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Abstract

Generative Adversarial Networks (GANs) are now able to generate astonishingly
realistic high-resolution images. Recent work has shown the emergence of semantically-
meaningful manipulations simply by editing the corresponding latent vector. However,
a real image must first be inverted into its GAN latent code before editing. Previous
work usually achieves accurate reconstruction, but poor-quality latent vectors: applying
known editing methods onto these latent codes results in artifacts and erroneous edits.

We aim to bridge the gap between reconstruction and editability. We propose a novel
instance-optimization based inversion method, which specifically aims to maximize the
semantic information of the latent vector, all while producing an accurate reconstruction.
We introduce the iMAGe-latEnt Consistency loss (“MAGEC”), which allows supervi-
sion in the latent space, encouraging editability of the resulting latent vector. We provide
extensive qualitative and quantitative evaluation to validate our method, using the re-
cent state-of-the-art StyleGAN and show that our method outperforms baseline inversion
methods, opening the door to new realms of real-image editing.

1 Introduction
Editing real images in a fast and realistic way is highly lucrative for obvious reasons. Users
could use such a tool to visualize their personal curiosities before committing more time or
energy to something more permanent - How would a certain hairstyle look on me? How
would my house look with brick walls? Would my car look nice with different tires? More-
over, a professional photographer spends around 1.5 hours of editing for a portrait image,
with the most costly operations being those requiring complicated semantic changes [1].
Automatic semantic editing is thus an application which could interest and benefit many.

Generative Adversarial Networks (GANs) [12] have made such ideas possible in recent
years. Recently, the celebrated StyleGAN [19, 20] has allowed unconditional generation
of unparalleled quality, resolution (1024× 1024) and realism. What’s more, this GAN was
the first of its kind to show such powerful disentanglement qualities of its latent space. For
example, mixing two latent codes corresponding to two images results in a coherent output
image containing properties from both former images [19]. This led to a surge of research
into studying and manipulating this latent space, in which high-level semantic concepts of
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Figure 1: From left to right: original image, projection in latent space using MAGEC loss,
various edits (GANSpace, InterfaceGAN and StyleFlow respectively). Edits are of high-
quality, and conform to expectations of the various editing methods. Best viewed zoomed.

generated images can be edited [4, 9, 16, 30, 31, 34, 41]. These editing methods produce
realistic and high-quality global or local changes in the output image.

The extension to real images is natural but not trivial. A latent code first needs to be
found such that, when inserted into the StyleGAN network, outputs the original image. Al-
though inversions are able to achieve high reconstruction quality [2, 3], problems arise when
applying known editing methods onto the inverted images: the editing either does not work
at all, or they produce output images of poor quality, presenting artifacts and blur [37, 39].

In this paper, we propose a learning framework to improve editability of the projected
latent vector of a real image while maintaining good reconstruction. We reframe the strategy
of the standard optimization framework for GAN inversion. More precisely, we add a term
of editability and image-latent-consistency into the global loss function by using a simple
yet effective procedure based on recent latent-manipulation methods. This allows us to ex-
plicitly incorporate known editing methods into the GAN inversion optimization scheme to
ensure better editability. We validate our method with extensive qualitative and quantitative
evaluation. Notably, we introduce a novel “edit-consistency score” which specifically eval-
uates the quality of a projection method in terms of editability. We show that our method
outperforms existing baseline methods, and opens the door to new possibilities of editable
high-quality image inversions.

