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Background: Macrophages are pivotal cells in sarcoidosis. Monocytes-derived (MD)
macrophages have recently been demonstrated to play a major role especially in
pulmonary sarcoidosis. From inflammatory tissues to granulomas, they may be
exposed to low oxygen tension environments. As hypoxia impact on sarcoidosis
immune cells has never been addressed, we designed the present study to investigate
MD-macrophages from sarcoidosis patients in this context. We hypothesized that
hypoxia may induce functional changes on MD-macrophages which could have a
potential impact on the course of sarcoidosis.

Methods: We studied MD-macrophages, from high active sarcoidosis (AS) (n=26), low
active or inactive sarcoidosis (IS) (n=24) and healthy controls (n=34) exposed 24 hours to
normoxia (21% O2) or hypoxia (1.5% O2). Different macrophage functions were explored:
hypoxia-inducible factor-1a (HIF-1a) and nuclear factor-kappa B (NF-kB) activation,
cytokines secretion, phagocytosis, CD80/CD86/HLA-DR expression, profibrotic response.

Results: We observed that hypoxia, with a significantly more pronounced effect in AS
compared with controls and IS, increased the HIF-1a trans-activity, promoted a
proinflammatory response (TNFa, IL1ß) without activating NF-kB pathway and a
profibrotic response (TGFß1, PDGF-BB) with PAI-1 secretion associated with human
lung fibroblast migration inhibition. These results were confirmed by immunodetection of
HIF-1a and PAI-1 in granulomas observed in pulmonary biopsies from patients with
sarcoidosis. Hypoxia also decreased the expression of CD80/CD86 and HLA-DR on MD-
macrophages in the three groups while it did not impair phagocytosis and the expression
of CD36 expression on cells in AS and IS at variance with controls.

Conclusions: Hypoxia had a significant impact on MD-macrophages from sarcoidosis
patients, with the strongest effect seen in patients with high active disease. Therefore,
hypoxia could play a significant role in sarcoidosis pathogenesis by increasing the
org August 2021 | Volume 12 | Article 7190091

https://www.frontiersin.org/articles/10.3389/fimmu.2021.719009/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.719009/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.719009/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:valerie.besnard@univ-paris13.fr
https://doi.org/10.3389/fimmu.2021.719009
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.719009
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.719009&domain=pdf&date_stamp=2021-08-11


Jeny et al. Hypoxia and Macrophages in Sarcoidosis

Frontiers in Immunology | www.frontiersin.
macrophage proinflammatory response, maintaining phagocytosis and reducing antigen
presentation, leading to a deficient T cell response. In addition, hypoxia could favor fibrosis
by promoting profibrotic cytokines response and by sequestering fibroblasts in the vicinity
of granulomas.
Keywords: pulmonary sarcoidosis, hypoxia-inducible factor 1, plasminogen activator inhibitor-1, macrophages,
fibrosis, monocytes
INTRODUCTION

Sarcoidosis is a systemic granulomatous disease of unknown
cause affecting the lung with a prevalence close to 90% (1, 2).
Granulomas, the key lesion in sarcoidosis, are well circumscribed
and coalescent clusters of macrophage-derived epithelioid and
giant cells, associated with lymphocytes, subsequently wrapped
by lamellar fibrosis (3). The prevailing hypothesis explaining
granuloma formation is that exposure to unknown antigens
triggers a disproportionate inflammatory response in genetically
predisposed individuals (4). Sarcoidosis is particularly challenging
in regards of identifying factors involved in initiation of
inflammation, granuloma perpetuation and evolution towards
fibrosis as observed mostly in pulmonary, but also in hepatic,
renal or cardiac involvement (3, 5–7). These events are
determinant for sarcoidosis outcomes which vary from benign
to life-threatening especially due to pulmonary fibrosis and/or
pulmonary hypertension (8).

Macrophages are pivotal cells in the sequence of events
associated with sarcoidosis pathogenesis, granulomas having
been clearly demonstrated constituted of macrophages-derived
cells (9–13). Different types of macrophage populations (alveolar
and interstitial) derivating from distinct precursors of
embryonic/fetal and myeloid origin, reside in the lung (14, 15).
Notably, upon injury, the myeloid precursors generate
monocyte-derived (MD) macrophages, though to play a major
role in fibrosis (16) and sarcoidosis (11, 17–20).

In the lung of patients, these cells are an important source of
TNFa, a major cytokine in the pathogenesis of sarcoidosis (11).
Circulating mononuclear cells from sarcoidosis patients are also
able to reconstitute granulomas in vitro, and present a specific
transcriptional profile compared to other granulomatosis such as
tuberculosis (17, 18). In addition, analysis of granulomas from
sarcoidosis recurrence after lung transplantation demonstrated
that constitutive cells derived from recipient blood cells (19, 20),
indicating that peripheral blood cells are major contributors in
granuloma formation.

Hypoxia, defined as an imbalance between impaired tissue
oxygen supply and cell demand, is a micro-environmental
condition known to modulate innate and adaptive immunity
(21) by promoting pro-inflammatory response (22) and to
contribute to the pathophysiology of fibrotic diseases (23).
Hypoxia impact on macrophages is particularly relevant to
study in sarcoidosis as a previous study showed that the
absence of in-depth vascularization makes sarcoidosis
granulomas hypoxic (24) as for tuberculous granulomas (25).
Moreover, from inflammatory tissues to granulomas, MD-
org 2
macrophages may be exposed to low oxygen tension
environments mainly due to O2 consumption related to
hypermetabolism of inflammatory cells (26). The cellular
response to hypoxia is mostly controlled by the hypoxia-
inducible factor (HIF) transcription factor and its target genes
harboring the hypoxia-response element (27). Several studies in
sarcoidosis reported the expression of HIF-target genes within
lung and lymph node granulomas, while HIF-1a expression was
inconsistently found (28, 29). Hypoxia and the HIF-1 signaling
impact on the processes controlling granuloma evolution are still
unclear and their effects on sarcoidosis immune cells have never
been addressed.

