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We study the Radiative Transfer equations coupled with the time dependent temperature equation of a fluid: existence, uniqueness, a maximum principle are established. A short numerical section illustrates the pros and cons of the method.

Introduction

In fluid mechanics, Radiative Transfer is an important subfield of Heat Transfer with many applications to combustion, micro-wave ovens and climate models.

For the physics of radiative transfer for the atmosphere the reader is sent to [START_REF] Goody | Atmospheric Radiation[END_REF], [START_REF] Bohren | Fundamentals of Atmospheric Radiation[END_REF], to the numerically oriented Zdunkowski and Trautmann (2003) and to the two mathematically oriented [START_REF] Chandrasekhar | Radiative Transfer[END_REF] and [START_REF] Fowler | Mathematical Geoscience[END_REF].

When Planck's theory of black bodies is used the radiations have a continuum of frequencies governed by the temperature of the emitting body.

Even when the interactions with the fluid medium are neglected, the radiative transfer equations have 5 spatial dimensions. Hence the problem is numerically quite difficult. The stratified approximation is used when the radiation source is far, typically, the Sun. It is a two dimensional model with one spatial and one angular dimension to which the authors have contributed recently: see [START_REF] Bardos | The nonaccretive radiative transfer equations: existence of solutions. and the Rosseland approximation[END_REF] for stratified radiative transfer alone and Pironneau (2021), [START_REF] Golse | Stratified radiative transfer for multidimensional fluids[END_REF], [START_REF] Golse | Stratified radiative transfer in a fluid[END_REF] for stratified radiative transfer coupled with the temperature equation in the stationary case.

In this article the complete 5 dimensional radiative transfer model is studied when coupled with the time dependent temperature equation in the fluid.

Existence and uniqueness of a solution is well known when the physically constants do not depend on the frequency of the radiating source, the so called grey model (see [START_REF] Bardos | The nonaccretive radiative transfer equations: existence of solutions. and the Rosseland approximation[END_REF]) and [START_REF] Golse | The Milne problem for the radiative transfer equations (with frequency dependence)[END_REF]). In the non-grey case, some results have been obtained by [START_REF] Mercier | Application of accretive operators theory to the radiative transfer equations[END_REF], [START_REF] Golse | Generalized solutions of the radiative transfer equations in a singular case[END_REF], et al. The present article extends these studies done in the eighties.

The radiative transfer system coupled to the Navier-Stokes equations has been studied by Pomraning (1973) and [START_REF] Ghattassi | On the diffusive limits of radiative heat transfer system i: well prepared initial and boundary conditions[END_REF] at least. In the later an existence theorem is given when the coefficients depend on the spatial variables but not on the frequencies of the source.

The paper begins with a statement of the radiative transfer equations in Section 1. In Section 2 an existence result is given. In Section 3, uniqueness is shown. The proof is complex and relies on an argument given by [START_REF] Mercier | Application of accretive operators theory to the radiative transfer equations[END_REF] and [START_REF] Crandall | Some relations between nonexpansive and order preserving mappings[END_REF]. A maximum principle is also shown. Finally in Section 4 a numerical example is given.

Fundamental equations and approximations

To find the temperature T in an incompressible fluid exposed to electromagnetic waves it is necessary to solve the Navier-Stokes equations coupled with the Radiative Transfer equations, as explained in Pomraning (1973). It is a complex partial differential system formulated in terms of a time dependent temperature field T (x, t) function of the position x in the physical domain Ω and a light intensity field I ν (x, ω, t) of frequency ν in each direction ω:

Given I ν , T, u, ρ at time zero, find I ν , T, u, p, ρ, such that for all {x, ω, t, ν}

∈ Ω × S 2 × (0, T ) × R + , 1 c ∂ t I ν + ω • ∇I ν + ρκ ν a ν I ν - 1 4π S 2 p(ω, ω )I ν (ω )dω = ρκ ν (1 -a ν )[B ν (T ) -I ν ], ρc V (∂ t T + u • ∇T ) -∇ • (ρc P κ T ∇T ) + 1 c ∞ 0 S 2 I ν dµdν + ∇ • ∞ 0 S 2 I ν (ω )ωdωdν = 0 ∂ t u + u • ∇u - µ F ρ ∆u + 1 ρ ∇p = g, ∇ • u = 0, ∂ t ρ + ∇ • (ρu) = 0, (1) 
where ∇, ∆ are with respect to x,

B ν (T ) = 2 ν 3 c 2 [e ν kT -1]
, is the Planck function,

, c, k are the Planck constant, the speed of light in the medium and the Boltzmann constant. The density of the medium is ρ, the pressure is p; c P , c V are the compressibility of the fluid at constant pressure or volume; in large area these may be altitude/depth dependent. The absorption coefficient κ ν := ρκ ν comes from computations in atomic physics, but for our purpose it is seen as the percentage of light absorbed per unit length. The scattering albedo is a ν ∈ (0, 1) and 1 4π p(ω, ω ) is the probability that a ray in direction ω scatters in direction ω. The constants κ T and µ F are the thermal and molecular diffusions; g is the gravity.

Existence of solution for the fluid part of (1) has been established by [START_REF] Lions | Incompressible Models[END_REF].

