure, semaphore, process,
object, message, component, model. ..). The concepts of agent and organization continue this evolution towards
more abstraction as well as towards more explicit knowledge.

5.1 From Data to Concepts

The transition from primitive data types to abstract data types allows the modeling and naming of arbitrary
classes of objects. Object-based programming introduces some major evolution step, with objects modeling and
representing (reifying) conceptual or physical objects of the application domain considered [50]3%. In other
words, we moved from data to concepts. Agents will extend this evolution with an explicitation of the domain
(including human) knowledge. Cognitive agents introduce the notion of mental state, inherited from symbolic
artificial intelligence (see, e.g., [54]), with some symbolic representation of cognitive concepts, such as: belief,
goal, desire, intention. . . Furthermore, such internal knowledge can be communicated to other (ezternal) agents,
e.g., communication of beliefs, plans or/and intentions, in order for agents to learn about each others or/and
coordinate their actions.

The object-oriented discipline of message sending also provides some self-documentation, as the subject
and the request type are specified explicitly. Agent communication languages raise further the explicitness of
information and knowledge. Indeed, information that had remained implicit (and hidden) in object-oriented
and component-based applications — such as intention of communication, coordination logic, plans...— and
remained in the mind of the programmer, become ezplicit and thus better document the program. Moreover, this
information could also be used by the agents themselves (for example to coordinate, reason about communication
failures, replan, reorganize. ..).

5.2 Interoperability Languages

Let us look at interoperability middlewares, which specify and standardize the exchange of information. CORBA
object-oriented middleware designed by OMG [43] standardizes, through an interface description language
(IDL), the types of data exchanged. The analogue for agents further refines the way information is exchanged.
The IDL of CORBA is substituted®® by a more general agent communication language (ACL). In addition to
the specific content of the message, an ACL communication can specify:

e performative: some symbolic designation of the intention of the communication (e.g., inform, deny, re-
cruit. ..);

e content description language: the language used to describe the content. It can be some programming
language (e.g., Java) or some knowledge representation language (e.g., KIF, or SL [26]);

e ontology: the ontology(s)*® of the concepts referred to by the message (e.g., some standard ontology about
transport and tourist services, for some electronic travel agency application);

e protocol: the protocol used for the communication (e.g., a call for proposals, named FIPA-Contract-Net,
see Figure 5).

It should be noted that CORBA and ACL do not actually play exactly the same roles [57]. CORBA, through
its IDL, provides some standard for specifying the interfaces (signatures) of objects and components. It also
provides mappings (named projections) of this IDL in different programming languages (e.g., Java, Smalltalk,
C++...). Therefore, CORBA can automatically generate implementation skeletons for the calling party code
and for the called party code, and thus ensure the translation and transfer of data. An ACL does not offer some
standard for specifying interfaces of agents, but offers a general standard for specifying various properties of
communication between agents, which is different. As listed above, ACL standardizes various properties such
as intention, ontology and protocols. The first historically is KQML [25], followed by FIPA ACL [26].

5.3 Organizational Design

It is also important to highlight the preponderant role of the design of systems multi-agent systems. It is
guided by the organization of work (through concepts such as organization, role, dependence, and norms) and
by knowledge (mind states such as belief and intentions), rather than by the operational means for achieving this

34 A review of their successes, failures and prospects is proposed in [51].
35 Actually more than that, as it will be explained in next paragraph.
36].e. some representation of a set of concepts, their properties and their relations.

10

Abstraction level

'y
organizations

agents, intentions, plans

models, ontologies
services

objects, messages
data structures

bits

Action selection
(+ ou - late binding)

Coupling flexibility

Figure 7: Abstraction level evolution

work, which corresponds to the traditional procedural approach of programming (through data and procedures).
Multi-agent methodologies (e.g., such as the Cassiopée [20] precursor) often start with some analysis of organi-
zations, roles and their dependencies, while considering separately (and later) implementation questions (such
as: which agents will fulfill the roles, depending on what decomposition of tasks). Some agent-oriented design
can then be carried out (implemented) in some multi-agent architecture, or through objects, actors, or/and
components, the agent level not always appearing completely at the implementation level37.

