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Real-Time High Speed Motion Prediction Using

Fast Aperture-Robust Event-Driven Visual Flow
Himanshu Akolkar , Sio-Hoi Ieng , and Ryad Benosman

Abstract—Optical flow is a crucial component of the feature space for early visual processing of dynamic scenes especially in new

applications such as self-driving vehicles, drones and autonomous robots. The dynamic vision sensors are well suited for such

applications because of their asynchronous, sparse and temporally precise representation of the visual dynamics. Many algorithms

proposed for computing visual flow for these sensors suffer from the aperture problem as the direction of the estimated flow is governed

by the curvature of the object rather than the true motion direction. Some methods that do overcome this problem by temporal

windowing under-utilize the true precise temporal nature of the dynamic sensors. In this paper, we propose a novel multi-scale plane

fitting based visual flow algorithm that is robust to the aperture problem and also computationally fast and efficient. Our algorithm

performs well in many scenarios ranging from fixed camera recording simple geometric shapes to real world scenarios such as camera

mounted on a moving car and can successfully perform event-by-event motion estimation of objects in the scene to allow for

predictions of upto 500 ms i.e., equivalent to 10 to 25 frames with traditional cameras.

Index Terms—Event driven, neuromorphic, optical flow, motion prediction

Ç

1 INTRODUCTION

OPTICAL flow is the measure of motion of an object pro-
jected on to the image plane of a camera. It is one of the

fundamental steps needed for understanding a dynamic
visual scene and has taken an even important role with newer
applications such as autonomous driving vehicles [16],
drones, action perception during user interactions [14] in
robots and traditional applications like video editing [15] and
stabilization. Because the visual sensing has traditionally
been based on image acquisition at fixed time intervals, the
computation of optical flow has been based on finding fea-
tures that move across two or more consecutive images. Since
the intensity of light received on the sensor is the most basic
feature, the first principle approach for measurement of opti-
cal flow is given by the ‘brightness constancy assumption’
that assumes that the brightness of an object moving across
the camera remains constant over short internal of time. Ide-
ally this time interval should be infinitesimal, but practically,
for the traditional cameras, this means the time between two
recorded frames. This constant instantaneous brightness
assumption forms the basis for the earliest algorithms such as
those proposed by Horn and Schunk [4] and the Lucas-
Kanade (LK) algorithm [5]. This has been further expanded to

‘constant feature assumption’ where complex features or
descriptors are extracted [6] and tracked over multiple spatial
scales [19]. With the advancements in convolution and deep
neural networks, a number of new algorithms using these
approaches have been proposed to compute visual flow [17],
[18], [20]. Some of these methods even propose tackling opti-
cal flow computation as a learning problem [21]. While these
approaches intend to achieve high accuracy using the improv-
ing computational power ofGPUs andFPGAs, the fundamen-
tal problem of fast sensing and image processing still poses a
hinderance towards using such techniques as part of a larger
perceptive autonomous system.

The new generation of dynamic visual sensors [1], [2], [3]
might be able to fill in this niche application space by virtue of
their fast, accurate sensing of light with high temporal preci-
sion. In this paper, we propose an algorithm designed for use
with one such type of sensor [3]. Event-driven sensors have
evolved over the last few years as possible successors to frame
based classical cameras, especially for visual sensing in
research areas that require high precision over a large temporal
dynamics range like robotics [22], [23], [24], [25], autonomous
vehicles [26] and navigation in drones [27]. As these sensors
provide precise motion information due to the inherent design
of the pixels, they are ideal for fast visual flow computations.

A number of methods have been proposed to compute
visual flow using event based sensors. As events in the
event-driven sensors are essentially encoding the light
intensity captured by the pixels, algorithms based on the
original image based Lucas-Kanade method have been pro-
posed [7]. While these event-driven derivatives are fast,
they cannot achieve the same accuracies as the frame-based
variants due to the loss of information in conversion from
intensity to events.

Several algorithms are designed specifically to take
advantage of the temporal nature of event-driven paradigm
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[8], [9]. These algorithms use the spatio-temporal structure of
events to estimate the flow by fitting a surface (usually a
plane) and compute the normal of this surface as flow esti-
mate. These algorithms maybe classified under the label of
‘plane-fitting algorithms’. While these algorithms have
improved accuracy of event flow, they are limited to compu-
tations of local dense flow. Further, the flow obtained is
always computed as orthogonal to the edge irrespective of
the direction of true motion. Thus, the flow computation is
susceptible to the gradient of the edge. This problem is
referred to as the aperture problem. The only way to tackle
the aperture problemwith a traditional plane-fitting method
is to increase the size of the spatial neighborhood around the
events when fitting the plane but this can lead to errors as the
true size of the object is unknown and the shape of object
might not remain linear.

