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A New Coreset Framework for Clustering

Vincent Cohen-Addad∗ David Saulpic† Chris Schwiegelshohn ‡

Abstract

Given a metric space, the (k, z)-clustering problem consists of finding k centers such that the
sum of the of distances raised to the power z of every point to its closest center is minimized. This
encapsulates the famous k-median (z = 1) and k-means (z = 2) clustering problems. Designing
small-space sketches of the data that approximately preserves the cost of the solutions, also
known as coresets, has been an important research direction over the last 15 years.

In this paper, we present a new, simple coreset framework that simultaneously improves upon
the best known bounds for a large variety of settings, ranging from Euclidean space, doubling
metric, minor-free metric, and the general metric cases: with Γ = min(ε−2+ε−z, kε−2)polylog(ε−1),
this framework constructs coreset with size

• O (Γ · k(d+ log k)) in doubling metrics, improving upon the recent breakthrough of [Huang,
Jiang, Li, Wu, FOCS’ 18], who presented a coreset with size O(k3d/ε2).

• O(Γ·k ·min(d, ε−2 log k)) in d-dimensional Euclidean space, improving on the recent results
of [Huang, Vishnoi, STOC’ 20], who presented a coreset of size
O(k log k · ε−2z ·min(d, ε−2 log k)).

• O(Γ · k(t + log k)) for graphs with treewidth t, improving on [Baker, Braverman, Huang,
Jiang, Krauthgamer, Wu, ICML’20], who presented a coreset of size O(k2t/ε2) for z = 1.

• O
(

Γ · k
(

log2 k + log k
ε4

))
for shortest paths metrics of graphs excluding a fixed minor. This

improves on [Braverman, Jiang, Krauthgamer, Wu, SODA’21], who presented a coreset of
size O(k2/ε4).

• Size O(Γ · k log n) in general discrete metric spaces, improving on the results of [Feldman,
Lamberg, STOC’11], who presented a coreset of size O(kε−2z log n log k).

A lower bound of Ω(k logn
ε ) for k-Median in general metric spaces [Baker, Braverman, Huang,

Jiang, Krauthgamer, Wu, ICML’20] implies that in general metrics as well as metrics with
doubling dimension d, our bounds are optimal up to a poly log(1/ε)/ε factor. For graphs with
treewidth t, the lower bound of Ω

(
kt
ε

)
of [Baker, Braverman, Huang, Jiang, Krauthgamer, Wu,

ICML’20] shows that our bounds are optimal up to the same factor.

1 Introduction

Center-based clustering problems are classic objectives for the problem of computing a “good”
partition of a set of points into k parts, so that points that are “close” are in the same part.
Finding a good clustering of a dataset helps extracting important information from a dataset and
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center based clustering problems have become the cornerstones of various data analysis approaches
and machine learning techniques (see formal definition in Section 3).

Datasets used in practice are often huge, containing hundred of millions of points, distributed, or
evolving over time. Hence, in these settings classical heuristics (such as Lloyd or k-means++) are
lapsed; The size of the dataset forbids multiple passes over the input data and finding a “compact
representation” of the input data is of primary importance. The method of choice for this is to
compute a coreset, i.e. a weighted set of points of small size that can be used in place of the full input
for algorithmic purposes. More formally, for any ε > 0, an ε-coreset (referred to simply as coreset)
is a set Q of points of the metric space such that any α-approximation to a clustering problem on
Q, is a α(1 + ε)-approximation to the clustering problem for the original point set. Hence, a small
coreset is a good compression of the full input set: one can simply keep in memory a coreset and
apply any given algorithm on the coreset rather than on the input to speed up performances and
reduce memory consumption. Coreset constructions had been widely studied over the last 15 years.

In this paper, we specifically focus on the (k, z)-clustering problem, which encapsulates k-median
(z = 1) and k-means (z = 2). Given two positive integers k and z and a metric space (X,dist), the
(k, z)-clustering problem asks for a set S of k points, called centers, that minimizes

cost(X,S) :=
∑
x∈X

min
s∈S

dist(x, s)z

The method of choice for designing coreset is importance sampling, initiated by the seminal work
of Chen [Che09]. The basic approach is to devise a non-uniform sampling distribution which picks
points proportionally to their cost contribution in an arbitrary constant factor approximation. In
a nutshell, the current best-known analysis shows that, for a given set S of k centers, it happens
with high probability that the sampled instance Ω with appropriate weights has roughly the same
cost as the original instance, i.e. cost(Ω,S) ∈ (1± ε)cost(X,S). Then, to show that the set Ω is an
ε-coreset, it is necessary to take a union-bound over these events for all possible set of k centers.
Bounding the size of the union-bound is the main hurdle faced by this approach: indeed, there may
be infinitely many possible set of centers.

The state-of-the-art analysis relies on VC-dimension to address this issue. Informally, the VC
dimension is a complexity measure of a range space, denoting the cardinality of the largest set such
that all subsets are included in the range space. The application to clustering considers weighted
range spaces, where each point is weighted by its relative contribution to the cost of a given
clustering1. In metric spaces where the weighted range space induced by distances to k centers has
VC-dimension D, it can be shown that taking Oε,z(k · D log k) samples yields a coreset [FSS20],
although tighter bounds are achievable in certain cases. For instance, in d dimensional Euclidean
spaces D is in O(kd log k) [BLHK17], which would yield coresets of size Oε,z(k

2 ·d log2 k), but Huang
and Vishnoi [HV20] showed the existence of a coreset with O(k · log2 k · ε−2z−2) points.

This analysis was proven powerful in various metric spaces, such as doubling spaces by Huang,
Jiang, Li and Wu [HJLW18], graphs of bounded treewidth by Baker, Braverman, Huang, Jiang,
Krauthgamer, Wu [BBH+20] or the shortest-path metric of a graph excluding a fixed minor by
Braverman, Jiang, Krauthgamer and Wu [BJKW21]. However, range spaces of even heavily con-
strained metrics do not necessarily have small VC-dimension (e.g. bounded doubling dimension does

1For more on these notions, we refer to [FSS20].

2



not imply bounded VC-dimension or vice versa [HJLW18, LL06]), and applying previous techniques
requires heavy additional machinery to adapt the VC-dimension approach to them. Moreover, the
bounds provided are far from the bound obtained for Euclidean spaces: their dependency in k is
at least Ω(k2), leaving a significant gap to the best lower bounds of Ω(k). We thus ask:

Question. Is it possible to design coresets whose size are near-linear in k for doubling metrics,
minor-free metrics, bounded-treewidth metrics? Are the current roadblocks specific to the analysis
through VC-dimension, or inherent to the problem?

To answer positively these questions, we present a new framework to analyse importance sampling.
Its analysis stems from first principles, and it can be applied in a black-box fashion to any metric
space that admits an approximate centroid set (see Definition 1) of bounded size. We show that
all previously mentioned spaces satisfy this condition, and our construction improves on the best-
known coreset size. More precisely, we recover (and improve) all previous results for (k, z)-clustering
such as Euclidean spaces, `p spaces for p ∈ [1, 2), finite n-point metrics, while also giving the first
coresets with size near-linear in k and ε−z for a number of other metrics such as doubling spaces,
minor free metrics, and graphs with bounded treewidth.

1.1 Our Results

Our framework requires the existence of a particular discretization of the set of possible centers, as
described in the following definition. We show in the latter sections that this is indeed the case for
all the metric spaces mentioned so far.

Definition 1. Let (X, dist) be a metric space, P ⊆ X a set of clients and two positive integers k
and z. Let ε > 0 be a precision parameter. Given a set of centers A, a set C is an A-approximate
centroid set for (k, z)-clustering on P if it satisfies the following property.

For every set of k centers S ∈ Xk, there exists S̃ ∈ Ck such that for all points p ∈ P that satisfies
either cost(p,S) ≤

(
8z
ε

)z
cost(p,A) or cost(p, S̃) ≤

(
8z
ε

)z
cost(p,A), it holds

|cost(p,S)− cost(p, S̃)| ≤ ε

z log(z/ε)
(cost(p,S) + cost(p,A)) ,

This definition is slightly different from Matousek’s one [Mat00], in that we seek to preserve dis-
tances only for interesting points, and allow an error εcost(p,A). This is crucial in some of our
applications.

Theorem 1. Let (X, dist) be a metric space, P ⊆ X a set of clients with n distinct points and
two positive integers k and z. Let ε > 0 be a precision parameter. Let also A be a constant-factor
approximation for (k, z)-clustering on P .

Suppose there exists an A-approximate centroid set C for (k, z)-clustering on P . Then, there exists
an algorithm running in time O(n) that constructs with probability at least 1− π a coreset of size

O

(
2O(z log z) · log4 1/ε

min(ε2, εz)
(k log |C|+ log log(1/ε) + log(1/π))

)

with positive weights for the (k, z)-clustering problem.
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When applying this theorem to particular metric spaces, the running time is dominated by the
construction of the constant-factor approximation A, which can be done for instance in Õ(k|P |)
given oracle access to the distances using [MP04]2.

If one wishes to trade a factor ε−z for a factor k, we also present coresets of size

O(k2 · 2O(z) log3(1/ε)
ε2

(log k + log |C|+ log(1/π)), as explained in Appendix B.

We apply this theorem to several metric spaces, achieving the following (simplified) size bounds
(we ignore poly log(1/ε) and 2O(z log z) factors): let Γ = min(ε−2 + ε−z, kε−2), see also Table 1.

• O (Γ · k (d+ log k)) for metric spaces with doubling dimension d. This improves over the
O(k3dε−2) from [HJLW18]. See Corollary 4.

• Since general discrete metric spaces have doubling dimension O(log n), this yields coreset
of size O (Γ · k log n). This improves on the bound from Feldman and Langberg [FL11]
O
(
ε−2zk log k log n

)
, and has an optimal dependency in k and n.

• O
(
Γ · kε−2 · log k

)
for Euclidean Spaces, see Corollary 7. This improves on the recent result

from [HV20], who achieve O
(
ε−2zk log2 k

)
.

• O
(

Γ · k
(

log2 k + log k
ε4

))
for a family of graphs excluding a fixed minor, see Corollary 6. This

improves on [BJKW20], whose coreset has size Õ(k2/ε4).

• O (Γ · k (t+ log k)) in graphs with treewidth t, see Corollary 5. This improves upon the work
of [BBH+20] in two ways: their coreset is only for k-Median and has size Õ(k2t/ε2).

• O(kε−2z ·min(d, ε−2 log k)) in Rd with `p distance, for p ∈ [1, 2), see Corollary 8. This improves
on [HV20], who presented a coreset of size O(k log k · ε−4z ·min(d, ε−2 log k)).

We note the lower bound Ω(k logn
ε ) for k-Median in general metric spaces from [BBH+20]. This

means that in the case of metrics with doubling dimension d, our bounds are optimal up to a
poly log(1/ε)/ε factor. For graphs with treewidth t, another lower bound of Ω

(
kt
ε

)
from [BBH+20]

shows that our bounds are optimal up to the same factor.

1.2 Overview of Our Techniques

Our proof is arguably from first principles. We now give a quick overview of its ingredients. The
approach consists in first reducing to a well structured instance, that consists of a set of centers
A inducing k clusters, all having roughly the same costs, and where every point is at the same
distance of A, up to a factor 2. Then we show it is enough to perform importance sampling on all
these clusters.

Reducing to a structured instance. Like most coreset constructions, we initially compute a
constant factor approximation A to the problem. We then deviate from previous importance sam-
pling algorithms by partitioning points into groups such that the following conditions are satisfied,
for a given group G:

2Although initially stated for z = 1 only, this algorithm works for general z as stressed in [HV20]
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Reference Size (Number of Points)

Euclidean space

Har-Peled, Mazumdar (STOC’04) [HM04] O(k · ε−d · log n)

Har-Peled, Kushal (DCG’07) [HK07] O(k3 · ε−(d+1))

Chen (Sicomp’09) [Che09] O(k2 · d · ε−2 log n)

Langberg, Schulman (SODA’10) [LS10] O(k3 · d2 · ε−2)

Feldman, Langberg (STOC’11) [FL11] O(k · d · log k · ε−2z)

Feldman, Schmidt, Sohler (Sicomp’20) [FSS20] O(k3 · log k · ε−4)

Sohler and Woodruff (FOCS’18) [SW18] O(k2 · log k · ε−O(z))

Becchetti, Bury, Cohen-Addad,
O(k · log2 k · ε−8)

Grandoni, Schwiegelshohn (STOC’19) [BBC+19]

Huang, Vishnoi (STOC’20) [HV20] O(k · log2 k · ε−2−2z)

Braverman, Jiang, Krauthgamer, Wu (SODA’21) [BJKW21] Õ(k2 · ε−4)

This paper O(k · log k · ε−2−max(2,z))

General n-point metrics, ddim denotes the doubling dimension

Chen (Sicomp’09) [Che09] O(k2 · ε−2 · log2 n)

Feldman, Langberg (STOC’11) [FL11] O(k · log k · log n · ε−2z)

Huang, Jiang, Li, Wu (FOCS’18) [HJLW18] O(k3 · ddim · ε−2)

This paper O(k · (ddim+ log k) · ε−max(2,z))

This paper O(k · log n · ε−max(2,z))

Graph with n vertices, t denotes the treewidth

Baker, Braverman, Huang, Jiang,
Õ(k2 · t/ε2)

Krauthgamer, Wu (ICML’20) [BBH+20]

This paper O(k · (t+ log k) · ε−max(2,z))

Graph with n vertices, excluding a fixed minor

Bravermann Jian, Krauthgamer, Wu (SODA’21) [BJKW21] Õ(k2 · ε−4)

This paper O
(
k · (log2 k + log k

ε4
) · ε−max(2,z)

)
Table 1: Comparison of coreset sizes for (k, z)-Clustering in various metrics. Dependencies on
2O(z) and polylogε−1 are omitted from all references. Additionally, we may trade a factor ε−z+2

for a factor k in any construction with z > 2. [HK07, HM04] only applies to k-means and k-
median, [BBC+19, FSS20] only applies to k-means. [SW18] runs in exponential time, which has
been addressed by Feng et al. [FKW19]. Aside from [HK07, HM04], the algorithms are randomized
and succeed with constant probability. Although the results are claimed only for k-Median in
[BBH+20], it seems that they can be generalized to any power. The main difference is in the
computation of a constant factor approximation.