We hypothesized that hypoxia may induce macrophage
functional changes with a potential impact on the course of the
disease. Therefore, we studied the consequences of hypoxia on a
set of main functions of MD-macrophages from sarcoidosis
patients and healthy controls. We show that hypoxia had a
significant impact on MD-macrophages from sarcoidosis
patients, with the strongest effect seen in patients with high
active disease. Therefore, hypoxia could play a significant role in
sarcoidosis pathogenesis and fibrosis outcome.
MATERIALS AND METHODS

Additional details are provided in the Online Supplement.

Patients and Controls
This prospective monocentric study was conducted in the
Pulmonary Department of the Avicenne University Hospital,
France between 2017 and 2019 and received institutional review
board approval (CPP Ile-de-France X 2016-10-02) according to
French legislation. Written informed consent for all participants
was obtained for biological investigations.

Patients were over 18 with a pulmonary sarcoidosis according
to guidelines (30, 31). The diagnosis of sarcoidosis was validated
in multidisciplinary meetings with histopathology confirmation
in 46 of the 50 patients, and 4 patients had an initial
Lofgren syndrome.

Individuals with corticosteroid/immunosuppressive therapy
in the past 6 months were excluded. As the lung is the most
affected organ in sarcoidosis and disease activity is difficult to
define, we used a computed tomography (CT) score developed in
pulmonary sarcoidosis: the abbreviated Computed-Tomography
Activity Score (aCTAS) (32). Briefly, aCTAS comprised the sum
of the presence (1) or absence (0) of nodularity, ground glass
opacification, interlobular septal thickening and consolidation
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(see Figure E1). According to aCTAS, patients were divided in
high Active Sarcoidosis (AS) (n=26) with an aCTAS≥2, and low
active or Inactive Sarcoidosis (IS) groups (n=24) with an
aCTAS<2. Bioclinical and imaging data were recorded at the
time of blood draw. Healthy volunteers (n=34) over 18, with no
history of sarcoidosis or any known current disease were
evaluated as “controls” and matched for age (± 5 years), sex
and smoking status with sarcoidosis patients.

In addition, paraffin embedded surgical pulmonary biopsies
done before this study for diagnosis in three patients with active
sarcoidosis were retrieved from the pathology department archives.

Peripheral Blood Mononuclear Cells
(PBMCs) Isolation and Macrophage
Differentiation
Twenty mL of total blood sampled in EDTA tubes for routine
hematology analysis were collected. We isolated PBMCs using
Ficoll density gradient separation and monocytes were purified
using the Pan Monocyte Isolation Kit (Miltenyi-Biotec, France).
A >90% purity of enriched monocytes was controlled by flow
cytometry using APC-CyTM7 mouse anti-Human CD14 (BD
Biosciences #557831). Monocytes were cultured in RPMI
containing 10% fetal bovine serum (FBS) and differentiated into
macrophageswithM-CSF (33) (Bio-Techne, France) at physiologic
circulating concentration of 5ng/ml (34) for 10 days at 21%O2. The
yield of isolated monocytes from either controls or sarcoidosis
patients (AS and IS) allowed to only perform two or three different
types of assays on the same sample.

Normoxic and Hypoxic Culture Conditions
After these 10 days of differentiation, MD-macrophages were
maintained under either hypoxic or normoxic conditions for
24hrs. Cell cultures under hypoxic conditions were performed in
a hermetic chamber containing 1.5% O2 for 24hrs to reproduce
deep hypoxia (pO2<10mmHg) already evidenced in vivo in
sarcoid granulomas by fluoromisonidazole uptake (35).
Normoxic cells were maintained at 21% O2 for 24hrs as used
in sarcoidosis in vitromodels (18, 36). After normoxic or hypoxic
exposures, cells or cell lysates and/or supernatants were
processed for experiments 2.4 to 2.9.

HIF-1a and Nuclear Factor-kappa B
(NF-kB) Activation Assays
After hypoxia or normoxia for 24hrs, cell extracts from MD-
macrophages were obtained by addition of 100µL lysis buffer
(250 mM NaCl, 50 mM HEPES pH 7.0, 5 mM EDTA, 1 mM
dithiothreitol (DTT), 0.1% Nonidet NP40, 10 mg/ml aprotinin,
10 mg/ml leupeptin, 50 mg/ml phenylmethylsulfonyl fluoride, 2
mM sodium pyrophosphate, 1 mM sodium orthovanadate).
After centrifugation (10 000×g, 30 min, 4°C), cell lysate
protein content was determined using the Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific, France #23225). We
evaluated the activation status of HIF-1a, NF-kB-p50 and -p65
using specific oligonucleotide DNA-binding enzyme-linked
immunosorbent assays (ELISA) based kit (TransAM® HIF-1
(#47096), NF-kB p50 (#41096) and NF-kB p65 (#40096), Active
Motif, Belgium) according to the manufacturer’s protocol.
Frontiers in Immunology | www.frontiersin.org 3
Immunofluorescent Staining
We cultured MD-macrophages on Labtek 8 well-chambers slides
(Ibidi, France) at a density of 0.2 106 cells/well and placed either
under control atmosphere or hypoxia for 24hrs. Slides were
incubated with an anti-HIF1a rabbit antibody (HIF1alpha
(Novus) # NB100479). To detect an unsuspected hypoxic
culture environment, reduction of pimonidazole was assayed.
Intracellular hypoxia was assessed by adding 400µM
pimonidazole (Hypoxyprobe™) in the medium for 2hrs, then
cells were immunostained using an anti-pimonidazole mouse
IgG1 monoclonal antibody (MAb1) (1/50 Hypoxyprobe ™ kit).
Pimonidazole forms adducts with thiol containing proteins only
in cells that have an oxygen concentration less than 14
micromolar – equivalent to a partial pressure pO2 = 10 mmHg
at 37°C (according to Hypoxyprobe™).