A recent algorithm has been able to avoid this problem
using constrained statistical properties of the object but it is
computationally too intense to be used in real time and is
only valid for object with closed form [10]. Another recent
method for computing event-driven visual flow uses a spa-
tio-temporal window of events and performs histogram
matching of the event clusters to estimate the direction and
speed of object. Thus, the current state-of-the-art algorithms
lose the temporal dynamics of the input sensor events as
they require pooling of events over a temporal and spatial
window to avoid aperture problem.

Here we propose a new event-driven algorithm to solve
aperture problem using multi-scale spatial pooling that uses
the local erroneous flows computed at the lowest scales and
corrects their direction towards the true direction of motion of
the object. We mathematically prove that because of the spe-
cific properties of the plane fitting algorithms, pooling the fast
but erroneous local flows over an appropriate spatial scale
can correctly estimate the real direction of the object. Further,
the estimation of this spatial scale can be computed at every
event independently without any a-priori knowledge about

the shape and size of the objects in the scene and is indepen-
dent of any global motion of the camera. The proposed algo-
rithm can perform in myriad of scenarios. Finally, this flow
rectification allows us to perform very low-level event predic-
tions i.e., when and where should new events appear accord-
ing to the observations.We show via experiments that we can
estimate on the fly, locations and velocities of moving objects
of up to 500 ms ahead in the future. Such prediction can be
implemented for solving visual tasks such as collision avoid-
ance and tracking.

2 METHODS

The algorithm proposed in this paper uses multi-scale pool-
ing found in biological visual system in higher animals for
hierarchical object recognition. The basic idea here is to per-
form local, fast flow measurements which might be incor-
rect in their direction estimations but are relatively reliable
in amplitude estimates and then correct the direction esti-
mates using global amplitude information.

2.1 Multiscale Pooling

Fig. 1 shows the principle idea motivating the correction
procedure explained in the next section. Let us assume the
most ideal case suited for the plane fitting method: a single
bar moving in front of the camera generating a perfect event
plane in the [x, y, t] space. If the bar is oriented orthogonal
to its direction of motion (Fig. 1a), the estimate of the veloc-
ity computed using the plane fitting method [8] (Fig. 1d)
would be equal to the true velocity U. But, if the bar is now
rotated (b) by an angle u, the velocity estimate of the flow
from plane fitting is Un ¼ UTn:n, n being the unit normal to
the bar. The signed magnitude of this flow can be given by:

UTn ¼ jUj cos ðuÞ: (1)

This shows that the plane-fitting based estimated flow is
equal to the true direction of motion when the magnitude of

Fig. 1. (a) and (b) show an oriented edge moving across the sensor in true direction U and the predicted local flow UTn by fitting the plane over
events in [x, y, t] space as in (d) and (e). The magnitude of the normal velocity component estimated by the plane fitting method is related to the orien-

tation of the edge and true motion direction as UTn ¼ jUj cos ðuÞ. This relationship can be extended to a larger complex shaped object by linearizing it
using multiple small edges (c) over small spatial region and performing plane fitting over each local edge (f). (c) The best estimate of true flow direc-

tion can be estimated by finding the correct spatial size s corresponding to the maximum mean magnitude jUnj.
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the estimate is maximum, i.e., the cosine is maximum
in Eq. (1).

It is important to note that the normal n, without addi-
tional assumption, can have two directions - namely either
one of the two directions along the line orthogonal to the
bar. However, if we are considering the temporal surface
defined in [8] (as shown in Figs. 1d, 1e, and 1f) as a bi-
dimensional function t of ðx; yÞ, where the gradient of t
allows us to define n as its unit direction vector then t is
always increasing in the direction of the motion (i.e., the
directional derivative of t along U is increasing) and we
always have u 2 ½� p

2 ;
p
2� or equivalently Ut:n � 0.

We can generalize the observation in Eq. (1) to more com-
plex objects using this property of the plane-fitting flow
computation. Figs. 1c and 1f shows one such example case:
let us consider a contour of a random shape moving with
velocity U. We can approximate this shape as a set of line
segments. For each pixel/event of each segment, the plane
fitting method is estimating Un. If we consider a spatial
neighborhood s around a random pixel (example : green
dot in (c) ) - for which we have estimated its normal veloc-
ity, the mean speed (i.e., the amplitude of the mean velocity)
computed within s is defined as

jUnj ¼
P

i2s KiU
TniP

i2s Ki
; (2)

where Ki is the length of the ith segment in pixels within s

and with the assumption that all the pixels are contributing
in the mean flow estimation.