• For all clusters, the cost of the intersection of the cluster with the group is at least half the
average; i.e. ∀Ci, cost(Ci ∩G,A) ≥ cost(G,A)

2k .

• In every cluster Ci, there exists rG,i such that the points in the intersection of the cluster
with the group cost rG,i (up to constant factors), i.e. ∀p ∈ Ci ∩G, cost(p,A) = Θ(rGi).
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We then compute coresets for each group and output the union. In some sense, this preprocessing
step identifies canonical instances for coresets; any algorithm that produces improved coresets for
instances satisfying the aforementioned regularity condition can be combined with our preprocessing
steps to produce improved coreset in general.

Importance Sampling in Groups. The first technical challenge is to analyse the importance
sampling procedure for structured instances.

The arguably simplest way to attempt to analyse importance sampling is by first showing that for
any fixed solution S we need a set Ω of δ samples to show that with good enough probability∑

p∈Ω

cost(p,S)
cost(G,A)

cost(p,A) · δ
= (1± ε) · cost(G,S), (1)

and then applying a union bound over the validity of Eq. (1) for all solutions S. This union bound
is typically achieved via the VC-dimension.

Using this simple estimator, most analyses of importance sampling procedures require a sample size
of at least k points to approximate the cost of a single given solution. To illustrate this, consider
an instance where a single cluster C is isolated from all the others. Clearly, if we do not place a
center close to C, the cost will be extremely large, requiring some point of C to be contained in the

sample. One way to remedy this is by picking a point p′ proportionate to cost(p′,A)
cost(A) + 1

|Ci| rather than
cost(p′,A)
cost(A) , where Ci is the cluster to which p′ is assigned, see for instance [FSS20]. This analysis

always leads to coreset of size quadratic in k at best3. Our analysis of importance sampling for
structured instances will allow us to bypass both the quadratic dependencies on k, and the need of
a bound on the VC-dimension of the range space.

Our high level idea is to use two union bounds. The first one will deal with clusters that are very
expensive compared to their cost in A. The second one will focus on solutions in which clusters
have roughly the same cost as they do in A. For the former case, we observe that if a cluster Ci
is served by a center in solution S that is very far away, then we can easily bound its cost in S as
long as our sample approximates the size of every cluster. Specifically, assume that there exists a
point p in Ci with distance to S at least Ω(1) · ε−1 · dist(p, ci). Then, since we are working with
structured instances, all points of Ci are roughly at the same distance of ci and that this distance is
negligible compared to dist(p,S), all points of Ci are nearly at the same distance of S. Conditioned
on the event E that the sample Ω preserves the size of all clusters, the cost of Ci in solution S
is preserved as well. Note that this event E is independent of the solution S and thus we require
no enumeration of solutions to preserve the cost of expensive clusters. Proving that E holds is a
straightforward application of concentration bounds.

The second observation is that points with dist(p,S) ≤ ε/z · dist(p,A) are so cheap that their cost
is preserved by the sampling with an error at most ε · cost(A). Indeed, their cost in S cannot be
more than ε · cost(A): it is easy to show that the same bound holds for the coreset.

The intermediate cases, i.e. solutions in which S serves clusters at distances further than ε/z ·
dist(p,A), but not so far as to simply use event E to bound the cost, is the hardest part of the

3A linear dependency on k can be achieved using a different analysis, see [FL11, HV20] for examples. This
approach does not seem to generalize to arbitrary metrics.
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analysis. Using a geometric series, we can split the cost ranges into into log z
ε2
∈ O(z log ε−1)

groups by powers of two. Due to working with a structured instance, the points within such a
group have equal distances, up to a constant factors. This also implies that the cost in such a
group is equal, up to a factor of 2O(z). The overall variance of the cost estimator is then of the
order maxp

(
ε−1 · dist(p,A)

)z · cost(A)
cost(p,A) ∈ O(ε−z). Thus, standard concentration bounds give an

additive error of ε · (cost(A) + cost(S)) with at most O(ε−2−z) many samples for every group.

To improve this to O(ε−z), we use a different estimator defined as follows. For every cluster Ci, let
qi be the point of Ci that is the closest to S. We then consider∑

p∈Ci∩Ω

(cost(p,S)− cost(qi,S)) · cost(G,A)

cost(p,A) · δ
(2)

+
∑

p∈Ci∩Ω

cost(qi,S) · cost(G,A)

cost(p,A) · δ
(3)

Conditioned on event E , the estimator in Equation 3 is always concentrated around its expecta-
tion, as cost(qi,S) is fixed for S. The first estimator in Equation 2 now has a reduced variance.
Specifically, at the border cases of points at distance Θ(1/ε)dist(p,A) of S, the Estimator 2 has
variance at most O(1) ·max(ε−2, ε−z) · cost(A) · cost(S), which ultimately allows us to show that
O(ε−2 + ε−z) samples are enough to achieve an additive error of ε · (cost(S) + cost(A)). This tech-
nique is somewhat related to (and inspired by) chaining arguments (see e.g. Talagrand [T+96] for
more on chaining). The key difference is while chaining is generally applied to improve over basic
union bounds, our estimator is designed to reduce the variance.

Preserving the Cost of Points not in Well-Structured Groups Unfortunately, it is not
possible to decompose the entire point set into groups. Given an initial solution A and a cluster
C ∈ A, this is possible for all the points at distance at most ε−O(z) · cost(C,c)

|C| . The remaining points
are now both far from their respective center in A and, due to Markov’s inequality, only a small
fraction of the point set. In the following, let Pfar denote these points.

For any given subset of these far away points and a candidate solution S, now use that either the
points pay at most what they do in A, or an increase in their cost significantly increases the overall
cost. In the former case, standard sensitivity sampling preserves the cost with a very small sample
size. In the latter case, a significant cost by a point p in Pfar also implies that all points close to
the center c serving p in A have to significantly increase the cost.

A Union-bound to Preserve all Solutions As pictured in the previous paragraphs, the cost
of points with either very small or very large distance to S is preserved for any solution S with
high probability.

The guarantee we have for interesting points is weaker: their cost is preserved by the coreset with
high probability for any fixed solution S. Hence, for this to hold for any solution, we need to take
a union-bound over the probability of failure for all possible solution S. However, the union-bound
is necessary only for these interesting points : this explains the introduction of the approximate
centroid set in Definition 1. Assuming the existence of a set C such as in Definition 1, one can
take a union-bound over the failure of the construction for all set of k centers in Ck to ensure
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that the cost of interesting points is preserved for all these solutions. To extend this result to any
solution S, one can take the set of k points S̃ in Ck that approximates best S, and relate the cost
of interesting points in S to their cost in S̃ with a tiny error. Since the cost of interesting points in
S̃ is preserved in the coreset, the cost of these points in S is preserved as well.

We briefly picture now how to get approximate centroid sets for specific metrics. We are looking for
a set C with the following property: for every solution S, there exists a k-tuple S̃ ∈ Ck such that
for every point p with dist(p,S) ≤ ε−1dist(p,A) in a given cluster C of A, |cost(p,S)−cost(p, S̃)| ≤
ε (cost(p,A) + cost(p,S)). We call such points interesting.

Metrics with doubling dimension d: C is simply constructed taking nets around each input
points. A γ-net of a metric space is a set of points that are at least at distance γ from each other,
and such that each point of the metric is at distance at most γ from the net. The existence of
γ-nets of small size is one of the key properties of doubling metrics. For every point p, C contains
an εcost(p,A)-net of the points at distance at most 2cost(p,A) from p. If p is an interesting point,
there is therefore a center of C close to its center in S.

Graphs with treewidth t: The construction of C is not as easy in graph metrics: we use the
existence of small-size separators, building on ideas from [BBH+20]. Fix a solution S, and suppose
that all interesting points are in a region R of the graph, such that the boundary B of R is made
of a constant number of vertices. Fix a center c ∈ S, and suppose c is not in R. Then, to preserve
the cost of interesting points, it is enough to have a center c′ at the same distance to B than c.

C is therefore constructed as follows: a distance tuple to B = {b1, ..., b|B|} is a tuple (d1, ..., d|B|),
where di represents the distance to bi. For every distance tuple to B, C contains one point having
approximately that distance tuple to B.

Let c̃ be the point of C having approximately the same distance tuple to B as c: this ensures that
∀p, cost(p, c) ≈ cost(p, c̃).

It is however necessary to limit the size of C. For that, we approximate the distances to B. This
can be done for interesting points p as follows: since we have dist(p, c) ≤ ε−1dist(p,A), rouding the
distances to their closest multiple of εdist(p,A) ensures that there are only O(1/ε2) possibilities,
and adds an error εcost(p,A). We show in Section 8.2 how to make this argument formal, and how
to remove the assumption that all interesting points are in the same region.

In minor-excluded graphs this class of graphs, that includes planar graphs, admits as well
small-size separators. A construction similar in spirit to the one for treewidth is therefore possible,
as presented in Section 8.3. This builds on the work of [BJKW20].

1.3 Roadmap

The paper is organized as follow: after defining the concepts used in the paper, we present formally
the algorithm in Section 4. We then describe the construction of a coreset for a structured instance
in Section 5, and the reduction to such an instance in Section 7. Finally, we show the existence
of approximate centroid set in various metric spaces in Section 8. We furthermore explain the
dimension reduction technique leading to our result for Euclidean spaces in Section 9, and the
O(k2ε−2) construction in Appendix B. A deeper description of related work is made in Section 2.
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2 Related Work

We already surveyed most of the relevant bounds for coresets for k-means and k-median. A complete
overview over all of these bounds is given in Table 1, further pointers to coreset literature can be
found in surveys [MS18]. For the remainder of the section, we highlight differences to previous
techniques.

The early coreset results mainly considered input data embedded in constant dimensional Euclidean
spaces [FS05, HK07, HM01]. These coresets relied on low-dimensional geometric decompositions
inducing coresets of sizes typically of order at least k · ε−d. These techniques were replaced by
importance sampling schemes, initiated by the seminal work of Chen [Che09]. The basic approach
is to devise a non-uniform sampling distribution which picks points proportionately to their impact
in a given constant factor approximation. A significant advantage of importance sampling over other
techniques is that it generalizes to non-Euclidean metrics. While the early coreset papers [HK07,
HM04] were indeed heavily reliant on the structure of Euclidean spaces, Chen gave the first coreset
of size O(k2ε−2 log2 n) for general n-point metrics.

Coresets via Bounded VC-Dimension The state of the art importance sampling techniques
in Euclidean spaces are based on reducing the problem of constructing a coreset to constructing an
ε-net in a range space of bounded VC-dimension4. Li, Long and Srinivasan [LLS01] showed that
if the VC-dimension is bounded by D, an ε-approximation of size O(D

ε2
) exists. The remarkable

aspect of these bounds is that they are independent of the number of input points. To apply the
reduction, we need a bound on the VC-dimension for the range space induced by the intersection
of metric balls centered around k points in a d-dimensional Euclidean space. For Euclidean k-
means and k-median, an upper bound of D ∈ O(kd log k) is implicit in the work of [BEHW89]
and Eisenstat and Angluin [EA07]. This bound was recently shown to be tight by Csikos, Mustafa
and Kupavskii [CMK19]. The dependency on d may be replaced with a dependency on log k, as
explained in more detail in Section 9. Thus O(k log2 k) is a natural barrier for known techniques
in Euclidean spaces.

VC-Dimension and Doubling Dimension A further complication arises when attempting
to extend sampling techniques for bounded VC-dimension in range spaces of bounded doubling
dimension d. While the two notions share certain similarities and are asymptotically identical for
the range space induced by the intersection of balls in in Euclidean spaces, the two quantities are
incomparable in general. For instance, Li and Long proved the existence of a range space with
constant VC dimension and unbounded doubling dimension [LL06]. Conversely, [HJLW18] also
showed that a bound on the doubling dimension does not imply a bound on the VC-dimension.
Nevertheless, by carefully distorting the metric they were able to prove that a related quantity
known as the shattering dimension can be bounded, yielding the first coresets for bounded doubling
dimension independent of n. Even so, their bound Õ(k3dε−2) is still far from what is currently
achievable in Euclidean spaces.

Similarly, the construction from [BBH+20] for graphs with bounded treewidth uses that a graph
of treewidth t has shattering dimension O(t). They use this fact to get coreset for k-Median, of

4Strictly speaking, one has to use a generalization of VC-dimension known as the pseudo dimension. The interested
reader is refereed to Pollard’s book [Pol12] for details.
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size Õ(k3t/ε2). For excluded-minor graphs, [BJKW21] proceeds similarly, but need an additional
iterative procedure: they first show that in an excluded-minor graph, a subset X of the vertices has
coreset of size Ok,ε(log |X|), using the shattering-dimension techniques. They show then how to
iterate this construction (using that ”a coreset of a coreset is a coreset”) to remove dependency in
|X|. This iterative procedure is of independent interest, and we use it as well for bounded treewidth
and excluded-minor settings.

