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MAGECally invert images for realistic editing

Generative Adversarial Networks (GANs) are now able to generate astonishingly realistic high-resolution images. Recent work has shown the emergence of semanticallymeaningful manipulations simply by editing the corresponding latent vector. However, a real image must first be inverted into its GAN latent code before editing. Previous work usually achieves accurate reconstruction, but poor-quality latent vectors: applying known editing methods onto these latent codes results in artifacts and erroneous edits.

We aim to bridge the gap between reconstruction and editability. We propose a novel instance-optimization based inversion method, which specifically aims to maximize the semantic information of the latent vector, all while producing an accurate reconstruction. We introduce the iMAGe-latEnt Consistency loss ("MAGEC"), which allows supervision in the latent space, encouraging editability of the resulting latent vector. We provide extensive qualitative and quantitative evaluation to validate our method, using the recent state-of-the-art StyleGAN and show that our method outperforms baseline inversion methods, opening the door to new realms of real-image editing.

Introduction

Editing real images in a fast and realistic way is highly lucrative for obvious reasons. Users could use such a tool to visualize their personal curiosities before committing more time or energy to something more permanent -How would a certain hairstyle look on me? How would my house look with brick walls? Would my car look nice with different tires? Moreover, a professional photographer spends around 1.5 hours of editing for a portrait image, with the most costly operations being those requiring complicated semantic changes [START_REF]How Long does a Professional Photographer Take to Edit Photos?[END_REF]. Automatic semantic editing is thus an application which could interest and benefit many.

Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF] have made such ideas possible in recent years. Recently, the celebrated StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] has allowed unconditional generation of unparalleled quality, resolution (1024 × 1024) and realism. What's more, this GAN was the first of its kind to show such powerful disentanglement qualities of its latent space. For example, mixing two latent codes corresponding to two images results in a coherent output image containing properties from both former images [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF]. This led to a surge of research into studying and manipulating this latent space, in which high-level semantic concepts of Figure 1: From left to right: original image, projection in latent space using MAGEC loss, various edits (GANSpace, InterfaceGAN and StyleFlow respectively). Edits are of highquality, and conform to expectations of the various editing methods. Best viewed zoomed. generated images can be edited [START_REF] Abdal | Styleflow: Attributeconditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF][START_REF] Collins | Editing in style: Uncovering the local semantics of gans[END_REF][START_REF] Härkönen | Ganspace: Discovering interpretable gan controls[END_REF][START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF][START_REF] Tewari | Stylerig: Rigging stylegan for 3d control over portrait images[END_REF][START_REF] Wu | Stylespace analysis: Disentangled controls for stylegan image generation[END_REF][START_REF] Zhuang | Enjoy your editing: Controllable gans for image editing via latent space navigation[END_REF]. These editing methods produce realistic and high-quality global or local changes in the output image.

The extension to real images is natural but not trivial. A latent code first needs to be found such that, when inserted into the StyleGAN network, outputs the original image. Although inversions are able to achieve high reconstruction quality [START_REF] Abdal | Image2stylegan: How to embed images into the stylegan latent space?[END_REF][START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF], problems arise when applying known editing methods onto the inverted images: the editing either does not work at all, or they produce output images of poor quality, presenting artifacts and blur [START_REF] Zhang | Image gans meet differentiable rendering for inverse graphics and interpretable 3d neural rendering[END_REF][START_REF] Zhu | In-domain gan inversion for real image editing[END_REF].

In this paper, we propose a learning framework to improve editability of the projected latent vector of a real image while maintaining good reconstruction. We reframe the strategy of the standard optimization framework for GAN inversion. More precisely, we add a term of editability and image-latent-consistency into the global loss function by using a simple yet effective procedure based on recent latent-manipulation methods. This allows us to explicitly incorporate known editing methods into the GAN inversion optimization scheme to ensure better editability. We validate our method with extensive qualitative and quantitative evaluation. Notably, we introduce a novel "edit-consistency score" which specifically evaluates the quality of a projection method in terms of editability. We show that our method outperforms existing baseline methods, and opens the door to new possibilities of editable high-quality image inversions.