2 Related Work

Generative Adversarial Networks Generative Adversarial Networks (GANs) [12] have
sparked massive interest since their introduction in 2014. In recent years, breakthrough
research in architecture design, loss functions, and training dynamics have allowed uncondi-
tional GANs to synthesize images of unprecedented quality for resolutions up to 1024×1024
[7, 18, 19, 20]. BigGAN [6] has likewise made a pushed state of the art by allowing high-
quality class-conditioned generation on ImageNet. Image-to-image translation models like
[17, 27, 33] typically all use GANs in some form. In this paper, we will work with the current
state-of-the-art generator network StyleGAN2 [19, 20], whose novel architecture notably in-
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cludes a separate mapping network which transforms the normal distribution Z space into
the more disentangled W space, which not only permits higher-quality image-generation,
but also a much smoother, more interpretable and semantically-rich latent space.
Latent Space Manipulation With the introduction of StyleGAN and its newly disentangled
latent space, a surge of research has come forward to provide various ways of interpreting and
manipulating this latent spaceW . In the original StyleGAN paper, the authors showed that
simply performing linear interpolation between two latent vectors gives an “interpolated"
image between the two former vectors. Another straight-forward approach is to find linear
directions in the latent space for binary attributes learned in a fully-supervised manner [11,
30, 41]. By using an auxiliary classifier in the image space, we can find the desired linear
boundaries in the latent space, and then simply “walk” in the direction of a given attribute to
change the output image. StyleFlow [4] likewise uses an auxiliary classifier for ground-truth
labels, but instead uses a flow network to learn non-linear directions in the latent space, which
allows for better preservation of unedited attributes as well as sequential edits. GANSpace
[16] doesn’t use an auxiliary classifier, but instead performs PCA analysis on the latent space.
StyleRig [31] and [37] use a pre-trained StyleGAN network along with a 3D differentiable
renderer in order to perform 3D edits on generated images via latent space manipulations.
Recently, [26] explicitly models the generator network to disentangle 3D properties, allowing
its latent code to perform powerful changes in the 3D space.
Latent Space Embedding The embedding of a real image into the latent space of a deep
network has a long history of research and is generally dealt a few ways. Instead of using
a pre-trained network, networks such as Variational Auto-Encoders [22] (VAEs) contain na-
tive encoders directly in their architecture, and are trained jointly with the decoder. Although
variants of these are used for image editing [5, 28], these networks still don’t have the pow-
erful semantic information like StyleGAN does.
Another possibility is to train a new encoder from scratch for a previously-trained GAN.
There has been much work in recent years applying such encoders to StyleGAN, requiring
a very specific architecture that mimics the StyleGAN’s hierarchical structure [29, 32, 35].
Encoder-based inversion methods have the advantage of giving instantaneous results, but
often inadequate reconstructions. Only recently has there been any interest in encoding an
image specifically for the aim of editing the final image. The task requires that the resulting
latent vector be as “in-domain” as possible. [39] addressed this by using a novel encoder,
trained in an adversarial manner, to encourage predicted latent vectors to follow the original
latent distribution. Recently, [32] proposed its own “encoder for editing” which builds on
the StyleGAN2-specific pSp [29] encoder, but is also trained in an adversarial manner along
with StyleGAN2-specific loss functions. Although the resulting latents are indeed more ed-
itable, reconstruction is typically compromised.
Finally, the third possibility is to use an instance-based optimization method, still the most
classic method for GAN inversion [2, 3, 13, 19, 40]. For one given image, we aim to find
the corresponding latent code by optimizing the latent code directly. Although costly in
nature, [2, 3] have shown that virtually any image can be correctly reconstructed in the ex-
tendedW+ space of StyleGAN. Nevertheless, these optimized latent codes respond poorly
to known editing methods, showing that the obtained latent code is out-of-domain [39]. This
is because the instance-optimization problem is poorly constrained, and overfits to the input
image at the expense of an out-of-domain latent code.

This observation is the basis of our paper, which aims to constrain the problem specifi-
cally to ensure image editing, and thus, to ensure a more “in-domain” latent vector. As far as
we know, our work is the first to address this question through instance-based optimization.
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3 Methodology
GAN-Inversion Framework Given a pre-trained GAN network (generator G, discriminator
D) and a real image xreal ∈ RC×H×W such that: G : z ∈ Rd −→ xgen ∈ RC×H×W . The GAN-
Inversion goal is to find a latent code zinv ∈ Rd such that: G(zinv) = xrec ≈ xreal . For any real
xreal image, the instance-based optimization problem for GAN inversion is:

1. Initialize z = z0. This can be a random latent vector [2], an “average” latent vector zavg
[2, 3, 19], or the output of a pre-trained encoder on xreal [39, 40].