Further Related Work So far we only described works that aim at giving better coreset con-
struction for unconstrained k-median and k-means in some metric space. Nevertheless, there is
a rich literature on further related questions. As a tool for data compression, coresets feature
heavily in streaming literature. Some papers consider a slightly weaker guarantee of summarizing
the data set such that a (1 + ε) approximation can be maintained and extracted. Such notions
are often referred to as weak coresets or streaming coresets, see [FL11, FMS07]. Further papers
focus on maintaining coresets with little overhead in various streaming and distributed models,
see [BEL13, BFLR19, BFL+17, FS05, FGS+13]. Other related work considers generalizations of
k-median and k-means by either adding capacity constraints [CL19, HJV19, SSS19], or considering
more general objective functions [BLL18, BJKW19]. Coresets have also been studied for many other
problems: we cite non-comprehensively Determinant Maximization [IMGR20], Diversity Maximiza-
tion [CPP18, IMMM14] logistic regression [HCB16, MSSW18], dependency networks [MMK18], or
low-rank approximation [MJF19].

3 Preliminaries

3.1 Problem Definitions

Given an ambient metric space (X,dist), a set of points P ⊆ X called clients, and positive integers
k and z, the goal of the (k, z)-clustering problem is to output a set S of k centers (or facilities)
chosen in X that minimizes ∑

p∈P
min
c∈S

(dist(p, c))z

Definition 2. An ε-coreset for the (k, z)-clustering problem in a metric space (X, dist) is a weighted
subset Ω of X with weights w : Ω→ R+ such that, for any set S ⊂ X, |S| = k,

|
∑
p∈X

cost(p,S)−
∑
p∈Ω

w(p)cost(p,S)| ≤ ε ·
∑
p∈X

cost(p,S).

Given a set of point P with weights w : P → R+ on a metric space I = (X,dist) and a solution S,
we define cost(P,S) :=

∑
p∈P w(p)cost(p,S) and, in the case where P contains all the points of the

metric space, we define cost(S) := cost(P,S).

We will also make use of the following lemma, to have a weaker version of the triangle inequality
for k-Means and more general distances. Proofs of this lemma (and variants thereof) can be found
in [BBC+19, CS17, FSS20, MMR19, SW18]. For completeness, we provide a proof in the appendix.
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Lemma 1 (Triangle Inequality for Powers). Let a, b, c be an arbitrary set of points in a metric
space with distance function d and let z be a positive integer. Then for any ε > 0

d(a, b)z ≤ (1 + ε)z−1d(a, c)z +

(
1 + ε

ε

)z−1

d(b, c)z

|d(a, S)z − d(b, S)z| ≤ ε · d(a, S)z +

(
2z + ε

ε

)z−1

d(a, b)z.

3.2 From Weighted to Unweighted Inputs

We start by showing a simple reduction from weighted to unweighted inputs. Essentially, we convert
a point with weight w to w copies of the point.

Corollary 2. Let ε, π > 0. Let (X, dist) be a metric space, P a set of clients with weights w :
P → R+ and two positive integers k and z. Let also A be a constant-factor approximation for
(k, z)-clustering on P with weights.

Suppose there exists a A-approximate centroid set, denoted C. Then, there exists an algorithm
running in time O(|P |) that constructs with probability at least 1 − π a positively-weighted coreset
of size

O

(
2O(z log z) · log4 1/ε

min(ε3, εz)
(k log |C|+ log log(1/ε) + log(1/π))

)
for the (k, z)-clustering problem on P with weights.

Proof. We start by making all weights integers: let wmin = minp∈P w(p), and w̃(p) =
⌊
2 w(p)
εwmin

⌋
.

This definition ensures that

∀p, |w(p)− εwmin
2
· w̃(p)| ≤ ε

2
wmin ≤

ε

2
w(p).

We denote P̃ the set of points P with weight w̃. First, we note that for any solution S,∣∣∣cost(P,S)− εwmincost(P̃ ,S)
∣∣∣ ≤ ε

2
cost(P,S).

Hence, it is enough to find an ε/2-coreset for P̃ , and then scale the coreset weights of the coreset
points by εwmin/2. We have that the weights in P̃ are integers: a weighted point can therefore be
considered as multiple copies of the same points.

By the previous equation, A is a constant-factor approximation for P̃ as well. The definition of
a centroid set does not depend on weights, so C is a A-centroid set for P̃ as well. Hence, we can
apply Theorem 1 on P̃ and scale the resulting coreset by εwmin/2 to conclude the proof.

3.3 Partitioning an Instance into Groups: Definitions

As sketched, the algorithm partitions the input points into structured groups. We give here the
useful definitions.
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Fix a metric space I = (X,dist), positive integers k, z and a set of clients P . For a solution S of
(k, z)-clustering on P and a center c ∈ S, c’s cluster consists of all points closer to c than to any
other center of S.

Fix as well some ε > 0, and let A be any solution for (k, z)-clustering on P with k centers. Let
C1, ..., Ck be the clusters induced by the centers of A.

• the average cost of a cluster Ci is ∆Ci = cost(Ci,A)
|Ci|

• For all i, j, the ring Ri,j is the set of points p ∈ Ci such that

2j∆Ci ≤ cost(p,A) ≤ 2j+1∆Ci .

• The inner ring RI(Ci) := ∪j≤2z log(ε/z)Ri,j (resp. outer ring RO(Ci) := ∪j>2z log(z/ε)Ri,j) of a

cluster Ci consists of the points of Ci with cost at most (ε/z)2z ∆Ci (resp. at least (z/ε)2z ∆Ci).
The main ring RM (Ci) consists of all the other points of Ci. For a solution S, we let RSI and
RSO be the union of inner and outer rings of the clusters induced by S.

• for each j, Rj is defined to be ∪ki=1Ri,j .

• For each j, the rings Ri,j are gathered into groups Gj,b defined as follows:

Gj,b :=

{
p | ∃i, p ∈ Ri,j and

( ε
4z

)z
· cost(Rj ,A)

k
· 2b ≤ cost(Ri,j ,A) ≤

( ε
4z

)z
· 2b+1 · cost(Rj ,A)

k

}
.

• For any j, let Gj,min := ∪b≤0Gj,b be the union of the cheapest groups, and Gj,max :=
∪b≥z log 4z

ε
Gj,b be the union of the most expensive ones.

• The set of outer rings is also partitioned into outer groups:

GOb =
{
p | ∃i, p ∈ Ci and

( ε
4z

)z
·
cost(RAO ,A)

k
· 2b ≤ cost(RO(Ci),A)

≤
( ε

4z

)z
· 2b+1 ·

cost(RAO ,A)

k

}
.

• We let as well GOmin = ∪b≤0G
O
b and GOmax = ∪b≥z log 4z

ε
GOb .

4 The Coreset Construction Algorithm, and Proof of Theorem 1

4.1 The algorithm

For an initial metric space (X,dist), set of clients P and ε > 0, our algorithm essentially consists
of the following steps: given a solution A, it processes the input in order to reduce the number
of different groups. Then, the algorithm computes a coreset of the points inside each group using
the following GroupSample procedure. The final coreset is made of the union of the coresets for all
groups. The GroupSample procedure takes as input a group of points G as defined in Section 3.3,
and a set of centers A inducing clusters C1, C2, ... on G. The output of GroupSample is a coreset

for the group, computed as follows: a point p ∈ Ci is sampled with probability δ·cost(Ci,A)
|Ci|·cost(G,A) , and

the weight of any sampled point is rescaled by a factor |Ci|·cost(G,A)
δcost(Ci,A) .

12



The properties of the GroupSample procedure are captured by the following lemma.

Lemma 2. Let (X, dist) be a metric space, k, z be two positive integers and G be a group of clients
and A be a solution to (k, z)-clustering on G with k centers such that:

• for every cluster C, all points of G ∩ C have the same cost in A, up to a factor 2: ∀p, q ∈
G ∩ C, cost(p,A) ≤ 2cost(q,A).

• for all clusters C, it holds that cost(G,A)
2k ≤ cost(C ∩G,A).

Let C be a A-approximate centroid set for clients G.

Then, there exists an algorithm GroupSample, running in time O(|G|) that constructs a set Ω of

size δ such that, with probability 1− exp
(
k log |C| − 2O(z log z) · min(ε2,εz)

log2 1/ε
· δ
)

it holds that for all set

S of k centers:
|cost(G,S)− cost(Ω,S)| = O(ε) (cost(G,S) + cost(G,A)) .

We further require the SensitivitySample procedure, we which will apply to some of the points
not consider by the calls to GroupSample. From a group G, this procedure merely picks δ points p

with probability cost(p,A)
cost(G,A) . Each of the δ sampled points has a weight cost(G,A)

δ·cost(p,A) .

The key property of SensitivitySample is given in the following lemma.

Lemma 3. Let (X, dist) be a metric space, k, z be two positive integers, P be a set of clients and
A be a cA-approximate solution solution to (k, z)-clustering on P .

Let G be either a group GOb or GOmax. Suppose moreover that there is a A-approximate centroid set
C for clients G .

Then, there exists an algorithm SensitivitySample running in time O(|G|) that constructs a set

Ω of size δ such that it holds with probability 1− exp
(
k log |C| − 2O(z log z) · ε2

log2 1/ε
· δ
)

that, for all

sets S of k centers:

|cost(G,S)− cost(Ω,S)| = ε

z log z/ε
· (cost(S) + cost(A)) .

The final algorithm is as follows:

Input: A metric space (X,dist), a set P ⊆ X, k, z > 0, a solution A to (k, z)-clustering on P , and
ε such that 0 < ε < 1/3.
Output: A coreset. Namely, a set of points P ′ ⊆ X and a weight function w : P ′ 7→ R+ such that
for any set of k centers C, cost(P,C) = (1± ε)cost(P ′, C).

1. Set the weights of all the centers of A to 0.

2. Partition the remaining instance into groups:

(a) For each cluster C of A with center c, remove RI(C) and increase the weight of c by
|RI(C)|.

(b) For each cluster C with center c in solution A , the algorithm discards also all of C ∩
∪jGj,min and RO(C) ∩ GOmin, and increases the weight of c by the number of points
discarded in cluster c.
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(c) Let D be the set of points discarded at those steps, and P1 be the weighted set of centers
that have positive weights.

3. Sampling from well structured groups: For every j such that z log(ε/z) ≤ j ≤ 2z log(z/ε)
and every group Gj,b /∈ Gj,min, compute a coreset Ωj,b of size

δ = O

(
log2 1/ε

2O(z log z) min(ε2, εz)
(k log |C|+ log log(1/ε) + log(1/π))

)
using the GroupSample procedure.

4. Sampling from the outer rings: From each group GO1 , ..., G
O
max, compute a coreset ΩO

b of
size

δ = O

(
log2 1/ε

2O(z log z) min(ε2, εz)
(k log |C|+ log log(1/ε) + log(1/π))

)
using the SensitivitySample procedure.

5. Output:

• A coreset consisting of A ∪ Ωj,b ∪ ΩO
i .

• Weights: weights for A defined throughout the algorithm, weights for Ωj,b defined by the
GroupSample procedure, weights for ΩO defined by the SensitivitySample procedure.

4.2 Proof of Theorem 1

As we prove in Section 7, the outcome of the partitioning step, D and P1, satisfies the following
lemma:

Lemma 4. Let (X, dist) be a metric space with a set of clients P , k, z be two positive integers, and
ε ∈ R∗+. For every solution S, it holds that

|cost(D,S)− cost(P1,S)| = O(ε)cost(S)

Moreover, the partitioning ensures the following two facts:

Fact 1. There exist at most O(z log(z/ε)) many non-empty Rj that are not in some inner or outer
ring, i.e., not in RAI nor in RAO.

Hence, the number of different non-empty groups is bounded as well:

Fact 2. There exists at most O(z2 log2(z/ε)) many non-empty Gj,b.

By the definition of the outer groups, we have also that

Fact 3. There exists at most O(z log(z/ε)) many outer groups.

Combining those fact, Lemma 2, Lemma 3 and Lemma 4 allows to prove Theorem 1:

Proof of Theorem 1. Let Ω be the output of the algorithm described above. Due to Fact 2 and
Fact 3, Ω has size O(z2 log2(z/ε) · δ + |A|), and non-negative weights by construction.

We now turn to analysing the quality of the coreset. Any group Gj,b for b > 0 satisfies Lemma 2:
the cost of any point p ∈ Gj,b ∩ Ci satisfies 2j∆Ci ≤ cost(p,A) ≤ 2j+1∆Ci , and
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• for b 6= max, the cost of all clusters are equal up to a factor 2, hence for all i
cost(Gj,b,A)

2k ≤ cost(Ci ∩Gj,b,A)

• for b = max, it holds that
cost(Gj,b,A)

2k′ ≤ cost(Rj ,A)
2k ≤ cost(Ci ∩Gj,b,A).

Hence, Lemma 2 ensures that, with probability 1 − exp
(
k log |C| − 2O(z log z) · min(ε2,εz)

log2 1/ε
· δ
)

, the

coreset Ωj,b constructed for Gj,b satisfies for any solution S

|cost(Gj,b,S)− cost(Ωj,b,S)| = O(ε) (cost(Gj,b,S) + cost(Gj,b,A)) .

Similarly, Lemma 3 ensures that, with probability 1 − exp
(
k log |C| − 2O(z log z) · ε2

log2 1/ε
· δ
)

, the

coreset ΩO
b constructed for GOb satisfies for any solution S

|cost(GOb ,S)− cost(ΩO
b ,S)| = ε

z log(z/ε)
(cost(S) + cost(A)) .

Taking a union-bound over the failure probability of Lemma 3 and of Lemma 2 applied to all groups
Gj,b with z log(ε/z) ≤ j ≤ 2z log(z/ε) and all GOi implies that, with probability

1−z2 log2(z/ε) exp
(
k log |C| − 2O(z log z) · min(ε2,εz)

log2 1/ε
· δ
)
−z log(z/ε) exp

(
k log |C| − 2O(z log z) ε2

log2 1/ε
· δ
)

,

for any solution S,

|cost(S)− cost(Ω, S)|

≤ |cost(D,S)− cost(P1,S)|+
∑
j,b

|cost(Gj,b,S)− cost(Gj,b ∩ Ω,S)|

+
∑
i

|cost(GOb ,S)− cost(GOb ∩ Ω,S)|

≤ O(ε)cost(S) +O(ε)cost(A) ≤ O(ε)cost(S)

where the last inequality uses that A is a constant-factor approximation.