Phagocytosis Functional Test
Phagocytosis was assayed in MD-macrophages using 1µm
fluospheres™ yellow-green (505/515) (#F8823 Invitrogen) with
an equivalent of 200 fluospheres per cell (37). MD-macrophages
were incubatedwithfluospheresduring 30min incultureplates and
then washed 4 times with PBS to remove free microspheres and
fixed with 4% PFA. Phagocytosis was estimated by the number of
cells with at least one particle compared to the total number of cells
observed on 4 fields (objective x100, 24-well plates).

Flow Cytometry
Cell surface marker expression of CD14, and/or CD80, CD86,
HLA-DR molecules known to be associated with classic
macrophage activation (38) and/or CD36, CD163 markers of
alternative macrophage activation (38) and/or isotypes-matched
IgG were assayed onMD-macrophages using fluorescent labelled
antibodies (see Table E2). At least 20 x 103 cells per sample were
analyzed on a flow cytometer Canto II, BD Biosciences and data
analysis was performed using BD FACS Diva™ software.
Samples were gated on cells using FSC/SSC and doublet
discrimination to identify singlets using SS-W vs SS-A, MD-
macrophages were identified on the basis of CD14+ expression
(see Figure E2).

RNA Extraction, Reverse Transcription
and Quantitative-PCR (RT-qPCR)
The RNA was extracted from MD-macrophages using Trizol
(Thermo Fisher Scientific, France #15596018) according to the
manufacturer’s protocol. Reverse transcription was performed
using reserve transcriptase system from Promega (M-MLV
reverse transcriptase #M1708, dNTP mix #U151B, M-MLV RT
5X buffer #M531A Random, RNAsin #N2518).

Messenger RNA levels of cytokines associated with
sarcoidosis and fibrosis were assayed by quantitative PCRs
in presence of ABsolute QPCR Mix (Thermo Fisher
Scientific #AB1162) with primer sets specific to IL1B, TNF-A,
IL-18, IL-10, CXCL8, PDGFB, VEGF, TGFB1 (see Table E1, in
the supplement). A probe set for UBC was used as the
normalization standard. The PCR and relative quantifications
were performed in a real-time PCR system (StepOnePlus Real-
Time PCR system, Applied BioSystems).
August 2021 | Volume 12 | Article 719009
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Cytokines Assay
“Conditioned media” (CM) from MD-macrophages (500µl of
RPMI medium without FBS/1. 106 cells) were collected after
24hrs (under normoxia or hypoxia culture conditions). Presence
of cytokines in CM (IL1-ß, CXCL8, TNFa, IL-10, PDGF-BB,
PAI-1, VEGF-A, IL-18, IL-5) were assayed (undiluted, in
duplicates) using multiplex-bead based assays (ProcartaPlex™

Multiplex Immunoassay (Invitrogen) #PPX-16-MXH497N)
according to manufacturer’s instructions. Cytokines to be
investigated were chosen according to RTqPCR results, and
Human cytokine antibody array (proteome profiler™ Bio-
techne #ARY022B) (data not shown; analysis performed on 1
control and 2 active sarcoidosis). Cytokine concentrations were
automatically calculated or extrapolated if close to the lower limit
of detection by the xPONENT software.

Concentrations of active (free) and total (free+latent) TGFß1
in MD-macrophages supernatants were determined by enzyme-
linked immunosorbent assays (ELISA) using Duo Set kits (R&D
systems #DY240) according to the manufacturer’s instructions.

Fibroblast Gap-Closure Assays
Migration of normal human lung fibroblasts (NHLFs) was
assayed by placing 0.7mm inserts before cell seeding. The
percentage of gap-closure was estimated by the difference
between the initial and final gap areas at 24hrs of specific
culture conditions, relatively to the initial area.

NHLFs were cultured for 24hrs with FBS10% (i) in CM of
MD-macrophages in presence of either anti-human plasminogen
activator inhibitor-1 (hPAI-1) antibody (Bio-Techne #AF1786)
20ng/ml, or vehicle, or (ii) in RPMI media in presence of either
anti-hPAI-1 antibody, or goat IgG isotype control (Bio-Techne #
AB-108-C) 20ng/ml, recombinant hPAI-1 (Bio-Techne #1786-
PI-010) or vehicle.

Immunohistochemistry (IHC)
Tissue sections from the three archived pulmonary biopsies were
submitted to a microwave antigen-retrieval technique for all
antibodies or isotypes. Citrate buffer pH6 was used for PAI-1 and
CD68 antibodies and Tris-EDTA pH9 for HIF-1a antibody.
Antibodies against: HIF1a (2µg/ml rabbit polyclonal, bs0737,
Bioss Inc), PAI-1 (1µg/ml, rabbit polyclonal, Bio-Techne;
AF1786) and CD68 [1:1 (ready to use), mouse monoclonal,
Dako; IS-61330-2] were used. After being rinsed, tissue
sections were incubated with either biotinylated goat anti–
rabbit IgG (7.5 mg/ml; Vector Laboratories) or biotinylated
horse anti-mouse IgG (7.5 mg/ml; Vector Laboratories) for 30
minutes and detected with an avidin-biotin peroxidase complex
detection kit (Vectastain Elite ABC kit; Vector Laboratories)
using nickel-diaminobenzidine as a substrate. The precipitation
reaction was enhanced with Tris-cobalt, and the sections were
counterstained with 0.1% nuclear fast red.