2. Minimize over z a loss L between the synthesized image G(z) and the original one
xreal . The basic scheme works with a L = L2 loss for the reconstruction, recently
improved with some sort of perceptual loss Lpercept . The current general framework
minimizes the following loss:

zinv = min
z
L2(G(z),xreal)+λLpercept(G(z),xreal). (1)

Image2StyleGAN++ [3], the current reference for inversion based on instance-based op-
timization, uses two perceptual losses of an ImageNet pre-trained VGG-16 network. Re-
cently, it has been observed that using the LPIPS [36] perceptual loss gives more robust
results [13, 29], as well as adding an “ID” loss which aims at preserving identity [29, 32].

This classic GAN-inversion framework fares poorly when known editing methods are
applied to the inverted latents (see Fig. 3) largely due to the latent vector overfitting to the
image space. Our goal is to preserve accurate reconstruction, but improve editability of the
latent vector. We solve this using a 2-part strategy. First, like recent latent-manipulation
methods, we learn the structure of the latent space with respect to image features. Second,
and unlike previous work, we explicitly use this learnt structure to constrain our optimization
process. The method is summarized in Fig. 2: the novel projection strategy continues to op-
timize the image-space loss of equation 1 (shown in pink), but now also explicitly optimizes
at the latent-level (shown in blue). With this new modeling, we can explicitly add editability
directly to the loss term. As we can see with in Fig. 1, this allows diverse, high-quality edits
of our projected latent vectors all while maintaining high reconstruction fidelity.

3.1 Latent-Space Supervision
The lack of editability of previous optimization-based methods reveal that the latent vector
overfits to the image space. We thus aim to supervise the latent vector directly through the
latent space. Inspired by work on latent-space manipulation [4, 16, 30, 31, 41], we also link
the latent space with the image space, but here with the explicit goal to supervise our loss.

Consider a pre-trained deep network F which inputs an image and outputs some kind of
image descriptor d. This could be attributes, keypoints, segmentation map, etc.

As we know from previous work [35], the latent space of recent style-based generative
models has high discriminative capacity. Our method aims to link the image descriptors to
the latent vector with the simplest network possible so as to avoid any form of “re-learning”
some part of the GAN network (and thus keep supervision only at the latent-level). We
generate N image-latent pairs and train a simple linear model LinkNet which predicts image
descriptors d from the latent vectors z.

Concretely, we train LinkNet using the same exact loss as the deep image descriptor
network F was trained with, using the predictors of F as the ground-truth labels. This simple
LinkNet will be sufficient for supervising our latent vector directly in the latent space.
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Figure 2: Our proposed optimization framework. We initialize our z vector with z0 (the “av-
erage” latent vector). Then, we generate the associated image with the pre-trained generator
to obtain the image-level loss. We predict the latent-level descriptor d′ with our pre-trained
LinkNet. We add a consistency loss of these features with the “ground-truth” features d
evaluated from our feature-extractor network F . We add another consistency loss over the
edited descriptors (using a differentiable editor e) and the “ground-truth” edits which we ob-
tain by modifying d. This MAGEC loss gives us latent-level optimization which promotes
editability and an in-domain output vector.

3.2 MAGEC Loss

Now that we have linked our image and latent space with the simple LinkNet, we can define
our iMAGe-latEnt Consistency “MAGEC” loss in the following way, built from Eq.1.

First, we add an image-latent consistency loss over the input image and the latent to
optimize. We obtain the “ground-truth” image descriptor d using F , then we use our LinkNet
to predict the image descriptor d′ from latent vector z. If the latent vector correctly represents
the image, it should be able to predict the associated image predictors.

Second, we add an image-latent edit consistency loss. Let e be a differentiable known
editor with i editing operations (for example, an editing operation can be add glasses, remove
wrinkles, to woman, etc.). We perform i edits of the latent vector ei(z) and edit the “ground-
truth” image descriptor d accordingly to obtain dei . Our edited latent vector should be able
to predict dei (with LinkNet). See Fig. 2 for detailed illustration.

The MAGEC loss is given as follows:

LMAGEC(z,xreal) = LF(LinkNet(z),d)︸ ︷︷ ︸
image-latent consistency

+
1

|edits| ∑
i∈edits

LF(LinkNet(ei(z)),dei)︸ ︷︷ ︸
image-latent edit consistency

(2)

where d = F(xreal) and dei is the modified d according to edit i.
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Our final loss is

L(z,xreal) = λMSEL2(G(z),xreal)+λLPIPSLLPIPS(G(z),xreal)

+λIDLID(G(z),xreal)+λMAGECLMAGEC(z,xreal)
(3)

where LID is the ID loss introduced in [29, 32] based on a pre-trained ArcFace [10] network
(or ResNet-50 [14] network trained with MOCOv2 [8] for non-face images).