The Mathematical Problem

Denote the angular average radiative intensity by

J ν (t, x) = 1 4π S 2 I ν (ω)dω. If 1
c is neglected in (1), the following holds:

∇ • ∞ 0 S 2 I ν (ω )ωdωdν = 4π ∞ 0 ρκ ν (1 -a ν ) (B ν (T ) -J ν ) dν . (2) 
Consequently we are led to study the well-posedness of the following system for I ν , J ν , T :

                     ω • ∇I ν + κ ν I ν = κ ν (1 -a ν )B ν (T ) + κ ν a ν J ν , J ν := S 2 I ν dω 4π , ∂ t T + u • ∇T -λ∆T = ∞ 0 κ ν (1 -a ν )(J ν -B ν (T ))dν , I ν (x, ω) = Q ν (x, ω) , ω • n < 0 , x ∈ ∂Ω , ∂T ∂n ∂Ω = 0 , T t=0 = T in . (3) 
Here Ω is assumed to be a bounded open subset of R 3 with C 1 boundary, and we denote by n the outward unit normal field on ∂Ω. We further assume that ν → κ ν and ν → a ν are measurable functions satisfying

0 ≤ κ m ≤ κ ν ≤ κ M , 0 ≤ a ν ≤ a M < 1 , ν > 0 , a.e. ,
for some positive constants a M and κ m < κ M . Finally, we assume that the fluid velocity field (t, x) → u(t, x) is smooth on [0, +∞) × Ω and satisfies

∇ • u(t, x) = 0 for x ∈ Ω , u(t, x) = 0 for x ∈ ∂Ω , t ≥ 0 .

Existence

Given a passive parameter t, consider the auxiliary problem

ω • ∇I ν (t, x, ω) = κ ν (S ν (t, x) -I ν (t, x, ω)) , x ∈ Ω , |ω| = 1 , I ν (t, x, ω) = Q ν (x, ω) , ω • n < 0 ,
where the source S ν is isotropic, i.e. not a function of ω. Define the exit time

τ x,ω = sup{s > 0 s.t. x -sω ∈ Ω} .
By the method of characteristics

I ν (t, x, ω) = 1 τx,ω<+∞ Q ν (x -τ x,ω ω)e -κν τx,ω + τx,ω 0 e -κν s κ ν S ν (t, x -sω)ds .
Averaging in ω, one finds

J ν (t, x) = J [S ν ](t, x) := 1 4π S 2 1 τx,ω<+∞ Q ν (x -τ x,ω ω)e -κν τx,ω dω + 1 4π S 2 τx,ω 0 e -κν s κ ν S ν (t, x -sω)dsdω . (4) 
Since κ ν > 0, the functional J satisfies the following monotonicity property:

S ν (t, x) ≤ S ν (t, x) for a.e. x ∈ Ω and t > 0 =⇒ J [S ν ](t, x) ≤ J [S ν ](t, x) for a.e. x ∈ Ω and t > 0 .

In particular,

0 ≤ Q ν (x, ω) , S ν (t, x) ≤ B ν (T M ) , x ∈ Ω , |ω| = 1 , ν, t > 0 =⇒ 0 ≤ J [S ν ](t, x) ≤ B ν (T M ) , x ∈ Ω , ν, t > 0 .
That J [S ν ] ≥ 0 is obvious. As for the upper bound, observe that

J [B ν (T M )] = 1 4π B ν (T M ) S 2 e -κν τx,ω dω + 1 4π B ν (T M ) S 2 τx,ω 0 e -κν s κ ν dsdω = 1 4π B ν (T M ) S 2
e -κν τx,ω dω + S 2

(1 -e -κν τx,ω )dω = B ν (T M ) , so that the desired upper bound follows from the monotonicity of J .

In order to solve the system (3), we consider the iterative scheme detailed in Algorithm 1, where we have assumed that

0 ≤ T in (x) ≤ T M , 0 ≤ Q ν (x, ω) ≤ B ν (T M ) , x ∈ Ω , |ω| = 1 , ν > 0 .
Algorithm 1 to solve (3).

1. Start from T 0 ≡ 0 and J 0 ν = J [0]; 2. for n = 0, 1, . . . , N -1 (a) for all ν ∈ (0, ∞) and all τ ∈ (0, Z), by knowing T n ≡ T n (t, x) and J n ν ≡ J n ν (t, x), define with (4)

J n+1 = J [a ν J n ν + (1 -a ν )B ν (T n )] ;
(b) Define T n+1 to be the solution of the semilinear drift-diffusion equation

       ∂ t T n+1 + u • ∇T n+1 -λ∆T n+1 + B(T n+1 ) = ∞ 0 κ ν (1 -a ν )J n+1 ν dν , T n+1 t=0 = T in , ∂T n+1 ∂n ∂Ω = 0 , x ∈ Ω , t > 0 ,
where

B(T ) := ∞ 0 κ ν (1 -a ν )B ν (min(T + , T M ))dν .
Applying Theorem 10.9 in Brezis (2011) (see also section 4.7.2 in [START_REF] Lions | Non Homogeneous Boundary Value Problems and Applications[END_REF]) shows that, for each q ∈ L 2 (0, T ; H -1 (Ω)), there exists a unique solution to the convection-diffusion problem