For δ = log2 1/ε

2O(z log z) min(ε2,εz)
(k log |C|+ log log(1/ε) + log(1/π)), this probability can be simplified

1− exp
(

2(log z + log log(z/ε)) + k log |C| − 2O(z log z) · min(ε2,εz)

log2 1/ε
· δ
)

= 1− π .

The complexity of this algorithm is:

• O(n) to compute the groups: given all distances from a client to its center, computing the
average cost of all clusters costs O(n), hence partitioning into Rj cost O(n) as well, and then
decomposing Rj into groups is also done in O(n) time;

• plus the cost to compute the coreset in the groups, which is
∑

j,bO(|Gj,b|) +
∑

iO(|GOb |) =
O(n)

Hence, the total complexity is O(n).
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5 Sampling inside Groups: Proof of Lemma 2

The goal of this section is to prove Lemma 2:

Lemma 2. Let (X, dist) be a metric space, k, z be two positive integers and G be a group of clients
and A be a solution to (k, z)-clustering on G with k centers such that:

• for every cluster C, all points of G ∩ C have the same cost in A, up to a factor 2: ∀p, q ∈
G ∩ C, cost(p,A) ≤ 2cost(q,A).

• for all clusters C, it holds that cost(G,A)
2k ≤ cost(C ∩G,A).

Let C be a A-approximate centroid set for clients G.

Then, there exists an algorithm GroupSample, running in time O(|G|) that constructs a set Ω of

size δ such that, with probability 1− exp
(
k log |C| − 2O(z log z) · min(ε2,εz)

log2 1/ε
· δ
)

it holds that for all set

S of k centers:
|cost(G,S)− cost(Ω,S)| = O(ε) (cost(G,S) + cost(G,A)) .

The GroupSample merely consists of importance sampling in rounds, i.e. there are δ rounds in which
one point of G is sampled. The probability of sampling point p ∈ Ci is sampled with probability

cost(Ci,A)
|Ci|·cost(G,A) . The weight of any sampled point is rescaled by a factor |Ci|·cost(G,A)

δcost(Ci,A) . If there are

m copies of a point, it is sampled in a round with probability m·cost(Ci,A)
|Ci|·cost(G,A) (which is equivalent to

sampling each copy with probability cost(Ci,A)
|Ci|·cost(G,A)). In what follows, each copies will be considered

independently.

Definition 3. We denote f(p) := |Ci|·cost(G,A)
δcost(Ci,A) the scaling factor of the weight of a point p ∈ Ci.

To analyse this sampling procedure, we consider different cost ranges I`,S induced by a solution S
as follows. A point p of G is in I`,S if 2` · cost(p,A) ≤ cost(p,S) ≤ 2`+1 · cost(p,A). We distinguish
between the following cases.

• ` ≤ log ε/2. We call all I`,S in this range tiny. The union of all tiny I`,S is denoted by Itiny,S .

• log ε/2 ≤ ` ≤ z log(4z/ε). We call all I`,S in this range interesting.

• ` ≥ z log(4z/ε). We call all I`,S in this range huge.

A simple observation leads to the next fact.

Fact 4. Given a solution S , there are at most O(z log z/ε) interesting I`,S .

Bounding the difference in cost of G ∩ I`,S requires different arguments depending on the type of
I`,S . The two easy cases are tiny and huge, so we will first proceed to prove those. Proving the
interesting case is arguably both the main challenge and our main technical contribution.

For the proof, we will rely on Bernstein’s concentration inequality:

Theorem 3 (Bernstein’s Inequality). Let X1, . . . Xδ be non-negative independent random variables.
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Figure 1: Arrangement of Lemmas of Section 5 to prove Lemma 2.

Let S =
∑δ

i=1Xi. If there exists an almost-sure upper bound M ≥ Xi, then

P [|S − E[S]| ≥ t] ≤ exp

(
− t2

2
∑δ

i=1

(
E[X2

i ]−
∑

E[Xi]2
)

+ 2
3 ·M · t

)
.

In this paper we will simply drop the E[Xi]
2 terms from the denominator, as the second moment

will dominate in all important cases.

In what follows, we fix k, z, G and A, as in the assumptions of Lemma 2. Let C1, ..., Ck be the
clusters of A restricted to G. The assumptions imply the following fact:

Fact 5. For any p ∈ Ci, cost(Ci,A)
2|Ci| ≤ cost(p,A) ≤ 2cost(Ci,A)

|Ci| .

We will start with the tiny type, as it is mostly divorced from the others.
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5.1 Dealing with Tiny Type

Lemma 5. It holds that

max

 ∑
p∈Itiny,S

cost(p,S),
∑

p∈Itiny,S∩Ω

f(p)cost(p,S)

 ≤ ε · cost(G,A).

Proof. By definition of Itiny,S ,
∑

p∈Itiny,S
cost(p,S) ≤

∑
p∈Itiny,S

ε
2 · cost(p,A) ≤ ε

2 · cost(G,A). Simi-

larly, we have for the other term∑
p∈Itiny,S∩Ω

f(p) · cost(p,S) ≤
∑

p∈Itiny,S∩Ω

f(p)
ε

2
· cost(p,A)

≤ ε

2

k∑
i=1

∑
p∈Ci∩Itiny,S∩Ω

|Ci| · cost(G,A)

δcost(Ci,A)
· 2 · cost(Ci,A)

|Ci|

≤ ε ·
|Itiny,S ∩ Ω|

δ
cost(G,A) ≤ ε · cost(G,A).

where the last inequality uses that Ω contains δ points.

5.2 Preserving the Weight of Clusters, and the Huge Type

We now consider the huge ranges. For this, we first show that, given we sampled enough points,
|Ci| is well approximated for every cluster Ci. This lemma will also be used later for the interesting
points. We define event E to be: For all cluster Ci,∑

p∈Ci∩Ω

|Ci| · cost(G,A)

cost(Ci,A) · δ
= (1± ε) · |Ci|

Lemma 6. We have that with probability at least 1 − k · z2 log2(z/ε) exp
(
−O(1) ε

2

k δ
)

, event E
happens.

Proof. Consider any cluster Ci ∩ G 6= ∅. The probability that a point sampled via importance
sampling is from Ci is then at least

µi :=
∑
p∈Ci

δcost(Ci,A)

|Ci| · cost(G,A)
=
δcost(Ci,A)

cost(G,A)
≥ δ

2k
,

where the inequality holds by assumption on G. Define the indicator variable of point p from the
sample being drawn from Ci as Pi(p). Using Chernoff bounds, we therefore have

P

∣∣∣∣∣∣
∑

p∈G∩Ω

Pi(p)− µi

∣∣∣∣∣∣ ≥ ε · µi
 ≤ exp

(
−ε

2 · µi
3

)
≤ exp

(
−ε

2δ

6k

)
. (4)

Now, rescaling Pi(p) by a factor |Ci|·cost(G,A)
cost(Ci,A) implies that approximating µi up to a (1 ± ε) factor

also approximates |Ci| up to a (1± ε) factor.

The final result follows by applying a union bound for all clusters in all groups.
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We now show that for any G with a non-empty huge range, Lemma 6 implies that the cost is well
approximated.

Lemma 7. Condition on event E. Then, for any solution S, and any i such that there exists
` ≥ z log(4z/ε) such that the huge range I`,S intersects Ci, we have:∣∣∣∣∣∣cost(Ci,S)−

∑
p∈Ω∩Ci

|Ci| · cost(G,A)

cost(Ci,A) · δ
· cost(p,S)

∣∣∣∣∣∣ ≤ 7ε · cost(Ci,S).

Proof. Let p ∈ I`,S ∩ Ci with I`,S being huge. This implies, for any q ∈ Ci: cost(p, q) ≤
(dist(p,A) + dist(q,A))z ≤ 3z · cost(p,A) ≤ 3z · 2(`−z log(4z/ε))cost(p,A) ≤ (3ε/4z)z · cost(p,S).
By Lemma 1, we therefore have for any point q ∈ Ci

cost(p,S) ≤ (1 + ε/2z)z−1 cost(q,S) + (1 + 2z/ε)z−1 cost(p, q)

≤ (1 + ε) cost(q,S) + ε · cost(p,S)

⇒ cost(q,S) ≥ 1− ε
1 + ε

cost(p, S) ≥ (1− 2ε)cost(p,S)

By a similar calculation, we can also derive an upper bound of cost(q,S) ≤ cost(p,S) · (1 + 2ε).
Hence, we have∑

q∈Ω∩Ci

|Ci| · cost(G,A)

cost(Ci,A) · δ
· cost(q,S) = (1± 2ε) · cost(p,S) ·

∑
q∈Ω∩Ci

|Ci| · cost(G,A)

cost(Ci,A) · δ

(Event E) = (1± 2ε) · cost(p,S) · (1± ε) · |Ci|
= (1± 2ε) · (1± ε) · (1± 2ε) · cost(Ci,S)

= (1± 7ε) · cost(Ci,S).

5.3 Bounding Interesting I`,S

Now we move onto the most involved case. As explained in the introduction, our main goal is to
design a good estimator and apply Bernstein’s inequality to it.

Since the clusters intersecting a huge I`,S are dealt with by Lemma 7, we only need to focus on the
interesting clusters LS ⊂ {C1, ..., Ck}, namely the clusters that satisfy

@p ∈ Ci | cost(p,S) ≥
(

4z

ε

)z
· cost(p,A). (5)

In other words LS contains only clusters that do not have any point in a huge I`,S . This restriction
will be crucial to our analysis.

Designing a Good Estimator

As discussed in Section 1, the key technical challenge of this section is to design an estimator for
cost(S) with small variance. Before defining and describing the estimator, we require the following
lemma.

19



Lemma 8. Let S be an arbitrary solution and Ci be a cluster of A where all points are at the same
distance from the center, up to a factor 2. Denote by qi,S = argmin

p∈Ci

cost(p,S). Then for every `

and every point p ∈ Ci ∩ I`,S , there exists some weight wp ∈ [0,max(1, 2`(1−1/z)) · 2O(z log z)] such
that

cost(p,S)− cost(qi,S ,S) = wp · cost(qi,S ,A).

Proof. Let wp =
cost(p,S)−cost(qi,S ,S)

cost(qi,S ,A) . By choice of qi,S , wp ≥ 0, so we consider the upper bound.

We first note that, since p ∈ I`,S , we have by choice of qi,S : cost(qi,S ,S) ≤ cost(p,S) ≤ 2`+1cost(p,A) ≤
2`+2cost(qi,S ,A). We also have that cost(p, qi,S) ≤ 2z−1(cost(p,A)+cost(qi,S ,A)) ≤ 3·2z−1cost(qi,S ,A),
since points in the same cluster have up to a factor 2 the same cost.

Now, using Lemma 1, for any α ≤ 1,

cost(p,S) ≤ (1 + α/z)z−1cost(qi,S ,S) +
(

1 +
z

α

)z−1
cost(p, qi,S)

which after rearranging implies

cost(p,S)− cost(qi,S ,S) ≤ 2α · cost(qi,S ,S) +

(
2z

α

)z−1

cost(p, qi,S)

≤ 2α ·max(1, 2`+1) · cost(qi,S ,A) +

(
2z

α

)z−1

cost(p, qi,S)

≤

(
2α ·max(1, 2`+1) +

(
2z

α

)z−1
)

·max(cost(p, qi,S), cost(qi,S ,A))

≤ 2z ·

(
2α ·max(1, 2`+1) +

(
2z

α

)z−1
)
· cost(qi,S ,A).

If max(1, 2`+1) = 1, then we can merely set α = 1 and the statement is true. Otherwise we optimize

the final term with respect to α, which leads to α = 2−
`
z (ignoring constants that depend on z)

and hence an upper bound of

cost(p,S)− cost(qi,S ,S) ≤ 2O(z log z)2`(1−1/z) · cost(qi,S ,A).

We build on Lemma 8 to design a cost estimator with low variance. Instead of using∑
p∈I`,S∩LS∩Ω f(p)cost(p,S) as an estimator of the cost for interesting ranges I`,S , we will rather

use
E`,S :=

∑
Ci∈LS

∑
p∈Ci∩I`,S∩Ω

f(p)cost(qi,S ,A) · wp,S , (6)

where qi,S = argmin
p∈Ci

cost(p,S), and wp,S is a weight as given by Lemma 8, so that wp,S ∈

[0, 2`(1−1/z) · 2O(z log z)]. E`,S can be expressed differently:
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E`,S =
∑
Ci∈LS

∑
p∈Ci∩I`,S∩Ω

f(p)(cost(p,S)− cost(qi,S ,S))

=
∑

p∈I`,S∩LS∩Ω

f(p)cost(p,S)− F`,S , (7)

with F`,S :=
∑
Ci∈LS

∑
p∈Ci∩I`,S∩Ω

f(p)cost(qi,S ,S)

F`,S is a random variable whose value depends on the randomly sampled points Ω (we will discuss
F`,S in more detail later).

Note that the expectation of E`,S is

E [E`,S ] =
∑

p∈I`,S∩LS

δcost(Ci,G)

|Ci|cost(G,G)
· f(p)cost(p, S)− E[F`,S ]

=
∑

p∈I`,S∩LS

δcost(Ci,G)

|Ci|cost(G,G)
· |Ci|cost(G,G)

δcost(Ci,G)
· cost(p, S)− E[F`,S ]

= cost(I`,S ∩ LS , S)− E[F`,S ],

Now instead of attempting to show concentration for the generic estimator

1. E`,S is concentrated for all S, and

2. F`,S is both small and concentrated around its expectation.

One might ask why we are not arguing on
∑

p∈I`,S∩Ω
|Ci|·cost(G,A)
cost(Ci,A)·δ · cost(p,S) directly. The reason

for decoupling the two arguments is that E`,S has a very small variance, for which few samples are
sufficient, and while FS =

∑
` F`,S does not have a small variance, a union bound for all S can be

easily inferred via event E from Lemma 6.