Related Work

Generative Adversarial Networks Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF] have sparked massive interest since their introduction in 2014. In recent years, breakthrough research in architecture design, loss functions, and training dynamics have allowed unconditional GANs to synthesize images of unprecedented quality for resolutions up to 1024×1024 [START_REF] Chen | On self modulation for generative adversarial networks[END_REF][START_REF] Karras | Progressive growing of GANs for improved quality, stability, and variation[END_REF][START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF]. BigGAN [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF] has likewise made a pushed state of the art by allowing highquality class-conditioned generation on ImageNet. Image-to-image translation models like [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF][START_REF] Park | Semantic image synthesis with spatially-adaptive normalization[END_REF][START_REF] Ting-Chun | High-resolution image synthesis and semantic manipulation with conditional gans[END_REF] typically all use GANs in some form. In this paper, we will work with the current state-of-the-art generator network StyleGAN2 [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF], whose novel architecture notably in-cludes a separate mapping network which transforms the normal distribution Z space into the more disentangled W space, which not only permits higher-quality image-generation, but also a much smoother, more interpretable and semantically-rich latent space. Latent Space Manipulation With the introduction of StyleGAN and its newly disentangled latent space, a surge of research has come forward to provide various ways of interpreting and manipulating this latent space W. In the original StyleGAN paper, the authors showed that simply performing linear interpolation between two latent vectors gives an "interpolated" image between the two former vectors. Another straight-forward approach is to find linear directions in the latent space for binary attributes learned in a fully-supervised manner [START_REF] Goetschalckx | Ganalyze: Toward visual definitions of cognitive image properties[END_REF][START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF][START_REF] Zhuang | Enjoy your editing: Controllable gans for image editing via latent space navigation[END_REF]. By using an auxiliary classifier in the image space, we can find the desired linear boundaries in the latent space, and then simply "walk" in the direction of a given attribute to change the output image. StyleFlow [START_REF] Abdal | Styleflow: Attributeconditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF] likewise uses an auxiliary classifier for ground-truth labels, but instead uses a flow network to learn non-linear directions in the latent space, which allows for better preservation of unedited attributes as well as sequential edits. GANSpace [START_REF] Härkönen | Ganspace: Discovering interpretable gan controls[END_REF] doesn't use an auxiliary classifier, but instead performs PCA analysis on the latent space. StyleRig [START_REF] Tewari | Stylerig: Rigging stylegan for 3d control over portrait images[END_REF] and [START_REF] Zhang | Image gans meet differentiable rendering for inverse graphics and interpretable 3d neural rendering[END_REF] use a pre-trained StyleGAN network along with a 3D differentiable renderer in order to perform 3D edits on generated images via latent space manipulations. Recently, [START_REF] Niemeyer | Giraffe: Representing scenes as compositional generative neural feature fields[END_REF] explicitly models the generator network to disentangle 3D properties, allowing its latent code to perform powerful changes in the 3D space. Latent Space Embedding The embedding of a real image into the latent space of a deep network has a long history of research and is generally dealt a few ways. Instead of using a pre-trained network, networks such as Variational Auto-Encoders [START_REF] Diederik | Auto-Encoding Variational Bayes[END_REF] (VAEs) contain native encoders directly in their architecture, and are trained jointly with the decoder. Although variants of these are used for image editing [START_REF] Anokhin | Highresolution daytime translation without domain labels[END_REF][START_REF] Park | Swapping autoencoder for deep image manipulation[END_REF], these networks still don't have the powerful semantic information like StyleGAN does. Another possibility is to train a new encoder from scratch for a previously-trained GAN. There has been much work in recent years applying such encoders to StyleGAN, requiring a very specific architecture that mimics the StyleGAN's hierarchical structure [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Xu | Generative hierarchical features from synthesizing images[END_REF]. Encoder-based inversion methods have the advantage of giving instantaneous results, but often inadequate reconstructions. Only recently has there been any interest in encoding an image specifically for the aim of editing the final image. The task requires that the resulting latent vector be as "in-domain" as possible. [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF] addressed this by using a novel encoder, trained in an adversarial manner, to encourage predicted latent vectors to follow the original latent distribution. Recently, [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] proposed its own "encoder for editing" which builds on the StyleGAN2-specific pSp [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] encoder, but is also trained in an adversarial manner along with StyleGAN2-specific loss functions. Although the resulting latents are indeed more editable, reconstruction is typically compromised. Finally, the third possibility is to use an instance-based optimization method, still the most classic method for GAN inversion [START_REF] Abdal | Image2stylegan: How to embed images into the stylegan latent space?[END_REF][START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF][START_REF] Guan | Collaborative learning for faster stylegan embedding[END_REF][START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Zhu | Generative visual manipulation on the natural image manifold[END_REF]. For one given image, we aim to find the corresponding latent code by optimizing the latent code directly. Although costly in nature, [START_REF] Abdal | Image2stylegan: How to embed images into the stylegan latent space?[END_REF][START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF] have shown that virtually any image can be correctly reconstructed in the extended W+ space of StyleGAN. Nevertheless, these optimized latent codes respond poorly to known editing methods, showing that the obtained latent code is out-of-domain [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF]. This is because the instance-optimization problem is poorly constrained, and overfits to the input image at the expense of an out-of-domain latent code.