   ∂ t θ + u • ∇θ -λ∆θ = q , x ∈ Ω , t > 0 , θ t=0 = T in , ∂θ ∂n ∂Ω = 0 , of the form θ(t, •) = Σ(t, 0)T in + t 0 Σ(t, s)q(s, •)ds ∈ L 2 (0, T ; H 1 (Ω)) ∩ C(0, T ; L 2 (Ω)) . With q := ∞ 0 κ ν (1 -a ν )J n+1 ν dν -B(T n+1 ) ,
we see that T n+1 is a fixed point of the map F defined by

F(θ)(t, •) = Σ(t, 0)T in + t 0 Σ(t, s) ∞ 0 κ ν (1 -a ν )J n+1 ν (s, •)dν -B(θ(s, •)) ds . Observe that B is Lipschitz continuous with Lip(B) ≤ κ M (1 -a M ) sup 0≤θ≤T M ∞ 0 B ν (θ)dν = 4κ M (1 -a M )T 3 M ,
so that, arguing as in the proof of Theorem 1.2 in chapter 6 of [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] shows that F has a unique fixed point. This defines a unique solution

T n+1 ∈ C([0, +∞); L 2 (Ω)) ∩ L 2 loc (0, ∞; H 1 (Ω))
. Next, we seek to compare the solutions T and T of

   ∂ t T + u • ∇T -λ∆T + B(T ) = R , x ∈ Ω , t > 0 , T t=0 = T in , ∂T ∂n ∂Ω = 0 , and    ∂ t T + u • ∇T -λ∆T + B(T ) = R , x ∈ Ω , t > 0 , T t=0 = T in , ∂T ∂n ∂Ω = 0 ,
under the assumption that 0 ≤ R ≤ R on (0, +∞) × Ω. Proceeding as in the proof of Lemma 6.2 of [START_REF] Golse | Stratified radiative transfer in a fluid[END_REF], we multiply both sides of the equality satisfied by the difference T -T by (T -T ) + :

∂ t 1 2 (T -T ) 2 + + u • ∇ 1 2 (T -T ) 2 + -λ∆ 1 2 (T -T ) 2 + + λ|∇(T -T ) + | 2 +(B(T ) -B(T ))(T -T ) + = (R -R )(T -T ) + ≤ 0 .
Integrating over Ω, and taking into account the boundary conditions satisfied by u and (T -T ) shows that

d dt Ω 1 2 (T -T ) 2 + (t, x)dx+λ Ω |∇(T -T ) + | 2 (t, x)dx+ Ω (B(T )-B(T ))(T -T ) + ≤ 0 , since ∂Ω u • n(T -T ) 2 + -λ ∂ ∂n (T -T ) 2 + dσ = 0 . Then, T → B(T ) is nondecreasing on R, since κ ν (1 -a ν ) ≥ 0 and T → B ν (min(T + , T M )) is nondecreasing on R for each ν > 0. Hence (B(T ) -B(T ))(T -T ) + ≥ 0 so that Ω 1 2 (T -T ) 2 + (t, x)dx ≤ Ω 1 2 (T in -T in ) 2 + (x)dx = 0 . Therefore T in ≤ T in on Ω and R ≤ R on (0, +∞) × Ω =⇒ T ≤ T on (0, +∞) × Ω .
This comparison argument shows that

0 ≤ J n+1 ν (t, x) ≤ B ν (T M ) on (0, +∞)×Ω =⇒ 0 ≤ T n+1 ≤ T M on (0, +∞)×Ω .
By the same token,

J n ν ≤ J n+1 ν on (0, +∞) × Ω =⇒ T n ≤ T n+1 on (0, +∞) × Ω .
On the other hand, the monotonicity property of the function J shows that

T n-1 ≤ T n and J n-1 ν ≤ J n ν =⇒ J n ν =J [a ν J n-1 ν + (1 -a ν )B ν (T n-1 )] ≤J [a ν J n ν + (1 -a ν )B ν (T n )] = J n+1 ν on (0, +∞) × Ω.
Summarising, we have essentially proved the following result.

Theorem 1 Assume that

0 ≤ κm ≤ κν ≤ κ M , 0 ≤ aν ≤ a M < 1 , ν > 0 , a.e. ,
and pick boundary and initial data satisfying, for some T M ,

0 ≤ T in (x) ≤ T M , 0 ≤ Qν (x, ω) ≤ Bν (T M ) , x ∈ Ω , |ω| = 1 , ν > 0 .
Then (1) the sequences T n and J n ν satisfy

0 = T 0 ≤ T 1 ≤ . . . ≤ T n ≤ T n+1 ≤ . . . ≤ T M on (0, ∞) × Ω , and 
0 ≤ J 0 ν ≤ J 1 ν ≤ . . . ≤ J n ν ≤ J n+1 ν ≤ . . . ≤ Bν (T M ) on (0, ∞) × Ω, for all ν > 0.
(2) There exist a temperature field 1) is a consequence of the monotonicity properties established above. It implies statement (2) by the following elementary observations: first, one can pass to the limit by monotone convergence in the expression

T ∈ C([0, +∞); L 2 (Ω)) ∩ L 2 loc (0, ∞; H 1 (Ω)) and a radiative intensity Iν ∈ L ∞ ((0, ∞) × Ω × S 2 × (0, +∞)) satisfying (3) in the sense of weak solutions. Proof Statement (
J n+1 ν = J [aν J n ν + (1 -aν )Bν (T n )] to find that Jν = J [[aν Jν + (1 -aν )Bν (T )] ,
since Bν is an increasing function for each ν > 0. By the method of characteristics, the formula