Statistical Analysis
Demographic results were presented as means ± SD or
proportions and compared using one-way Anova, student’s t-
test or Chi2 test when appropriate. Biological results were
Frontiers in Immunology | www.frontiersin.org 4
represented using box and whiskers (showing 25th and 75th

percentile and median), each point indicates a patient and/or
control. Biological results were compared with two-way
ANOVA-repeated measures with Sidak post-hoc test. PRISM
software (v6, GraphPad, USA) was used. A p value<0.05 was
considered as significant.
RESULTS

Patients and Controls
Characteristics and comparison between groups, i.e., AS and IS
and controls are shown in Table 1. Patients with AS compared to
IS had higher angiotensin converting enzyme blood levels
(p<0.0001), more impaired forced vital capacity (p=0.006) and
diffusing capacity of the lung for carbon monoxide (p=0.003)
and had to be more frequently treated for sarcoidosis during the
6 months following inclusion in the study (69% versus 21%). The
proportion of patients with extra-pulmonary involvement was
similar, but Scadding’s radiographic staging was different with a
higher proportion of stage 1 in IS.

HIF-1a Is Activated by Hypoxia in
MD-Macrophages From High
Active Sarcoidosis
The transcription factor HIF-1a was immunodetected in MD-
macrophages both in normoxic and hypoxic conditions,
similarly between sarcoidosis and control groups (Figure 1A)
HIF-1a was immunolocalized in the cytoplasm and nucleus of
MD-macrophages (Figure 1B). Pimonidazole staining was only
present in response to hypoxia and absent in normoxia
(Figure 1A), suggesting that HIF-1a stabilization in MD-
macrophages in normoxia is probably induced by other stimuli
than hypoxia. This also demonstrates that MD-macrophages
exposed to 1.5% oxygen have a partial pressure in oxygen ≤ 10
mmHg. HIF-1a activation status in MD-macrophages was
assayed using a specific oligonucleotide-binding test. In
normoxia, HIF-1a was similarly activated at a very low level
in controls and sarcoidosis groups (Figure 1C). In contrast, in
response to hypoxia, the level of HIF-1a activation was markedly
increased in AS compared to IS and controls (Figure 1C).

Hypoxia Impaired Phagocytosis in
Controls but Not in Sarcoidosis
MD-Macrophages
It has been previously reported that phagocytosis, a main
function of macrophages, can be modulated by HIF-1 (39) and
involved in sarcoidosis pathogenicity (17, 40, 41). Therefore,
phagocytosis was assessed in MD-macrophages exposed to
normoxia or 24hrs-hypoxia and challenged with fluospheres
(Figures 2A–C). In response to hypoxia, fluospheres
phagocytosis was maintained in MD-macrophages from AS
and IS, whereas it was decreased in controls (Figure 2D).
Likewise, expression of the CD36 scavenger surface marker
was maintained under hypoxic condition in MD-macrophages
from sarcoidosis in contrast to controls (Figure 2E).
August 2021 | Volume 12 | Article 719009
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Hypoxia Decreased CD80 and CD86
Co-Stimulation Molecules and Human
Leucocyte Antigen-DR (HLA-DR)
Hypoxia effect on the expression of CD80 and CD86, co-
stimulatory molecules interacting to activate T lymphocytes,
and of the HLA-DR presenting antigen molecule were
determined using flow cytometry. In normoxic condition, CD80
and CD86 were similarly expressed onMD-macrophages from all
groups (Figures 3A, B). Hypoxia significantly decreased the
expression of CD80 and CD86 on MD-macrophages from
controls and AS (Figures 3A, B). A higher HLA-DR expression
was observed in normoxic condition on MD-macrophages in IS
compared with controls. Hypoxia significantly decreased HLA-
DR expression on MD-macrophages only from sarcoidosis sub-
groups (Figure 3C). By contrast, CD163 surface expression, did
not vary on MD-macrophages from sarcoidosis and controls
exposed to hypoxia (see Figure E3).

Hypoxia Induced a Pro-Inflammatory
Response Without Activation of NF-kB
in High Active Sarcoidosis
Pro-inflammatory cytokine secretion in CM was compared in
normoxia and hypoxia. Baseline concentrations of chemokine
(C-X-C motif) ligand 8 (CXCL8), tumor necrosis factor-a
(TNFa), interleukin-1ß (IL-1ß) (Figures 4A–C), IL-18 and IL-
5 (see Figure E4) under normoxia were similar between groups.
Hypoxia significantly increased pro-inflammatory cytokine
secretion only in MD-macrophages from AS (Figures 4A–C).
In normoxia, IL-10 secretion was increased in AS compared to
IS, while hypoxia significantly reduced its secretion (Figure 4D).
Increase in pro-inflammatory cytokine secretion induced by
Frontiers in Immunology | www.frontiersin.org 5
hypoxia in MD-macrophages from AS was associated with an
increase in their mRNA levels (see Figure E4). The pro-
inflammatory response to hypoxia was not associated with NF-
kB (p65 and p50 subunits) activation which was decreased in AS
(Figures 4E, F).

Hypoxia Promoted a Profibrotic Response
in High Active Sarcoidosis
Secretion of profibrotic factors in CM of MD-macrophages,
TGF-ß1, platelet-derived growth factor-BB (PDGF-BB), PAI-1
(Figures 5A–D) and vascular endothelial growth factor-A
(VEGF-A) (see Figure E5) was studied. In normoxia,
concentration of total TGF-ß1 was higher in CM from AS,
especially the latent form of TGF-ß1 (Figure 5A). Hypoxia
induced its decrease in AS, albeit remaining higher than
in controls (Figure 5B). Likewise, hypoxia increased the
secretion of PDGF-BB, PAI-1 (Figures 5C, D) and VEGF-A
(see Figure E5) in all groups. These results were supported by an
increase in mRNA transcript levels of profibrotic cytokines
in MD-macrophages, especially TGFB1 and VEGF in AS
(see Figure E5).