As we can see in Fig. 2, our framework allows dual supervision, simultaneously in the
image and latent spaces. We are able to provide latent editing directly in the loss term,
which not only allows to generate editable latents, but also helps to visualize which images
are inherently out-of-domain for the GAN in question. Moreover, this framework can be
incorporated into any pre-trained GAN, and allows potential further constraint by combining
several differentiable editing methods together.

4 Experiments
Configurations We use StyleGAN2, pre-trained on FFHQ for 1024×1024 output resolution
as our pre-trained GAN. We use the mapped latent spaceW and similarly to [2, 3, 29, 32, 39],
we extend this space to W+ by allowing each of the 512-dimensional style vectors to be
independent of each other.
For the feature extractor F , we train an attribute-classifier on CelebA [25] to predict 40 binary
attributes. Finally, we use InterfaceGAN [30] as our editor e to supervise our MAGEC loss,
which performs add/remove operations on all 40 attributes.
Training Protocol We initialize z with zavg, by sampling N = 50000 latent vectors with
StyleGAN2 and taking the average vector. We use the Adam[21] optimizer with the de-
fault parameters (β1 = 0.9, β2 = 0.999, ε = 1e−08). We perform our training in two parts.
First, we use λMAGEC = 3e−4, λLPIPS = 5e−1, λMSE = 1e−3 and λID = 3e−4 and perform
100 optimization steps. Then, we set λMSE = λLPIPS = 5e−1 for another 100 optimization
steps, leaving the other loss coefficients unchanged. The learning rate begins at 0.07 and is
exponentially decayed with a decay factor of 0.8 every 25 epochs. 1

Datasets and Editors We perform thorough evaluation of our method using 1000 random
samples from the CelebAHQ [18] dataset. We also evaluate our method on random images
from the Stanford Cars dataset [23], which we provide in the supplementary material. We
evaluate our projection on four well-known editing methods: InterfaceGAN [30], GANSpace
[16], StyleFlow [4] and random interpolation between latent vectors [19].
Baselines We compare our method with Image2StyleGAN++ [3], the current state-of-the-
art optimization-based method for GAN-Inversion. This method uses the classic loss from
Eq. 1 (using the LPIPS[36] loss as the perceptual loss) and first optimizes the latent vector
for 1000 iterations, then the noise vector for 1000 iterations. This loss can be seen as an
ablation of the MAGEC and ID losses from Eq. 3, but minimized over more iterations. We
also perform an ablation study using our training protocol to optimize Eq. 3 but without the
MAGEC loss. All methods initialize z with zavg.

1Our two-steps procedure is motivated by the fact that instance-based optimization often fails at adding semantic
information in the latent vector with small optimization steps. When placing a higher weight on λMAGEC , we direct
our latent vector z to a strong point which captures this semantic information. Once the latent vector is within
the correct “area” of the latent space, we can give more relative weight to the loss coefficients related to image
reconstruction.
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Figure 3: Comparison of our method vs Im2StyleGAN++. Left: original images. Top rows:
Im2StyleGAN++ projection. Bottom rows: Our projection with MAGEC. Edits are made
using GANSpace. While Im2StyleGAN++’s projection is accurate, edits present strong ar-
tifacts or absurdities. Our reconstructions are also accurate, but react correctly to editing
operations, suggesting that it follows the native distribution of StyleGAN more closely.

MSE ↓ LPIPS ↓ Nb opt. steps ↓ Time (s) ↓
Full Method 0.0040 0.053 200 34.6
w/o MAGEC 0.0094 0.062 200 29.7
w/o MAGEC + extra opt. steps 0.0078 0.050 300 44.5
Im2StyleGAN++ 0.0012 0.018 2000 242.2

Table 1: Reconstruction evaluation of projection, showing averages per image. We should
note that the time of our method directly depends on the number of attributes we add to our
MAGEC loss (Eq. 2). Here, adding editing constraints for 40 attributes leads to a cost of
about 5 seconds per image.