This observation is the basis of our paper, which aims to constrain the problem specifically to ensure image editing, and thus, to ensure a more "in-domain" latent vector. As far as we know, our work is the first to address this question through instance-based optimization.

3 Methodology GAN-Inversion Framework Given a pre-trained GAN network (generator G, discriminator D) and a real image x real ∈ R C×H×W such that: G : z ∈ R d -→ x gen ∈ R C×H×W . The GAN-Inversion goal is to find a latent code z inv ∈ R d such that: G(z inv ) = x rec ≈ x real . For any real x real image, the instance-based optimization problem for GAN inversion is:

1. Initialize z = z 0 . This can be a random latent vector [START_REF] Abdal | Image2stylegan: How to embed images into the stylegan latent space?[END_REF], an "average" latent vector z avg [START_REF] Abdal | Image2stylegan: How to embed images into the stylegan latent space?[END_REF][START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF][START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], or the output of a pre-trained encoder on x real [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF][START_REF] Zhu | Generative visual manipulation on the natural image manifold[END_REF].

2. Minimize over z a loss L between the synthesized image G(z) and the original one x real . The basic scheme works with a L = L 2 loss for the reconstruction, recently improved with some sort of perceptual loss L percept . The current general framework minimizes the following loss:

z inv = min z L 2 (G(z), x real ) + λ L percept (G(z), x real ). (1) 
Image2StyleGAN++ [START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF], the current reference for inversion based on instance-based optimization, uses two perceptual losses of an ImageNet pre-trained VGG-16 network. Recently, it has been observed that using the LPIPS [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF] perceptual loss gives more robust results [START_REF] Guan | Collaborative learning for faster stylegan embedding[END_REF][START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF], as well as adding an "ID" loss which aims at preserving identity [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF].

This classic GAN-inversion framework fares poorly when known editing methods are applied to the inverted latents (see Fig. 3) largely due to the latent vector overfitting to the image space. Our goal is to preserve accurate reconstruction, but improve editability of the latent vector. We solve this using a 2-part strategy. First, like recent latent-manipulation methods, we learn the structure of the latent space with respect to image features. Second, and unlike previous work, we explicitly use this learnt structure to constrain our optimization process. The method is summarized in Fig. 2: the novel projection strategy continues to optimize the image-space loss of equation 1 (shown in pink), but now also explicitly optimizes at the latent-level (shown in blue). With this new modeling, we can explicitly add editability directly to the loss term. As we can see with in Fig. 1, this allows diverse, high-quality edits of our projected latent vectors all while maintaining high reconstruction fidelity.

