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Abstract—Neural network inference on embedded devices will
have an important industrial impact on our society. Embedded
devices are ubiquitous in many fields, like human activity recogni-
tion or visual object detection. As a matter of fact, Convolutional
Neural Networks (CNNs) are now the best modality to solve most
of computer vision problems. Although, the accuracy offered by
these algorithms has a cost: an important energy consumption,
a high execution time, and a significant memory footprint. This
cost is a major challenge to implement CNNs within embedded
devices with limited computational power, memory space and
energy available. This makes prior estimation about the impact
of a CNN on a given microcontroller, a design key point before
applying neural network compression techniques. We introduce
the EST primitive-based model to estimate the impact of a
CNN on a microcontroller, regarding the latency, the power
consumption and the needed memory space. The target hardware
is the STM32L496ZG with CPU ARM Cortex M4 running at 14
different frequencies. Our model shows an average estimation
error of 13.66% on latency, 5.52% on power consumption and
2.09% on needed memory space.

Index Terms—CNN, Microcontrollers, Estimation, Model

I. INTRODUCTION

Deep learning within the Internet of Things (IoT) is a
high-growing field of interest, at the intersection of machine
learning and embedded systems. Recent International Data
Corporation forecast estimates that 79.4 zettabytes (ZB) of
data will be generated by IoT devices in 2025. Billions of
these data are already used for decision-making applications.
Such applications analyze signals from a wide range of sen-
sors. They use machine learning algorithms and are deployed
on Micro Controllers Units (MCUs), in an edge computing
paradigm. Among them are visual object detection [1], predic-
tive maintenance [2], or the well-known keyword spotting [3].

One of the most efficient models of machine learning
algorithms since 2012 [4] is the Convolutional Neural Network
(CNN), which has proved its efficiency in a wide range
of vision and natural language processing applications. As
problem complexity increased, new CNNs were developed to
solve these issues at the expense of computational costs. For
instance, VGG16 [5] needs billions of operations to compute
one image [6]. This high computation cost has an impact on
the energy consumption, the execution time and the need for
significant memory space of the system. Whereas it is possible

to consider a high impact on a system like a Many-Core Server
or a Graphical Processing Unit (GPU), it cannot be considered
in a MCU where the resources are scarce.

MCUs are embedded devices. On such devices, the goal of
the designers is to satisfy the application constraints, like real-
time execution for example, with limited resources. To do so,
embedded algorithms are generally optimized in number of
operations per second to: (1) realize a processing to comply
with latency application requirements, and to (2) operate
continuously with a minimal impact on a device battery life.
To realize this optimisation, the first step is to determine
the algorithm performances on the MCU. To do so, a costs
estimation model on MCUs will help to reach the embedded
application requirements. Therefore, we need such a model for
CNN s integration within embedded systems.

Today, the easiest way to define a CNN for decision-making
applications is to adapt an existing already trained CNN. The
method to realize this adaptation is the transfer learning. It
allows to train a neural network, even if the train dataset is not
significant enough. However, transfer learning does not take
into account embedded applications limits. The most optimal
approach would be to create a new neural network specific to
the embedded application, but there is still no clear design
rules to create a CNN architecture. A recent field, Neural
Architecture Search (NAS), aims at addressing this issue. Even
if it is a very promising field, it presents two major draw-
backs. Firstly, NAS focuses only on accuracy without taking
into account embedded constraints such as execution time,
energy and memory. Secondly, the computing time needed
to find a solution regarding one constraint, only accuracy for
example, is extremely important, hundreds of GPUs hours [7].
Computing time to find a solution that satisfies more than
one constraint could become prohibitive. Consequently, a wise
strategy is to use transfer learning method combined with an
adaptation to the targeted MCU.

To address this adaptation, deep learning researchers have
developed reduction techniques. For example, Han et al. [6]
applied pruning, quantization and Huffman coding to reduce
the cost of their neural network. Hinton et al. [8] applied
knowledge distillation techniques to train a smaller network
with the approximation function of a bigger one. Denil et



al. [9] used low rank factorization to represent the weight
matrix as low rank product of two smaller matrices. A question
remains unanswered: what are the most appropriate reduction
techniques for a specific problem with its own constraints?

In order to address this question, it is mandatory to estimate
the impact of a CNN on a given MCU, to find the best
optimizing policy. In this article we propose an estimation
model for energy, surface and time: the EST model. It aims
to help designers to choose the most appropriate neural
network reduction techniques in order to respect their design
constraints.

The remainder of this paper is organized as follows: Sec-
tion II discusses related work on estimation models. Sec-
tion III details our estimation method. Section IV presents
estimation results of LeNet5S neural network running on the
STM32L496ZG MCU. We conclude and discuss our future
work in Section V.

II. RELATED WORK

This section summarizes estimation models regarding ex-
ecution time on different hardware, estimation of energy
consumption and static memory. Works on estimation models
are not dedicated to MCU architectures, we provide here
several works on different architectures, Field Programmable
Gate Array (FPGA), Tensor Processing Unit (TPU), GPU or
CPU that can be adapted to MCU architectures.