If we assume that within this spatial neighborhood there
lies a line segment j such that it is oriented relatively closest
to the true motion direction (i.e., u is minimal and ideally
uj ¼ 0 when it is oriented orthogonal to the true velocity),
we can find an upper bound for jUnj

jUnj �
P

i2s KiU
TnjP

i2s Ki
¼ UTnj ¼ Um: (3)

Since the local mean speed is upper bounded by the ampli-
tude of the velocity that is “most” colinear toU, the larger the
jUnj we get from a given s, the closer we are to U i.e., the s

leading to the largest jUnj is the ”right spatial scale” for which
jU�Unj is minimized. As we do not know the true velocity
U,Um becomes our next best reference forU.

According to this observation, for a given flow estimate, we
define the problem of correction as the minimization problem
of finding the neighborhood scale, s, for which the cluster of
flow estimates whosemeanmagnitude is close to the theoreti-
cal maximum jUj � Um as described previously. Thus, for
given neighborhood s, we define the error function as

Es ¼
P

i2s KiðUm �UTniÞP
i2s Ki

: (4)

We then have according to (3)

Es ¼ Um � jUnj: (5)

Since 0 � jUnj � Um, the problem of finding the right s is
equivalent to the minimization problem

argmin
s

ðEÞ ¼ argmin
s

ðUm � jUnjÞ

� argmax
s

ðjUnjÞ:

� argmin
s

ðjujÞ:
(6)

The above equations show that finding the scalewithmaxi-
mum mean magnitude is equivalent to finding the scale
which best estimates the direction of true global flow. Eqs. (5)
and (6) combine to give the new estimated flow, magnitude
and direction, from the optimal spatial scale. Thus, we only
require to compute the flow over the smallest scale once, and
perform the above maximization over larger spatial scales to
get the best estimate of the true globalmotion direction. Since,
the above method is an optimization problem, the resulting
estimate of the direction depends on the available line seg-
ments directions in the scene. While the method can give us
the “true” direction of the object, in non-ideal conditions
when the line segment that is orthogonal to the true direction
is missing, the method can only provide the closest best esti-
mate of the true direction. Further, as the estimated flow is
given by the average local flows in the optimal spatial scale, it
is possible that the flow is slightly biased by the flow values
from the incorrect orientations. Since the incorrect flow values
decrease with cosine of the angle, this bias is generally very
small - nonetheless, this means that rather than getting the
exact true flow, we will get very small errors in the flow. The
proposed algorithm can therefore be divided into three steps.
First, we compute local flow for each event using plane fitting.
Second, we search for a spatial scale for which the meanmag-
nitude of these local flows is maximized. Third, we calculate
the mean direction for the flows in this scale and assign the
direction to all the local flow eventswithin this scale.

Interestingly, while we define Eq. (1), in regards to the
plane fitting algorithm, this property holds true formany other
methods of computing local flow such as the Lucas-Kanade
flow [5] or their event based versions [7]. Thismeans thatwhile
this paper in the following section uses plane-fitting to com-
pute and correct local flow, the proof below shows that any
existing flowmethods that adhere to the relationship in Eq. (1)
can be corrected using themulti-scale correctionmethod.

3 ALGORITHM IMPLEMENTATION

The steps involved in the implementation of the flow are
described in Algorithm 1. The local flow was computed
using an iterative implementation of the plane fitting flow
as in [12]. Some minor changes are introduced to the origi-
nal implementation in [12] to improve performance. First, to
improve the accuracy of the flow and remove noise, we add
an error correction step to ensure better accuracy of the
plane fitting by computing the number of inliers (events
that are within a certain distance from the fitted plane). If
the number of inliers is more than half the total points used
to fit the plane, we consider the fitting to be good and the
flow estimate to be reliable. This improves overall efficiency
and noise robustness as the rectification is only performed
on valid flow events.

To further avoid older events from corrupting flow esti-
mates, we added a temporal history limit such that the cor-
rection was performed using events that occurred within a

AKOLKAR ET AL.: REAL-TIME HIGH SPEED MOTION PREDICTION USING FAST APERTURE-ROBUST EVENT-DRIVEN VISUAL FLOW 363



certain time (tpast) from current event. Table 1 lists the
parameters values used to estimate flow for datasets used
the experiments and results in Section 4.

Algorithm 1.Multi-Scale Aperture Robust Optical Flow

1: for each event x, y, t do
2: 1. COMPUTE LOCAL FLOW (EDL):
3: Apply the plane fitting [8] to estimate the plane parame-

ters [a, b, c] within a neighborhood (5x5) of ðx; y; tÞ.
4: Set Û ¼ jjða; bÞjj and Inliers_count = 0
5: ẑ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

6: for each event ðxi; yi; tiÞ in neighborhood N=5 do
7: t̂ ¼ ðaxi � xÞ þ ðbyi � yÞ
8: if jti � t̂j < ẑ

2 then
9: Inliers_count = Inliers_count+1
10: end if
11: end for
12: if Inliers_count � 0:5 	N2 then
13: Set u ¼ arctanða=bÞ and Un ¼ ðÛ; uÞT
14: else
15: Un ¼ ð0; 0ÞT .
16: end if
17: 2. MULTI-SPATIAL SCALEMAX-POOLING:
18: Define S ¼ fskg, the set of neighborhoods, centered on