4.1 Qualitative Results

Fig. 1 shows our method and various edits applied on notorious figures. As we can see in
Fig. 3, our method visually significantly outperforms Im2StyleGAN [3] in terms of edit-
ing quality. While [3] produces artifacts and blur during edits, our method produces sharp,
realistic edits. We further provide a host of edits in the supplementary material to further
convince the reader of our method.

4.2 Quantitative Evaluation

Reconstruction Tab. 1 shows the various metrics for reconstruction. Notice that adding our
MAGEC loss in Eq. 3 leads a better reconstruction. Even when allowing 50% more itera-
tions, our method still performs on par in terms of reconstruction. The MAGEC loss could
thus be seen as a prior which speeds up optimization. As expected, [3] performs excellent
reconstruction, given the time (over 4 minutes) and the under-constrained loss function.
Editability We perform random edits on the 1000 images to obtain 20000 edited images per
projection method. The semantic editability of the inverted latent vector is of utmost impor-
tance when performing GAN Inversion, but there is no standard metric for measuring this.
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InterfaceGAN StyleFlow GANSpace Interpolations
realism t realism t realism realism

Im2StyleGAN++ 0.973 0.096 0.929 0.211 0.960 1.00
w/o MAGEC loss 0.994 0.097 0.976 0.148 0.985 1.03
Full Method 0.998 0.122 0.982 0.202 0.984 1.04

Table 2: Realism scores and “improved target” scores of random image edits. For reliable
interpretation, we perform a paired Student’s t-test between our method’s metrics and the
competing method. The bold values are in line with this significance (p-value < 0.05). Our
method consistently produces realistic and coherent images for the task at hand.

We first evaluate using common metrics before introducing our novel “editability score”.
We aim to evaluate the realism and “coherence” of a given edit. The FID score [15] is

not adapted to measure the quality of the edits, firstly because the original sample size (1000
original images) is well-below the recommended 50,000 needed for an accurate FID score,
and secondly because our edits inherently lack diversity (edits of the same image resemble
each other). Instead, we use the realism score [24], which evaluates an image instead of a
distribution. This is a nearest-neighbor based method (higher is better) in which the realism
threshold is set to 1 (a score above 1 is a realistic image).

To measure the “coherence” of an edit, we calculate a simple “improved-target” score t to
measure the net difference of the predicted attribute probability before and after the attribute-
targeted edit by using a pre-trained attribute classifier. A higher value means that the attribute
prediction increased after applying the editing method, meaning it reacted accordingly. Note
that t ∈ [0,1]. Remark that this metric is only applicable to the editors which make attribute-
specific edits (InterfaceGAN [30] and StyleFlow [4]).

For reliable interpretation of these metrics, we performed a paired Student’s t-test on
our method and a competing method, as the edit operations were the same for all projected
images. Our results are summarized in Tab. 2. As we can see, our method performs well
on these metrics, always among the best in terms of realism or “coherence". However, these
results are not entirely conclusive, and we investigate a better metric in order to evaluate the
editability of a given inversion.
Edit-Consistency Score We introduce a new metric which aims at measuring the projection
in terms of editability (see Fig. 4(a)). We first use our projection method p to obtain vector z
from xreal . Then, we use a known editing method e to edit the vector with respect to a certain
attribute, giving us xedit . Then, we re-project it into the latent space to obtain z′edit . Finally,
we apply the inverse editing method onto z′edit to obtain a cyclic image xcyc, which should
ideally match the initial projection. We define the edit-consistency loss as follows:

ecs(p,xreal) =
2×LLPIPS(p(xreal),xcyc)

LLPIPS(p(xreal),xedit)+LLPIPS(xedit ,xcyc)
(4)

The intuition is that the cyclic image should resemble the projected image, but images
should also react accordingly to editing methods. Remark that a “perfect” ecs score is 0.
An ecs of 1 can be seen as a “quality” threshold, since ecs > 1 means that the distance
LLPIPS(p(xreal),xcyc) is larger than one of the two edit operations. See Fig. 4(b) for exam-
ples of varying ecs scores. We can now define the edit-consistency score of a projection :

ECS(p) =
1
|X | ∑x∈X

ecs(p,x). (5)
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(a) Calculating ecs. We perform 2 projec-
tions per ecs: 1 from the original image, and
one from the edited latent. A better (lower)
ecs means that d3 is smaller than d1 and d2

(b) Best and worst ecs scores for a given projection method. Here,
the editing method is to male with GANSpace. Notice how the
worst scores correspond to poorer editability, for example, the
woman in the second row on the right did not transform into a man.