Concentration of the Estimator E`,S

First, we show that every estimator E`,S is tightly concentrated.

Lemma 9. Consider an arbitrary solution S. Then for any estimator E`,S with ` ≤ z log 4z/ε, it
holds that:

|E`,S − E[E`,S ]| ≤ ε

z log z/ε
· (cost(G,A) + cost(I`,S ,S)) ,

with probability at least

1− exp

(
−2O(z log z) · min(ε2, εz)

log2 1/ε
· δ
)
.

Proof. We will rely on Bernstein’s inequality (Theorem 3). To do this, we need an upper bound
on the variance of E`,S , as well as an almost sure upper bound M on every sample. Any estimator

E`,S has weights wp in [0, 2`(1−1/z) · 2O(z log z)] due to Lemma 8. We write E`,S =
δ∑
i=1

Xi, where
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Xi = f(Ωi)cost(qS ,A) · wp when the i-th sampled point of G is Ωi ∈ I`,S ∩ LS and Xi = 0 when
Ωi /∈ I`,S ∩LS . Recall that, due to Fact 5, the probability that the i-th sampled point is p satisfies

P[Ωi = p] = cost(C,A)
|C|·cost(G,A) ≤

2cost(p,A)
cost(G,A) . For the same reason, f(p) ≤ 2cost(G,A)

cost(p,A) .

We first bound E[X2
i ]:

E[X2
i ] = E

 ∑
p∈∩I`,S∩LS∩Ωi

f(p)cost(p,A) · wp,S

2
(|Ωi| = 1) =

∑
p∈I`,S∩LS

E
[
(f(p)cost(p,A) · wp,S)2

]

≤
∑
p∈I`,S

E

[(
cost(p,A) · wp,S ·

2cost(G,A)

δcost(p,A)

)2
]

≤
∑
p∈I`,S

E

[(
2`(1−1/z) · 2O(z log z) · cost(G,A)

δ

)2
]

≤
∑
p∈I`,S

22`(1−1/z) · 2O(z log z) · cost2(G,A)

δ2
· cost(p,A)

cost(G,A)

≤
∑
p∈I`,S

22`(1−1/z) · 2O(z log z) · cost(G,A)

δ2
· cost(p,A),

where the fourth line follows from using Lemma 8.

To bound
∑

p∈I`,S cost(p,A), we need to deal with the cases z = 1 (i.e. k-median) and z ≥ 2

(k-means and higher powers) separately. For the former, we have 22`(1−1/1) = 1, so we can use∑
p∈I`,S cost(p,A) ≤ cost(G,A) as an upper bound. For the latter, we use

∑
p∈I`,S 2` · cost(p,A) ≤

cost(I`,S ,S) as an upper bound. Combining this with Var[Xi] ≤ E[X2
i ], we obtain for z = 1:

Var[Xi] ≤
cost(G,A)

δ2
· 2O(z log z) · cost(G,A), (8)

and for z > 1:

Var[Xi] ≤
cost(G,A)

δ2
· 2O(z log z)2`(1−2/z)cost(I`,S ,S). (9)

The almost sure upper bound (for which no case distinction is required) can be derived similarly

Xi ≤ M := 2`(1−1/z) · 2O(z log z) · cost(G,A)

δ

≤ z

ε
· 2`(1−2/z) · 2O(z log z) · cost(G,A)

δ
, (10)
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where the inequality holds due to ` ≤ z log(4z/ε). Applying Bernstein’s inequality with Equa-
tions 8, 9, and 10, we then have

P
[
|E`,S − E[E`,S ]| ≤ ε

z log z/ε
· (cost(G,A) + cost(I`,S ,S))

]

≤ exp

− ε2

z2 log2 z/ε
· (cost(G,A) + cost(I`,S ,S))2

2
∑δ

i=1 Var[Xi] + 1
3M ·

ε
z log z/ε · (cost(G,A) + cost(I`,S ,S))



≤ exp

−
ε2

z2 log2 z/ε
· δ

2O(z log z) ·

{
1 if z = 1

2`(1−2/z) if z ≥ 2


For z = 1 this becomes exp

(
− ε2·δ

2O(z log z) log2 1/ε

)
. For z = 2, we have 2`(1−2/z) = 1, so the same bound

as for z = 1. For z > 2, we use ` ≤ z log 4z/ε, which implies ε2 ·2−`(1−2/z) ≥ ε2+z−z2/z ·2−O(z log z) =
εz · 2−O(z log z). This yields our final desired bound of

exp

(
− min(ε2, εz)

2O(z log z) log2 1/ε
· δ
)
.

Concentration of F`,S

We now turn our attention to bounding the random variable F`,S . It turns out that bounding

F`,S =
∑
Ci∈LS

∑
p∈Ci∩Ω∩I`,S

cost(qi,S ,S) · |Ci| · cost(G,A)

δcost(Ci,A)

is rather hard, and in fact no easier than bounding cost(I`,S ∩ Ω,S). Fortunately, this is not
necessary: we can bound the sum of F`,S at once. Indeed, since we focus on interesting clusters,
we can consider the random variable defined as follows :

FS =
∑

`≤z log(4z/ε)

F`,S

with expectation

E[FS ] =
∑
Ci∈LS

∑
p∈Ci∩Ω

cost(qi,S ,S) · |Ci| · cost(G,A)

δcost(Ci,A)

Showing that FS is concentrated is now an almost direct consequence of event E from Lemma 7.

Lemma 10. Conditioned on event E, we have for all solutions S

|FS − E[FS ]| ≤ ε · cost(G,S).
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Proof. Given a solution S, we have

E[FS ] =
∑
Ci∈LS

∑
p∈Ci

cost(qi,S ,S) · |Ci| · cost(G,A)

δcost(Ci,A)
Pr[p ∈ Ω] =

∑
Ci∈LS

|Ci| · cost(qi,S ,S).

Due to event E ,
∑

Ci∩Ω
|Ci|·cost(G,A)
δcost(Ci,A) = (1± ε) · |Ci|, for every Ci ∈ LS . Hence

FS =
∑

Ci∈LS

∑
Ci∩Ω cost(qS ,S) · |Ci|·cost(G,A)

cost(Ci,A) = (1 ± ε) · E[FS ]. Now finally observe that since

qi,S was always the point of Ci whose cost in S is the smallest, we have E[FS ] ≤ cost(LS ,S) ≤
cost(G,S).

5.4 Proving the Key Lemma

We now conclude by decomposing the term∣∣∣∣∣∣cost(G,S)−
∑

p∈Ω∩G
f(p) · cost(p,S)

∣∣∣∣∣∣
into terms for which we can apply Lemmas 5, 7, 9, and 10.

First, we note that the probability of success of Lemma 9 is too small to take a union-bound over
its success for all S. To cope with that issue, we use the approximate centroid set, in order to relate
E`,S to E`,S̃ , where S̃ comes from a small set on which union-bounding is possible.

Lemma 11. Let C be an A-approximate centroid set, as in Definition 1. It holds with probability

1− exp

(
k log |C| − 2O(z log z) · min(ε2, εz)

log2 1/ε
· δ
)

that, for all solution S̃ ∈ Ck∣∣∣cost(LS̃ , S̃)− cost(Ω ∩ LS̃ , S̃)
∣∣∣ ≤ ε(cost(G,A) + cost(LS̃ , S̃)

)
.

Proof. Taking a union-bound over the success of Lemma 9 for all possible S̃ ∈ Ck and all ` such that

log(ε/2) ≤ ` ≤ z log(4z/ε), it holds with probability 1−exp(k log |C|) exp
(
−2O(z log z) · min(ε2,εz)

log2 1/ε
· δ
)

that, for every S̃ ∈ Ck and `,

|E`,S̃ − E[E`,S̃ ]| ≤ ε

z log z/ε
·
(

cost(G,A) + cost(I`,S̃ , S̃)
)

(11)

We now condition on that event, together with event E . We write:

24



∣∣∣∣∣∣
∑
p∈LS̃

cost(p, S̃) −
∑

p∈LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
p∈LS̃

cost(p, S̃)− E[FS̃ ] + E[FS̃ ]− FS̃ + FS̃ −
∑

p∈LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
p∈LS̃

cost(p, S̃)− E[FS̃ ] + FS̃ −
∑

p∈LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣+ |E[FS̃ ]− FS̃ |

≤
∑

`<log ε/2

∣∣∣∣∣∣
∑

p∈I`,S̃∩LS̃

cost(p, S̃)− E[F`,S̃ ] + F`,S̃ −
∑

p∈I`,S̃∩LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣ (12)

+

z log z/4ε∑
`=log ε/2

∣∣∣∣∣∣
∑

p∈I`,S̃∩LS̃

cost(p, S̃)− E[F`,S̃ ] + F`,S̃ −
∑

p∈I`,S̃∩LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣ (13)

+|E[FS̃ ]− FS̃ |

We note that Equation 13 is
∑z log z/4ε

`=log ε/2 |E`,S̃ − E[E`,S̃ ]| and can be directly bounded using Equa-
tion 11. To bound tiny points of Equation 12, we combine Lemma 5 with the observation that
F`,S̃ ≤

∑
p∈I`,S̃∩Ω f(p)cost(p, S̃). This gives:

∑
`<log ε/2

∣∣∣∣∣∣
∑

p∈I`,S̃∩LS̃

cost(p, S̃)− E[F`,S̃ ] + F`,S̃ −
∑

p∈I`,S̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣
≤

∑
`<log ε/2

 ∑
p∈I`,S̃

cost(p, S̃) + E[F`,S̃ ] + F`,S̃ +
∑

p∈I`,S̃∩Ω

f(p) · cost(p, S̃)


≤ 2

∑
`<log ε/2

 ∑
p∈I`,S̃

cost(p, S̃) +
∑

p∈I`,S̃∩Ω

f(p) · cost(p, S̃)


≤ 2εcost(G,A),

where the last equation uses Lemma 5. Plugging this result into the previous inequality, we have:
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∣∣∣∣∣∣
∑
p∈LS̃

cost(p, S̃) −
∑

p∈LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣ ≤ 2εcost(A) +

z log z/4ε∑
`=log ε/2

∣∣∣E[E`,S̃ ]− E`,S̃
∣∣∣+ |E[FS̃ ]− FS̃ |

≤ 2εcost(G,A) +

z log z/4ε∑
`=log ε/2

ε

z log z/ε
·
(

cost(G,A) + cost(I`,S̃ , S̃)
)

+ |E[FS̃ ]− FS̃ |

≤ 2εcost(G,A) + (z log(z/4ε)− log ε/2) · ε

z log z/ε
·
(

cost(G,A) + cost(LS̃ , S̃)
)

+ ε · cost(G, S̃)

≤ O(ε) · (cost(G,A) + cost(LS̃ , S̃)),

where the second to last inequality used Lemma 10.

We can now finally turn to the proof of Lemma 2:

Proof of Lemma 2. Let X, k, z,G and A as in the lemma statement. We condition on event E
happening. Let S be a set of k points, and S̃ ∈ Ck that approximates best S, as given by the
definition of C (see Definition 1). This ensures that for all points p with dist(p,S) ≤ 8z

ε · dist(p,A)

or dist(p, S̃) ≤ 8z
ε · dist(p,A) , we have |cost(p,S)− cost(p, S̃)| ≤ ε(cost(p,S) + cost(p,A)).

Our first step is to deal with points that have dist(p,S) > 8z
ε · dist(p,A), using Lemma 7. That

same lemma can be used to deal with points that have dist(p, S̃) > 4z
ε · dist(p,A) and dist(p,S) ≤

8z
ε ·dist(p,A), i.e., their distance is preserved in S̃ and they are huge with respect to S̃. Remaining

points turn out to be LS̃ , and are handled by Lemma 11. The remaining of the proof formalizes
the argument.

Let HS be the set of all clusters that are intersecting with some huge I`,S with ` > z log(8z/ε). We
decompose the cost difference as follows:

∣∣∣∣∣∣cost(G,S)−
∑

p∈Ω∩G
f(p) · cost(p,S)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

p∈G\HS

cost(p,S)−
∑

p∈(G\HS)∩Ω

f(p) · cost(p,S)

∣∣∣∣∣∣ (14)

+

∣∣∣∣∣∣
∑
p∈HS

cost(p,S)−
∑

p∈HS∩Ω

f(p) · cost(p,S)

∣∣∣∣∣∣ (15)

Since we condition on event E , the term 15 is O(ε) · (cost(G,A) + cost(G,S)), using Lemma 7.
Now we take a closer look at term 14. By definition of S̃, it holds for all points p ∈ G \HS that
|cost(p,S)− cost(p, S̃)| ≤ ε(cost(p,S) + cost(p,A)). Therefore:∣∣∣∣∣∣
∑

p∈G\HS

cost(p,S) −
∑

p∈(G\HS)∩Ω

f(p) · cost(p,S)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

p∈G\HS

cost(p, S̃) −
∑

p∈(G\HS)∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣
+ ε (cost(S) + cost(A) + cost(Ω,S) + cost(Ω,A)) .
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This allows us to focus on bounding the cost difference to solution S̃ instead of S. First, we let HS̃
be the set of clusters that are intersecting with some huge I`,S̃ with ` > z log(4z/ε), and that are
not in HS . The cost of those is bounded using Lemma 7.

For the remaining points, we aim at using Lemma 11: for that, we show that LS̃ = G \
(
HS ∪HS̃

)
.