ðx; y; tÞ, sk with increasing radius and d t(sk) � tpast
(tpast is temporal cut-off delta)

19: if Un 6¼ ð0; 0ÞT then
20: for each sk 2 S then
21: Un;sk ¼ mean

j2sk
ðUnjÞ ¼ ðÛk; ukÞT

22: end for
23: smax ¼ argmax

sk2S
ðÛk)

24: end if
25: 3. UPDATE FLOW:
26: Flow (x,y) = ¼ mean

j2smax

Ûj cos uj
Ûj sin uj

� �
27: end for
28: Refer Table 1 for parameter values.

4 EXPERIMENTS AND RESULTS

The performance of the algorithm was measured in differ-
ent scenarios to test its effectiveness over the plane fitting
method. The results are divided into two sections - first, we
show in four different scenarios how our algorithm corrects
the direction errors over the plane fitting algorithm. In the
later section we show how this corrected flow can be used
to implement event-by-event predictions of moving objects.
For the sake of brevity, in the rest of the text, we abbreviate
the local plane fitting flow as Event Driven Local (EDL)
flow while the corrected flow estimates using our algorithm
as Aperture Robust MultiScale (ARMS) flow.

4.1 Flow Correction

4.1.1 Camera Fixed, Trivial Pattern

We used a simple geometric pattern of bars and squares
moving up and down in front of the sensor. Fig. 2 A[EDL
Flow] shows the flow computed using just plane fitting
algorithm on a given slice of events. As evident from the
figure, while most of the events have correct flow direction
on the bars, the flow directions of the edges of the square
are incorrectly pointing towards the normal of the edges.
Fig. 2 A[ARMS Flow] shows the output of our algorithm.
The directions of the edges are corrected uniformly towards
the true direction of motion. The quantification of these
results are shown in the histograms of Fig. 2[right]. The
graphs in red show the distribution of directions (in radian)
estimated by the plane fitting algorithm. The graph indi-
cates tri-modal distribution for downward/upward (p=2,
3p=2) and the directions along the normal to the edges (p=4,
3p=4 for up and 5p=4, 7p=4) while the distribution of the
corrected flow directions (blue) largely make up a single
peak in the direction of real motion. Fig. 2 B shows the size
of optimal scale detected by the correction step for each
event. The events on bars have small spatial scale size as
they represent the correct direction. For the pixels on the
square, however, since the bar represents the best flow, the
size of window increases as the events get farther away
from the bar and a larger scale which would include the bar
is needed to find the best direction. This also means what
while the optimal scale sizes for the square are symmetric
vertically, the presence of the bar means that the horizontal
symmetry is lost. The size of the optimal spatial scales are
still independent of direction of motion.

4.1.2 Camera Fixed, Multiple Objects

Next, we tested the robustness of the multi-scale pooling in
case of more than one object moving in front of the camera. To
do this, we recorded two simple objects (two squares) moving
across the camera in opposite directions. We also have a sta-
tionary object in the scene that may lead to noisy events. The
experiment shows that the spatial pooling is not affected by
multiple objects and the algorithm can find the correct scales
for each object independently. Further, when the objects cross
each other close by, the algorithm is robust enough to recover
the correct directions. Fig. 3 shows EDL and ARMS flow out-
put for the two objects and the corresponding direction

TABLE 1
Algorithm Parameters

Parameter Value

Local flow
Filter sizeN 5 pixels
Inlier percentage 50%

Rectification
Spatial range s 0 to 100 pixels in steps of 10
Temporal limit tpast 5 msec

Fig. 2. The figure shows the output of the algorithm for trivial case of bars
and squares moving up and down. (A) The direction of EDL flow esti-
mates is normal to the edge orientations which is corrected by ARMS.
(B) shows events color coded by the size of optimal window. (C) repre-
sents the direction distributions showing how the EDL gives three distinct
peaks for each of the orientations which ARMS corrects towards a single
peak representing vertical motion.
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distribution of events over events in a time window of 100 ms.
The left column shows the EDL outputs color coded by the
direction of flow estimates. As expected, the estimated direc-
tions are normal to the edge directions for each of the objects,
leading to an almost uniform distribution of event directions.

This, is corrected by ARMS so that we get two distinct peaks in
the direction histograms. As the objects collide and cross each
other, the EDL becomes slightly worse and the peaks shift
whereas the ARMS flow distribution remains invariant (Fig. 3
[middle row]). Finally, as the objects move further, and we
only have one object, the distributions becomes similar to the
one in Exp 4.1.1 with single moving object. Again, while EDL
gives two peaks for each of the edge orientations, we get a sin-
gle peak fromARMS indicating the globalmotion direction.