Iν (t, x, ω) = 1 τx,ω<+∞ Qν (x -τx,ωω)e -κν τx,ω + τx,ω 0 e -κν s κν (aν Jν (t, x -sω) + (1 -aν )Bν (T (t, x -sω)))ds
defines a solution of the transfer equation in (3). Radiative Transfer in a Fluid

Finally, for each φ ∈ Cc([0, ∞); H 1 (Ω)) such that ∂ t φ ∈ L 2 ((0, ∞) × Ω), one has ∞ 0 Ω (λ∇T n • ∇φ -T n (∂ t φ + u • ∇φ))dxdt = Ω T in (x)φ(0, x)dx ∞ 0 ∞ 0 Ω κν (1 -aν )(J n ν -Bν (T n ))φdxdνdt .
One can pass to the limit by dominated convergence in all the terms except the one involving ∇T n . This last term is mastered by the energy balance for the convectiondiffusion equation:

1 2 Ω T n (t, x) 2 dx + λ t 0 Ω |∇T n (t, x)| 2 dx = 1 2 Ω T in (x) 2 dx + t 0 ∞ 0 Ω κν (1 -aν )(J n ν -Bν (T n ))T n dxdνds ≤ t|Ω|B(T M ) , which implies that T n is bounded in L 2 loc (0, ∞; H 1 (Ω)
). Since we already know that

T n → T in L p ((0, τ ) × Ω) for all p ∈ [1, ∞) as n → ∞, we conclude that T n → T weakly in L 2 loc (0, ∞; H 1 (Ω)).
With this last piece of information, we pass to the limit in the weak formulation of the convection-diffusion equation and conclude that

∞ 0 Ω (λ∇T • ∇φ -T (∂ t φ + u • ∇φ))dxdt = Ω T in (x)φ(0, x)dx ∞ 0 ∞ 0 Ω κν (1 -aν )(Jν -Bν (T ))φdxdνdt .
In other words, T is a weak solution of the second equation in (3). This concludes the proof.

Uniqueness and maximum principle

For each > 0 let s ∈ C ∞ (R) be such that

s (z) = 0 for z ≤ 0 , s (z) = 1 for z ≥ , 0 ≤ s (z) ≤ 2 for z ∈ R , and let s + (z) = 1 z>0 . Set S (y) = y 0 s (z)dz .
Henceforth, we use the notation

φ := 1 4π ∞ 0 S 2 φ(ω, ν)dωdν
Let (I ν , T ) and (I ν , T ) be two solutions of the system above; then

∇ • ω(I ν -I ν ) + + D 1 + D 2 = 0 ,
where

D 1 := κ ν (1 -a ν )((I ν -I ν ) -(B ν (T ) -B ν (T )))s + (I ν -I ν ) ,
and

D 2 := κ ν a ν ((I ν -I ν ) -(J ν -J ν ))s + (I ν -I ν ) . Since S 2 ((I ν -I ν ) -(J ν -J ν ))dω = 0, one has D 2 := κ ν a ν ((I ν -I ν ) -(J ν -J ν ))(s + (I ν -I ν ) -s + (J ν -J ν )) ≥ 0 , since z → s + (z) is nondecreasing, so that ((I ν -I ν ) -(J ν -J ν ))(s + (I ν -I ν ) -s + (J ν -J ν )) ≥ 0 .
On the other hand

D 1 = D 3 + s (T -T ) κ ν (1 -a ν )((I ν -I ν ) -(B ν (T ) -B ν (T )))
where

D 3 = κ ν (1 -a ν )((I ν -I ν ) -(B ν (T ) -B ν (T )))(s + (I ν -I ν ) -s (T -T )) , while ∂ t S (T -T ) + u • ∇S (T -T ) -λ∆(T -T )s (T -T ) = s (T -T ) ∞ 0 κ ν (1 -a ν )((J ν -J ν ) -(B ν (T ) -B ν (T )))dν = 4πs (T -T ) κ ν (1 -a ν )((J ν -J ν ) -(B ν (T ) -B ν (T )) . Thus 4π∇ • ω(I ν -I ν ) + + ∂ t S (T -T ) + u • ∇S (T -T ) -λ∆(T -T )s (T -T ) +4π(D 3 + D 2 ) = 0
Then we integrate both sides of this equality on Ω:

d dt Ω S (T -T )dx + 4π ∂Ω ω • n(I ν -I ν ) + dσ(x) + ∂Ω S (T -T )u • ndσ(x) +λ Ω |∇(T -T )| 2 s (T -T )dx -λ ∂Ω s (T -T ) ∂(T -T ) ∂n dσ(x) = -4π Ω (D 3 + D 2 )dx . Radiative Transfer in a Fluid
Using the boundary conditions, specifically that

I ν (x, ω) = Q ν (x, ω) and I ν (x, ω) = Q ν (x, ω) , ω • n < 0 , with (Q ν -Q ν )(x, ω) ≤ 0 , ω • n < 0 , implies ∂Ω ω • n(I ν -I ν ) + dσ(x) = ∂Ω (ω • n) + (I ν -I ν ) + dσ(x) ≥ 0, ∂Ω S (T -T )u • ndσ(x) = ∂Ω s (T -T ) ∂(T -T ) ∂n dσ(x) = 0.
Hence

