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There is considerable inter-individual and inter-population variability in response to viruses.
The potential of monocytes to elicit type-I interferon responses has attracted attention to
their role in viral infections. Here, we use single-cell RNA-sequencing to characterize the
role of cellular heterogeneity in human variation of monocyte responses to influenza A virus
(IAV) exposure. We show widespread inter-individual variability in the percentage of IAV-
infected monocytes. Notably, individuals with high cellular susceptibility to IAV are
characterized by a lower activation at basal state of an IRF/STAT-induced
transcriptional network, which includes antiviral genes such as IFITM3, MX1 and OAS3.
Upon IAV challenge, we find that cells escaping viral infection display increased mRNA
expression of type-I interferon stimulated genes and decreased expression of ribosomal
genes, relative to both infected cells and those never exposed to IAV. We also uncover a
stronger resistance of CD16+ monocytes to IAV infection, together with CD16+-specific
mRNA expression of IL6 and TNF in response to IAV. Finally, using flow cytometry and
bulk RNA-sequencing across 200 individuals of African and European ancestry, we
observe a higher number of CD16+ monocytes and lower susceptibility to IAV infection
among monocytes from individuals of African-descent. Based on these data, we
hypothesize that higher basal monocyte activation, driven by environmental factors
and/or weak-effect genetic variants, underlies the lower cellular susceptibility to IAV
org November 2021 | Volume 12 | Article 7681891
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infection of individuals of African ancestry relative to those of European ancestry. Further
studies are now required to investigate how such cellular differences in IAV susceptibility
translate into population differences in clinical outcomes and susceptibility to
severe influenza.
Keywords: Monocytes, single-cell ‘omics, transcriptomics, ancestry, population, influenza virus
INTRODUCTION

Respiratory viruses with pandemic potential pose enormous
health and economic impacts on the human population. In the
last century, we have witnessed outbreaks of several coronaviruses,
including SARS-CoV-2, SARS-CoV-1 and MERS, and a number
of avian and swine influenza A viruses (IAV). A particularly
harrowing and shared feature of these pandemics are the sudden
deaths of otherwise healthy individuals (1). A hyperinflammatory
state characterized by high levels of inflammatory cytokines, often
referred to as a ‘cytokine storm’ (2, 3), has emerged as a hallmark
of these severe viral infections. While still controversial, there is
increasing evidence to suggest that the mononuclear phagocyte
system is an important immunological determinant of this
phenotype (4–6). Upon viral infection, sentinel cells such as
lung-resident macrophages trigger complex signaling cascades
that recruit leukocytes to the site of infection, among them
monocytes. These infiltrating monocytes differentiate into
monocyte-derived dendritic cells or macrophages, enabling viral
clearance through the induction of the adaptive response, and help
replenish the pool of tissue-resident alveolar macrophages (4, 7).

In humans, circulating monocytes are divided into classical
(~80%), intermediate (~15%), and nonclassical (~5%) subsets,
based on surface receptor expression of the cluster-determinant
antigens CD14 and CD16 (8). While nonclassical monocytes
(CD14+CD16++) are long-lived and ‘patrol’ healthy tissues
through long-range crawling on the endothelium, classical
(CD14++CD16-) and intermediate (CD14++CD16+) monocytes
are recruited to the lung in response to viral infection, where they
secrete inflammatory cytokines and chemokines, as well as type I
interferons (IFNs) (7, 9–11). In most individuals, recruited cells
help clear infection despite being susceptible to infection
themselves (12, 13); yet, in some individuals, a dysfunctional
immune response occurs resulting in widespread lung
inflammation. Whether monocyte subsets behave differently
upon viral exposure, and how direct viral sensing and exposure
to secreted cytokines shape monocyte activation and
differentiation are not well understood.

Variation in blood composition and cellular proportions have
been shown to be one of the main factors underlying
transcriptional variation in immune genes across individuals
(14), with these proportions being influenced by both genetic
and non-heritable factors (15–17). Recently, we characterized the
genetic architecture of transcriptional responses of primary
monocytes from 200 individuals of African and European
ancestry to ex vivo challenge with viral stimuli (18). In this
model, where we were able to control for viral determinants of
disease (i.e. dose and strain), we reported marked inter- and intra-
org 2
population differences in transcriptional responses to IAV. While
our analyses revealed numerous cis-expression quantitative trait
loci (18), genetic variants could only account for a small fraction of
expression variation, in line with other studies (14, 19).

Here, we implemented single-cell RNA-sequencing (scRNA-
seq) on human primary monocytes exposed to IAV to investigate
(i) the effects of direct viral infection versus activation by
exposure to secreted cytokines, (ii) the subset-specific
responses of monocytes to viral challenge, and (iii) the extent
of inter-individual and between-population variation in the
proportions of monocyte subsets and the degree of monocyte
susceptibility to IAV infection. Our study reveals a profound
reprogramming of monocyte transcriptomes upon viral infection
and shows a proinflammatory role of CD16+ monocytes
following IAV challenge. Furthermore, it highlights that
African-ancestry individuals are characterized by both a higher
frequency of CD16+ monocytes and a generally lower
susceptibility of their monocytes to IAV infection. Based on
these results, we propose that population differences in the
composition of circulating monocytes and their susceptibility
to infection may contribute to the higher severity of IAV
infections reported among African-ancestry individuals.
RESULTS

Using scRNA-Seq to Investigate Cellular
Heterogeneity
To investigate the role of cellular heterogeneity in driving
immune variability across individuals, we performed a time-
course experiment where we monitored the CD14+ fraction of
peripheral blood mononuclear cells (PBMCs) from eight donors,
both in the presence and absence of viral challenge. To maximize
inter-individual variability, we chose individuals from two
distinct ancestries whose cells demonstrated extreme responses
to viral stimuli in a previous bulk RNA-seq experiment (18).
Droplet-based scRNA-seq was performed on monocytes from all
eight donors immediately before infection initiation (T0), as well
as at 2 (T2), 4 (T4), 6 (T6), and 8 (T8) hours post challenge with
A/USSR/90/1977(H1N1) at a multiplicity of infection (MOI)
equal to 1 (IAV-challenged) and mock infection (non-infected).
To mitigate batch effects, we pooled IAV-challenged and non-
infected cells from distinct donors in each library, assigning cells
to their condition in silico via genetic barcoding (20). After
stringent quality control where we removed low-quality, dying,
and contaminants of the CD14+ monocyte isolation, our final
dataset contained 88,559 high-quality cells, among which we
November 2021 | Volume 12 | Article 768189
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predicted >99% monocyte purity at T0 (Figure 1A;
Supplementary Figures 1 and 2). At later time points, a
substantial fraction of non-infected cells (up to 70% at T8)
were predicted to be macrophage-like, indicating monocyte
differentiation over the course of the experiment. For clarity,
we refer to cells as monocytes at T0 and as monocyte-derived
cells from T2-T8.

Stable FCGR3A Expression Distinguishes
Monocyte Subsets Over Time
We next sought to characterize each cell by its mRNA expression
of the canonical monocyte markers, CD14 and CD16, given that
much of the structure in our data was associated with FCGR3A
(aka CD16) mRNA expression. In droplet-based scRNA-seq,
encapsulation of ambient mRNAs emanating from dying cells
can occur during library preparation leading to spurious mRNA
detection (21). We thus used a statistical framework to test
whether CD14 and CD16 were expressed at a level significantly
higher than expected when accounting for potential
contamination from the ambient pool (Methods). Despite
having been positively selected for the CD14 antigen, only
32.4% of monocytes significantly expressed CD14 at T0; this
percentage further decreased at later time points and remained
Frontiers in Immunology | www.frontiersin.org 3
<15% across all time points and conditions (average 6.4% s.d.:
5.0%, Supplementary Figures 3A–C). On the other hand, 12.1%
of monocytes significantly expressed FCGR3A (CD16) (referred
to as CD16+) at T0, this marker proving much more stable across
conditions and time points (9.3% of CD16+ cells on average, s.d.:
1.8%, Figure 1B and Supplementary Figures 3D–F). While we
deciphered classical, intermediate, and nonclassical monocytes
subsets at T0 (Supplementary Note 1; Supplementary Figure 4
and Supplementary Data 1), we focus on the simpler distinction
of CD16- and CD16+ subsets given that positive-selection for
monocytes does not capture the entire nonclassical population
and that we were unable to distinguish the intermediate and
nonclassical subsets after T0.