4.1.3 Camera Fixed, Objects Occluding

Next, we tested the robustness of the multi-scale pooling in
case when more than one object moving in front of the
camera overlap and occlude each other. We setup two pen-
dulums of the same length and size but placed at different
depths from the sensor. The pendulums were left to oscil-
late at out of phase positions such that while both the pen-
dulums are visible to the sensor, there are moments when
the two pendulum overlap each other. The setup and qual-
itative results are shown in Fig. 4. Figure shows the output
of the ARMS flow for a sequence of about 200 msec during
which the two objects overlap and then pass each other.
We also show how the optimal spatial scale found by the
correction step of the algorithm changes over time as dif-
ferent parts of the objects move over a given pixel repre-
sented by the black dot on each panel. The spatial scale is
represented by the black rectangle. As the pendulums pass
by, the optimal scale selected by the correction step
changes depending on which parts of the pendulums are
passing through the pixel. The ARMS flow provide the
directions close to the actual directions when the pendu-
lums are far apart as in the panels 0 to 10 msec. As the pen-
dulums move closer, the flow direction of the rightmost
edge of the smaller pendulum gets corrupted by the higher
magnitudes of the larger pendulum. At 102 msec, panel we

Fig. 3. Comparison of EDL and ARMS for two moving objects. The three
rows show the direction outputs of the EDL and ARMS flow at three time
points. The algorithm works well even when the two objects cross each
other closely. Direction histograms show bimodal distribution from
ARMS (blue) for the direction of the two individual shapes. The EDL flow
(red) however leads to a larger variance and almost a uniform distribu-
tion. Even with only one object in the scene (bottom row), EDL flow gives
rise to two modalities but ARMS gives a single peak at 3p=2.

Fig. 4. Figure shows the setup (A) and ARMS flow directions (B) for a scenario with two pendulums of same length and size but at different depths
from the sensor. The figure also shows, as black rectangle, the size of optimal window found by ARMS flow for a given pixel (black dot). We can see
that as the two pendulums get close around 70 msec time point, the front edge of the smaller pendulum starts to get erroneous direction estimate
due to the higher magnitudes of the closer pendulum. The direction estimates are quickly corrected though, as soon as the two pendulums start to
move away (170-190 msec).
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start to see the impact of the larger pendulum on the spa-
tial scale detection. Even though the observed pixel is on
the smaller pendulum, the higher magnitudes of the larger
pendulum lead to larger spatial scales to be selected as
optimal, as represented at 110 msec by the larger rectangle.
Finally, as the two pendulums get farther apart at 170
msec, we can see that the flow for the leading edge of the
smaller pendulum are quickly corrected and the correct
flow values are recovered. This shows that while the algo-
rithm can get affected instantaneously due to overlapping
object, the error remains only for a very short duration of
the overlap and can be quickly recovered.

4.1.4 Real World Scene - Camera Mounted on

Moving Car

The flow rectification is also assessed through a real world
scene in which the event-based camera was mounted on a
car moving through traffic along the streets of Paris. The
flow obtained from the algorithm corrects the local perpen-
dicular flow to provide a better global flow especially
when the car is making turns, where the whole scene
should have the same global flow direction. The optical
flow corrections can improve the flow directions when the
car is turning, making all events predicting the apparent

global direction of turn. Further, the combination of speed
and flow directions can easily segment objects moving
independently from the car. Fig. 5 shows the EDL and
ARMS flow for different traffic conditions. The bottom row
shows interesting points (marked by black rectangles) in
the scene where the ARMS flow successfully corrects erro-
neous directions of the EDL. These show that the spatial
scale estimation works correctly even in a cluttered envi-
ronment and large motion events. Further, direction esti-
mates of independent moving objects such as cars is not
affected by the global motion.

4.2 DAVIS Dataset With Ground Truth

4.2.1 Application to the Event-Camera Dataset

To test the efficacy of our method on a benchmark dataset,
we chose to implement it on events and images recorded
with a DAVIS which also recorded motion of the camera
using an inertial measurement unit (IMU) at 1,000 Hz [28].
This provides us with not only images of the scene but also
the angular velocity of the camera as the scene is recorded.
We implemented the ARMS flow on dynamic rotation scene
where an office scene is recorded with camera primarily
rotating around its axes. The recording involves different
speeds of rotations. Fig. 8 shows the output flow directions

Fig. 5. Figure shows the flow directions for an ATIS mounted on a car moving straight ahead (top), taking a left turn (middle) and navigating around
another car (bottom). EDL flow is normal to the edges on most events which is reflected in the histograms by the small incorrect peaks at p=2 and
3p=2. ARMS-Flow corrects these local abnormalities giving rise to correct direction dependent flow reflected in the two distinct peaks during straight
motion and a single large peak around 0 deg when the car is turning left. The bottom row provides shows how well the ARMS flow works in a cluttered
dynamic case. The black rectangles show the interesting regions in the scene where the normal directions are improved towards the true global flow
while still maintaining the directions of independent moving object like the car on the right which has a relative motion indicated in the forward direc-
tion (blue arrow).
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for the recorded data. Fig. 6 shows the actual imu record-
ings of the angular velocities and the angular velocities esti-
mated using the EDL and our flow. The graphs show that
the predicted velocity can follow the real velocities well as
indicated by the high correlation scores which also show
improvements over the EDL flow predictions. The flow fails
somewhat for the Wy when the camera moves at higher
speeds as seen in the 40 to 60 second mark in bottom graph.