Ω S (T -T )(t, x)dx + 4π t 0 ∂Ω (ω • n) + (I ν -I ν ) + (τ, x)dσ(x)dτ +λ t 0 Ω |∇(T -T )(τ, x)| 2 s (T -T )(τ, x)dxdτ + 4π t 0 Ω (D 3 + D 2 )(τ, x)dxdτ = Ω S (T -T )(0, x)dx = 0
under the assumption that

T t=0 = T in and T t=0 = T in with T in ≤ T in .
Assume that

κ ν (1 -a ν )(I ν + I ν + B ν (T ) + B ν (T )) ∈ L 1 ([0, t] × Ω × S 2 × (0, +∞)); by dominated convergence t 0 Ω D 3 (τ, x)dxdτ → t 0 Ω D 3 (τ, x)dxdτ
where

D 3 = κ ν (1-a ν )((I ν -I ν )-(B ν (T )-B ν (T )))(s + (I ν -I ν )-s + (T -T )) ≥ 0 since z → s + (z) is nondecreasing and s + (T -T ) = s + (B ν (T ) -b ν (T ))
because B ν is increasing for each ν > 0, so that

((I ν -I ν ) -(B ν (T ) -B ν (T )))(s + (I ν -I ν ) -s + (T -T )) ≥ 0 . By Fatou's lemma Ω S (T -T )(t, x)dx → Ω (T -T ) + (t, x)dx
for a.e. t ≥ 0, so that

Ω (T -T ) + (t, x)dx + 4π t 0 ∂Ω (ω • n) + (I ν -I ν ) + (τ, x)dσ(x)dτ +4π t 0 Ω (D 3 + D 2 )(τ, x)dxdτ ≤ 0 , since lim →0 t 0 Ω |∇(T -T )(τ, x)| 2 s (T -T )(τ, x)dxdτ ≥ 0 .
Since all the terms on the left hand side of the previous equality are nonnegative, one has

Ω (T -T ) + (t, x)dx =4π t 0 ∂Ω (ω • n) + (I ν -I ν ) + (τ, x)dσ(x)dτ =4π t 0 Ω (D 3 + D 2 )(τ, x)dxdτ = 0 for a.e. t > 0 .
Once it is known that T ≤ T a.e. on (0, +∞) × Ω, one has

Ω κ ν (1 -a ν )(I ν -I ν ) + dx + ∂Ω (ω • n) + (I ν -I ν ) + (τ, x)dσ(x) + Ω D 2 dx = Ω κ ν (1 -a ν )(B ν (T ) -B ν (T ))(t, x)s + (I ν -I ν ) dx ≤ 0 since B ν (T ) -B ν (T ) ≤ 0 while s + (I ν -I ν ) ≥ 0, so that I ν ≤ I ν a.e. on (0, +∞) × Ω × S 2 × (0, +∞).
Summarising, we have proved the following Theorem 2 Let (Iν , T ) and (I ν , T ) be two solutions of (3) such that

κν (1 -aν )(Iν + I ν + Bν (T ) + Bν (T )) ∈ L 1 ([0, t] × Ω × S 2 × (0, +∞))
for all t > 0. Assume that

T t=0 = T in and T t=0 = T in with T in ≤ T in ,
and that, when x ∈ ∂Ω,

I ν (x, ω) = Q ν (x, ω) and Iν (x, ω) = Qν (x, ω) ≤ Q ν (x, ω) , ω • n < 0 .
Then Iν ≤ I ν and T ≤ T . If T in = T in and Qν = Q ν , exchanging the roles of (Iν , T ) and (I ν , T ) in the theorem above leads to the following uniqueness result.

Corollary 1 There is at most one solution (Iν , T ) of (3) such that κν (1 -aν )(Iν + Bν (T )) ∈ L 1 ([0, t] × Ω × S 2 × (0, +∞)) for all t > 0.

In the case where (I ν , T ) is a Planck equilibrium, i.e. I ν = B ν (T ) with T =constant, one obtains Mercier's maximum principle:

Corollary 2 If 0 ≤ Qν ≤ Bν (T M ) and 0 ≤ T in ≤ T M and Ω has finite volume, the solution (Iν , T ) of ( 3) such that

κν (1 -aν )(Iν + Bν (T )) ∈ L 1 ([0, t] × Ω × S 2 × (0, +∞)) satisfies 0 ≤ Iν (t, x, ω) ≤ Bν (T M ) and 0 ≤ T (t, x) ≤ T M
for a.e. (t, x, ω, ν) in (0, +∞) × Ω × S 2 × (0, +∞).

A Numerical Scheme

We begin with an important observation for the numerical implementation:

Proposition 3 Equation (4) can be written as

Jν (x) = Yκ ν (x) Sν (x) + SE ν (x), with Yκ ν (x) = κν e -κν |x| π|2x| d-1 , d = 2, 3. (5)
where denotes a convolution and tildes indicate an extension by zero outside Ω and

S E ν (x) = 1 2 d-1 π |ω|=1 1 {τx,ω<+∞} Qν (x -sω)e -κν τx,ω dω (6)
Proof This is because, by integration in spherical coordinates with |x| = s,

|ω|=1 ∞ 0 κν Sν (x -sω)e -κν s dsdω = R d κν Sν (x -x )e -κν |x | dx |x | d-1
Notice that the Fourier transform of Y κν satisfies

FY κν (ξ) = FY 1 ξ κ ν = |ξ| 2πκ ν arctan |ξ| κ ν .
The numerical implementation is detailed in Algorithm 2.