Functional Features of Monocyte Subsets
Are Conserved Upon Manipulation
To assess how transcriptional profiles of CD16- and CD16+

monocytes and their derived-cells differ, we focused on the 5,681
genes expressed with a normalized log2 count > 0.1 in at least one
condition, time point, and subset (Supplementary Data 2A). We
found that the log2 fold change (log2FC) in gene expression
between CD16+/- subsets remained relatively stable over the
course of the experiment (Pearson r between time points >0.42
A B D

E

C

FIGURE 1 | Single-cell RNA-sequencing of 88,559 monocytes and their derived cells. (A) Post-QC tSNE colored by unsupervised graph-based clusters. (B) Post-
QC tSNE colored by FCGR3A (CD16) log2 normalized counts (top), or percentage of viral mRNAs (bottom). (C) Determination of the maximum contamination fraction
by ambient RNA. The number of non-infected cells deemed to significantly express IAV transcripts (presumed false positives) versus the number of IAV-challenged
cells deemed to significantly express IAV transcripts across a range of maximum contamination fractions from 1-50% (color bar). Dotted grey line is drawn at 1% on
the x-axis. A maximum contamination fraction of 10% results in 1% of non-infected cells being classified as infected (false positive proxy), and half of IAV-challenged
cells showing evidence of viral transcription. (D) Distribution of counts of viral origin across all donors, from T2 to T8. Cells are shown separately for non-infected (top)
and IAV-challenged (bottom) conditions. Fill color reflects the cell state assignments. Note that the threshold used to define infected cells is dependent on the
number of viral mRNAs in the ambient pool, and varies across libraries. (E) Post-QC tSNE stratified by time point. For each time point, cells are colored according to
their CD16+/- status (see key) and their assigned cell state (same as depicted in D). For each condition and time point, stacked bar charts below the tSNE represent
the relative proportions of the various cell states and subsets. IAV, Influenza A virus; NI, non-infected; tSNE, t-distributed Stochastic Neighbor Embedding.
November 2021 | Volume 12 | Article 768189
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and >0.52 for the non-infected and IAV-challenged conditions
respectively, p-values<2.2x10-16; Supplementary Figure 5A),
and differentially expressed genes between CD16+/- subsets
were largely the same across conditions (Pearson r = 0.92, p-
value < 2.2x10-16; Supplementary Figure 5B). We thus searched
for genes that were consistently differentially expressed between
CD16+ and CD16- cells across all time points (including T0),
conditions, and donors. We identified 266 genes over-expressed
(log2FC>0.2, FDR<1%) in CD16

+ cells relative to CD16- cells, and
389 genes that showed the opposite pattern, and performed a
GO-term enrichment analysis on these genes (Supplementary
Data 2B). Consistent with previous reports (22–24), CD16-

subsets were characterized by high expression of several
proinflammatory S100 Calcium Binding Proteins (S100A12,
S100A9, and S100A8), contributing to a sizable GO-term
enrichment in the defense response to fungus pathway
(GO:0050832: OR=41.3, FDR=4.9x10-4), while CD16+ subsets
were characterized by high expression of Fc-gamma receptor
signaling pathway genes (GO:0038096: OR=8.7, FDR=6.2x10-6).
Notably, CD16+ subsets over-expressed several type I IFN
stimulated genes (ISGs) relative to CD16- subsets (e.g.
GO:0071357: OR=5.3, FDR=2.6x10-3), including the well-
known viral restriction factors IFITM3 and OAS1. Collectively,
these results demonstrate CD16 is a reliable marker at the mRNA
level and that CD16+/- monocyte subsets maintain functional
differences upon manipulation.

scRNA-Seq Highlights Heterogeneity in
Monocyte Susceptibility and Viral
Transcription
Using the presence of IAV transcripts as a proxy for infection
(Figure 1B), we next sought to distinguish cells that were
successfully infected from those that were not. Among
monocyte-derived cells that were exposed to IAV, we found that
50.3% expressed IAV transcripts above ambient levels when
allowing up to 10% of mRNAs to come from the ambient pool.
In contrast, less than 1% of non-infected cells showed evidence of
viral transcription, supporting the validity of the threshold used to
detect IAV expressing cells (Figure 1C). We deemed cells with
statistical evidence for expression of IAV transcripts from the
IAV-challenged condition as ‘infected’, while the remaining cells
from this condition were considered as ‘bystanders’, as these
either did not come into contact with the virus or were able to
fully repress viral mRNA transcription. When comparing the
percentage of infected cells between subsets, we noticed that
CD16+ cells were slightly less likely to be infected than CD16-

cells (42.3% sd: 4.0% for CD16+ relative to 49.4% sd: 5.4% for
CD16-, generalized linear model with CD16+/- status, donor,
and time point as covariates, p-value=0.006), possibly related
to the higher expression of ISGs observed in this subset
(Supplementary Data 2A, B). We further confirmed
experimentally that intermediate and nonclassical (CD16++)
monocytes display increased resistance to IAV challenge
by monitoring intracellular IAV nucleoprotein by flow
cytometry in PBMCs challenged with another H1N1 strain
(Supplementary Figure 6).
Frontiers in Immunology | www.frontiersin.org 4
We observed that the proportions of viral mRNAs among
infected cells were bimodally distributed and largely varied
between the clusters identified in our unsupervised analysis
(Figure 1D). We used a Gaussian mixture model to locate the
two modes of the distribution and further sub-classify infected
cells into those with lower IAV mRNA levels (<1-6%) and those
with higher IAV mRNA levels (6-83%); while viral mRNA levels
are dictated by both the rate of transcription and degradation, for
simplicity we refer to these infected cell states as ‘low IAV-
transcribers’ and ‘high IAV-transcribers’, respectively. The
proportions of infected cells among individuals remained
largely unchanged over the course of the experiment; however,
high IAV-transcribers were virtually absent at 2h (<2% of
infected cells), peaked to ~36% of IAV-infected cells at 4h, and
decreased to 8.5% by 8h, suggesting that high-IAV transcribers
represent a transient state of IAV-infection preceding IAV-
induced apoptosis (Figure 1E). These results reveal profound
heterogeneity in monocyte susceptibility and subsequent viral
transcription upon IAV challenge.

Interplay of Cytokine and Ribosome
Networks Drive Cell States Upon Infection
To characterize host transcriptional responses over time, we
next subsampled each subset (CD16-/CD16+), cell state
(unexposed, bystander, infected), and time point in our
scRNA-seq data to a uniform number of cells to avoid biases
emanating from differences in sample sizes. Limited by the
number of CD16+ high IAV-transcribing cells, we randomly
sampled 100 cells from each subgroup, while ensuring
representation of all donors. We then focused on the 6,669
host genes with average log2 normalized count >0.1 in at
least one subgroup (Supplementary Data 3A). Overall, CD16-

and CD16+ subsets behaved similarly upon stimulation with
changes in gene expression between cell states being
strongly correlated among subsets (Pearson r=0.83-0.95,
p-values<2.2x10-16; Supplementary Figure 7). GO term
enrichment analyses of shared responses (FDR<1% &
log2FC>0.2 in same direction in both subsets) uncovered several
functional categories interacting to shape the activation state of
cells (Figure 2A; Supplementary Data 3B). Both bystander and
infected cells showed increased mRNA expression of genes
involved in antigen processing and presentation via class I MHC
(GO:0019885, OR=53.7, FDR=2.0x10-6) and ISGs (GO:0034340,
OR=14.8, FDR=3.3x10-20). Yet, bystander cells showed increased
mRNA expression of ISGs and defense response to virus pathways
relative to infected cells (GO:0034340, OR=13.4, FDR=4.4x10-7;
GO:0051607, OR=9.0, FDR=2.1x10-7), while infected cells
displayed higher mRNA expression of mitochondrial
(GO:0005743, OR=4.7, FDR=3.3x10-3) and ribosomal genes
(GO:0005840, OR=117, FDR=1.0x10-78). Notably, type-I IFN
genes themselves tended to be preferentially expressed by
infected cells (e.g. log2 normalized count at 6h for IFNB1 ~0.12/
0.29 in CD16- and CD16+ subsets, respectively, vs <0.01 for
bystander cells of both subsets), although this difference was
only barely significant in our setting (FDR=0.03), likely due to
the highly transient nature of IFN expression.
November 2021 | Volume 12 | Article 768189
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Among infected cells, ribosomal genes showed higher activity
among high IAV-transcribing cells relative to low IAV-
transcribing cells (Figure 2B, comparison only made at T4 due
to sample size constraints, e.g. GO:0019083, OR=137,
FDR=6.1x10-65). This observation is consistent with the notion
that the expression of viral proteins is dependent on cellular
ribosomes, with recent data suggesting that IAVs do not induce a
global shut-off of cellular translation but rather a reshaping of the
translation landscape (25–27). Likewise, among bystander cells,
numerous ribosomal genes were downregulated at later time
points relative to unexposed cells (Figures 2A, C; GO:0019083,
OR=5.3, FDR=4.2x10-6), suggesting that repression of ribosomal
subunits plays an active role in limiting viral replication.
Frontiers in Immunology | www.frontiersin.org 5
Collectively, these results suggest that expression of ISGs and
ribosomal genes interact to shape cell states upon IAV challenge.