Secretion of PAI-1 by Hypoxic
MD-Macrophages From High
Active Sarcoidosis Inhibited
Lung Fibroblast Migration
Among the profibrotic factors, PAI-1 secretion in hypoxia was
two-fold higher in AS compared to IS and controls (Figure 5D).
Accordingly, we hypothesized that PAI-1 may act on fibroblasts
close to macrophages. The effect of CM from MD-macrophages
exposed to either normoxia or hypoxia on gap closure in NHLF
TABLE 1 | Subject characteristics.

Characteristic Controls (n=34) AS (n=26) IS (n=24) p value

Age, years 44.3 ± 12.5 46.7 ± 12.7 52.3 ± 13.6 0.08
Female (n (%)) 17 (50%) 12 (46.6%) 14 (58.3%) 0.7
Current and ex-smoker (n (%)) 8 (22.8%) 7 (26.9%) 6 (25%) 0.9
ACE (UI/L) (mean ± SD) NA 119.3 ± 58 62 ± 30.5 <0.0001
Extra thoracic involvement (n (%)) NA 13 (50%) 12 (50%) 1
Scadding CXR stage (n (%))
0 NA 0 (0%) 4 (16.6%) <0.0001
1 1 (3.8%) 12(50%)
2 18 (69.2%) 2 (8.3%)
3 1 (3.8%) 1 (4.1%)
4 6 (23.1%) 5 (20.8%)

Pulmonary function
FVC % [predicted; mean ± SD] NA 77.6 ± 21.6 94.2 ± 19 0.006
DLCO % [predicted; mean ± SD] 58 ± 20.6 74.5 ± 14.2 0.003
Treatment initiation* (n (%)) NA 18 (69.2%) 5 (20.8%) 0.0009

aCTAS [32] (n (%)) NA
0 0 (0%) 11 (45.8%)
1 0 (0%) 13 (54.2%)
2 18 (69.2%) 0 (0%)
3 8 (30.7%) 0 (0%)
4 0 (0%) 0 (0%)
Au
gust 2021 | Volume 12 | Article
Data are expressed in mean ± SD or N (%); groups were compared for continuous variables with one-way ANOVA test (3 groups) or t-student test (2 groups) and for categorical variables
with Chi2 test; *Immunosuppressive or corticosteroid treatment initiation ≤ 6 months after inclusion. AS, high active sarcoidosis, IS, low active or inactive sarcoidosis ACE, angiotensin
converting enzyme; CXR, chest x-ray; FVC, forced vital capacity; DLCO, diffusing capacity of the lung for carbon monoxide; aCTAS, abbreviated CT activity Score (32); NA, not applicable.
Bold characters highlight significant values.
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monolayers was studied. Exposure of NHLF to CM from
hypoxia-exposed MD-macrophages from all groups
significantly inhibited gap closure as compared with CM from
normoxia-exposed MD-macrophages (Figures 6A, B). Hypoxic
CM did not affect NHLF proliferation (see Figure E6) or
fibroblast-myofibroblast differentiation as assessed by alpha-
smooth actin and collagen type I quantification in Western
blot (see Figure E7), indicating that inhibition of gap closure
was related to a decrease in the ability of NHLF to migrate. The
“immobilization” of NHLF was markedly observed with CM
from hypoxic MD-macrophages from AS (Figure 6B).

Among the profibrotic factors secreted by MD-macrophages,
PAI-1 levels negatively correlated with the percentage of NHLF
gap closure (Figure 6C). Incubation of NHLF with increasing
Frontiers in Immunology | www.frontiersin.org 6
concentrations of rhPAI-1 reduced NHLF migration (Figure 6D).
The inhibitory effect of rhPAI-1 on NHLF migration was
prevented by addition of anti-PAI-1 antibody (Figure 6D).
Inhibition of PAI-1 in the CM from hypoxic MD-macrophages
with an anti-PAI-1 antibody restored NHLF migration, especially
in AS (Figure 6E). These data indicate that PAI-1 secretion by
hypoxic MD-macrophages from AS mostly contribute to inhibit
human lung fibroblast migration.
Detection of HIF-1a and PAI-1 in Granulomas
From Archived Pulmonary Biopsies
We immunodetected HIF-1a (Figures 7A, B) and PAI-1
(Figures 7D, E) in granulomas from the three archived
A

B

C

FIGURE 1 | HIF-1a is activated by hypoxia in MD-macrophages from high active sarcoidosis. (A, B) Representative immunofluorescence staining of MD-
macrophages. (A) Similar presence of HIF-1a (in red) in controls and in high active pulmonary sarcoidosis (AS) and low active or inactive sarcoidosis (IS) patients in
both normoxia and hypoxia. Pimonidazole staining (in green) of MD-macrophages from AS is absent in normoxia (magnification x200). (B) Nuclear staining with DAPI
(in blue) and accumulation of HIF-1a (in red) in MD-macrophages. Overlay image showing HIF-1a nuclear localization (magnification x400) (same results were found
in 3 patients and 3 controls). (C) HIF-1a activation (measured as OD 450nm) assessed by TransAM® HIF-1a in controls, AS and IS patients, after 24hrs of normoxia
or hypoxia. Results are expressed as box plot showing 25th and 75th percentile and median, each point indicates a patient and/or control (n= 7/group). *p < 0.05;
****p < 0.0001 in two-way ANOVA-repeated measures with Sidak post-hoc test.
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pulmonary biopsies. Macrophages-derived mature epithelioid
cells were identified on their characteristic large cytoplasm,
eccentric reniform nuclei (42) and CD68+ labelling
(Figures 7B, C). Nuclear localization of HIF-1a and PAI-1 was
detected in the mature epithelioid cells constituting granulomas
(Figures 7B, C, E). An isotype control is shown in Figure 7F.
Frontiers in Immunology | www.frontiersin.org 7
DISCUSSION