In the recent years, two different approaches have attempted
to estimate neural network latency: machine learning predic-
tion (MLP) models and analytical prediction (AP) models.
Amaris et al. [10] compare MLP models on GPUs to AP
models and conclude that although AP models give better
prediction, they needed specific knowledge of architectures.
However, MLP models need databases that are not always
available. Mu et al. [11] worked on a FPGA time model
estimation and introduced a three-step model with a new data
structure, the LoopTree, followed by a coarse-grained model
and by an OpenCL-source-code-based fine-grained model. In
addition to the engineering complexity task, the knowledge
of the hardware design target board is necessary to make
FPGA design efficient. Moreover, design specifications such
as tiling factors, memory layout or attributes can affect the
design performance significantly.

Regarding TPUs, inference time prediction was made by
Kaufman et al. [12]. They used a three-step methodology
based on data flow graphs and computed the runtime of
an entire program by summing the runtimes of its kernel
executions.

An alternative approach is used by authors of FBNet [13] on
mobile CPU of Samsung Galaxy S8 and iPhoneX. They mea-
sured neural networks latency thanks to an operator LUT. The
same methodology was applied by authors of ChamNet [14]
on Snapdragon 835 mobile CPU and Hexagon v62 DSP. They
also highlighted that optimization based on direct latency
measurements instead of FLOPs can better explore hardware
features. Then, they predicted energy consumption through a

combination of Gaussian process model and Bayesian opti-
mization.

For energy estimation, Tiwari et al. [15] presented a low-
level model based on instruction energy costs. It is based on
the sum of energy costs of the executed instructions and inter-
instructions effects. According to the authors, circuit state,
resource constraints and cache misses are the causes of these
effects. This linear model is indeed easy to compute but does
not take into account the hardware specific characteristics.
Moreover, most of MCUs are running on a battery. It is
therefore necessary to take into account its modelisation.

To address this issue, Dron et al. [16] introduced a method
to estimate a network lifetime using an emulated application
with a non-ideal battery model and a low-level description of
the node hardware.

Finally, the total neural network memory size can be deter-
mined, as done by Blott et al. [17], by multiplying the sum of
the weight requirements by the size of the given data type.

All in all, the limitation of these approaches is the model
granularity. On the one hand, it can be easy to compute but
do not reflect the hardware features. On the other hand, it can
be hardware specific and thus a complex engineering task.
Moreover the above estimation solutions share the limitation
of one different estimation process for each feature. To the
best of our knowledge, there is no estimation model for CNN
inference costs on MCUs capable of accurately estimate three
main features namely (1) latency (2) static memory space and
(3) power consumption.

In the Section IIT we propose our EST model to overcome
these limitations and provide a three main features estimation
model. This model is based on CNN primitives.

III. PRIMITIVE-BASED MODEL

This section explains the main principle of the primitive-
based model. We explain what are the primitives and we apply
this decomposition to LeNet5 neural network to validate our
approach.

A. Convolution neural network, a general composition

Convolutional neural networks are mainly composed of
two parts: the feature extractor and the classifier. Figure 1
illustrates its general architecture.
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Fig. 1: CNNs architectures
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The feature extractor, represented on the left part of Fig-
ure 1, is composed of:



« convolutional layers: the basis of feature extraction;

¢ pooling layers: compress the information;

e non linearity activation function layers: normalize the

input layer value.

The classifier, represented on the right part of Figure 1, is
mainly composed of:

« fully connected layers: linear combination based on the

previous feature extraction process;

« non linearity activation function layers.

The same kind of layers composes CNNs. The differences
between CNN architectures can be the number and the order of
layers, the kernel size or the activation function applied. As
a consequence, we decomposed CNN in several primitives.
This decomposition aims at simplifying the estimation impact
of a CNN for a MCU. A major advantage of a primitive-based
model is its good scalability.

We have identified four families of basic primitives to
decompose CNN, namely:

o (1) features extraction primitives

¢ (2) activation function primitives

e (3) pooling primitives

o (4) fully connected primitives

Thanks to this CNN decomposition model, we evaluate the
unit cost of these primitives for a specific MCU. Knowing
the unit cost for one primitive running on a specific MCU, we
inferred the total impact of its use, by multiplying its unit cost
by the number of time it is applied in the CNN.

B. LeNet5 primitive-based model

To validate our primitive-based model, we use LeNet5 [18]
CNN. It is represented in Figure 2. The measurement of
its requirements aims to validate the primitive-based model
estimation. LeNet5 network is an old state of the art CNN.
However, its requirements regarding space memory and com-
puting well illustrate the aim to successfully deploy deep
learning models within MCUs [19], [20].
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Fig. 2: The LeNet5 neural network [18]

LeNet5 is composed of 2 convolutional layers, 2 average
pooling layers and 3 fully connected layers. Activation func-
tions applied are sigmoid (1), and softmax (2) for the last
layer.