Increased IRF and STAT Activity Drives
Stronger Antiviral Response
Despite qualitatively similar responses to infection between
CD16-/CD16+ subsets (Supplementary Figure 7), we
hypothesized that subtle differences in the intensity of such
responses might contribute to the increased resistance of CD16+

cells to infection. We thus performed an interaction test on the
subsampled scRNA-seq data, and searched for genes for which
transcriptional response upon IAV challenge differed between
CD16- and CD16+ subsets in either infected and/or bystander
A B

C

FIGURE 2 | Gradient of mRNA expression from ribosomal and IFN-stimulated genes separates bystander and infected cells. (A) Transcriptional responses of cells
upon IAV challenge (T2-T8) highlight the interplay between IFN-stimulated (GO:0034340), ribosomal (GO:0005840), and mitochondrial (GO:0005743) genes. The
log2FC change in gene expression between unexposed and bystander cells is plotted on the x-axis, while the log2FC change in gene expression between unexposed and
infected cells is plotted on the y-axis. Values are plotted based on a meta-analysis across time points and subsets, of a subsampled dataset with balanced representation of
all donors. (B) The interplay between IFN-stimulated (GO:0034340), ribosomal (GO:0005840), and mitochondrial (GO:0005743) genes among cells exposed to IAV. The
log2FC change in gene expression between low IAV-transcribing infected and bystander cells is plotted on the x-axis, while the log2FC change in gene expression between
low IAV-transcribing infected and high IAV-transcribing infected cells is plotted on the y-axis. Values are plotted based on a meta-analysis across monocyte subsets at T4.
(C) mRNA expression levels of representative IFN-stimulated (MX1) and ribosomal (RPL34) genes across the subsampled dataset. Colors reflect the cell state and subset
assignment depicted in Figures 1D, E. IFN, Interferon; FC, fold change.
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cells (Supplementary Figures 7A, B; Supplementary Data 3A).
At FDR≤1%, we identified a total of 335 such genes, of which 98
differed between subsets only in bystander cells, 144 only in
infected cells, and 93 in both. Hierarchical clustering highlighted
eight major patterns of transcriptional responses (modules) among
the 335 genes, several of which were associated with specific
biological functions (Figure 3A; Supplementary Data 3C, D).
Notably, module 1 (green) was enriched for genes in the antiviral
response pathway (GO:0051607, OR=23.2, FDR=5.43×10-7) and
displayed a stronger response in infected CD16+ cells relative to
CD16- infected cells. Of additional interest was the transient
CD16+-specific transcription of the inflammatory cytokine genes
IL6 and TNF, following viral challenge (Figure 3B). We also found
that several genes involved in the regulation and production of IL-
6 and TNFa were over-expressed in CD16+ subsets at all time
points and conditions (Supplementary Data 2B), but only see
active transcription of the cytokines upon viral exposure. These
results reveal the strong antiviral and inflammatory potential of
CD16+ relative to CD16- monocytes in response to viral
infection (28).

We next sought to characterize the regulatory architecture
underlying the 335 genes whose transcriptional response to IAV
challenge differed between monocyte subsets. Using SCENIC
(29), we identified 113 high-confidence gene regulatory
networks, or ‘regulons’, which were active in non-infected and/
or IAV-challenged cells, each composed of a transcription factor
(TF) and a set of predicted targets (genes). We used these 113
regulons to search for an enrichment/depletion of TF targets
among the eight modules of genes displaying subset-specific
response to infection (Supplementary Data 3E). Among
modules associated with an increased expression in cells
Frontiers in Immunology | www.frontiersin.org 6
exposed to IAV (modules 1-5), we observed a widespread
over-representation of targets of IFN regulatory factors (IRFs)
and signal transducing and activators of transcription (STATs)
(Figure 3C), reinforcing the central role of the IFN response
upon IAV challenge. Interestingly, several of these factors
displayed subset-specific activity themselves in response to IAV
(IRF1/2/7 and STAT1/2/3, FDR<1%), mirroring the expression
patterns of module 1 (Pearson r>0.92). These results collectively
highlight a CD16+-specific inflammatory response upon IAV
challenge and suggest stronger activation of IRF and STAT
transcription factors as a driver of the increased antiviral
response observed in CD16+ cells upon IAV infection.

Basal Activation Differences Correlate
With Monocyte Susceptibility
To explore the degree of inter-individual variation upon viral
challenge, we next quantified IAV transcripts in the monocyte-
derived cells of each individual, and created pseudo-bulk
estimates by averaging the percent of viral mRNAs per-cell
across all cells from each donor at each time point
(Figure 4A). While viral mRNAs peaked at the same time for
all individuals, we observed extensive variation in the levels of
viral mRNAs and percentages of infected cells across individuals
(Figure 4B). To identify specific genes that might underlie
infection potential, we focused on the 4,589 genes that were
expressed at >0.1 log2 normalized counts in at least one canonical
monocyte subset at T0. We identified a total of 3,131 genes that
differed among our eight donors in either classical, intermediate,
and/or nonclassical monocyte subsets (Kruskal-Wallis Rank
Test, FDR=1%; Supplementary Data 4A). Within each subset,
focusing on genes that significantly differed between donors, we
A B C

FIGURE 3 | IRFs and STATs have a central role in the subset-specific responses to IAV infection. (A) Heatmap of scaled gene expression from 335 genes displaying a
subset-specific response to infection challenge. Genes are grouped into 8 modules based on hierarchical clustering of their expression patterns. Representative genes
from each module are labelled. (B) Mean expression over time of IL6 and TNF, across the different monocyte subsets and cell states. (C) Network of transcription factors
(round nodes) associated with each gene expression module (square nodes). Transcription factor nodes are colored according to the number of modules they are
associated with. Black lines represent enrichments of the module in TF targets, while red lines represent depletions.
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searched for those for which mean expression at basal state was
correlated with the percentage of infected cells at T4 among our
eight donors. Despite our limited sample size, we found that
cellular susceptibility was strongly correlated with basal
expression of the well-known host viral restriction factor
IFITM3. Although it reached significance only in nonclassical
monocytes (FDR~1%), the association remained strong in other
subsets (p-value< 4.1×10-4; Figure 4C).