Recall that all points of LS̃ (defined in Eq. (5)) verify cost(p, S̃) ≤
(

4z
ε

)z · cost(p,A). This implies,

using the relationship between S and S̃, that cost(p,S) ≤
(

8z
ε

)z · cost(p,A). Therefore, no cluster
from LS̃ is in HS , and the definition of HS̃ ensures that LS̃ = G \

(
HS ∪HS̃

)
. Hence,∣∣∣∣∣∣

∑
p∈G\HS

cost(p, S̃)−
∑

p∈(G\HS)∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
p∈LS̃

cost(p, S̃)−
∑

p∈LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣ (16)

+

∣∣∣∣∣∣
∑
p∈HS̃

cost(p, S̃)−
∑

p∈HS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣(17)

Eqution 16 is directly bounded using Lemma 11 by ε(cost(G,A)+cost(LS̃ , S̃)), which isO(ε)(cost(LS̃ ,S)+

cost(G,A)), using again the relationship between S and S̃. For Equation 17, we use again Lemma 7:

since we conditionned on event E , for each cluster Ci inHS̃ it holds that
∣∣∣cost(Ci, S̃)−

∑
p∈Ci∩Ω f(p)cost(p, S̃)

∣∣∣ =

O(ε)cost(Ci, S̃) = O(ε)(cost(Ci,S) + cost(Ci,A)).

Combining all the equations yields

|cost(G,S)− cost(Ω,S)| ≤ O(ε) · (cost(G,A) + cost(G,S) + cost(Ω,A) + cost(Ω,S)) .

It only remains to remove the term cost(Ω,A) + cost(Ω,S) from the right-hand-side. Applying this
inequality for S = A and using cost(Ω,A) ≤ cost(G,A) + |cost(G,A)− cost(Ω,A)| yields first

cost(Ω,A) = O(1) · cost(G,A).

Similarly, we can use cost(Ω,S) ≤ cost(G,S) + |cost(G,S)− cost(Ω,S)| to get

cost(Ω,S) = O(1) ·
(
cost(G,S) + cost(G,A)

)
.

Hence, we finally conclude:

|cost(G,S)− cost(Ω,S)| ≤ O(ε) · (cost(G,A) + cost(G,S)) .

The probability now follows from taking a union-bound over the failure probability of Lemma 6
and Lemma 11. Specifically

1− exp

(
k log |C| − 2O(z log z) · min(ε2, εz)

log2 1/ε
· δ
)
− k · z2 log2(z/ε) exp

(
−O(1)

ε2

k
δ

)

In a given cluster Ci, the complexity of the algorithm is O(|Ci|): it is both the cost of computing the
scaling factor f(p) for all p ∈ G, and the cost of sampling δ points using reservoir sampling [Vit85].
Hence, the cost of this algorithm for all clusters is O(|G|).
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6 Sampling from Outer Rings

In this section we prove Lemma 3:

Lemma 3. Let (X, dist) be a metric space, k, z be two positive integers, P be a set of clients and
A be a cA-approximate solution solution to (k, z)-clustering on P .

Let G be either a group GOb or GOmax. Suppose moreover that there is a A-approximate centroid set
C for clients G .

Then, there exists an algorithm SensitivitySample running in time O(|G|) that constructs a set

Ω of size δ such that it holds with probability 1− exp
(
k log |C| − 2O(z log z) · ε2

log2 1/ε
· δ
)

that, for all

sets S of k centers:

|cost(G,S)− cost(Ω,S)| = ε

z log z/ε
· (cost(S) + cost(A)) .

Recall that the SensitivitySample procedure merely picks δ points p with probability cost(p,A)
cost(G,A) .

Each of the δ sampled points has a weight cost(G,A)
δ·cost(p,A) .

The main steps of the proof are as follows.

• First, we consider the cost of the points in G such that cost(p,S) is at most 4z · cost(p,A).
Denote these points by Gclose,S . For this case, we mainly rely on Bernstein’s inequality as
well as properties of RO(A).

• Second, we consider the cost of the points in G such that cost(p,S) > 4z · cost(p,A). Denote
this set by Gfar,S . For these points, we can afford to replace their distance to S with the
distance to the closest center c ∈ A plus the distance from c to the closest center in S. The
latter part can be charged to the remaining points of the cluster from the original dataset
(i.e., not restricted to group G) which are in much larger number and already paying a similar
value in S.

We first analyse the points in Gclose,S .

Proof of Lemma 3 for Gclose. We aim to use Bernstein’s Inequality. Let Eclose,S =
∑δ

i=1Xi, where

Xi = cost(G,A)
δ·cost(p,A) · cost(p,S) if the i-th sampled point is p ∈ Gclose,S and Xi = 0 the i-th sampled

point is p /∈ Gclose,S . Recall that the probability that p is the i-th sampled point is cost(p,A)
cost(G,A) . We

consider the second moment E[X2
i ]:
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E[X2
i ] =

∑
p∈Gclose

(
cost(G,A)

δ · cost(p,A)
· cost(p,S)

)2

· P[p ∈ Ω]

= cost(G,A) ·
∑

p∈Gclose

cost(p,S)

δ2 · cost(p,A)
· cost(p,S)

≤ cost(G,A) ·
∑

p∈Gclose

4z

δ2
· cost(p,S)

≤ 4z

δ2
· cost(G,A) · cost(G,S)

Furthermore, we have the following upper bound for the maximum value any of the Xi:

Xi ≤M := max
p∈Gclose,S

cost(G,A)

δ · cost(p,A)
· cost(p,S) ≤ 4z

δ
· cost(G,A). (18)

Combining both bounds with Bernstein’s inequality now yields

P[|Eclose,S − E[Eclose,S ]| ≤ ε

z log z/ε
· (cost(A) + cost(S))]

≤ exp

−
(

ε
z log z/ε

)2
· (cost(A) + cost(S))2

2
∑δ

i=1 V ar[Xi] + 1
3M · ε · (cost(A) + cost(S))


≤ exp

−
(

ε
z log z/ε

)2
· δ · (cost(A) + cost(S))2

24z · cost(G,A) · cost(G,S) + 4z · cost(G,A) · ε · (cost(A) + cost(S))


≤ exp

(
−2−O(z) ·

(
ε

z log z/ε

)2

· δ

)

Taking a union bound over all possible S ∈ Ck, we have with probability

1− exp(k log |C|) exp

(
−2−O(z) ·

(
ε

log 1/ε

)2
· δ
)

= 1− exp
(
k log |C| − 2−O(z) · ε2 · δ

)
that

∀S ∈ Ck, |Eclose − E[Eclose]| ≤
ε

z log z/ε
· (cost(A) + cost(S))

The same technique as in the final proof of Lemma 2 can be used to extend that result to any
solution S (not restricted to Ck). More precisely, since all points of Gclose,S are of type interesting,
their cost is preserved in the solution S̃ that approximates S. Hence, it is enough to show the
coreset guarantee to S̃.

Now we turn our attention to Gfar,S . For this, we analyse the following event Efar, similar to E :
For all cluster C of solution A such that C ∩G 6= ∅∑

p∈C∩G∩Ω

cost(G,A)

δ · cost(p,A)
cost(p,A) = (1± ε) · cost(C ∩G,A)
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Lemma 12. Event Efar happens with probability at least 1− k exp( ε
2

k · δ).

Proof. We aim to use Bernstein’s Inequality. Let EC =
∑δ

i=1Xi, where Xi = cost(G,A)
δ·cost(p,A) ·cost(p,A) if

the i-th sampled point p ∈ C and Xi = 0 the i-th sampled point p /∈ C. Recall that the probability
that the i-th sampled point is p is cost(p,A)

cost(G,A) . We consider the second moment E[X2
i ]:

E[X2
i ] =

∑
p∈C∩G

(
cost(G,A)

δ · cost(p,A)
· cost(p,A)

)2

· P[p is the i-th sampled point]

=
cost(G,A)

δ2
·
∑

p∈C∩G
cost(p,A)

=
cost(G,A)

δ2
cost(C ∩G,A)

≤ 2k

δ2
· cost2(C ∩G,A)

where the final inequality follows since every cluster either has cost at least 1
kcost(GOmax,A), if

G = GOmax, or the clusters in GOb have an equal cost, up to a factor of 2.

Furthermore, we have by the same argument the following upper bound for the maximum value
any of the Xi:

Xi ≤M := max
p∈C∩G

cost(G,A)

δ · cost(p,A)
· cost(p,A) ≤ 2k

δ
· cost(C,A).

Combining both bounds with Bernstein’s inequality now yields

P[|cost(C ∩G ∩ Ω,A)− cost(C ∩G,A)| ≤ ε · cost(C ∩G,A)]

≤ exp

(
− ε2 · cost2(C ∩G,A)

2
∑δ

i=1 V ar[Xi] + 1
3M · ε · cost(C ∩G,A)

)
≤ exp

(
− ε2

6k′
· δ
)

Reformulating, we now have

∑
p∈C∩G∩Ω

cost(G,A)

δ · cost(p,A)
cost(p,A) = (1± ε) · cost(C ∩G,A)

Lemma 13. Let (X, dist) be a metric space, k, z be two positive integers. Suppose G ⊂ P ∩RO(A)
is either a group GOb or GOmax. Let Gfar,S ⊂ G be the set of all clients such that cost(p,S) >
4z · cost(p,A). Condition on event Efar.

Then, there exists an algorithm SensitivitySample running in time O(|GOj |) that constructs a set
Ω of size δ such that, it holds for all sets S of k centers that:

|cost(Gfar,S ,S)− cost(Ω ∩Gfar,S ,S)| = ε

z log z/ε
· (cost(S) + cost(A)) .
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Proof. Our aim will be to show that cost(Gfar,S ,S) + cost(Ω ∩Gfar,S ,S) ≤ ε
z log z/ε · cost(G,S).

First, we fix a cluster C ∈ A, and show that the total contribution of points of C ∩Gfar,S is very
cheap compared to cost(C,S), i.e. that cost(Gfar,S∩C,S) ≤ ε

z log z/ε ·cost(C,S). Let c be the center
of cluster C, serving point p ∈ C ∩ Gfar,S in A. Let Cclose be the points of C with cost at most(
z
ε

)z · cost(C,A)
|C| . Due to Markov’s inequality, most of C’s points are in Cclose: |Cclose| ≥ (1−ε/z) · |C|.

Consider an arbitrary point in q ∈ Cclose. The triangle inequality and cost(p,S) > 4z · cost(p, c),
yield dist(c,S) ≥ dist(p,S)−dist(p, c) ≥ 4dist(p, c)−dist(p, c) ≥ 3dist(p, c). Therefore cost(c,S) ≥
3z ·

(
z
ε

)2z · cost(C,c)
|C| . Using this and Lemma 1 we now have for any q ∈ Cclose

cost(c,S) ≤ (1 + ε/(2z))z−1 · cost(q,S) +

(
2z + ε

ε

)z−1

· cost(q, c)

≤ (1 + ε)cost(q,S) +

(
2z + ε

ε

)z−1

·
(z
ε

)z
· cost(C, c)

|C|

≤ (1 + ε)cost(q,S) + 3z−1 ·
(z
ε

)2z−1
· cost(C, c)

|C|

≤ (1 + ε)cost(q,S) +
ε

3z
· cost(c,S)

⇒ cost(q,S) ≥ 1− ε
1 + ε

· cost(c,S)

⇒ cost(C,S) ≥ cost(Cclose,S) ≥ |Cclose| ·
1− ε
1 + ε

· cost(c,S). (19)

Using additionally that |Cclose| ≥ (1− ε
z ) · |C| and cost(c,S) ≥ 3z ·

(
z
ε

)2z · cost(C,c)
|C| , we get:

cost(C,S) ≥ |Cclose| ·
1− ε
1 + ε

· 3z ·
(z
ε

)2z
· cost(C,A)

|C|
≥ 3z ·

(z
ε

)2z−1
· cost(C,A). (20)

Furthermore, since G contains only points from outer rings, |G ∩C| ≤
(
ε
z

)2 · |C|. Hence, |Gfar,S ∩
C| ≤ 1

1−ε/z ·
(
ε
z

)2 · |Cclose|. This yields
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cost(Gfar,S ∩ C,S) =
∑

p∈Gfar,S∩C
cost(p,S)

(Lemma 1) ≤
∑

p∈Gfar,S∩C
(1 + ε/2z)z−1cost(c,S) +

(
2z + ε

ε

)z−1

· cost(p, c)

≤ |Gfar,S ∩ C| · (1 + ε) · cost(c,S) +

(
2z + ε

ε

)z−1

· cost(Gfar,S ∩ C,A) (21)

≤ 1 + ε

1− ε/z
·
(ε
z

)2
· |Cclose| · cost(c,S) +

(
2z + ε

ε

)z−1

· cost(Gfar,S ∩ C,A)

(Eq. 19) ≤ (1 + ε)2

(1− ε)2
·
(ε
z

)2
· cost(C,S) +

(
2z + ε

ε

)z−1

· cost(Gfar,S ∩ C,A)

(Eq. 20) ≤ (1 + ε)2

(1− ε)2
·
(ε
z

)2
· cost(C,S) +

(
2z + ε

ε

)z−1

· 1

3z
·
(ε
z

)2z−1
· cost(Gfar,S ∩ C,S)

≤ ε

z log z/ε
· cost(C,S) (22)

Summing this up over all clusters C, we therefore have

cost(Gfar,S ,S) ≤ ε

z log z/ε
· cost(S) (23)

What is left to show is that, in the coreset, the weighted cost of the points in Gfar,S ∩ Ω can be

bounded similarly. For that, we use event Efar to show that
∑

p∈Gfar,S∩C∩Ω
cost(G,A0)
cost(p,A0) ≈ |Gfar,S∩C|

In particular, event Efar implies that with probability 1− k′ · exp
(
−O(1) · ε2k′ · δ

)
for all clusters C

induced by A

∑
p∈C∩G∩Ω

cost(G,A)

δcost(p,A)
·
(

2z

ε

)2z

· cost(C,A)

|C|
≤

∑
p∈C∩G∩Ω

cost(G,A)

δ · cost(p,A)
cost(p,A)

≤ (1 + ε) · cost(C ∩G,A)

⇒
∑

p∈C∩G∩Ω

cost(G,A)

δ · cost(p,A)
≤ (1 + ε) ·

( ε
2z

)2z
· |C|cost(C ∩G,A)

cost(C,A)

≤ (1 + ε) ·
( ε

2z

)2z
· |C| (24)

Therefore, we have
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cost(Gfar,S ∩ Ω ∩ C,S) =
∑

p∈Gfar,S∩C

cost(G,A)

δ · cost(p,A)
· cost(p,S)

(Lemma 1) ≤
∑

p∈Gfar,S∩Ω∩C

cost(G,A)

δ · cost(p,A)
·

(
(1 + ε/2z)z−1cost(c,S) +

(
2z + ε

ε

)z−1

· cost(p, c)

)

≤ (1 + ε) · cost(c,S) ·
∑

p∈Gfar,S∩Ω∩C

cost(G,A)

δ · cost(p,A)

(Efar) +

(
2z + ε

ε

)z−1

· (1 + ε) · cost(C ∩G,A)

(Eq. 24) ≤ (1 + ε)2 · cost(c,S) ·
( ε

2z

)2z
· |C|+

(
2z + ε

ε

)z−1

· (1 + ε) · cost(C ∩G,A)

≤ (1 + ε)2 ·
( ε

2z

)2z
· |C| · cost(c,S) +

(
2z + ε

ε

)z−1

· cost(C,A) (25)

≤ ε

z log z/ε
· cost(C,S)

where the steps following Equation 25 are identical to those used to derive Equation 22 from
Equation 21. Again, summing over all clusters now yields

cost(Gfar,S ,S) ≤ ε

z log z/ε
· cost(S),

which yields the claim.