Latent-Space Supervision

The lack of editability of previous optimization-based methods reveal that the latent vector overfits to the image space. We thus aim to supervise the latent vector directly through the latent space. Inspired by work on latent-space manipulation [START_REF] Abdal | Styleflow: Attributeconditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF][START_REF] Härkönen | Ganspace: Discovering interpretable gan controls[END_REF][START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF][START_REF] Tewari | Stylerig: Rigging stylegan for 3d control over portrait images[END_REF][START_REF] Zhuang | Enjoy your editing: Controllable gans for image editing via latent space navigation[END_REF], we also link the latent space with the image space, but here with the explicit goal to supervise our loss.

Consider a pre-trained deep network F which inputs an image and outputs some kind of image descriptor d. This could be attributes, keypoints, segmentation map, etc.

As we know from previous work [START_REF] Xu | Generative hierarchical features from synthesizing images[END_REF], the latent space of recent style-based generative models has high discriminative capacity. Our method aims to link the image descriptors to the latent vector with the simplest network possible so as to avoid any form of "re-learning" some part of the GAN network (and thus keep supervision only at the latent-level). We generate N image-latent pairs and train a simple linear model LinkNet which predicts image descriptors d from the latent vectors z.

Concretely, we train LinkNet using the same exact loss as the deep image descriptor network F was trained with, using the predictors of F as the ground-truth labels. This simple LinkNet will be sufficient for supervising our latent vector directly in the latent space.

Figure 2: Our proposed optimization framework. We initialize our z vector with z 0 (the "average" latent vector). Then, we generate the associated image with the pre-trained generator to obtain the image-level loss. We predict the latent-level descriptor d with our pre-trained LinkNet. We add a consistency loss of these features with the "ground-truth" features d evaluated from our feature-extractor network F. We add another consistency loss over the edited descriptors (using a differentiable editor e) and the "ground-truth" edits which we obtain by modifying d. This MAGEC loss gives us latent-level optimization which promotes editability and an in-domain output vector.

MAGEC Loss

Now that we have linked our image and latent space with the simple LinkNet, we can define our iMAGe-latEnt Consistency "MAGEC" loss in the following way, built from Eq.1.

First, we add an image-latent consistency loss over the input image and the latent to optimize. We obtain the "ground-truth" image descriptor d using F, then we use our LinkNet to predict the image descriptor d from latent vector z. If the latent vector correctly represents the image, it should be able to predict the associated image predictors.

Second, we add an image-latent edit consistency loss. Let e be a differentiable known editor with i editing operations (for example, an editing operation can be add glasses, remove wrinkles, to woman, etc.). We perform i edits of the latent vector e i (z) and edit the "groundtruth" image descriptor d accordingly to obtain d e i . Our edited latent vector should be able to predict d e i (with LinkNet). See Fig. 2 for detailed illustration.

The MAGEC loss is given as follows:

L MAGEC (z, x real ) = L F (LinkNet(z), d) image-latent consistency + 1 |edits| ∑ i∈edits L F (LinkNet(e i (z)), d e i )
image-latent edit consistency [START_REF] Abdal | Image2stylegan: How to embed images into the stylegan latent space?[END_REF] where d = F(x real ) and d e i is the modified d according to edit i.

Our final loss is

L(z, x real ) = λ MSE L 2 (G(z), x real ) + λ LPIPS L LPIPS (G(z), x real ) + λ ID L ID (G(z), x real ) + λ MAGEC L MAGEC (z, x real ) (3) 
where L ID is the ID loss introduced in [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] based on a pre-trained ArcFace [START_REF] Deng | Arcface: Additive angular margin loss for deep face recognition[END_REF] network (or ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] network trained with MOCOv2 [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] for non-face images).

As we can see in Fig. 2, our framework allows dual supervision, simultaneously in the image and latent spaces. We are able to provide latent editing directly in the loss term, which not only allows to generate editable latents, but also helps to visualize which images are inherently out-of-domain for the GAN in question. Moreover, this framework can be incorporated into any pre-trained GAN, and allows potential further constraint by combining several differentiable editing methods together.