We next relaxed our search to all genes for which basal
expression showed nominal correlation (p-value<0.01) with the
percentage of infected cells at T4. Depending on the monocyte
subset, between 3.6 to 8.3% of genes matched these criteria,
resulting in a set of 118 genes displaying correlation with
monocyte susceptibility in at least one subset. These 118 genes
were collectively enriched for several related biological processes
such as defense response to virus (GO:0051607, OR=15.3,
FDR=9.2×10-19) and ISGs (GO:0034340, OR=19.6 FDR=8.4×10-
15) (Supplementary Data 4B). Among genes contributing to this
enrichment, we found additional antiviral genes such as OAS3,
and MX1, as well as the critical TF, IRF7, involved in the severity
of IAV-infection both in mice and humans (30–32). Finally,
overlap with the TF targets identified by SCENIC revealed
strong enrichments of several IRFs and STATs among the 118
genes, including IRF7, as well as STAT1, STAT2 and IRF9 that
form the tripartite IFN-stimulated gene factor 3 (ISGF3)
(Figure 4D; Supplementary Data 4C). Together, our results
provide evidence that the basal mRNA expression of genes
related to IFN-induced and antiviral responses are indicative of
the proportion of cells that will become infected in the first cycle of
IAV infection.
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African-Ancestry Monocytes Are More
Resistant to Infection
Lastly, we wondered how our findings of inter-individual
variation might extrapolate to the population level. In a
previous study (18), we challenged the primary monocytes
from 200 Belgian individuals of African (AFB) and European
(EUB) ancestry with the same IAV strain and MOI used in the
present study, and performed bulk RNA-seq at 6 hours post
infection (hpi). While basal (T0) expression profiles were not
collected, flow cytometry labelling of CD14 and CD16 was
performed on the CD14+-selected monocytes for the majority
of donors. Interestingly, AFB individuals had higher proportions
of CD16+ cells than EUB individuals (Figure 5A; Supplementary
Figure 8). In light of our findings that CD16+ cells are more
resistant to IAV infection, we hypothesized that this might
translate to lower infection rates among AFB monocytes
relative to EUB monocytes.

To test this hypothesis, we mapped the bulk RNA-seq profiles
collected 6hpi challenge with IAV for the 200 individuals to a
combined human-IAV reference. Excluding 1 sample with low
quality RNAs, we found that 0.02-13.5% of RNA-seq reads from
each sample were of viral origin (Figure 5B). Reassuringly, these
percentages correlated with IAV mRNA levels estimated from
the single-cell experiment across all time points for the eight
donors used in the present study (Pearson r>0.84, p-
values<8.9×10-3), with the strongest correlation being observed
at the peak of viral transcription (T4) (Pearson r=0.97, p-
value=5.1×10-5). These observations indicate that ex vivo
cellular susceptibility is highly reproducible among individuals,
even across different experimental protocols and technologies.
A B DC

FIGURE 4 | Basal IRF/STAT-induced transcriptional network underlies inter-individual differences in monocyte susceptibility and IAV levels. (A) Pseudo-bulk
estimates of the percentage of counts of viral origin in IAV-challenged condition (T2-T8). Donors are colored based on the rank of these pseudo-bulk estimates at the
peak of viral transcription, T4, from that with highest observed viral mRNA level (D1) to that of the lowest (D8). (B) Proportions of cell states from the IAV-challenged
condition at T2, T4, T6, and T8, in the eight donors. X-axis is ordered by decreasing viral mRNA levels found at T4 (D1-D8). (C) Log normalized expression values of
IFITM3 across all cells, stratified by canonical monocyte subsets, and separated by donor. Colors reflect the different donors depicted in (A) For each donor and
monocyte subset, the violin plots show the full distribution of IFITM3 expression across individual cells and boxplots highlight the median and interquartile range.
(D) Enrichment of SCENIC-predicted targets among the 118 genes whose basal expression at T0 correlates with the percentage of infected cells at later time points
(odds ratio and 95% confidence interval). Red line designates an odds ratio equal to 1. Only TFs significantly enriched among the 118 candidate genes are shown
(FDR < 0.05). CL, classical; INT, intermediate; NC, nonclassical.
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Among the 199 bulk profiles, AFB and EUB samples presented
overlapping but significantly shifted distributions of total IAV-
mapping reads (Figure 5B, 4.9% vs. 6.8% of reads, respectively,
Wilcoxon p-value=5.3×10-8), and of each of the 10 primary viral
transcripts (Figure 5C, Wilcoxon p-values<5.5×10-4).

Using the transcriptional profiles obtained from the scRNA-
seq data at T6, we estimated the proportion of reads coming from
each inferred cell state in these bulk RNA-seq profiles
(Figures 5D, E; Supplementary Note 2 and Supplementary
Figure 9A). We found that, on average, AFB monocytes were
more resistant to IAV infection than EUB monocytes (39.2% vs.
Frontiers in Immunology | www.frontiersin.org 8
48.9% infected, respectively, Wilcoxon p-value=5.3×10-10).
Differences in the estimated percentage of infected cells alone
explained 63% of the inter-individual variability in viral mRNA
levels (Figure 5F), and was sufficient to account for the observed
difference in viral mRNA levels between AFB and EUB
individuals (p-value=0.16 after adjusting on infected cells,
compared to p-value=5.3×10-8 without adjustment).
Nonetheless, variation in the percentage of high/low IAV-
transcribers among infected cells accounted for an additional
19% of variance in viral mRNA expression (Supplementary
Note 2 and Supplementary Figure 9B). Finally, the ratio of
A B

D E F

C

FIGURE 5 | African-ancestry individuals display increased number of CD16+ cells and lower susceptibility to IAV infection. (A) Variation in the number of classical
(CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) monocytes across African- and European- ancestry individuals following CD14+

selection from PBMCs (nAFB = 89, nEUB = 85). Colors reflect population (AFB in red and EUB in blue). All three subsets are significantly different between populations
(p-value<0.01). (B) Inter- and intra-population variation in the percentage of RNA-seq reads mapping to the IAV genome (nAFB = 100, nEUB = 99). Colors reflect
population (AFB in red and EUB in blue). The percentage of RNA-seq reads mapping to the IAV genome is significantly higher in European-ancestry individuals
relative to African-ancestry individuals (p-value = 5.3×10-8). Donors used in the scRNA-seq experiment (nAFB = 4, nEUB = 4) are designated with enlarged black
squares. (C) Inter- and intra-population variation in viral mRNA expression at 6hpi (nAFB = 100, nEUB = 99). Expression levels for each of the 10 primary transcripts of
IAV are plotted. Colors reflect population (AFB in red and EUB in blue). All IAV transcripts are significantly higher in European-ancestry individuals on average (p-
value<0.001). (D) Estimated distribution of the percentage of cells from each cell state in the bulk RNA-seq data (nAFB = 100, nEUB = 99). Fill colors reflect cell state
assignments, while outlines of boxplots reflect population (AFB in red and EUB in blue). (E) Distribution of the percentage of high IAV-transcribers among infected
cells, stratified by population. One individual with no infected cell was excluded (nAFB = 99, nEUB = 99). (F) Percentage of RNA-seq reads of viral origin as a function
of the estimated proportion of infected cells (nAFB = 100, nEUB = 99), colored by population (AFB in red and EUB in blue). (A, C) Outlier points are not displayed.
AFB, African-ancestry individuals from Belgium; EUB, European-ancestry individuals from Belgium; TPM, transcripts per million; IAV, influenza A virus; MFI, mean
fluorescent intensity; CL, classical; INT, intermediate; NC, nonclassical. *p-value < 0.01; **p-value < 0.001; ***p-value < 0.0001.
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CD16+/CD16- cells negatively correlated with the percentage of
infected cells, albeit weakly (-0.27, p-value=0.0165 adjusted on
population). Altogether, these results show that population
differences in viral mRNA levels are primarily driven by the
overall proportion of cells that will ultimately become infected,
with only a fraction of the differences being attributable to the
different proportions of CD16+/- subsets observed in individuals
of African and European ancestry.
DISCUSSION AND HYPOTHESIS

We performed scRNA-seq on primary monocytes, before and
after ex vivo IAV challenge, to assess transcriptional differences
between monocytes infected by IAV (i.e. infected) versus those
activated only by exposure to secreted cytokines (i.e. bystanders),
and to identify subset-specific responses of monocytes to viral
challenge. We found that bystander cells display increased
mRNA expression of ISGs relative to infected cells; yet, we
additionally observed both an induction of ribosomal gene
mRNA expression in IAV-transcribing cells and a down
regulation of these genes in bystander cells at later time points.
While the former is likely induced by the virus to enhance
mRNA translation (33), the repression of ribosomal expression
observed in bystander cells may reflect a host mechanism to
contain infection by shutting down the translational machinery
of neighboring cells, and we speculate that this may hold true
across other cells types and constitute a general cellular defense
mechanism against viral infections. Interestingly, the interplay of
ribosomal and ISG expression also distinguished infected cells
into two distinct states (high and low IAV-transcribers),
providing an explanation for the high cell-to-cell variation in
IAV replication observed among circulating monocytes, which
has also been documented in other cell types and during natural
infection (34–41). Notably, type-I IFN genes themselves tended
to be preferentially expressed by infected cells in a highly
transient manner, suggesting a potential role of monocyte
infection in the triggering of the type I IFN response among
bystander cells.