Algorithm 2 To solve (5) with S ν = a ν J ν + (1 -a ν )B ν (T ) for each ν > 0, 1. Compute x → SE ν (x) by ( 6) and FY κν = κν 2π|ξ| arctan(κ ν |ξ|). 2. for n=0,1,..,N (a) Compute the Fourier transforms

F Sν . (b) Compute Y κν S ν = F -1 (FY κν • F Sν ). (c) Set J n+1 ν (x) = S E ν (x) + F -1 (FY κν • FS ν ). (d) Compute T n+1 solution of ∞ 0 κ ν (1 -a ν )B ν (T )dν = ∞ 0 κ ν (1 -a ν )J n+1 ν dν .
Fig. 1 The light source, in the far right, sends lightwaves to the planet; it is assumed that the light is unaffected by the atmosphere. Hence point P in the atmosphere receives only the radiations emitted by the planet . A cross section of the planet and its atmosphere is shown in the plane defined by the axis Ox and the point P . The light intensity in the direction ω is a function of the light intensity at P E , the intersection of ω and the circle |x| = R.

A Bidimensional Example

The geometry of the problem is shown on Figure 1 and the data are:

Ω = {x : |x| ∈ (R, R + H)}, Q ν (x E , ω) = Q 0 B ν (T s ) x + E R .
These data are used with x E = (x E , y E ), the intersection of the line {x-tω} t>0 with the circle {x :

|x| = R}. As |x-tω| = R requires t 2 -2tx•ω+|x| 2 -R 2 = 0, we have τ x,ω = x • ω -(x • ω) 2 -|x| 2 + R 2 .
As explained in [START_REF] Bardos | The nonaccretive radiative transfer equations: existence of solutions. and the Rosseland approximation[END_REF], for numerical convenience the problem can be rescaled so that the Planck function is B ν (T ) = ν 3 /(e 15 . All cases are without scattering a = 0.

In the numerical tests Q 0 = 5.74 • 10 -5 , T sun = 1.209, R = 0.4, H = 0.3.

The Grey Case

In the grey case (κ ν independent of ν), the upper bar, as in J, denotes the mean in ν. Then it is easy to see that we need to solve iteratively the integral equation:

J(x) = S E (x)+σY κ T 4 , S E (x) = Q 0 σT 4 s 2π 2π 0 (x-τ x,ω cos θ) + e -κτx,ω dθ (7) with Y κ = κ 2π|x|
e -κ|x| . In absence of thermal diffusion, the temperature field is given by

κσT 4 (x) = κ J(x), x ∈ Ω. ( 8 
)
Figure 2 shows a numerical result obtained with κ = 0.5, N = 10 iterations, starting from T 0 = 0.01. The monotone behaviour of Jn is clearly seen (but not displayed here). -190.588 -173.442 -162.011 -150.58 -139.149 -127.718 -116.287 -104.856 -93.4256 -81.9948 -70.5639 -59.1331 -47.7022 -36.2714 -24.8406 -13.4097 -1.97887 9.45197 20.8828 49.4599 Fig. 2 Temperature map in the atmosphere of the planet which receives light from the right. The grid used for the FFT is 64 × 64. The mesh for the ring is 36 × 120 approximately uniform in polar coordinates. For S E there are 60 integration points in θ. The computing time is 1 second per iteration on a core i9 MacBook 2020; convergence is reached after 5 iterations.
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Non-Zero Thermal Diffusion

Let κ T be the thermal diffusion and let T E be the temperature of the planet. Then (8) must be replaced by

-κ T ∆T + σT 4 (x) = J(x), x ∈ Ω, T ∂Ω = T E . (9) 
It is discretized with triangular finite elements of degree 1 and solved iteratively by a fixed point method whereby T 4 is replaced by T 3 m T m+1 . Figure 3 shows a result with the same data used for Figure 2 and κ T = 0.01σ. The temperature on the planet is fixed at 0.06, i.e. 13.8 C o .

The Frequency Dependent Case

When κ ν is not constant the problem is numerically expensive because one Fourier transform is needed at each integration point in the integrals in ν.

Recall that, when a ν = 0, we have to solve

∞ 0 κ ν B ν (T (x))dν = ∞ 0 κ ν Y κν Bν (T )dν + SE (x) (10) 
with

SE (x) = Q 0 2π 2π 0 (x -τ x,ω cos θ) + ∞ 0 B ν (T s )κ ν e -κν τx,ω dν dθ (11) 
Extracting x → T (x) from ( 10), with a known right hand side, with a ν → κ ν given by values, is doable but expensive (see [START_REF] Golse | Stratified radiative transfer in a fluid[END_REF]). For a simple numerical example we may expand κ ν in powers of ν:

κ ν ≈ κ 0 + κ 1 ν + κ 2 ν 2 + κ 3 ν 3 + κ 4 ν 4 + • • • =⇒ ∞ 0 κ ν B ν (T ) = σκ 0 T 4
+ 24.886κ 1 T 5 + 122.081κ 2 T 6 + 726.012κ 3 T 7 + 5060.55κ 4 T 8 + . . . (12) These numerical values are evaluations of polynomials of π and ζ function numbers computed with Maple.