Figure 4: Edit Consistency Score - Illustration and Intuition

InterfaceGAN GANSpace
Male ↓ Smile ↓ Male ↓ Smile ↓

Im2StyleGAN++ 0.97 1.00 1.07 0.98
w/o MAGEC 1.01 0.95 1.06 0.90
Full Method 0.84 0.87 0.95 0.79

Table 3: ECS evaluation. Our MAGEC loss significantly
improves ECS for all edits, notably ones not used to super-
vise our loss (GANSpace). Scores are evaluated on images
not containing the target attribute.

Tab. 3 compares ECS re-
sults between our method and
the two baselines. Impor-
tantly, notice how our method
gives better scores for an edit-
ing method not utilized to su-
pervise the loss (GANSpace),
suggesting that the latent vec-
tor doesn’t overfit to one edit-
ing method, but is encouraged
to become “in-domain”.
Human Evaluation While automatic quantitative methods allow quick comparisons to base-
line methods, many have observed [38] that human judgment is still the most reliable metric
for evaluating image quality. We thus performed a user study in which experts of photog-
raphy were asked to judge photo edits between each other, each one corresponding to a
different projection method. See Fig. 5 for details. Tab. 5(b) shows the results, showing that
our method was strongly preferred over the baseline methods.

5 Limitations of our Method

Our method aims at producing an editable latent vector, which often means a vector within
the domain of the pre-trained GAN. Using real images that are clearly out of domain pro-
duces low-quality results, both in terms of reconstruction and editability. This is because
the trade-off between these two objectives is too strong, and our method struggles to find a
suitable compromise. See the top row of Fig. 6 for an example.

Our method also fails when faced with rare or challenging semantics. The MAGEC loss
is not sufficient to push the z in the ideal direction, and some semantic concepts become lost.
As we see in the bottom row of Fig. 6, the keffiyeh becomes semantically represented as hair.
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(a)

Displayed Methods % Preferred
Ours

Ours vs. w/o MAGEC 72%
Ours vs. Im2StyleGAN++ 78%

(b)

Figure 5: User Study: 30 photography experts judged edit operations resulting from 3 pro-
jection methods: (1): Our full method, (2): Ablation of MAGEC loss from our Eq. 3, and
(3): Im2StyleGAN++[3]. Fig. 5(a) shows the interface in which the expert had to choose
their preferred edit according to quality and coherence to the edit operation. The user judged
for five minutes, and an average of 30 edit pairs were judged per user. Each edit operation
consisted in changing one of 10 possible facial attributes to a random new value, using ei-
ther [16] or [4]. For fairness, [30] was not included in the edits, as this method was used to
supervise our loss. The results (Fig. 5(b)) show the strong preference for our method.

Figure 6: Problematic images for our method. In the first row, an atypical face produces a
low-quality reconstruction since the image space loss and the latent space loss oppose each
other: the input image is too much out-of-domain. In the second row, a challenging semantic
concept (the keffiyeh) struggles to be represented with our method. The projection represents
the keffiyeh as hair, evidenced by the subsequent edits (straight hair, old age).

6 Conclusion

We propose a novel GAN-inversion optimization strategy which allows supervision on two
levels: the image space and the latent space. In this way, we are able to integrate editability
directly in the loss term, resulting in more editable latent vectors when applying editing
methods. In particular, editing methods not used to supervise the loss perform better than
baseline methods, suggesting that performing optimization in this way discovers a more “in-
domain” latent vector. We evaluate qualitatively and quantitatively, and notably introduce
a novel edit consistence score which specifically evaluates the performance of a projection
method in terms of editability. Our method takes a step forward in performing realistic and
high-quality edits on real images.
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