While these patterns were generally shared across CD16- and
CD16+ subsets, we found CD16+ cells to be slightly more
resistant to infection. This is likely attributable to their higher
absolute expression of some ISGs relative to CD16- cells
(independent of viral exposure), as well as their more robust
upregulation of antiviral genes upon IAV challenge, which we
found to be driven by stronger activity of IRF transcription
factors. Interestingly, CD16+ cells displayed transient mRNA
expression of IL6 and TNF upon viral exposure (both infected
and bystander cells), two cytokines that have been
widely implicated in cytokine storms (5). Collectively, these
findings highlight the opposing roles of ISG and ribosomal
gene mRNA expression on viral transcription, and reveal the
stronger antiviral and pro-inflammatory potential of CD16+

monocyte subsets.
At the population level, we found that the ratio of CD16+/

CD16- at basal state was predictive of the percentage of
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monocytes that were susceptible to IAV infection, and
observed that African-ancestry individuals, from our sample,
harbored more CD16+ monocytes on average than European-
ancestry individuals residing in the same city (Ghent, Belgium),
consistent with previous observations (42). Independently of
monocyte subset proportions, we identified that individuals
presenting lower monocyte susceptibility to IAV had a higher
basal activation of an IRF/STAT-driven antiviral program. These
findings suggest that the fate of a monocyte hinges upon its basal
activation state, and that the infection potential differs both
within an individuals’ monocyte population, in part based on
the differentiation status of the cell (i.e. CD16-positivity), but also
between individuals, where a CD16- cell from one individual
may have a higher antiviral state than a CD16+ cell from
another individual.

Our finding of a decreased ability of IAV to infect and
replicate in monocytes from individuals of African-ancestry
was recently replicated in an independent cohort of American
individuals with varying levels of African and European ancestry
whose PBMCs were challenged with the 2009 pandemic H1N1
strain (43). While the cause of these population differences
remains to be determined, we did not find evidence that
strong-effect genetic factors, nor evidence of past exposure to
H1N1, could explain such an association with the viral
replication phenotype. Nevertheless, the observed inter- and
intra-population differences are noteworthy in and of
themselves, and may reflect the influence of both weak-effect
genetic loci, and non-heritable factors, such as stress, nutrition or
lifestyle, on transcriptional variation of immune genes (14, 15).
Future studies are needed to determine if such population
differences hold true across other cell types, such as lung
epithelial cells.

Given our finding that CD16+ subsets are the main drivers of
inflammatory cytokine gene expression such as IL6 and TNF,
and that African-ancestry individuals harbor a larger fraction of
these subsets, it is tangible to conceive that monocyte subset
composition prior to infection may influence disease outcome. A
lower percentage of infected monocytes could also contribute to
a faster disease progression, as we find that infected monocytes
continue to express antigen-presenting genes. Thus, a higher
number of infected cells could lead to a stronger activation of the
adaptive immune system. In support of these hypotheses,
patients with severe influenza and COVID-19 harbor higher
proportions of intermediate monocytes in peripheral blood than
patients with mild disease (44, 45), and African Americans are
more often hospitalized than other self-defined ethnic groups by
both influenza (46, 47) and COVID-19 (48, 49), even when
adjusting for age and various social factors such as poverty and
vaccination status. In light of these observations, we hypothesize
that the higher percentage of CD16+ monocyte observed among
African-ancestry individuals may, in conjunction with a stronger
basal activation of their monocytes, contribute to poor infectious
outcomes. Further studies are now needed to formally establish
the clinical relevance of monocyte heterogeneity in the context of
viral infections, IAV in particular, and determine its potential use
as a biomarker.
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LIMITATIONS OF STUDY

In this Hypothesis and Theory article, we analyze single-cell
transcriptional heterogeneity of circulating monocytes before
and after ex vivo IAV challenge, and propose that differences
in basal monocyte activation underlie population disparities in
cellular susceptibility to IAV. We acknowledge that our study is
based on positively-selected monocytes isolated from PBMCs,
and that infection of this cell population in vivo would be
expected to take place in the lung, after an initial infection has
been established. Future studies should investigate how these
findings translate to other cell populations - including lung
epithelial cells and resident monocyte and macrophage
populations - and whether they influence clinical outcomes.
This could be achieved, for instance, by using single cell
techniques to measure how nasal epithelial cells from healthy
patients of various ancestries differ in their expression of viral
RNAs and proteins upon IAV challenge. Additionally, sputum
extract could be collected from mild and severe influenza
patients of both ancestries, to compare the single cell
transcriptome of lung epithelial cells and resident macrophage
populations, both across ancestries and in relation with disease
severity. Another caveat of the study is the lack of detailed
lifestyle observations in the cohort used, precluding us from
examining in further detail the influence of non-genetic factors.
Further studies are now needed to evaluate how non-genetic
factors, such as social status, chronic stress levels (and the
induced physiological response), previous exposures to
pathogens or even the microbiome, could contribute to shape
basal monocyte activation and prime the innate immune
response to viral infections.
METHODS

Experimental Model and Subjects
All indiv iduals from this s tudy were part of the
EVOIMMUNOPOP cohort, which has been previously described
(18). Human blood was obtained from healthy volunteers who gave
informed consent, and the PBMC fraction was isolated and frozen.
In brief, 200 healthy male donors living in Belgium of self-reported
African descent (AFB) or European descent (EUB) were recruited.
Inclusion was restricted to nominally healthy individuals between
19 and 50 years of age at the time of sample collection. The
majority of our African-descent individuals originated from West
Central Africa, with >90% of our sample being born in either
Cameroon or Congo. Serological testing was performed for all
donors to exclude those with serological signs of past or ongoing
infection with human immunodeficiency virus (HIV), hepatitis B
virus (HBV) or hepatitis C virus (HCV).

Single-Cell Analyses and RNA-Sequencing
For eight selected donors [4 individuals from each ancestry,
selected from extremes of the first principal component of gene
expression in our previous study of monocyte response to IAV
challenge (18)], 100×106 PBMCs were thawed, washed twice and
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resuspended in complete medium: pre-warmed RPMI-1640
Glutamax medium, supplemented with 10% FCS and 1%
penicillin/streptomycin (Cat#15140-122, Life Technologies).
Monocytes were then positively selected with magnetic CD14
microbeads, according to the manufacturer’s instructions
(Cat#130-050-201, Miltenyi Biotec). The number of monocytes
was determined with the Countless2 automated cell counter
system (Cat#AMQAX1000, ThermoFisher Scientific) in the
presence of trypan blue. For each donor, monocytes were
seeded at 0.5×106 monocytes per well on 24-well NUNC plates
in 500 µL of complete media and allowed to rest for one hour at
37°C under 5% CO2. Five-hundred microliters of complete
media (non-infected) or A/USSR/90/1977(H1N1) at a
concentration of 1×106 pfu/mL in complete media (IAV-
challenged, MOI=1) were added to each sample. Following one
hour of staging at 4°C, plates were centrifuged at 1300 rpm for 10
minutes at 4°C, media was removed by pipette, and each well was
washed with 1mL complete media. The spin was repeated, media
removed by pipette, and samples were resuspended in 1mL pre-
warmed complete media before being transferred to an incubator
at 37°C under 5% CO2 to initiate infection (T0).

At each time point (T0, T2, T4, T6, and T8), samples were
mixed by pipetting and transferred to Eppendorf tubes. Wells
were washed with 300uL of PBS + 0.04% BSA and transferred to
the same tubes. Collection tubes were centrifuged at 1300 rpm
for 10 minutes, media was removed and replaced with 1mL
PBS + 0.04% BSA and an aliquot of 10µL was taken to count each
sample on a Countless2 automated cell counter system, before
repeating the centrifugations. Individual samples were adjusted
to 2×106 live cells/mL.