The overall proof now follows by adding up the error bounds of Gfar,S (Lemma 13) and Gclose,S
and rescaling ε by a constant factor. Specifically, we have

|cost(G,S)− cost(Ω,S)|
≤ |cost(Gclose,S ,S)− cost(Ω ∩Gclose,S ,S)|+ |cost(Gfar,S ,S)− cost(Ω ∩Gfar,S ,S)|

≤ 2
ε

z log z/ε
· (cost(S) + cost(A)) .

7 Partitioning into Well Structured Groups

In this section, we show that the outcome of the partitioning step satisfies Lemma 4, that we restate
for convenience.

Lemma 4. Let (X, dist) be a metric space with a set of clients P , k, z be two positive integers, and
ε ∈ R∗+. For every solution S, it holds that

|cost(D,S)− cost(P1,S)| = O(ε)cost(S)
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Recall that the inner ring RI(C) (resp. outer ring RO(C)) of a cluster C consists of the points of
C with cost at most (ε/z)2z ∆C (resp. at least (z/ε)2z ∆C). The main ring RM (C) consist of all the
other points of C.

Recall also that D contains all points that are either in some inner ring, in some group Gj,min or
in GOmin. P1 contains center of A weighted by the number of points from D in their clusters.

To prove Lemma 4, we treat separately the inner ring and the groups Gj,min and GOmin in the
next two lemmas. Their proof are deferred to next sections. For all those lemmas, we fix a metric
space I a set of clients P , two positive integers k and z, and ε ∈ R∗+. We also fix A, a solution to
(k, z)-clustering on P with cost cost(A) ≤ cAcost(OPT).

Lemma 14. For any solution S and any cluster C with center c of A,

|cost(RI(C),S)− |RI(C)| · cost(c,S)| ≤ ε(cost(C,A) + cost(RI(C),S)).

Lemma 15. For any solution S and any j,∣∣∣∣∣cost(Gj,min,S)−
k∑
i=1

|Ci ∩Gj,min| · cost(ci,S)

∣∣∣∣∣ ≤ ε · cost(Rj ,S) + ε · cost(Rj ,A).

Moreover, for any solution S,∣∣∣∣∣cost(GOmin,S)−
k∑
i=1

|Ci ∩GOmin| · cost(ci,S)

∣∣∣∣∣ ≤ ε · cost(S) + ε · cost(A).

The proof of Lemma 4 combines those lemmas.

Proof of Lemma 4. We decompose |cost(D,S) − cost(P1,S)| into terms corresponding to the pre-
vious lemmas:

|cost(D,S)− cost(P1,S)| ≤
k∑
i=1

|cost(RI(Ci),S)− |RI(Ci)|cost(ci,S)|

+

2z log(z/ε)∑
j=2z log(ε/z)

∣∣∣∣∣cost(Gj,min,S)−
k∑
i=1

|Ci ∩Gj,min|cost(ci,S)

∣∣∣∣∣
+

∣∣∣∣∣cost(GOmin,S)−
k∑
i=1

|Ci ∩GOmin|cost(ci,S)

∣∣∣∣∣
≤

k∑
i=1

ε(cost(Ci,A) + cost(RI(Ci),S))

+ 2εcost(S) + 2εcost(A) + ε(cost(S) + cost(A))

≤ 8εcAcost(S),

where the second inequality uses Lemmas 14 and 15.
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7.1 The Inner Ring: Proof of Lemma 14

Lemma 14. For any solution S and any cluster C with center c of A,

|cost(RI(C),S)− |RI(C)| · cost(c,S)| ≤ ε(cost(C,A) + cost(RI(C),S)).

Proof. Let C be a cluster induced by A, and p be a point in the inner ring RI(C). We start by
bounding |cost(p,S)− cost(c,S)|. Let S(p) (resp. S(c)) be the closest point from S to p (resp. c).

Using Lemma 1, we get

|cost(p,S)− cost(c,S)| ≤ ε · cost(p,S) + (1 + 2z/ε)z−1 · cost(c, p).

Since p is from the inner ring of its cluster, cost(c, p) ≤
(
ε
z

)2z
∆C , hence (1 + 2z/ε)z−1cost(c, p) ≤

(2 + ε)z−1 · (ε/z)z+1 ·∆C ≤ ε∆C , for small enough ε.

Summing this over all points of the inner ring yields

|cost(RI(C),S)− |RI(C)| · cost(c,S)| ≤
∑

p∈RI(C)

|cost(p,S)− cost(c,S)|

≤
∑

p∈RI(C)

εcost(p,S) + ε∆C

≤ εcost(RI(C),S) + ε|RI(C)|∆C

≤ εcost(RI(C),S) + εcost(C,A)

This implies

|cost(RI(C),S)− |RI(C)| · cost(c,S)| ≤ ε(cost(C,A) + cost(RI(C),S)).

7.2 The Cheap Groups: Proof of Lemma 15

Lemma 15. For any solution S and any j,∣∣∣∣∣cost(Gj,min,S)−
k∑
i=1

|Ci ∩Gj,min| · cost(ci,S)

∣∣∣∣∣ ≤ ε · cost(Rj ,S) + ε · cost(Rj ,A).

Moreover, for any solution S,∣∣∣∣∣cost(GOmin,S)−
k∑
i=1

|Ci ∩GOmin| · cost(ci,S)

∣∣∣∣∣ ≤ ε · cost(S) + ε · cost(A).

Proof. Using Lemma 1, for a point p in cluster Ci

|cost(ci,S)− cost(p,S)| ≤ εcost(p,S) +

(
1 +

2z

ε

)z−1

cost(p, ci).
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Let G be a group, either Gj,min or GOmin. Summing for all cluster Ci and all p ∈ G ∩ Ci, we now
get ∣∣∣∣∣

k∑
i=1

|Ci ∩G| · cost(ci,S)− cost(G,S)

∣∣∣∣∣
≤ ε · cost(G,S) +

k∑
i=1

∑
p∈G∩Ci

(
1 +

2z

ε

)z−1

cost(p,A)

≤ ε · cost(G,S) +
k∑
i=1

(
3z

ε

)z−1

cost(Ci ∩G,A)

≤ ε · cost(G,S) +

(
3z

ε

)z−1

cost(G,A)

Now, either G = Gj,min for some j, and cost(G,A) ≤
(
ε
4z

)z · cost(Rj ,A); or G = GOmin, and
cost(G,A) ≤

(
ε
4z

)z · cost(RO(A),A) ≤
(
ε
4z

)z · cost(A).

In both cases, the lemma follows.

8 Application of the Framework: New Coreset Bounds for Various
Metric Spaces

In this section, we apply the coreset framework to specifics metric spaces. For each of them, we
show the existence of a small approximate centroid set, and apply Theorem 1 to prove the existence
of small coresets.

We recall Definition 1: given an instance of (k, z)-clustering and a set of centersA, anA-approximate
centroid set C is a set that satisfies the following: for every solution S, there exists S̃ ∈ Ck such
that for all points p that verifies cost(p,S) ≤

(
8z
ε

)z
cost(p,A) or cost(p, S̃) ≤

(
8z
ε

)z
cost(p,A), it

holds |cost(p,S)− cost(p, S̃)| ≤ ε
z log(z/ε) (cost(p,S) + cost(p,A)).

8.1 In Metrics with Bounded Doubling Dimension

We start by defining the Doubling Dimension of a metric space, and stating a key lemma.

Consider a metric space (X,dist). For a point p ∈ X and an integer r ≥ 0, we let β(p, r) = {x ∈
X | dist(p, x) ≤ r} be the ball around p with radius r.

Definition 4. The doubling dimension of a metric is the smallest integer d such that any ball of
radius 2r can be covered by 2d balls of radius r.

Notably, the Euclidean space Rd has doubling dimension θ(d).

A γ-net of V is a set of points X ⊆ V such that for all v ∈ V there is an x ∈ X such that
dist(v, x) ≤ γ, and for all x, y ∈ X we have dist(x, y) > γ. A net is therefore a set of points not
too close to each other, such that every point of the metric is close to a net point. The following
lemma bounds the cardinality of a net in doubling metrics.
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Lemma 16 (from Gupta et. al [GKL03]). Let (V, dist) be a metric space with doubling dimension
d and, diameter D, and let X be a γ-net of V . Then |X| ≤ 2d·dlog2(D/γ)e.

The goal of this section is to prove the following lemma. Combined with Theorem 1, it ensures the
existence of small coreset in graphs with small doubling dimension.

Lemma 17. Let M = (X, dist) be a metric space with doubling dimension d, let P ⊂ X, let k and
z be positive integers and let ε > 0. Further, let A be a cA-approximate solution with at most k
centers. There exists an A-approximate centroid set for P of size

|P | · (ε/cA)−O(zd)

A direct corollary of that lemma is the existence of a coreset in Doubling Metrics:

Corollary 4. Let M = (X, dist) be a metric space with doubling dimension d, and two positive
integers k and z .

There exists an algorithm with running time Õ(nk) that constructs an ε-coreset for (k, z)-clustering
on P ⊆ X with size

O

(
log4 1/ε

2O(z log z) min(ε3, εz)
(kd log log 1/ε+ k log k/ε+ log 1/π)

)
.

Proof. We first compute a coreset of size Õ(k3Dε−2) [HJLW18]. Then, combining Theorem 1 and
Lemma 17 yields an algorithm constructing a coreset of size

O

(
log4 1/ε

2O(z log z) min(ε3, εz)
(kd log log 1/ε+ k log kd/ε+ log 1/π)

)
.

If log k > d then O(log kd) = O(log k). If d > log k then O(kd + k log kd) = O(kd), hence the
claimed bound follows.

Proof of Lemma 17. For each point p ∈ P , let c be the center to which p was assigned in A. Let
B(p,

(
10z
ε

)
dist(p, c)) be the metrics ball centered around p with radius

(
10z
ε

)
· dist(p, c).

Order points p1, ..., pn with non-decreasing value of dist(p,A). Let Npi be an
(
ε
4z

)
· dist(p,A)-net

of B
(
pi,
(

10z
ε

)
· dist(pi,A)

)
\ ∪j<i B

(
pj ,
(

10z
ε

)
· dist(pj ,A)

)
, which due to Lemma 16 has size

(ε/z)−O(d). Furthermore, let sf be a point not in any B(p,
(

10z
ε

)
dist(p,A)), if such a point exist.

Let N := sf
⋃
p∈Y Np. We claim that N is the desired approximate centroid set.

For a candidate solution S, let S̃ be the solution obtained by replacing every center s ∈ S by s̃ ∈ C
as follows: let i be the smallest index such that s ∈ B(pi,

(
8z
ε

)
dist(pi,A)). Pick s̃ to be the closest

point to s in Npi . If such a i does not exist, pick s̃ = sf .

Now, let p be a point such that cost(p,S) ≤
(

10z
ε

)z · cost(p,A). Let s be the center serving p in S.

Then, by construction of the S̃, there is a center s̃ with dist(s, s̃) ≤
(
ε
4z

)
dist(p,A) and hence

cost(p, S̃) ≤ cost(p, s̃) ≤ (1 + ε)cost(p, s) + (1 + z/ε)z−1cost(s, s̃)

≤ (1 + ε)cost(p,S) + (2z/ε)z−1
( ε

2z

)z
cost(p,A)

≤ (1 + ε)cost(p,S) + εcost(p,A). (26)
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To show the other direction, let p be such that cost(p, S̃) ≤
(

10z
ε

)z · cost(p,A). Let s̃ be the center

closest to p in S̃, which is different to sf by property of p, and s the corresponding center in S. Let
i be the smallest index such that s ∈ B(pi,

(
8z
ε

)
dist(pi,A)).