Finally, in the evolution and the elevation of programming abstractions, as illustrated in Figure 7, we also
need to mention about model driven engineering, such as model driven architecture (MDA) proposed by the
OMG [45]), as a modeling level for the partial automation of the construction of applications. Note that this
line of research is somehow orthogonal to a specific programming model (object-oriented, component-based,
agent-oriented. ..). There are efforts to couple multi-agent programming and model engineering, see, e.g., [55].

6 Conclusion

Due to the increasing needs for auto-adaptation of future distributed applications (such as, e.g., Internet of
Objects), models of software components and software architectures are gradually gaining in terms of abstraction
as well as in (self) adaptation and reconfiguration capacities (see, e.g., [57]). They get inspiration from multi-
agent systems abstractions, while often relying on light-weight infrastructures such as web services. Their
technology is indeed simpler and lighter to implement and to deploy than some distributed component models
(such as, e.g., CORBA), as current web infrastructure is sufficient. Web services provide the specification of the
coordination between services (named choreography) although it does not yet reach the level of sophistication
of multi-agent systems (on this topic, see, e.g., a comparative analysis of web services and agents [49]).

An important stake is therefore be to be able to integrate and reuse, as much as possible, respective ab-
stractions and experience from various programming models and communities. However, cultural specificities
sometimes lead to some ignorance about respective works. One of the objectives of this analysis is to humbly
contribute to clarify various programming abstractions and their respective evolution and articulation and thus
to favor mutual awareness and possible cross-fertilization.

Acknowledgements

The premises of this study go back to an interview that we conducted with Les Gasser on the relationship
between objects and agents [29], published in a special series on actors and agents [29]. We thank him for his
pioneering and fundamental contribution to this reflection and we dedicate this article to his memory.

3THowever, keeping abstractions, such as agents and organizations, as entities explicitly represented at the ezecution level, offers of
course possibilities of dynamic manipulation by the programmer, but above all by the entities themselves, thus offering possibilities
of self-adaptation and self-organization (see, e.g., the organizational model MOISE [33]).

11

Abstraction level

'y
organizations

agents, intentions, plans

models, ontologies
services

objects, messages

data structures

bits

Action selection
(+ ou - late binding)

procedure method action
call call selection

actors

components
services

agents

Coupling flexibility

Figure 8: Programming evolution

References

1]

2]

[10]

[11]

Agha, G.: Actors: a Model of Concurrent Computation in Distributed Systems. Series in Artificial Intelli-
gence. MIT Press (1986)

Albert, P., Armetta, F., Hassas, S.: Agents situés : une nouvelle voie pour le développement d’applications
industrielles. In: A.E. Fallah-Seghrouchni, J.P. Briot (eds.) Technologies des systémes multi-agents et
applications industrielles, IC2, pp. 101-146. Hermes/Lavoisier (2009)

Allen, R., Garlan, D.: Formal connectors. Research Report CMU-CS-94-115, Department of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, Etats-Unis (1994)

Bachman, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R., Wallnau, K.:
Volume II: Technical concepts of component-based software engineering. Technical Report CMU /,SEI—2000—
TR-008 & ESC-TR-2000-007, Software Engineering Institute, Carnegie Mellon, Pittsburgh, PA, Etats-Unis
(2000)

Beugnard, A., Jézéquel, J.M., Plouzeau, N., Watkins, D.: Making components contract aware. IEEE
Computer 32(7), 3845 (1999)

Boissier, O.: (editor) Composants et systémes multi-agents. L’Objet 12(4) (2006)

Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming: Languages, Platforms
and Applications. International Book Series on Multiagent Systems, Artificial Societies and Simulated
Organizations. Springer (2005)

Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F., Gomez-Sanz, J., Leite, J., O’Hare, G., Pokahr, A.,
Ricci, A.: A survey of programming languages and platforms for multi-agent systems. Informatica 30(1),
33-44 (2006)

Briot, J.P.: Modélisation et classification de langages de programmation concurrente a objets : ’expérience
Actalk. In: Actes du Colloque Langages et Modeles & Objets (LMO’94), pp. 153-165. INRIA /IMAG/PRC-
IA, Grenoble, France (1994)

Briot, J.P.: An experiment in classification and specialization of synchronization schemes. In: K. Futatsugi,
S. Matsuoka (eds.) Object Technologies for Advanced Software (ISOTAS’96), no. 1049 in LNCS, pp. 227-
249. Springer, Kanazawa, Japan (1996)