Experiments

Configurations We use StyleGAN2, pre-trained on FFHQ for 1024×1024 output resolution as our pre-trained GAN. We use the mapped latent space W and similarly to [START_REF] Abdal | Image2stylegan: How to embed images into the stylegan latent space?[END_REF][START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF][START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Zhu | In-domain gan inversion for real image editing[END_REF], we extend this space to W+ by allowing each of the 512-dimensional style vectors to be independent of each other. For the feature extractor F, we train an attribute-classifier on CelebA [START_REF] Liu | Deep learning face attributes in the wild[END_REF] to predict 40 binary attributes. Finally, we use InterfaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] as our editor e to supervise our MAGEC loss, which performs add/remove operations on all 40 attributes. Training Protocol We initialize z with z avg , by sampling N = 50000 latent vectors with StyleGAN2 and taking the average vector. We use the Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] optimizer with the default parameters (β 1 = 0.9, β 2 = 0.999, ε = 1e -08 ). We perform our training in two parts. First, we use λ MAGEC = 3e -4 , λ LPIPS = 5e -1 , λ MSE = 1e -3 and λ ID = 3e -4 and perform 100 optimization steps. Then, we set λ MSE = λ LPIPS = 5e -1 for another 100 optimization steps, leaving the other loss coefficients unchanged. The learning rate begins at 0.07 and is exponentially decayed with a decay factor of 0.8 every 25 epochs. 1 Datasets and Editors We perform thorough evaluation of our method using 1000 random samples from the CelebAHQ [START_REF] Karras | Progressive growing of GANs for improved quality, stability, and variation[END_REF] dataset. We also evaluate our method on random images from the Stanford Cars dataset [START_REF] Krause | 3d object representations for fine-grained categorization[END_REF], which we provide in the supplementary material. We evaluate our projection on four well-known editing methods: InterfaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF], GANSpace [START_REF] Härkönen | Ganspace: Discovering interpretable gan controls[END_REF], StyleFlow [START_REF] Abdal | Styleflow: Attributeconditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF] and random interpolation between latent vectors [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF]. Baselines We compare our method with Image2StyleGAN++ [START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF], the current state-of-theart optimization-based method for GAN-Inversion. This method uses the classic loss from Eq. 1 (using the LPIPS [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF] loss as the perceptual loss) and first optimizes the latent vector for 1000 iterations, then the noise vector for 1000 iterations. This loss can be seen as an ablation of the MAGEC and ID losses from Eq. 3, but minimized over more iterations. We also perform an ablation study using our training protocol to optimize Eq. 3 but without the MAGEC loss. All methods initialize z with z avg . 1: Reconstruction evaluation of projection, showing averages per image. We should note that the time of our method directly depends on the number of attributes we add to our MAGEC loss (Eq. 2). Here, adding editing constraints for 40 attributes leads to a cost of about 5 seconds per image.

Qualitative Results

Fig. 1 shows our method and various edits applied on notorious figures. As we can see in Fig. 3, our method visually significantly outperforms Im2StyleGAN [START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF] in terms of editing quality. While [START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF] produces artifacts and blur during edits, our method produces sharp, realistic edits. We further provide a host of edits in the supplementary material to further convince the reader of our method.

Quantitative Evaluation

Reconstruction Tab. 1 shows the various metrics for reconstruction. Notice that adding our MAGEC loss in Eq. 3 leads a better reconstruction. Even when allowing 50% more iterations, our method still performs on par in terms of reconstruction. The MAGEC loss could thus be seen as a prior which speeds up optimization. As expected, [START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF] performs excellent reconstruction, given the time (over 4 minutes) and the under-constrained loss function. Editability We perform random edits on the 1000 images to obtain 20000 edited images per projection method. The semantic editability of the inverted latent vector is of utmost importance when performing GAN Inversion, but there is no standard metric for measuring this. 2: Realism scores and "improved target" scores of random image edits. For reliable interpretation, we perform a paired Student's t-test between our method's metrics and the competing method. The bold values are in line with this significance (p-value < 0.05). Our method consistently produces realistic and coherent images for the task at hand. We first evaluate using common metrics before introducing our novel "editability score".