Samples were multiplexed for running on the 10X Chromium
(Cat#120223 & 1000074, 10X Genomics) by mixing equal
proportions from 6-8 samples in a manner that balanced
conditions and allowed us to assess for batch effects across
lanes (Supplementary Table 1). Multiplexed samples were
counted with the Countless2 automated cell counter system
and adjusted to target recovery of 10,000 cells per reaction of
the Chromium Single Cell 3’ Reagent Kits v3 (Cat#1000092 &
1000078, 10X Genomics) assuming a recovery rate of 50%. GEM
Generation & Barcoding, Post GEM-RT Cleanup & cDNA
Amplification, and 3’ Gene Expression Library Construction
were performed as per manufacturer’s instructions (50). All 13
libraries were mixed prior to sequencing across 13 different lanes
from an Illumina HiSeq X (28bp barcode + 91bp insert – target
400 M reads pairs per lane), leading to a total of 5.3 billon reads.

Sample Genotyping
Genotyping data [accession EGAS00001001895] were obtained
for all 200 individuals from the EvoImmunoPop cohort based on
both Illumina HumanOmni5-Quad BeadChips and whole-
exome sequencing with the Nextera Rapid Capture Expanded
Exome kit (18). The 3,782,260 SNPs obtained after stringent
quality control were then used for imputation, based on the 1,000
Genomes Project imputation reference panel (Phase 1 v3.2010/
11/23) (51), leading to a final set of 19,619,457 high-quality
SNPs, of which 7,766,248 SNPs had a MAF ≥5% in our cohort.
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Processing of scRNA-Seq Data
Basic pre-processing of the sequencing data was performed with
CellRanger v3.0.2 (52), including the mkfastq, count, and aggr
commands. Default parameters and our combined human-IAV
reference were used, and batch correction was disabled in the
aggr command. Cell-containing droplets (n=132,130) were
traced back to individual donors using two independent
methods, Demuxlet and SoupOrCell, which capitalize on
genetic variation in the sequencing reads (20, 53). Barcodes
with ambiguous and/or non-concordant calls between the two
programs were used to establish suitable QC metrics. We found
that barcodes deemed as doublets (i.e. the droplet contained two
or more cells originating from different donors) were more likely
to be nearest-neighbors in a knn-graph with other doublets than
assigned singlets. We used this feature to identify droplets
presumed to contain two or more cells originating from the
same donor; barcodes with > 5 doublets as nearest-neighbors
were excluded from further analysis (Supplementary
Figures 1A, B). Additionally, droplets containing low-quality
cells (i.e. damaged, dying) were excluded using the following
thresholds: <1500 total counts, <500 genes, or >50%
mitochondrial gene content (Supplementary Figure 1C). This
QC resulted in 96,386 single cells.

Transcriptomes (i.e. counts) were adjusted for the presence of
ambient RNA with SoupX, (https://github.com/constantAmateur/
SoupX, accessed November 28, 2019) (21), using estimated
contamination fractions (per 10X library) from SoupOrCell
(53). SoupX-adjusted counts were normalized using pool-based
size factors followed by deconvolution as implemented in the
scran R package (54). Feature selection was performed by
(i) constructing a mean-variance trend in the log-counts and
retaining genes found to exhibit more variation than expected
assuming Poisson-distributed technical noise, as implemented in
the makeTechTrend and TrendVar functions from package scran
(54), and (ii) selecting genes expressed in at least 25 cells
(n=22,603). The first 10 PCs of the data were retained for data
visualization and clustering analyses. Graph-based clustering was
performed by building the shared nearest-neighbor graph with the
buildSNNGraph function from scran (54) using a series of k
values, and cell clusters were defined with the igraph Walktrap
algorithm (55). Similar clustering results were obtained based on
the knn-graphs generated using k=25, 50, 75, and 100, and k=25
was used for all downstream analyses (Supplementary
Figure 2A). Cell types were predicted using SingleR and the
built-in BlueprintEncodeData reference (56). Based on the
clustering and cell-type predictions, we removed cells belonging
to clusters associated with lymphoid cell types or low QC metrics
from downstream analyses (Supplementary Figures 2B, C).

Accounting for Ambient RNA
Contamination in scRNA-Seq Data and
Assigning Cell States
Droplet-based scRNA-seq methods capture ambient mRNAs
present in the cell suspension in addition to cell specific
mRNAs. To estimate which cells in our experiment were
genuinely expressing mRNAs for CD14, FCGR3A (CD16), and
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those originating from the virus, we implemented a two-step
strategy utilizing the estimateNonExpressionCells function of the
SoupX package (21). This function estimates whether each cell
contains significantly more counts of a provided gene-set than
would be expected under a Poisson model, given the estimated
ambient RNA from its library of origin and the maximum
contamination fraction. First, we used the viral genes to estimate
the true maximum contamination fraction, based on the
assumption that cells from the non-infected state should only
contain viral reads from ambient mRNA captured in their
droplets. To do so, we modified the estimateNonExpressionCells
function to return p-values, and performed the test on each of our
13 libraries with a range of maximum contamination values from
1-50% (step of 1%) using the viral genes. We then computed FDR
adjusted p-values for each maximum contamination value on the
88,559 high-quality, single monocytes. The number of non-
simulated cells deemed to significantly express IAV transcripts
(FDR<0.01) was used as a proxy for false positives. In examining
the relationship between this number and the number of IAV-
challenged cells found to significantly express viral transcripts at
FDR<0.01 (Figure 1C), we found that a maximum contamination
fraction of 10% resulted in a 1% false positive rate (defined as the
percentage of non-infected cells from T2-T8 that were deemed to
significantly express IAV transcripts). This parameter value was
then used to correct for contamination from ambient for all genes
considered (CD14, FCGR3A and IAV transcripts).

Assigning Cell States and Investigating
Sources of Variability in IAV Levels
We used a maximum contamination fraction of 10% to
test for significant expression of IAV transcripts in each
cell (Figures 1C–E). IAV-challenged cells that contained a
significant amount of IAV transcripts were considered as
infected, while the others were deemed bystanders. To
distinguish low from high IAV-transcribing cells, a Gaussian
mixture model was fitted to the total percentage of viral mRNAs
per cell across all infected cells, using the normalmixEM function
from mixtools R package with k=2 (57). Each cell was assigned to
the cluster with the highest posterior probability, and the cluster
of cells with higher IAV content was annotated as high
IAV-transcribing.

Characterizing Monocyte Subsets and
Transcriptional Profiles From
scRNA-Seq Data
Principal components analysis of 6,601 cells at T0 was used to
order monocytes along a differentiation axis separating CD14+

cells from CD16+ cells. We then computed the average
percentage of classical and nonclassical monocytes obtained by
flow cytometry across the eight donors, weighting each
individual by the number of high-quality cells in the scRNA-
seq data at T0. Based on these percentages (87.1% for classical
and 7.6% for nonclassical), we annotated the monocytes on each
side of the differentiation axis as classical and nonclassical,
respectively, with the remaining 5.3% of monocytes being
annotated as intermediates. Validity of our approach was
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confirmed by correlating the proportion of monocytes assigned
to each subset across the eight donors, with the percentage of
classical, intermediate and nonclassical monocytes estimated by
flow cytometry.

Differential expression between subsets was assessed for the
4,859 genes expressed at a normalized log2 count > 0.1 in any of
the 3 subsets. Specifically, Wilcoxon rank tests were
implemented in the scran package (54), using the findMarkers
function and blocking on donor. We considered genes to be
differentially expressed (DE) between monocyte subsets when
gene expression was significant at an FDR≤1% and log2FC>0.2.
The 848 genes that differed between classical (CL) and
nonclassical (NC) monocyte subsets were classified according
to their behavior in intermediate monocytes (INT). They were
either deemed ‘similar to classical’ (DE between INT and NC, but
not between INT and CL), ‘similar to nonclassical’ (DE between
INT and CL, but not between INT and NC), or ‘intermediate’ (all
other cases).

At later time points, comparisons between CD16+ and CD16-

monocytes subsets were done based on 5,681 genes expressed with
a normalized log2 count > 0.1 on average in either subset, in at least
one condition and time point. For each subset, log2 fold change in
gene expression relative to T0 were correlated across times points.
Differential expression between CD16+ and CD16- cells was
assessed with findMarkers (54), based on Wilcoxon rank tests
and blocking on donors, time points and condition. Again, an
FDR≤1% and log2FC>0.2 were required to define differentially
expressed genes. To assess how CD16+/- status alters the infection
of monocytes by IAV, we used logistic regression to model
bystander/infected status as a function of CD16+/- status, while
adjusting on donor, and time point (as factors).