For the numerical test we chose κ ν = κ 0 + κ 1 ν := 0.5 ± 0.03ν, ν ∈ (0, 15). Then we have to solve iteratively

σκ 0 T 4 (x) + 24.886κ 1 T 5 (x) = Y 1 B ν | x + S E (x), x ∈ Ω (13)
Figures 3,4 and 5 illustrate the influence of a varying κ ν on the temperature. There were 60 points for the integrations in ν, 60 points for the integrations in θ and 64 × 64 for the Discrete Fourier Transforms. All programs were written with the high level PDE solver freefem++ (see [START_REF] Hecht | New developments in freefem++[END_REF]). The program for a non constant κ is evidently much slower and took 580 seconds per case.

Conclusion

By using a technique developed in [START_REF] Golse | Stratified radiative transfer in a fluid[END_REF] for the stratified radiative transfer problem, we have proved existence, uniqueness and a -151.21 -138.255 -129.618 -120.981 -112.344 -103.707 -95.07 -86.4331 -77.7962 -69.1592 -60.5223 -51.8854 -43.2484 -34.6115 -25.9745 -17.3376 -8.70067 -0.0637292 8.57321 30.1655 Fig. 4 Same as above but with κ = 0.5+ 0.03ν, ν ∈ (0.01, 15). -161.898 -148.721 -139.936 -131.151 -122.366 -113.581 -104.796 -96.0113 -87.2264 -78.4415 -69.6566 -60.8717 -52.0868 -43.3019 -34.517 -25.7321 -16.9472 -8.16226 0.622645 22.5849 Fig. 5 Same as above but with κ = 0.5-0.03ν, ν ∈ (0.01, 15). maximum principle for a rather general form of the multidimensional Radiative Transfer system coupled with the time dependent temperature equation with drift.
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The proofs are constructive and yield a robust and fairly fast numerical numerical algorithm, at least in the grey case, which encapsulate the exact solution between a lower and a higher numerical one obtained by starting from a guessed temperature field below (resp. above) the exact temperature field.

The 5 dimensional PDE is thus replaced by an iteration involving a three dimensional integral and a convolution integral easily computed with an FFT and which constitutes a tremendous gain in computing time over more classical finite element discretization as in [START_REF] Lehardy | Specular reflection treatment for the 3d radiative transfer equation solved with the discrete ordinates method[END_REF].

Most remarkable is that there are essentially no constraint, besides positivity, on the absorption κ ν and the scattering a ν . If these depend on x, a change of variable needs to be applied to return to the case κ ν independent of x. However if κ ν depends on T the method does not work, except by adding an iteration loop, sending this dependency on the right hand side of the equation of 6 Appendix: Code documentation

The following may not appear in the published paper.

The following freefem++ script RT2Dfull2.edp works for κ ν = κ 0 + κ 1 ν, ν ∈ (ν min , ν max ). It recognizes the case κ constant (i.e. κ 1 = 0) and by avoiding the integrals in ν is then much faster in that case.

The data are:

1 2 // R T 2 D f u l l 2 . edp . r a d i a t i v e t r a n s f e r w i t h no a p p r o x i m a t i o n 3 l o a d " d f f t " 4 5 i n t n =1 , N i t e r =5 , 6 nx=n * 3 2 , ny=n * 3 2 ,NN=nx * ny ; 7 r e a l Q0=2 * s q r t ( 2 . ) * 2 . 0 3 e -5 , Tsun = 1 . 2 0 9 , s i g m a =( p i ˆ4 ) / 1 5 ; 8 9 mesh Th=s q u a r e ( nx -1 , ny -1 ,[ -1+2 * ( nx -1) * x / nx , -1 + 2 . * ( ny -1) * y / ny ] ) ; 10 // w a r n i n g t h e n u m b e r i n g o f v e r t i c e s ( x , y ) i i = x / nx + nx * y / ny 11 12 r e a l R= 0 . 4 , H= 0 . 3 ; 13 r e a l d t h e t a=p i / 3 0 ; // c o n t r o l s t h e i n t e g r a t i o n on t h e u n i t c i r c l e 14 r e a l kappa0 = 0 . 5 , kappa1= 0 . , 15 kappaT = 0 . 0 1 ; // i f z e r o no h e a t e q u a t i o n 16 r e a l numin= 0 . 0 1 , numax = 1 5 , dnu = ( numax-numin ) / 1 0 0 ; 17 18 r e a l s o u r c e = Q0 , R2=R * R ; // a u x i l i a r i e s 19

We need two domains, the square for the dFFT and the ring for the physics: The finite element spaces and the functions are defined by 1 2 f e s p a c e Vh ( Th , P1 ) ; 3 f e s p a c e Wh( Rh , P1 ) ; 4 5 Vh<complex> u , v , w , F ; // u , v , w f o r FFT and JJ f o r J ( x , y ) 6 Vh J s o u r c e ; // f o r S ˆE( x , y ) 7 Wh Tc = 0 . 0 1 , Tch , Tca ; // Tc i s T( x , y ) and Tch and Tca a r e a u x i l i a r i e s 8

We need a function to define κ ν , one to define the Planck function B ν (T ) and one to compute τ x,ω . The parameter scal in twx is here to save time and prevent recomputing the scalar product in getSe.