Briot, J.P.: Composants et agents : évolution de la programmation et analyse comparative. Technique et
Science Informatiques (TSI) 33(1-2), 85-115 (2014). DOI 10.3166/TSI.33.85-115

12

Briot, J.P., Demazeau, Y.: Principes et architecture des systémes multi-agents. IC2. Hermes/Lavoisier
(2001)

Briot, J.P., Guerraoui, R., Lohr, K.P.: Concurrency and distribution in object-oriented programming.
Computing Surveys 30(3), 291-329 (1998)

Briot, J.P., Meurisse, T., Peschanski, F.: Une expérience de conception et de composition de comportements
d’agents a l'aide de composants. L’Objet 12(4), 11-41 (2006). Special issue on Composants et systeémes
multi-agents

Bruneton, E., Coupaye, T., Leclerc, M., Quéma, V., Stefani, J.B.: An open component model and its
support in Java. In: 7th International Symposium on Component-Based Software Engineering, no. 3054
in LNCS, pp. 7-22. Springer (2004)

Caromel, D.: Toward a method of object-oriented concurrent programming. Communications of the ACM
(CACM) 36(9), 90-102 (1993)

Castagna, G.: Covariance and contravariance: Conflict without a cause. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 17, 431-447 (1995)

Chauvet, J.M.: Services Web avec SOAP, WSDL, UDDI, et XML. Eyrolles (2002)

Crnkovi¢, 1., Sentilles, S., Vulgarakis, A., Chaudron, M.R.V.: A classification framework for software
component models. IEEE Transactions on Software Engineering 37(5), 593-615 (2011)

Drogoul, A., Collinot, A.: Applying an agent-oriented methodology to the design of artificial organisations:
a case study in robotic soccer. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 1(1),
113-129 (1998)

Dubus, J., Merle, P.: Vers l’auto-adaptabilité des architectures logicielles dans les environnements ouverts
distribués. In: M. Oussalah, F. Oquendo (eds.) lére Conférence francophone sur les Architectures Logicielles
(CAL’2006). Hermes/Lavoisier, Nantes (2006)

Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.M.: The many faces of publish/subscribe. ACM
Computing Surveys 35(2), 114-131 (2003)

Ferber, J.: Les Systémes Multi-Agent — Vers une Intelligence Collective. InterEditions (1995)

Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-agent
systems. In: 3rd International Conference on Multi-Agent Systems (ICMAS’98), pp. 128-135. IEEE, Paris
(1998)

Finin, T., Labrou, Y., Mayfield, J.: KQML as an agent communication language. In: J. Bradshaw (ed.)
Software Agents, pp. 291-316. MIT-Press (1997)

FIPA: Agent Communication Language Specifications (accessed: 13/08,/2021).
Http://www fipa.org/repository/aclspecs.html

FIPA: Foundation for Intelligent Physical Agents (accessed: 13/08/2021). Http://www.fipa.org/

Gasser, L., Briot, J.P.: Object-based concurrent programming and distributed artificial intelligence. In:
N.M. Avouris, L. Gasser (eds.) Distributed Artificial Intelligence: Theory and Praxis, pp. 81-107. Kluwer
(1992)

Gasser, L., Briot, J.P.: Agents and concurrent objects. IEEE Concurrency 6(4), 74-81 (1998). Interview
of Les Gasser by Jean-Pierre Briot

Gelernter, D., Carrierro, D.: Coordination languages and their significance. Communications of the ACM
35(2) (1992)

Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-intention model of agency.
In: 5th International Workshop on Intelligent Agents V: Agent Theories, Architectures, and Languages
(ATAL’98), no. 1555 in LNCS, pp. 1-10. Springer (1999)

Ghezzi, C., Picco, G.: An outlook on software engineering for modern distributed systems. In: Monterey
Workshop on Radical Approaches to Software Engineering. Venezia, Italie (2002)

13

[53]

[54]
[55]

Hiibner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems using the MOISE-+
model: programming issues at the system and agent levels. International Journal of Agent-Oriented
Software Engineering (IJAOSE) 1(3-4), 370-395 (2007)

RoboCup Federation Inc: RoboCup (accessed: 13/08/2021). Https://www.robocup.org/
Kafura, D., Briot, J.P.: Introduction to actors and agents. IEEE Concurrency 6(2), 24-29 (1998)

Lau, K.K., Wang, Z.: Software component models. IEEE Transactions on Software Engineering 33(10),
709-724 (2007)

Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40-51 (1992)

Miiller, J.P., Pischel, M.: The agent architecture InteRRaP: Concept and application. Technical Report
RR-93-26, DFKI, Saarbriicken, Allemagne (1993)

OASIS: Open composite services architecture (CSA). Tech. rep., OASIS (Organization for the Advancement
of Structured Information Standards), http://www.oasis-opencsa.org (accessed: 13/08/2021)

OASIS: Web services business process execution language (BPEL). Tech. rep., OASIS (Organization for
the Advancement of Structured Information Standards), http://bpel.xml.org (accessed: 13/08/2021)

Odell, J.: Objects and agents compared. Journal of Object Technology (JOT) 1(1) (2002)
Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima (2010)

OMG: Common object request broker architecture (CORBA). Tech. rep., Object Management Group
(OMG), http://www.omg.org/corba/ (accessed: 13/08/2021)

OMG: Corba component model (CCM). Tech. rep., Object Management Group (OMG),
http://www.omg.org/technology/documents/formal /components.htm (accessed: 13/08/2021)

OMG: Model driven architecture (MDA). Tech. rep., Object Management Group (OMG),
http://www.omg.org/mda/ (accessed: 13/08/2021)

Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems. Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS) 17(3), 432-456 (2008)

Oussalah, M.: Ingénierie des composants — Concepts, techniques et outils. Vuibert (2005)
Papazoglou, M.: Web Services & SOA, Principles and Technology, Second Edition. Pearson (2012)
Payne, T.: Web services from an agent perspective. IEEE Intelligent Systems 23(2), 12-14 (2008)

Perrot, J.F.: Objets, classes et héritage : Définitions. In: R. Ducournau, J. Euzenat, G. Masini, A. Napoli
(eds.) Langages et modeles a objets — Etat des recherches et perspectives, Collection Didactique, pp. 3-31.
INRIA (1998)

Perrot, J.F., Briot, J.P.: Introduction. L’Objet 10(4), 11-16 (2004). Numéro spécial : Des octets aux
modeles — Vingt ans apres, ou en sont les objets ?

Peschanski, F., Meurisse, T., Briot, J.P.: Les composants logiciels : évolution technologique ou nouveau
paradigme ? In: Conférence Objets, Composants, Modeéles (OCM’2000), pp. 53-65. Nantes (2000)

Shaw, M., Garlan, D.: Software Architectures — Perspective on an Emerging Discipline. Prentice Hall
(1996)

Shoham, Y.: Agent oriented programming. Artificial Intelligence 60(1), 51-92 (1993)

Silva, V., Choren, R., Lucena, C.: Using UML 2.0 activity diagram to model agent plans and actions.
In: International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’2005). Utrecht,
Pays-Bas (2005)

Smith, R.: The contract net protocol: High-level communication and control in a distributed problem
solver. IEEE Transactions on Computers 29(12), 1104-1113 (1980)

van Splunter, S., Wijngaards, N., Brazier, F., Richards, D.: Automated component-based configuration:
Promises and fallacies. In: AISB’2004 Convention 4th Symposium on Adaptive Agents and Multi-Agent
Systems (AAMAS-4), pp. 130-145. Leeds, Royaume-Uni (2004)

14

[68] Sun: Javabeans specification. Tech. rep., Sun Microsystems Inc., http://java.sun.com/products/javabeans/
(2006)

[59] W3C: World Wide Web Consortium (accessed: 13/08/2021). Https://www.w3.org/

[60] Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent systems —
state-of-the-art and research challenges. In: D. Weyns, H.V.D. Parunak, F. Michel (eds.) Environments for
Multi-Agent Systems — First International Workshop, E4AMAS 2004, New York, NY, July 19, 2004, Revised
Selected Papers, no. 3374 in LNAI, pp. 1-47. Springer (2005)

[61] Yonezawa, A., Briot, J.P., Shibayama, E.: Object-oriented concurrent programming in ABCL/1. Sig-
plan Notices 21(11), 258-268 (1986). Special Issue. Proceedings of the Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’86), Portland OR, Etats-Unis

[62] Ziemke, T., Balkenius, C., Hallam, J. (eds.): From Animals to Animats 12 — 12th International Conference
on Simulation of Adaptive Behavior, SAB 2012, Odense, Denmark, August 2012, Proceedings. No. 7426
in LNAI Springer (2012)

15