Factors modulating the onset and progression of sarcoidosis are
still poorly known. Here we showed that hypoxia, a
microenvironmental factor most likely present within
granulomas and inflammatory tissues, activated HIF-1 and
A B C

FIGURE 3 | Hypoxia decreased CD80 and CD86 co-stimulation molecules and HLA-DR. (A–C) Effect of hypoxia on CD80, CD86 and HLA-DR surface expression on
CD14+ MD-macrophages from controls, high active sarcoidosis (AS), and low active or inactive sarcoidosis (IS). Results are expressed as the mean fluorescence
intensity (MFI) of CD80 (A), CD86 (B) and HLA-DR (C) analyzed by flow cytometry. Results are expressed as box plot showing 25th and 75th percentile and median,
each point indicates a patient and/or control (n = 6-11/group). *p < 0.05; **p < 0.01; ****p < 0.0001 in two-way ANOVA-repeated measures with Sidak post-hoc test.
A B C

D E

FIGURE 2 | Hypoxia impaired phagocytosis in controls but not in sarcoidosis MD-macrophages. (A–C) Representative image of MD-macrophages exposed to
normoxia from high active sarcoidosis after 30 min incubation with fluospheres (1µm) followed by four PBS washes (magnification x 200); (A) fluorescent 1µm
fluospheres (green) (B), phase-contrast images of MD-macrophages (C), overlay images showing fluospheres within MD-macrophages. (D) Effect of hypoxia on
phagocytosis in controls and sarcoidosis patients estimated by the ratio of cells with at least one particle and the total number of cells. Each point indicates a patient
and/or control (n=6/group). In sarcoidosis group, black dots represent high active sarcoidosis (AS), and red dots low active or inactive sarcoidosis (IS); (E) Effect of
hypoxia on the CD36 scavenger receptor expression in controls, AS, IS; analyzed by flow cytometry of CD14+ MD-macrophages. The results are expressed as the
mean CD36 fluorescence intensity (MFI). Each point indicates a patient and/or control (n= 6-9/group). Results are expressed as box plot showing 25th and 75th

percentile and median *p < 0.05; ***p < 0.001 in two-way ANOVA-repeated measures with Sidak post-hoc test.
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induced a mixed proinflammatory-profibrotic MD-macrophage
phenotype particularly marked in AS, as illustrated in Figure 8.
These in vitro results were supported by immunohistochemistry
data showing the expression of HIF-1a and its target PAI-1 in
epithelioid cells constituting pulmonary sarcoidosis granulomas.

One strength of our studywas to prospectively include patients
with either high active or low active or inactive sarcoidosis, not
taking any therapy that could modify macrophage biology. The
aCTAS score we used to evaluate the disease activity has already
been validated by two independent studies (32, 43). This score was
highly correlated with the range of FVC improvement under
further sarcoidosis treatment, a good marker of the lesions
reversibility. The choice to specifically study MD-macrophages
in these patients was supported by recent works showing that in
vitro models of granuloma using PBMCs can mimic sarcoidosis
events such as phagosome-regulated mTOR or IL-13 signaling
(17, 44). In addition, previous studies reported that immune cells
constituting recurrent sarcoidosis granulomas in lung transplant
allografts originated from the recipient monocyte-macrophage
lineage (19, 20). Finally, the inflammatory phenotype of MD-
macrophages in pulmonary sarcoidosis and their propensity to
produce TNFa has been recently highlighted (11), supporting
the role of these cells in sarcoidosis pathogenesis. However,
the fact that experiments were almost exclusively performed in
MD-macrophages constitutes a limitation of the present study.
Frontiers in Immunology | www.frontiersin.org 8
It would certainly be interesting to study the effects of hypoxia on
other cell types involved in sarcoidosis such as T lymphocytes. A
comparison of our data inMD-macrophageswithdata obtained in
lung resident alveolar macrophages could also be informative but
bronchoalveolar lavages are rarely done in the follow-up of
sarcoidosis patients. Another limitation of our study is the fact
that it was not possible to conduct all experiments for each patient
for technical reasons, i.e. relatively to the low number of retrieved
monocytes per blood sample.

To the best of our knowledge, the consequences of a hypoxic
microenvironment on macrophages were never investigated in
sarcoidosis, although granuloma hypoxia was inferred from
morphometric analysis (24). By contrast, in tuberculosis
pulmonary granulomas, hypoxia was directly demonstrated to
play a major role in the disease course (25, 45). Recently, 18F-
fluoromisonidazole uptake, a hypoxia-sensitive PET tracer, was
observed in sarcoidosis lesions and associated with 18FFDG-PET
uptake (35), suggesting that hypoxic lesions are metabolically
active and associated with an active form of sarcoidosis. In
addition, patients with high active sarcoidosis had more
impaired lung function with lower DLCO, potentially resulting
in local alveolar hypoxia.