4.2.2 Application to MVSEC Dataset

Finally, we also have applied the optical flow rectification
algorithm on the MVSEC dataset [13] as shown in Fig. 9.

Fig. 6 shows the ground truth velocities over the duration of
recordings for the several conditions and the corresponding
mean EDL amd ARMS flow. The MVSEC dataset ground
truth combines several sensor data along with the framed

Fig. 6. Comparison of ARMS flow and EDL flow based velocity estimates
against the ground truth velocities recorded with an IMU for the rotational
dynamics data from DAVIS benchmark data and the Outdoor Driving
and Indoor Flying conditions from the MVSEC data over the duration of
the recordings.

Fig. 7. The figure shows the predicted events based on EDL and ARMS
flow at 250ms in future. Green dots indicate the actual future events
while the red and blue dots indicate events predicted by the two flows.
The scaling and translation error show how well the ARMS flow keeps
the affinity of the object events. The ARMS flow has required scaling
closer to 1 and translation error lower than the EDL flow error indicating
that all events point to the true direction of motion.

Fig. 8. Figure shows the flow results for two different available set of data
recorded with DAVIS. The panels show the EDL and ARMS flow direc-
tions computed for data recorded for scenes recorded with camera mov-
ing freely while simultaneously recording the events and the motion of
the camera with an IMU.
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images obtained from the camera to create dense flow for
every image taken by the camera. Since our algorithm pro-
duces flow for every event, to compare with the ground
truth, for every pixel we averaged the flow produced
between the two images. Fig. 9 shows qualitative compari-
sons between the EDL, ARMS and ground truth directions
from snapshots of the data taken in different conditions. We
find that the ARMS flow vastly improves the EDL flow and
generally performs well in different conditions. There are
also conditions where the flow does perform poorly as
shown in the bottom panels for the conditions - indoor fly-
ing 1, indoor flying 3 and outdoor driving. Such situations
arise when the camera/scene are moving too slow for the
EDL flow to provide good flow outputs or when the direc-
tion changes are too large for the flow to correct quickly cre-
ating discontinuity in the event plane. We must also note
that the ground truth is built from the information of a
LIDAR, (fused with the GPS and the IMU), which provides
depth information within a range of 100 m in the case of
outdoor driving sequences. On the other hand, the ARMS
flow is estimated only from a single camera with much
lower spatial resolution. This leads to errors in the flow
when the car is both turning and moving forward as shown
in the bottom panel of the outdoor driving sequence in
Fig. 9. The ARMS flow seems to “see” only the dominant
apparent motion of a left-to-right translation whereas the
ground truth shows an expanding flow due to far structures
in the scene. To further quantify the performance, as used

in [13], we computed the average endpoint error (AEE) ¼P jjðV̂ � VtrueÞjj2 where Vtrue is the ground truth derived
from the dataset and V̂ is the computed flow. The AEE was
only computed over events rather than whole images. The
performance was compared against the state of the art algo-
rithms – EV-flownet [13] and Event based visual flow (EV-
flow) [8]. The results of the quantification are presented in
Table 2. The errors for the Indoor Flying conditions (In Fly)
were taken from [13]. We additionally report our error esti-
mates for the outdoor driving conditions for which the error
values were not provided with the dataset.

The proposed method shows remarkable improve-
ments over the EV-flow and even though the algorithm is
simple and works only on events, its performance matches
that of the EV-flownet which requires elaborate learning
network and is trained using both events and grayscale
images. This means that to use it, one must have both
event and image recordings for training of new scenes.
Our method on the other hand only uses change events.
We think that retraining the EV-flownet on binary images
or only on events, or adding additional grayscale informa-
tion into our algorithm would be a more suitable compari-
son and should close the performance gap between the
two algorithms.