Characterizing Subset-Specific
Responses to IAV Challenge
To allow comparison between responses of CD16+ and CD16-

monocytes, 100 cells were subsampled from each subset and cell
state, and at each time point. When subsampling, we ensured
balanced representation of all donors across each monocyte
subset and cell state, by using sampling weights that were
inversely proportional to each donor representation in the
original dataset. After sampling, a total of 6,669 genes with
normalized log2 counts >0.1 on average in at least one group
(cell-state x subset x time point) was selected for further analyses.
For each monocyte subset, differences in expression between cell
states (unexposed, bystander, infected) as well as between high-
and low-IAV transcribing infected cells were performed using
the findMarkers function from the scran package (54) and
blocked on time point. For each comparison, genes were
considered to be differentially expressed between cell states
when gene expression was significant at an FDR=1%
(Wilcoxon rank tests) and the log2 fold change was > 0.2. In
addition, for each comparison between cell states, we tested for
differences in response between subsets using a linear model of
the form:

Expri ∼ Statei + subseti + Statei · subseti (1)
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where Expri is the expression of the gene being tested in cell i,
Statei is an indicator variable that distinguishes the two cell states
being compared (e.g. unexposed and bystander), and subseti is an
indicator variable that reflects the CD16+/- status of cell i. The 335
genes with significant interactions at a 1% FDR (for unexposed-
bystander and unexposed-infected comparisons) were clustered
using the hclust R function with method ‘Ward.D2’.
DynamicTreeCut algorithm (58) was used to identify eight
major patterns of response to IAV.

Transcription Factor Enrichment Analyses
To estimate Transcription Factor (TF) activity and define TF-
targets relationships, we ran the R SCENIC pipeline (29) on the
expression matrix (pre-normalization) on a random subsample
of 4800 cells (100 cells from each donor at each time point and
each condition, pre-exclusion of dying and contaminant cells)
with default parameters. For each gene, motif-enrichment was
considered for either cis-regulatory regions located <10kb from
the TSS (distal regulatory elements), or between 500 bp upstream
and 100 bp downstream of the promoter (proximal regulatory
elements). To do so, motif-enrichment scores for all human
genes (hg38 build, refseq_r80), were retrieved from https://
resources.aertslab.org/cistarget and used as input for the
Rcistarget package (29).

Sets of high-confidence targets for the 113 TFs whose activity
could be quantified by SCENIC were then extracted and used for
enrichment analysis. For each gene module, TF enrichment was
assessed using a Fisher’s exact test with the 6,669 expressed genes
as background (Supplementary Data 3). Resulting p-values were
adjusted using a global Benjamini-Hochberg correction for all
eight modules and 113 TFs.

For each TF, with its targets enriched among one of the eight
modules, TF activity inferred by SCENIC was used to test for
subset-specific activity using a linear model of the form:

TFi ∼ Statei + subseti + Statei · subseti (2)

where TFi is the activity of the TF being tested in cell i, Statei is an
indicator variable that distinguishes the two cell states being
compared (e.g. unexposed and bystander), and subseti is an
indicator variable that reflects the CD16+/- status of cell i.
Average TF activity was then computed for each cell state,
subset and time point, and correlated with gene expression of
the associated module, to assess the link between TF activation
and the TF-target enriched modules.

Association of the Outcome of IAV
Infection With Basal Gene Expression
For each of the three monocyte subsets detected at basal state, a
Kruskall-wallis test was used to search for genes whose
expression levels significantly differ across donors. Within each
monocyte subset, we then computed the average expression of
each gene for all eight donors and correlated it with the
percentage of infected cells at 4hpi. Genes that differed in
expression between donors (FDR≤1%), and passed a nominal
p-value threshold of 0.01 for association with IAV levels in any of
the 3 subsets, were selected for downstream enrichment analyses.
November 2021 | Volume 12 | Article 768189

https://resources.aertslab.org/cistarget
https://resources.aertslab.org/cistarget
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


O’Neill et al. Population Differences in Influenza Susceptibility
For genes nominally correlated with viral mRNA levels, TF
enrichment was assessed as previously using a Fisher’s exact
test with all 4,859 genes expressed at T0 as background
(Supplementary Data 4), and Benjamini-Hochberg correction
for all 113 TFs was applied.

Gene Ontology Enrichment Analyses
All Gene Ontology (GO) enrichment analyses were performed
with the GOSeq package using default settings (59). Background
gene sets consisted of all genes that had average log-normalized
expression values > 0.1 in at least one of the groupings being
examined, and are described in the text. Only enrichments
significant at FDR≤5% are reported.

Pseudo-Bulk Estimates From
scRNA-Seq Data
Pseudo bulk estimates of IAV mRNA levels were computed by
measuring, for each donor and time point, the mean percentage
of reads of viral origin across all cells from the sample. At each
time point, we then used a Pearson’s correlation test to compare
pseudo-bulk estimates for the 8 donors with IAV mRNA levels
obtained in bulk data at 6hpi.

Monocyte Subset Characterization of
EVOIMMUNOPOP Samples via Flow
Cytometry
For 174 of the 200 EVOIMMUNOPOP donors, proportions of
classical, intermediate and nonclassical monocytes were
determined based on a fraction of 105 CD14+ positively-
selected monocytes, stained according to the manufacturer’s
instructions, with fluorescent APC-conjugated anti-CD14 and
PE-conjugated anti-CD16 antibodies (Cat#130-091-243 and Cat
#130-091-245, respectively, Miltenyi Biotec). Samples were then
analyzed on a MACSQuant Analyzer 10 benchtop flow
cytometer (Miltenyi Biotec).

Quantification of Canonical Monocyte
Subsets in EVOIMMUNOPOP Samples
FlowJo v10.6.1 software (60) was used with the gating strategy
depicted in Supplementary Figure 8 to quantify monocyte
subsets for 174 EVOIMMUNOPOP donors. Population-level
differences in proportion of canonical monocyte subsets were
assessed using Wilcoxon Rank tests. Correlation of the ratio of
CD16+ to CD16- cells with IAV mRNA levels was assessed using
a linear model of the form

IAV ∼ ratio + Pop, (3)

where ‘IAV’ are IAV mRNA levels, ‘ratio’ is the percentage of
CD16+ monocytes (nonclassical+intermediates) divided by the
percentage of CD16- monocytes (classical), and ‘Pop’ is and
indicator variable separating AFB from EUB individuals.

Analysis of Bulk RNA-Seq Profiles From
the EVOIMMUNOPOP Cohort
A combined human-IAV reference was generated by
concatenation of the primary human genome assembly
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(GRCh38) with the 8 segments of the human influenza A
virus (IAV) A/USSR/90/1977(H1N1) genome (accession
numbers CY010372-CY010379). Comprehensive human gene
annotation was obtained from GENCODE (release 27) and
merged with the 12 known transcripts of A/USSR/90/1977
(H1N1). RNA-seq reads (FASTQs) for all 970 samples that
passed quality control in our previous study (18) [accession
EGAS00001001895] were mapped to the combined reference
with the STAR aligner (v.2.5.0a) (61) and assessed for quality
with QualiMap ‘bamqc’ and ‘rnaseq’ (62, 63). Expression of
viral mRNAs was measured as the percentage of uniquely-
mapped reads aligning to the IAV genome. Reassuringly, the
mean percentage of RNA-seq reads among samples from the
IAV-challenged condition was 5.86% versus <0.01% in the
other four conditions. Comparison of the percentage of IAV
reads between populations was done using a Wilcoxon rank
test. StringTie (v.1.3.3) (64) was used to quantify expression
levels in transcripts per million mapped reads (TPM) for each
annotated transcript. Gene expression data were filtered to
remove genes with little evidence of activation (mean zTPM
score < -3) (65) in any of the 5 conditions, and their quality was
checked by principal component analysis (PCA). As GC
content, 5′/3′ bias, date of the experiment and library batch
were previously determined to be the strongest confounding
factors on transcript expression (18), we corrected the data for
these factors. First, we adjusted the data for GC content and 5′/
3′ bias using linear models. Then, we imputed missing values by
k-nearest neighbor imputation and adjusted for experiment
date and library batch by sequentially running ComBat (66) for
each batch effect, with condition and population as covariates.
After batch effect correction, only IAV-stimulated samples were
kept for downstream analyses.