InterfaceGAN

We aim to evaluate the realism and "coherence" of a given edit. The FID score [START_REF] Heusel | Gans trained by a two time-scale update rule converge to a local nash equilibrium[END_REF] is not adapted to measure the quality of the edits, firstly because the original sample size (1000 original images) is well-below the recommended 50,000 needed for an accurate FID score, and secondly because our edits inherently lack diversity (edits of the same image resemble each other). Instead, we use the realism score [START_REF] Kynkäänniemi | Improved precision and recall metric for assessing generative models[END_REF], which evaluates an image instead of a distribution. This is a nearest-neighbor based method (higher is better) in which the realism threshold is set to 1 (a score above 1 is a realistic image).

To measure the "coherence" of an edit, we calculate a simple "improved-target" score t to measure the net difference of the predicted attribute probability before and after the attributetargeted edit by using a pre-trained attribute classifier. A higher value means that the attribute prediction increased after applying the editing method, meaning it reacted accordingly. Note that t ∈ [0, 1]. Remark that this metric is only applicable to the editors which make attributespecific edits (InterfaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] and StyleFlow [START_REF] Abdal | Styleflow: Attributeconditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF]).

For reliable interpretation of these metrics, we performed a paired Student's t-test on our method and a competing method, as the edit operations were the same for all projected images. Our results are summarized in Tab. 2. As we can see, our method performs well on these metrics, always among the best in terms of realism or "coherence". However, these results are not entirely conclusive, and we investigate a better metric in order to evaluate the editability of a given inversion. Edit-Consistency Score We introduce a new metric which aims at measuring the projection in terms of editability (see Fig. 4(a)). We first use our projection method p to obtain vector z from x real . Then, we use a known editing method e to edit the vector with respect to a certain attribute, giving us x edit . Then, we re-project it into the latent space to obtain z edit . Finally, we apply the inverse editing method onto z edit to obtain a cyclic image x cyc , which should ideally match the initial projection. We define the edit-consistency loss as follows:

ecs(p, x real ) = 2 × L LPIPS (p(x real ), x cyc ) L LPIPS (p(x real ), x edit ) + L LPIPS (x edit , x cyc ) (4) 
The intuition is that the cyclic image should resemble the projected image, but images should also react accordingly to editing methods. Remark that a "perfect" ecs score is 0. An ecs of 1 can be seen as a "quality" threshold, since ecs > 1 means that the distance L LPIPS (p(x real ), x cyc ) is larger than one of the two edit operations. See Fig. 4(b) for examples of varying ecs scores. We can now define the edit-consistency score of a projection : Here, the editing method is to male with GANSpace. Notice how the worst scores correspond to poorer editability, for example, the woman in the second row on the right did not transform into a man. Table 3: ECS evaluation. Our MAGEC loss significantly improves ECS for all edits, notably ones not used to supervise our loss (GANSpace). Scores are evaluated on images not containing the target attribute.

ECS(p) = 1 |X| ∑ x∈X ecs(p, x). (5) 
Tab. 3 compares ECS results between our method and the two baselines. Importantly, notice how our method gives better scores for an editing method not utilized to supervise the loss (GANSpace), suggesting that the latent vector doesn't overfit to one editing method, but is encouraged to become "in-domain". Human Evaluation While automatic quantitative methods allow quick comparisons to baseline methods, many have observed [START_REF] Zhou | Hype: A benchmark for human eye perceptual evaluation of generative models[END_REF] that human judgment is still the most reliable metric for evaluating image quality. We thus performed a user study in which experts of photography were asked to judge photo edits between each other, each one corresponding to a different projection method. See Fig. 5 for details. Tab. 5(b) shows the results, showing that our method was strongly preferred over the baseline methods.