4.3 Event Based Prediction Using ARMS Flow

4.3.1 Trivial Case

The corrected direction estimates using ARMS flow can
greatly improve the prediction of rigid object over traditional
plane fitting methods. Fig. 7 shows the actual future events
(green) and the predicted events for EDL (red) and ARMS
(blue) flow using events that occurred 250 msec in the past.
The figure shows that using ARMS flow, all the predicted
events of the square form another square but if the directions
are not the same as in case of the EDL, the predicted shape is
not rigid anymore and does not form a square. To quantify
the performance of the two flows, we compute how well the
predicted events from local and corrected flow maintain the
rigidness of the object. That is, we compute the affine transfor-
mation needed to map the predicted events to the actual
events. To simplify, we assume zero rotation and perform

TABLE 2
Average Endpoint Error (AEE) in Pixels for

Five MVSEC Data Set

Method In_Fly1 In_Fly2 In_Fly3 Out_Day Out_Night

EV-flow 1.03 1.72 1.53 N/A N/A
Net
EV-flow 2.45 2.42 5.35 3.87 5.53
(EDL)
ARMS 1.52 1.59 1.89 2.75 4.47
flow

The EV FLow-Net paper does not provide any error performance for the out-
door sequences.

Fig. 9. Figure shows the flow results for events recorded from different conditions from the MVSEC benchmark data. The panels show flow directions
from EDL and ARMS flow along with the ground truth directions. The ARMS flow vastly improves the EDL flow estimates and generally is close to the
ground truth directions. We also show examples when the ARMS flow fails as shown in the bottom panels for Indoor flying 1, Indoor flying 3 and Out-
door Driving conditions.
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only translation and scaling. The graphs in Fig. 7 show the
scaling and translation needed for the EDL and ARMS flow
for a sequence of 360 msec broken into event clusters of 20
msec each. A perfect prediction would imply no scaling (i.e.,
scaling correction = 1) and no translation (translation correc-
tion = 0). The mean translation error for ARMS flow was 6.52
pixels per event versus 8.70 pixels per event for EDL flow.
More importantly the scaling error in ARMS was only 0.085
compared to 0.141 in case of EDL. These results show that our
proposed ARMS flow reduces the translation error and
requires almost no scaling corrections showing that this flow
can be used successfully to perform predictions on moving
rigid objects.

4.3.2 Prediction of Multiple Objects and Moving Car

Next, we perform event by event predictions for the multi-
ple moving objects and moving car scenarios mentioned in
the previous section. Fig. 10 provides the prediction results
from the non rectified and the rectified flow for these
sequences. Contrary to the two previous sequences, as the
scale from the scene is not easily extracted, we do not assess
the impact of the prediction by measuring the affine defor-
mation parameters and show only the prediction results.
We managed thanks to the rectified flow, to predict events
up to 250 msec. The ARMS flow can predict the event-by-
event locations even in such a highly dynamic scene across
all directions and again helps to maintain the affinity of dif-
ferent objects, such as the car, the person walking and the
environment such as the dividers, poles and signs.

4.3.3 Prediction in Cluttered Scene With Occlusions

We also computed the flow and performed predictions at
200 ms in a more cluttered scenario where a pedestrian was

tracked while passing behind stationary objects and across
other pedestrians in a busy street scene. The results are pre-
sented in Fig. 11. The predictions very clearly match the
actual events. This example is a typical showcase for the
robustness of the prediction to occluding perturbations. We
do not need to resort to more complex procedure such as
some Kalman filtering to achieve accurate prediction.

4.3.4 Prediction of Moving Pedestrian on Street

To further measure the prediction capabilities using our
flow method we placed the ATIS on a street corner and
recorded pedestrians passing by. As in the trivial case
example, for each incoming event, we make prediction on
where the event will occur after 500 msec using the optical
flow computed with both the local plane fitting and the new
ARMS flow algorithm. We performed the transformation
estimation for event clusters over 50 msec time windows.
While the direction component of the flow for each event is
used as it is, the speed component of the flow is normalized
by the mean speed i.e., each event i in the event-cluster has
speed M and direction ui, where M is the mean speed of all
events and ui is individual flow directions. Using these pre-
dictions, a reconstruction of the motion is made based on
local and corrected flow as shown in Fig. 12 by red and blue
dots respectively. The figure shows that the ARMS flow can
predict the position of the man up to next 500 msec very
accurately. We used the transformation metric as used in
the previous experiment to compare the performance of the
two methods. The graphs show that the ARMS method out-
performs the EDL through the sequence of recording for
both scaling and translation corrections. The mean transla-
tion error for EDL was 7.1240 pixels while that for ARMS
was 4.7558 pixels while the scaling error was 0.297 and
0.167 for EDL and ARMS respectively. Qualitatively, the

Fig. 10. Figure shows the performance of EDL and ARMS flow on pre-
diction of events for the shapes and moving car scenario. The images
show the actual events (green), the predicted events using EDL (red)
and the predicted events using ARMS (blue). The figures show that the
ARMS flow can greatly improve the prediction in both clean and cluttered
and complicated environment invariant to the shapes or number of
objects.