1 2 f u n c r e a l kappa ( r e a l nu ) { r e t u r n kappa0+kappa1 * nu ; } 3 f u n c r e a l Bnu ( r e a l T , r e a l nu ) { r e t u r n s q r ( nu ) * nu / ( exp ( nu /T) -1) ; } 4 f u n c r e a l txw ( r e a l X, r e a l Y, r e a l s c a l ) { 5 r e a l aux = s q r ( s c a l ) + R2 -s q r (X)-s q r (Y) ; 6 i f ( aux >=0) 7 i f ( s c a l >0) r e t u r n s c a ls q r t ( aux ) ; 8 e l s e r e t u r n s c a l + s q r t ( aux ) ; 9 e l s e r e t u r n -1; 10 } 11 Now getSe implements (11) or (7) when applicable. Now let us compute Y 1 and its Fourier transform v. We could have use its analytical values but then would have had to struggle with the correspondance between the Fourier modes and the grid points. To avoid the singularity at x = 0 we truncate it at |x| > R/4. The FEM function u is needed to build an array of values at the grid points. The computation of the right hand side of ( 13) is done as follows Finally the temperature is computed and converted into Celsius degree by the last formula.

1 Tca=s q r t ( s q r t ( r e a l ( u ) / ( s i g m a * kappa0 + 2 4 . 8 8 6 * kappa1 * Tc ) ) ) ; 2 h e a t ; 3 u = s q r ( Tc * Tc ) * ( s i g m a * kappa0 + 2 4 . 8 8 6 * kappa1 * Tc ) ; // mean l i g h t i n t e n s i t y 4

Tca=Tc * 4 7 8 0 -2 7 3 ; // t e m p e r a t u r e i n C e l c i u s 5 p l o t ( Tca , p s=" p l a n e t t e m p d i f f f u l l 2 . p s " , v a l u e =1 , f i l l =1) ; 6

where heat is finite element solver for the temperature equation implemented as (notice how T is prescribed on the planet at 0.06, which is 13.8 Celsius. These next to last 2 blocks must be encapsulated into a iteration loop 1 2 f o r ( i n t n i t e r =0; n i t e r <N i t e r ; n i t e r ++){ 3 // t h e b l o c k s h e r e 4 } 5

νT

  -1) with T in Kelvin divided by 4780. The Stefan Boltzmann formula becomes ∞ 0 B ν (T )dν = σT 4 with σ = π 4

Fig. 3

 3 Fig.3Temperature map in the atmosphere of the planet which receives light from the right and has thermal diffusion.
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  q u a r e ( nx -1 , ny -1 ,[ -1+2 * ( nx -1) * x / nx , -1 + 2 . * ( ny -1) * y / ny ] ) ; 3 // w a r n i n g t h e n u m b e r i n g o f v e r t i c e s ( x , y ) i i = x / nx + nx * y / ny 4 b o r d e r R1 ( t =0 ,2 * p i ) {x=R * c o s ( t ) ; y=R * s i n ( t ) ; } 5 b o r d e r RH( t =0 ,2 * p i ) {x=(R+H) * c o s ( t ) ; y=(R+H) * s i n ( t ) ; } 6 mesh Rh= b u i l d m e s h (RH( 1 2 0 )+R1( -120) ) ; 7

  aux>R2 && aux <(R+H)

  n c r e a l Yxy ( r e a l X, r e a l Y, r e a l kappa ) { 3 r e a l aux = s q r t (X * X+Y * Y) ; 4 i f ( aux>R/4 ) r e t u r n kappa * exp (-aux * kappa ) / ( 2 * p i * aux )

  n i t e r ==0){u = Yxy ( x , y , kappa0 ) ; v [ ] = d f f t ( u [ ] , ny , -1 ) ; } 4 u = kappa0 * s i g m a * Tc ˆ4 ; 5 w[ ] = d f f t ( u [ ] , ny , -

  t ( Tc , Tch ) = i n t 2 d ( Rh ) ( kappaT * ( dx ( Tc ) * dx ( Tch ) 2 +dy ( Tc ) * dy ( Tch ) ) +Tc * Tch )i n t 2 d ( Rh ) ( Tca * Tch )+on ( R1 , Tc = 0 . 0 6 ) ; 3

  Tsun , nu ) * kappa ( nu ) * exp (-kappa ( nu ) * t ) * dnu ; 15 Jxy=Jxy+d t h e t a * max (X-t * wx , 0 . ) * o u r c e = g e t S e ( x , y ) * s o u r c e / ( 2 * p i ) ; 21

	13	e l s e f o r ( r e a l nu=numin ; nu<numax ; nu+=dnu )
	14	Bke += Bnu ( Bke ;
	16	}	
	17	}	
	18	r e t u r n Jxy ;	
	19 }		
	20 J s		
			;
	8	r e a l s c a l	= X * wx+Y * wy ;
	9	r e a l t = txw (X, Y, s c a l ) ;
	10	r e a l Bke = 0 ;
	11	i f ( t >0) {	
	12	i f ( kappa1==0) Bke = kappa0 * exp (-t * kappa0 ) * s i g m a * Tsun ˆ4 ;

* (R+H) ) 6 f o r ( r e a l t h e t a =0; t h e t a <2 * p i ; t h e t a+=d t h e t a ) { 7 r e a l wx=c o s ( t h e t a ) , wy=s i n ( t h e t a )
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