Previous studies investigating HIF in sarcoidosis led to
conflicting results (28, 29). Tzouvelekis et al. (29) reported
increased expression of VEGF, a target of HIF, within
A B C

D E F

FIGURE 4 | Hypoxia induced a pro-inflammatory response without activation of NF-kB in high active sarcoidosis. (A–D) Concentrations of CXCL8 (A), TNFa (B),
IL-1ß (C) and IL-10 (D) assessed by Luminex® in conditioned media of normoxic and hypoxic MD-macrophages from controls, high active sarcoidosis (AS), and low
active or inactive sarcoidosis (IS); results are expressed in pg/ml (n= 5-8 controls or patients/group). (E, F) NF-kB-p65 and p50 activation (measured as OD450nm)
assessed by TransAM ®. Each point indicates a patient and/or control (n= 7-8/group). Results are expressed as box plot showing 25th and 75th percentile and
median. *p < 0.05; **p < 0.01; ***p < 0.001 in two-way ANOVA-repeated measures with Sidak post-hoc test.
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sarcoidosis granulomas but failed to detect HIF-1a whereas
Talreja et al. did (28). Such a difference in HIF-1a expression
detection could be explained by different stages in the disease
between the studies, the different antibodies used for HIF-1a
detection and immunosuppressive treatments given to patients
in the Tzouvelekis et al. study (28, 29). However, in line with
Talreja et al. (28), we clearly immunodetected HIF-1a in
pulmonary sarcoidosis granulomas. Such a finding prompted
us to evaluate in vitro the effects of hypoxia on MD-macrophages
from controls and untreated sarcoidosis patients.

In the present study HIF-1a nuclear expression was detected
under normoxia in MD-macrophages from patients and
controls. Talreja et al. also reported HIF-1a expression in
freshly-isolated blood monocytes (28). The nuclear expression
of HIF-1a in normoxic MD-macrophages is consistent with the
fact that non-hypoxic stimuli such as TNF-a and IL-1b
proinflammatory cytokines, NF-kB, reactive oxygen species,
MAPK (46, 47) or mTOR pathway activation (48) are able to
stabilize HIF-1a in immune cells. However, HIF-1a
Frontiers in Immunology | www.frontiersin.org 9
transcriptional activity was significantly more strongly induced
by hypoxia in MD-macrophages from AS. Consistently, several
HIF-target genes were induced by hypoxia in MD-macrophages
from AS, such as VEGF and TGFB1 transcripts or PAI-1 protein.
The TNFa and IL-1ß cytokines [involved in sarcoidosis
pathogenesis (4, 49)] and CXCL8, induced by hypoxia only in
AS, can also be directly upregulated by HIF in macrophages (50,
51). NF-kB activation, known to be also induced by hypoxia and
leading to pro-inflammatory cytokine production (52) was
decreased in AS, suggesting that it was not involved in this
context. Moreover, HIF-1 can exert a negative feedback on NF-
kB (53). The stronger response to hypoxia observed in MD-
macrophages from AS is somewhat intriguing. It might be
explained by still unexplored genetic polymorphisms, by
epigenetic mechanisms and/or non-coding RNAs known to
modulate HIF expression (54).

We investigated whether hypoxia could modulate
phagocytosis and antigen processing/presentation, a key initial
step of inflammatory lesions in sarcoidosis. We observed that
A B

C D

FIGURE 5 | Hypoxia promoted a profibrotic response in high active sarcoidosis. (A) Active (free) and total (free+latent) TGß1 (in pg/ml) measured by ELISA in
conditioned media from MD-macrophages after 24hrs of normoxia. (n= 7-14 independent experiments). (B–D) Concentrations of total TGFß1 (B), PDGF-BB (C) and
PAI-1 (D) assessed by Luminex® in conditioned media of normoxic and hypoxic MD-macrophages from controls, high active sarcoidosis (AS), and low active or
inactive sarcoidosis (IS). Each point indicates a patient and/or control (n= 5-8/group). Results are expressed in pg/ml with box plot showing 25th and 75th percentile
and median. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 in two-way ANOVA-repeated measures and two-way ANOVA with Sidak post-hoc test.
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phagocytosis was similar at baseline in control and sarcoidosis
MD-macrophages. Interestingly, hypoxia markedly reduced
phagocytosis in controls but not in sarcoidosis, suggesting that
macrophage phagocytosis could be maintained under hypoxia in
this disease. Previous papers reported that phagocytic activity of
macrophages was increased in sarcoidosis and in an in vitro
model of granuloma (17, 40, 41). An enhanced expression of
phagocytosis-related genes, but a downregulation of genes
involved in proteasome degradation were also observed,
suggesting that the accumulation of intracellular phagocytic
degradation products could participate in the chronicity of
Frontiers in Immunology | www.frontiersin.org 10
inflammation in sarcoidosis (40). We next evaluated the effect
of hypoxia on the expression of CD80 and CD86 co-stimulatory
molecules and on HLA-DR as these markers are associated with
antigen presentation and expressed by epithelioid cells in
sarcoidosis granuloma (55, 56). Hypoxia markedly decreased
the expression of CD80 and CD86 on MD-macrophages in
controls and AS while not significantly in IS. Hypoxia also
downregulated the expression of HLA-DR in AS and IS MD-
macrophages. These findings are in line with previous studies
showing that hypoxia decreased the expression of CD80 in
murine macrophages and CD80, CD86 and MHC class II in
A