Fig. 11. Predictions of themotion of a person up to 200ms using ARMSflow
in real world cluttered environment occluded by objects. The images show
predictions when the pedestrian passes behind two poles (highlighted by
red masks). The location of the pedestrian is masked (blue) by clustering
the predicted event location and creating a single blob.
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cluster formed by the predictions based on the ARMS-Flow
is less noisy and more compact and is much closer to the
real events. This shows that our algorithm can maintain the
shape on a rigid moving object even when the predictions
are made on an event by event basis and therefore at very
high temporal rates.

5 CONCLUSION

Event driven sensors provide an efficient sampling method
to solve computer vision problems with scope for develop-
ing novel algorithms in temporal domain. Optical flow is an
important feature for most vision based open problems and
estimating fast yet robust flow is a crucial step. While some
interesting algorithms have been developed to estimate
visual flow using the event-driven sensors, they either fail

to solve the aperture problem due to the emphasis on local
spatio-temporal computation or are inefficient and do not
really use the high event speeds of these sensors.

In this paper, we have presented a novel visual flow
algorithm that not only solves the aperture problem but
also performs on an event-by-event basis justifying the use
of event-driven sensors. In fact, we exploit the intrinsic
property of the event based optical flow algorithm, that
allows for correcting the directions of erroneous local flow
estimates. We have shown here that the algorithm works in
real world scenarios, in case of both stationary and moving
camera. The algorithm is invariant to the number of objects
or their size and does not require additional processing
steps such as object detection and tracking. This fast imple-
mentation allows us to perform truly event based prediction
of moving objects from 250 to 500 msec in future without

Fig. 12. Figure shows the possibility of performing predictions based on optical flow estimates for people passing by on a street at two different points
in time. The images shows the actual events (green), predicted events using EDL (red) and predicted events using ARMS (blue) over grayscale
images obtained from ATIS. The predictions from ARMS clearly show much better fit with the actual events while the predictions from EDL tend to
create inflated shapes. This is quantified in the graphs showing the transformation required to fit the predicted events to the true events. The EDL
required larger corrections in both scaling and translation compared to ARMS predictions.
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affecting the shape and size of the object. This is equivalent
to making estimations of position of an object upto 10-25
frames in future when using a traditional frame-based cam-
era. To the best of our knowledge, we could not find any
methods using event-driven sensors that have attempted to
perform such accurate predictions without any temporal
binning of events. Further, these predictions are invariant to
the size and number of independent objects in the scene.
These predictions can allow higher order recognition and
tracking layers to perform at the high temporal rates at
which events are generated. Our future goals are to use this
algorithm as part of an autonomous driving car sensor sys-
tem to allow for fast collision detection and detect abnormal
driver and pedestrian behavior. Further, the spatial scaling
method works not only for plane fitting based local flow
methods but any local flow methods that satisfy the condi-
tion that the flow magnitude is related to the contour of the
edge or object in motion.

Since, our algorithm does not use higher order features,
the true flow is only possible if an edge with true direction
motion is present. In general, the flow improves depending
on the presence of edges that are close to being orthogonal
to the true flow direction. Also, since the flow is provided
by the mean of local flows in a spatial window, the esti-
mated flow is slightly moved away from the true flow. An
improved prediction of the magnitude of flow could allow
us to make predictions at even longer duration of up to a
few seconds. A possible solution to improve the estimates
could be by using the gray scale information provided by
an ATIS like neuromorphic sensor. Analysing MVSEC and
DAVIS data also show that ARMS flow can fail in certain
scenarios especially in outdoor conditions where objects are
far and the events on the camera plane themselves are not
enough to compensate for the depth of the objects. This
means that in cases when the car is making turns while
moving forward the ARMS flow can only see the apparent
motion of the whole scene moving whereas the depth infor-
mation using a LIDAR would allow measure the expanding
flow. In indoor flying cases, we found that while ARMS
flow can remarkably improve the EDL flow output, errors
occur if the drone makes large, sudden change in directions
as this leads to discontinuity in the event plane and leads to
large errors in local flow computation itself. The ARMS
flow still performs close to ground truth for most of the
duration of the flight sequences. Many new techniques for
motion correction use contrast maximization methods [30]
to segment events from object moving at different directions

and speeds. This may allow for flow to be computed on
events of individual objects. This could also improve the
magnitude estimations but the events correction using this
technique is still to some extent affected by the aperture
problem [29].

In terms of the memory and CPU requirements, the algo-
rithm was implemented in C++ running on single core Intel
E5-1603 processor, achieving on average a computation rate
of 120 kEvents/second [Table 3] and requires very small
amount of memory that increases linearly with the pixels
resolution of the sensor. While the traditional CPU is
enough for real-time processing on a qVGA sensor, a paral-
lel neuromorphic hardware implementation could make the
algorithm independent of the sensor resolution and allow
real time motion based visual processing for larger sensor
arrays.
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