Limitations of our Method

Our method aims at producing an editable latent vector, which often means a vector within the domain of the pre-trained GAN. Using real images that are clearly out of domain produces low-quality results, both in terms of reconstruction and editability. This is because the trade-off between these two objectives is too strong, and our method struggles to find a suitable compromise. See the top row of Fig. 6 for an example.

Our method also fails when faced with rare or challenging semantics. The MAGEC loss is not sufficient to push the z in the ideal direction, and some semantic concepts become lost. As we see in the bottom row of Fig. 6, the keffiyeh becomes semantically represented as hair. (3): Im2StyleGAN++ [START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF]. Fig. 5(a) shows the interface in which the expert had to choose their preferred edit according to quality and coherence to the edit operation. The user judged for five minutes, and an average of 30 edit pairs were judged per user. Each edit operation consisted in changing one of 10 possible facial attributes to a random new value, using either [START_REF] Härkönen | Ganspace: Discovering interpretable gan controls[END_REF] or [START_REF] Abdal | Styleflow: Attributeconditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF]. For fairness, [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] was not included in the edits, as this method was used to supervise our loss. The results (Fig. 5(b)) show the strong preference for our method.

Figure 6: Problematic images for our method. In the first row, an atypical face produces a low-quality reconstruction since the image space loss and the latent space loss oppose each other: the input image is too much out-of-domain. In the second row, a challenging semantic concept (the keffiyeh) struggles to be represented with our method. The projection represents the keffiyeh as hair, evidenced by the subsequent edits (straight hair, old age).

Conclusion

We propose a novel GAN-inversion optimization strategy which allows supervision on two levels: the image space and the latent space. In this way, we are able to integrate editability directly in the loss term, resulting in more editable latent vectors when applying editing methods. In particular, editing methods not used to supervise the loss perform better than baseline methods, suggesting that performing optimization in this way discovers a more "indomain" latent vector. We evaluate qualitatively and quantitatively, and notably introduce a novel edit consistence score which specifically evaluates the performance of a projection method in terms of editability. Our method takes a step forward in performing realistic and high-quality edits on real images.

Figure 3 :

 3 Figure 3: Comparison of our method vs Im2StyleGAN++. Left: original images. Top rows: Im2StyleGAN++ projection. Bottom rows: Our projection with MAGEC. Edits are made using GANSpace. While Im2StyleGAN++'s projection is accurate, edits present strong artifacts or absurdities. Our reconstructions are also accurate, but react correctly to editing operations, suggesting that it follows the native distribution of StyleGAN more closely.

  (a) Calculating ecs. We perform 2 projections per ecs: 1 from the original image, and one from the edited latent. A better (lower) ecs means that d 3 is smaller than d 1 and d 2 (b) Best and worst ecs scores for a given projection method.
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 4 Figure 4: Edit Consistency Score -Illustration and Intuition

Figure 5 :

 5 Figure 5: User Study: 30 photography experts judged edit operations resulting from 3 projection methods: (1): Our full method, (2): Ablation of MAGEC loss from our Eq. 3, and(3): Im2StyleGAN++[START_REF] Abdal | Image2stylegan++: How to edit the embedded images?[END_REF]. Fig.5(a) shows the interface in which the expert had to choose their preferred edit according to quality and coherence to the edit operation. The user judged for five minutes, and an average of 30 edit pairs were judged per user. Each edit operation consisted in changing one of 10 possible facial attributes to a random new value, using either[START_REF] Härkönen | Ganspace: Discovering interpretable gan controls[END_REF] or[START_REF] Abdal | Styleflow: Attributeconditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF]. For fairness,[START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] was not included in the edits, as this method was used to supervise our loss. The results (Fig.5(b)) show the strong preference for our method.

  

Our two-steps procedure is motivated by the fact that instance-based optimization often fails at adding semantic information in the latent vector with small optimization steps. When placing a higher weight on λ MAGEC , we direct our latent vector z to a strong point which captures this semantic information. Once the latent vector is within the correct "area" of the latent space, we can give more relative weight to the loss coefficients related to image reconstruction.