B

E

C D

FIGURE 6 | Secretion of PAI-1 by hypoxic MD-macrophages from high active sarcoidosis inhibited lung fibroblast migration. (A) Representative contrast-phase
microscopy images of NHLF during gap closure assays at basal time and after 24hrs of incubation with conditioned media from controls or high active sarcoidosis
(AS) or low active or inactive sarcoidosis (IS) patients MD-macrophages exposed to normoxia or hypoxia. (B) Quantitative analysis of NHLF gap closure assay
comparing media alone or with 2500pg/ml recombinant human PAI-1 (rh-PAI-1) or normoxic or hypoxic conditioned media from MD-macrophages in controls, AS,
and IS. Each point indicates a patient and/or control (n=5-7/group) (C) Correlation (Pearson Test) between PAI-1 level (pg/ml) in normoxic or hypoxic MD-
macrophages conditioned media from sarcoidosis and controls and percentage of NHLF gap closure. Each point indicates a patient and/or control (n=3-6/group).
(D) Dose effect of rh-PAI-1 on NHLF gap closure reversed by PAI-1 Ab (n=3 independent experiments); (E) Effect of PAI-1 antibody (PAI-1 Ab) added to the
conditioned media on NHLF gap closure assay. Each point indicates a patient and/or control (n=3/group). Results are expressed as box plot showing 25th and 75th

percentile and median (B, D) or mean with SD (E). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 in Anova two-way (D, E) and Anova two-way with repeated
measures (B) with Sidak post-hoc test. #p < 0.05 between normoxic conditioned media from AS and IS.
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human dendritic cells, reducing their ability to initiate adaptive-
immunity responses (57, 58). However, the role of antigenic
presentation in sarcoidosis is still debated. Crouser et al. reported
an enhanced presentation capacity in an in vitro model of
sarcoidosis (17). Conversely, Grunewald et al. proposed that
granuloma progression may occur when antigen recognition is
not efficient enough, due to inadequate peptide presentation by
modified HLA molecules or T cells incapacity to generate T cell
clones, allowing granuloma persistence because of inefficient
adaptive immune response (4). Here, we can speculate that
hypoxia at the various steps towards granuloma formation may
potentially exert a deleterious effect on antigen presentation
processes, and therefore contribute to their persistence.

Mechanisms leading to sarcoidosis-associated pulmonary
fibrosis are poorly understood. Granulomas are almost always
surrounded by a concentric rim of collagen bundles (3).
Macrophages are known to be involved in repair and fibrotic
processes through different states of polarization (59). In
sarcoidosis, macrophages may acquire a profibrotic M2-
phenotype as shown in granulomas from patients’ biopsies or
in vitro model (44, 60). In our study, hypoxia decreased the
expression of M1 markers (CD80, CD86, HLA-DR), while M2
markers expression was maintained (CD163, CD36). However,
Frontiers in Immunology | www.frontiersin.org 11
hypoxia was also associated with a M1 pro-inflammatory
cytokine response. In the literature, the effect of hypoxia on
macrophage polarization remains unclear (61, 62). More than
the over-simplified M1/M2 dichotomy, macrophages display
remarkable plasticity and can change their phenotype in
response to environmental factors.

Previous studies showed that under hypoxic conditions,
macrophages can induce fibrosis in a HIF-dependent manner
through the secretion of VEGF, PDGF-BB, or PAI-1 (63, 64).
Here, we observed that MD-macrophages from AS secreted
higher levels of PAI-1 in response to hypoxia as compared
with controls or IS. The PAI-1 factor plays a key role in the
development of pulmonary fibrosis by fibrotic matrix deposition
(65). An increase in PAI-1 levels as well as a decrease in
fibrinolytic activity has been reported in the bronchoalveolar
lavage of patients with sarcoidosis (66). We clearly detected
PAI-1 in granuloma epithelioid cells. Finally, we demonstrated
that CM from hypoxic MD-macrophages inhibited pulmonary
fibroblast migration, a phenomenon highly dependent on PAI-1.
Consistently, PAI-1 binding to vitronectin has been previously
shown to inhibit cell migration, leading to inefficient alveolar
repair following injury and favoring the development of
pulmonary fibrosis (67). Therefore, we hypothesize that PAI-1
A B C

D E F

FIGURE 7 | Detection of HIF-1a and PAI-1 in granulomas from pulmonary biopsies. (A, B) HIF-1a, (C) CD68 and (D, E) PAI-1 expression assayed by
immunohistochemistry in archived lung biopsy from sarcoidosis patient. (A–F) are representative of the results obtained in lung biopsies from three sarcoidosis.
(A, D) Granulomas are identified by a blue asterisks. (B, C) Serial sections of a granuloma wrapped with lamellar fibrosis (green triangle) showing HIF-1a expression
in epithelioid cells characterized by their large cytoplasm, eccentric reniform nuclei (red arrow) (B) and CD68+ labelling (C). (A, D magnification x100 B, C, E, F
magnification x200). Isotype control is shown in (F).
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secretion by granuloma cells could immobilize and sequester
lung fibroblasts around granuloma, thus favoring the
characteristic peripheral granuloma fibrosis.

In conclusion, this study shows that hypoxia exerts a
significant and specific impact on MD-macrophages from
sarcoidosis patients, with the strongest effect observed in
patients with a high active disease. It may favor the
development and persistence of granulomas in active
sarcoidosis and fibrosis surrounding granulomas by promoting
a mixed inflammatory/fibrosing response of macrophages, by
reducing their antigen presentation capacities, leading to a
deficient T cell response. Thus, the HIF pathway and PAI-1
could be involved in the pathogenesis of high active sarcoidosis,
potentially representing new therapeutic targets. As a future
direction, we plan to investigate interactions between HIF and
other signaling pathways identified in the pathogenesis of
Frontiers in Immunology | www.frontiersin.org 12
sarcoidosis as mTOR, NLRP3 inflammasome, JAK/STAT, or
heat shock proteins (49, 68, 69), already known to interfere with
the HIF/hypoxia pathway (22, 70–72).
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(2016-2017).
Frontiers in Immunology | www.frontiersin.org 13
ACKNOWLEDGMENTS

The authors thank Drs Diane Bouvry, Simon Chauveau,
Morgane Didier, Olivia Freynet, Aurélie Hervé, Fatma Kort,
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