1
sigmoid(x) = T3 e (D
softmaz(z;) = _eanlz) 2

B > exp(z;)

TABLE I: LeNet5 neural network primitives

Primitive In/Out | Kernel size | Number of applications
Convolution X 5%5 14 304
Average Pooling X 2%2 1576
Fully Connected 1 | 400/120 X 1
Fully Connected 2 120/84 X 1
Fully Connected 3 84/10 X 1
Sigmoid X X 6 508
Softmax 10/10 X 1

The primitive decomposition of LeNet5 is referenced in
Table I. The number of applications for each primitive was
determined based on LeNet5 architecture. The input image is
gray level, size 32 by 32. The convolution kernel size is 5 by
5 with a stride of 1. The average pooling kernel size is 2 by
2 with a stride of 2. LeNet5 was trained with TensorFlow
framework, on the MNIST dataset. The test result showed
an accuracy of 97.92% on the MNIST test dataset. Weights
were retrieved from this TensorFlow model, then implemented
within the hardware.

IV. IMPLEMENTATION
A. Experimental Framework

To describe each primitive and LeNet5 network, experi-
ments were run using C/C++ code, with 32 bit floating point
format. The target hardware is a Nucleo-144 development
board powered by V = 3.3V, equipped with STM32L496ZG
MCU based on the ARM Cortex M4 processing unit with IMB
of flash memory and 320KB of SRAM. The code with LeNet5
weights ran on-chip at 14 different frequencies, from 100k H z
to 8OM H z. The compiler used is ARM compiler version 5.06
with a level 3(-O3) optimization.

Latency for an inference to core operating frequencies was
carried out using a hardware timer running on the same clock
as core clock. Then the timer value was multiplied by core
period. In order to measure the current, we used ARM-Keil
UlinkPlus probe on the jumper JP5(IDD) of Nucleo-144 board,
to assess MCU power only. This probe providing a sample rate
of 20MHz based on 16-bit delta-sigma technology, precision
on current measurement +2% and a resolution of 200nA.

For current consumption estimation, the primitive-based
model was implemented in Wisebatt tool [21] on which
simulations were performed. Wisebatt allows a precise energy
consumption estimation of embedded systems and IoT using
the research work of Dron et al. [22] [16].

Regarding the needed memory space, we added the code
and data size requirements for each primitive and compared
it to the LeNet5 model code and data size. This information
was generated by the compiler in a MAP file.

B. Results

Latency measurements were based on 10 batches of 100
measures of each primitive. Average current measurements
were performed on full runs of primitives, based on their re-
spective latency at the measured frequencies. Then, the LeNet5



network was described thanks to primitive-based model and
the inference cost was evaluated in the same way as primitive
unit costs.

The estimation results for needed memory space is refer-
enced in Table II. There is a difference of 2.09% between the
estimation and the real requirement.

The accuracy between the real and the estimated latency
per inference is highlighted in Figure 3. We observe that
our primitive-based model expresses well the real behavior of
latency according to running frequencies. Over all frequencies,
the average difference between estimation and real latency per
inference is an overestimation of 13.66%. Because our model
overestimates latency on each frequency, it ensures that if the
estimated neural network latency fits design constraints, real
latency will also respect them.

Comparison between real and estimated average current
consumption is shown in Figure 4. The average accuracy is
5.52% over all frequencies. Thanks to the combination of our
model and Wisebatt tool, we were able to do an accurate
estimation. Moreover, through this estimation, we will model
the impact of a CNN on a complete embedded system battery
life.
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Fig. 3: Latency for one LeNet5 inference
primitive-based model estimation, logarithmic scale

TABLE II: LeNet5 code and data size estimation

Code + Data size [kB]
Primitive-based model | LeNet5
251,60 256,98

Accuracy [%]

2,09

V. CONCLUSION

In this paper, we present our EST primitive-based model
to estimate CNN costs on a MCU. Its aim is to give key
design features to choose wisely neural networks reduction
techniques. Indeed, knowing quickly the reduction techniques
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Fig. 4: Average current for one LeNet5 inference
primitive-based model estimation, logarithmic scale

impact on CNNs costs, will help choose the most adapted to
apply for respecting embedded application limits.

Results show that our proposed EST model accurately
estimates LeNet5 network costs, within a STM32L496ZG
based on a ARM Cortex M4 processing unit. Over 14 different
frequencies, the EST model achieves, for the entire LeNet5
network, an average estimation error for one inference of
13.66% on latency, 5.52% on current and 2.09% on needed
memory space for the code and data size.

Our future works will evolve around a neural networks
costs estimation thanks to the EST model, over other MCUs.
Moreover, neural networks downsizing techniques will be
applied on bigger networks. Finally, we will characterize
downsizing techniques influences on the neural network costs
on Microcontroller Units.
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