Cell States Deconvolution From
Bulk RNA Sequencing
To assess the percentage of total transcripts that originate from
each cell state across the 199 IAV-challenged samples, we pooled
cells from T6 into 3 groups, based on their assigned cell-state
(bystander, infected: high and low IAV-transcribing) and to
which we added a 4th group containing all singlets that were
either (i) assigned to cluster numbers 3, 8, 10, and 11 (dying cells)
or (ii) discarded based on their high mitochondrial content or
low read counts (dead cells). We then estimated pseudo-bulk
profiles for each group by summing UMIs across all cells and
computing the number of UMIs associated to each gene per
million of sequenced UMIs. TPM profiles obtained from bulk
data were then normalized to improve comparison with pseudo-
bulk. Specifically, we first computed a global pseudo-bulk profile
of the entire single cell dataset as the average of the pseudo bulk
profiles from the 4 cell states (bystander, infected: high and low
IAV-transcribing, or dying/dead), weighted by the percentage of
UMIs they contribute to the overall pool of cells. To account for
the difference in how gene expression is quantified between the
two methods (3’ end counts for scRNA-seq and full-length gene
coverage for bulk RNA-seq), we computed for each gene i a
normalization factor si given by
November 2021 | Volume 12 | Article 768189
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si = log (TPMi) − log (PBi) (4)

where PBi is the number of UMI per million for gene i in the
global pseudo-bulk profile, and TPMi is the average expression of
the gene i in the 199 IAV-stimulated samples from the bulk
RNA-seq data. For each gene, si was then subtracted from the log
transformed TPM to yield normalized TPM profiles. We next
applied DeconRNAseq (67) to the normalized log TPM profiles
from all individuals, using the log-transformed pseudo bulk
profiles from the 4 cell states as a basis for deconvolution.
Quality of the deconvolution was assessed using leave-one-out
cross validation, based on the eight individuals for whom we had
scRNA-seq data. Specifically, for each of these eight individuals,
bulk mRNAs were decomposed using pseudo-bulk profiles
recomputed based on the seven other individuals. The
resulting proportions were then compared with the percentage
of UMIs that originate in each cell-state in the scRNA-seq to
assess the quality of the deconvolution. Excluding IAV genes
from bulk transcriptomic profiles prior to preforming the
deconvolution had virtually no impact on the estimated
proportions (Pearson r > 0.98 with proportions estimated
without excluding IAV genes), confirming that our estimates
were not driven by IAV expression alone. Comparisons between
populations were performed using Wilcoxon rank tests.

The effect of the percentage of infected cells and percentage of
high IAV-transcribing cells among infected cells on the total IAV
mRNA levels were assessed by modelling

IAV ∼ INF + POP (5)

And

IAV ∼ HI + POP (6)

where IAV are the IAV mRNA levels across the 199 bulk mRNA
samples, INF and HI are respectively the percentage of infected
cells and the percentage of high IAV-transcribing cells among
infected cells that we estimated from the deconvolution, and POP
is a factor variable reflecting the population (EUB or AFB). The
fraction h of population differences attributable to difference in
rate of infection was estimating by comparing model (5) with
model (7) below

IAV ∼ POP (7)

and computing h = 100� (1 − b5
b7
), where bi is the effect of

population on IAV levels in model (i). To assess how the
contribution of the percentage of high IAV transcribing cells to
total IAV mRNA levels differed between populations, we used a
linear model of the form

IAV ∼ HI + POP +HI :POP (8)

and tested for significant effect of the interaction term HI : POP
on IAV mRNA levels.

Flow Cytometry Analysis of Monocyte
Susceptibility to IAV Infection
Frozen PBMCs from 8 individuals included in the
EVOIMMUNOPOP cohort were thawed and allowed to rest
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overnight at 37°C, 5% CO2 in 25cm2
flasks. Cells were then

seeded at 2×106/ml in untreated 96-well plates in RPMI-1640
GlutaMAX supplemented with 10% FCS in the presence of A/PR/
8/34 (H1N1) (Charles River Laboratories) at a MOI=1 or media
alone for 6h at 37°C, 5% CO2. At the end of the incubation, cells
were washed in FACS buffer (1X PBS supplemented with 2% FCS
and 1mM EDTA) and stained with the LIVE/DEAD fixable violet
dead cell stain kit (Cat#L34955, Life Technologies) and human Fc
block for 15 min at 4°C, protected from light. Cells were then
washed and stained with a mix of 6 surface antibodies for 20 min
at 4°C, protected from light (anti-human CD19 BV510
Cat#562947, CD3 APC Cat#561811, CD16 PerCp-Cy5.5
Cat#560717, CD69 PE-Cy7 Cat#557745 from BD Biosciences,
anti-human CD14 Cat#301806 from Biolegend, anti-human
CD56 APC-Vio770 Cat#130-114-739 from Miltenyi Biotech).
After centrifugation at 300g for 5 min, cells were incubated with
the Fixation/Permeabilization solution from the Cytofix/
Cytoperm kit (BD Biosciences) for 15min at 4°C, followed by
intracellular staining with FITC conjugated anti-NP (Cat#MA1-
7322, ThermoFisher Scientific) in BD Perm/Wash buffer (1X) for
30min at 4°C. Cells were washed and acquired using a
MACSQuant (Miltenyi Biotec), and data were analyzed
with FlowJo v10 with the gating strategy depicted in
Supplementary Figure 6A.
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29. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H,
Hulselmans G, et al. SCENIC: Single-Cell Regulatory Network Inference and
Clustering. Nat Methods (2017) 14(11):1083–6. doi: 10.1038/nmeth.4463

30. Allen EK, Randolph AG, Bhangale T, Dogra P, Ohlson M, Oshansky CM,
et al. SNP-Mediated Disruption of CTCF Binding at the IFITM3 Promoter Is
Associated With Risk of Severe Influenza in Humans. Nat Med (2017) 23
(8):975. doi: 10.1038/nm.4370

31. Zhang Q. Human Genetics of Life-Threatening Influenza Pneumonitis. Hum
Genet (2020) 139(6-7):941–8. doi: 10.1007/s00439-019-02108-3

32. Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y, Volpi S, et al.
Infectious Disease. Life-Threatening Influenza and Impaired Interferon
Amplification in Human IRF7 Deficiency. Science (2015) 348(6233):448–53.
doi: 10.1126/science.aaa1578

33. Panthu B, Terrier O, Carron C, Traversier A, Corbin A, Balvay L, et al. The
NS1 Protein From Influenza Virus Stimulates Translation Initiation by
Enhancing Ribosome Recruitment to mRNAs. J Mol Biol (2017) 429
(21):3334–52. doi: 10.1016/j.jmb.2017.04.007

34. Wang C, Forst CV, Chou TW, Geber A, Wang M, Hamou W, et al. Cell-To-
Cell Variation in Defective Virus Expression and Effects on Host Responses
During Influenza Virus Infection.mBio (2020) 11(1):e02880–19. doi: 10.1128/
mBio.02880-19

35. Steuerman Y, Cohen M, Peshes-Yaloz N, Valadarsky L, Cohn O, David E,
et al. Dissection of Influenza Infection In Vivo by Single-Cell RNA
Sequencing. Cell Syst (2018) 6(6):679–91.e4. doi: 10.1016/j.cels.2018.05.008

36. Russell AB, Trapnell C, Bloom JD. Extreme Heterogeneity of Influenza Virus
Infection in Single Cells. eLife (2018) 7:e32303. doi: 10.7554/eLife.32303

37. Sun J, Vera JC, Drnevich J, Lin YT, Ke R, Brooke CB. Single Cell
Heterogeneity in Influenza A Virus Gene Expression Shapes the Innate
Antiviral Response to Infection. PloS Pathog (2020) 16(7):e1008671. doi:
10.1371/journal.ppat.1008671

38. Ramos I, Smith G, Ruf-Zamojski F, Martıńez-Romero C, Fribourg M, Carbajal
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