It must be that dist(p,A) ≥ dist(pi,A). Otherwise, s̃ would not be in B(p,
(

10z
ε

)
· dist(p,A)), by

definition of Npi . Hence, dist(s, s̃) ≤ ε
4zdist(pi,A) ≤ ε

4zdist(p,A) and so, by Lemma 1,

cost(p,S) ≤ cost(p, s) ≤ (1 + ε)cost(p, s̃) + (1 + 2z/ε)z−1cost(s, s̃)

≤ (1 + ε)cost(p, S̃) + εcost(p,A) (27)

We conclude using Equations 26 and 27. For a point p such that cost(p,S) ≤
(

8z
ε

)z · cost(p,A),

Equation 26 gives cost(p, S̃) ≤ (1 + ε)cost(p,S) + εcost(p,A) ≤
(

10z
ε

)z · cost(p,A). Hence, Equa-

tion 27 gives cost(p,S) ≤ (1 + ε)cost(p, S̃) + εcost(p,A). Combining those two equations yields

|cost(p,S)− cost(p, S̃)| ≤ ε(cost(p,S) + cost(p,A)).

The same property holds for points p such that cost(p, S̃) ≤
(

8z
ε

)z · cost(p,A).

8.2 In Graphs with Bounded Treewidth

In this section, we show that for graphs with treewidth t, there exists a small approximate centroid
set. Hence, the main framework provides an algorithm computing a small coreset. We first define
the treewidth of a graph:

Definition 5. A tree decomposition of a graph G = (V,E) is a tree T where each node b (call a
bag) is a subset of V and the following conditions hold:

• The union of bags is V ,

• ∀v ∈ V , the nodes containing v in T form a connected subtree of T , and

• for all edge (u, v) ∈ E, there is one bag containing u and v.

The treewidth of a graph G is the smallest integer t such that their exists a tree decomposition with
maximum size bag t+ 1.

Lemma 18. Let G = (V,E) be a graph with treewidth t, X ⊆ V and k, z > 0. Furthermore, let A
be solution to (k, z)-clustering for X. Then, there exists a set C of size poly(|X|)

(
z
ε

)O(t)
with the

following property.

For every solution S, there exists S̃ ∈ Ck such that for all points p ∈ X that satisfies cost(p,S) ≤(
8z
ε

)z
cost(p,A) or cost(p, S̃) ≤

(
8z
ε

)z
cost(p,A), it holds

|cost(p,S)− cost(p, S̃)| ≤ ε

z log(z/ε)
(cost(p,S) + cost(p,A)) .

Applying this lemma with X yields the direct corollary:
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Corollary 5. Let G = (V,E) be a graph with treewidth t, X ⊆ V , k and z > 0.

There exists an algorithm running time Õ(nk) that constructs an ε-coreset for (k, z)-clustering on
X, with size

O

(
log5 1/ε

2O(z log z) min(ε3, εz)
(k log k + kt log 1/ε+ log(1/π))

)
.

Proof. Let X ⊆ V . We start by computing a (k, ε)-coreset X1 of size O(poly(k, ε, t), using the
algorithm from [BBH+20]

We now apply our framework to X1. Computing an approximation on X1 takes time Õ(|X1|k),
using [MP04].

Lemma 18 ensure the existence of an approximate centroid set for X1 with size poly(|X1|)
(
z
ε

)O(t)
.

Hence, Corollary 2 and the framework developed in the previous sections gives an algorithm that
computes an ε-coreset of X with size

O

(
log4 1/ε

2O(z log z) min(ε3, εz)
(k log |X1|+ kt log 1/ε+ log(1/π))

)
.

Using that |X1| = O(poly(k, ε, t)) yields a coreset of size

O

(
log5 1/ε

2O(z log z) min(ε3, εz)
(k log k + kt log 1/ε+ log(1/π))

)
.

Instead of using [BBH+20], one could apply our algorithm repeatedly as in Theorem 3.1 of [BJKW20],
to reduce iteratively the number of distinct point consider and to eventually get the same coreset
size. The number of repetition needed to achieve that size bound is O(log∗ n), where log∗(x) is the
number of times log is applied to x before the result is at most 1; formally log∗(x) = 0 for x ≤ 1,
and log∗(x) = log∗ log x for x > 1. The complexity of this repetition is therefore Õ(nk), and the
success probability 1− 1/π, as proven in [BJKW20].

For the proof of Lemma 18, we rely on the following structural lemma:

Lemma 19 (Lemma 3.7 of [BBH+20]). Given a graph G = (V,E) of treewidth t, and X ⊆ V ,
there exists a collection T of subsets of V such that:

1. ∪A∈T A = V ,

2. |T | = poly(|X|),

3. For each A ∈ T , |A ∩X| = O(t), and there exists PA ⊆ V with |PA| = O(t) such that there
is no edge between A and V \ (A ∪ PA)5.

Our construction relies on the following simple observation. Let s be a possible center, and p be a
vertex such that cost(p, s) ≤

(
4z
ε

)z
cost(p,A). Let A ∈ T such that p ∈ A. Then, either s ∈ A, or

the path connecting p to s has to go through PA.

5In the statement of [BBH+20], this item is slightly different. To recover our statement from theirs, take PA = A
when |A| = O(t).
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We use this observation as follows: it would be enough if C contained a center at approximately
the same distance of all points of PA than s. We make this formal in the following proof.

Proof of Lemma 18. Given a point p ∈ V and a set A ∈ T , we call a distance tuple to A dA(p) :=
(dist(p, x) | ∀x ∈ X ∩A) + (dist(p, x) | ∀x ∈ PA). Let q ∈ X: the rounded distance tuple of p with

respect to q is d̃A,q(p) defined as follows:

1. For x ∈ X ∩ A, d̃(p, x) is the multiple of ε
z · dist(x,A) smaller than 10z

ε dist(x,A) closest to
dist(p, x).

2. For y ∈ PA, d̃(p, y) is the multiple of ε
z · dist(q,A) smaller than 200z3

ε3
dist(q,A) closest to

dist(p, y).

Now, for every A ∈ T , q ∈ X and every rounded distance tuple T to A with respect to q such that
∃p : T = d̃A(p), C contains one point p ∈ A having that rounded distance tuple.

Bounding the size of C. Fix some A ∈ T . A rounded distance tuple to A is made of O(t) many

distances. Each of them takes its value among 200z4

ε4
possible real, due to the rounding. Hence,

there are at most
(
z
ε

)O(t)
possible rounded distance tuple to A, and so at most that many points in

C. Since there are poly(|X|) different choices for A and q, the total size of C is poly(|X|)
(
z
ε

)O(t)
.

Bounding the error. We now bound the error induced by approximating a solution S by a
solution S̃ ⊆ C. Let A ∈ T such that s ∈ A, and q having the smallest cost(q,A) value among
points verifying cost(p, s) ≤

(
10z
ε

)z
cost(p,A). s̃ is chosen to have the same rounded distance tuple

to A with respect to q as s. S̃ is the solution made of all such s̃, for s ∈ S.

As in the proof of Lemma 17, we first show that points close to S are close to S̃. Showing the
converse is done exactly the same way, by switching roles of s and s̃.

Hence, let p be a point served in S by some center s such that cost(p, s) ≤
(

10z
ε

)z
cost(p,A).

First, if p ∈ X ∩ A, the choice of s̃ ensures that dist(s̃, p) ≤ dist(s, p) + ε
zdist(x,A) and therefore

cost(p, S̃) ≤ cost(p, s̃) ≤ (1 + ε)cost(p, s) + (1 + z/ε)z−1cost(s, s̃) ≤ (1 + ε)cost(p,S) + εcost(p,A).

When p /∈ X ∩A, we distinguish two more subcases:

• either dist(p, s) ≤ 200z3

ε3
dist(q,A): in that case, there exists p′ ∈ pA that is on the shortest

path between p and s. We have dist(s, p′) ≤ 200z3

ε3
dist(q,A), and so s and s̃ have the same

rounded distance to p′. Hence,

dist(p, s̃) ≤ dist(p, p′) + dist(p′, s̃) ≤ dist(p, p′) + dist(p′, s) +
ε

z
dist(q,A)

≤ dist(p, s) +
ε

z
dist(p,A).

This implies that cost(p, S̃) ≤ (1 + ε)cost(p,S) + εcost(p,A).

• Otherwise, dist(p, s) > 200z3

ε3
dist(q,A). In that case, we can argue that dist(s, s̃) is negligible

compared to dist(p, s). By choice of s̃, dist(s̃, q) ≤ dist(q, s) + ε
zdist(q,A). Therefore, using

40



the properties of q, we get

dist(s, s̃) ≤ dist(q, s) + dist(q, s̃) ≤ 2dist(q, s) +
ε

z
dist(p,A)

≤ 20z

ε
· dist(q,A) +

ε

z
dist(p,A)

≤ 20z

ε
· ε3

200z3
· dist(p, s) +

ε

z
dist(p,A)

≤ 20z

ε
· ε3

200z3
· 10z

ε
dist(p,A) +

ε

z
dist(p,A)

≤ ε

z
dist(p,A).

Hence, using Lemma 1, we conclude again that cost(p, S̃) ≤ cost(p, s̃) ≤ (1 + ε)cost(p,S) +
εcost(p,A).

Hence, in all possible cases,

cost(p, S̃)(1 + ε)cost(p,S) + εcost(p,A).

Switching roles of s and s̃ in the proof, one can show that for all p such that cost(p, S̃) ≤(
8z
ε

)z
cost(p,A), then

cost(p,S)(1 + ε)cost(p, S̃) + εcost(p,A).

As in the proof of Lemma 17, those two equations combined imply the lemma.

8.3 In Minor-Excluded Graphs

A graph H is a minor of a graph G if it can be obtained from G by deleting edges and vertices
and contracting edges.

We are interested here in families of graph excluding a fixed minor H, i.e. none of the graph in the
family contains H as a minor. Those graphs are weighted: we assume that for each edge, its value
is equal to shortest-path distance between its two endpoints.

The goal of this section is to prove the following lemma, analogous to Lemma 18.

Lemma 20. Let G = (V,E) be an edge-weighted graph that excludes a fixed minor, a set X ⊆ V
and two positive integers k and z. Furthermore, let A be a solution of (k, z)-clustering of X.

There exists a set C of size exp(O(log2 |X|+ log |X|/ε4)) with the following property.

For every set S of k centers, there exists S̃ ∈ Ck such that for all points p ∈ X such that either
cost(p,S) ≤

(
8z
ε

)z
cost(p,A) or cost(p, S̃) ≤

(
8z
ε

)z
cost(p,A),

|cost(p,S)− cost(p, S̃)| ≤ ε3 (cost(p,S) + cost(p,A)) .

As for treewidth, this lemma implies the following corollary:
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Corollary 6. Let G = (V,E) be an edge-weighted graph that excludes a fixed minor, and two
positive integers k and z .

There exists an algorithm with running time Õ(nk) that constructs an ε-coreset for (k, z)-clustering
on V with size

O

(
log5 1/ε

2O(z log z) min(ε3, εz)

(
k log2 k log(1/ε) +

k log k

ε4
+ log 1/π

))

The big picture is the same as for treewidth. Minor-free graphs have somewhat nice separators,
that we can use to select centers. However, those separators do not have bounded size: they are
instead made of a bounded number of shortest path, as described in the next structural lemma.

Lemma 21 (Balanced Shortest Path Separator [AG06]). Given a graph G = (V,E) with positive
weights on vertices and that excludes a fixed minor, there is a set of vertices S ⊆ V , such that

1. S = P1 ∪P2 ∪ . . . where Pi is a set of shortest paths in the graph formed by removing
⋃
j<i Pj

2.
∑

i |Pi| = O(1), where the hidden constant depends on the size of the excluded minor

3. the weight of every component in the graph formed by removing S from G is at most half the
weight of V .

Applying recursively that lemma on the graph G with weight 1 for vertices in X and 0 otherwise
yields a recursive decomposition R (see [BJKW20] for more details about that decomposition).

The general sketch of the proof for z = 1 is as follows: in every leaf of R, we would like to
take a net, approximating well every center lying in the leaf. Unfortunately, small nets do not
exist in minor-free graphs. To cope with that issue, we proceed slightly differently, inspired by
[CPP19, BJKW20]: in short, we consider the boundary B of the leaf, and enumerate all possible
tuple of distances from a point inside the leaf to the boundary. For each tuple, we include in C
a point realizing it. Of course, this would lead to a set C way too big: the boundary of each leaf
consists of too many points, and there are too many distances possible. For that, we show how to
discretize the boundary by placing landmarks on it, and how to round distances from a point to a
landmark.

We first picture how to discretize the boundary. Let S be a cluster with center s of the solution S.
Let p ∈ S be a tiny or interesting point, and R the smallest region of R containing both y and s.
Let P1, P2, ..., Pm the set of shortest paths given by the application of Lemma 21 on R. Removing
all those path separates p and s: hence, the path y  s must cross a path in some Pi. Let i be the
smallest index such that p  s intersects a path P ∈ Pi. Let x be the intersecting point. If there
where a landmark l close to x, we could write:

dist(p, s) = dist(p, x) + dist(x, s) ≈ dist(y, l) + dist(l, s)

= dist(p, l) + dist(l, s̃) ≥ dist(y, s̃)

where s̃ ∈ C is the point realizing the same distance to the landmarks as s. Similarly, one can show
dist(p, s̃) ' dist(p, s), so dist(p, s) ≈ dist(p, s̃) which would be enough to conclude. We list some
properties that will help us to find landmarks. First, P is a shortest path in Rj := R \ ∪j<iPi.
Additionally, x is at distance at most dist(y, s) ≤ dist(y,A)/ε of p, since p is of type tiny or
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interesting. Hence, the landmarks could be a εdist(y,A)-net of P ∩ BRj (y, ε
−2dist(y,A)): this

would ensure that there is a landmark close to the p-to-s path, allowing to write the previous line
of equalities. Note as well that this net has constant size.

However, s̃ must be chosen consistently for every possible p, and so the landmarks must be the
same for all p ∈ S. For this, focus first on the p separated from s by the path P , to construct
a consistent set of landmarks. Among them, let p0 with smallest dist(p,A) value. Every other
p that intersect P in BRj (p0, ε

−2dist(p0,A)) is taken care of by landmarks defined for p0. In
particular, p such that dist(p, s) ≤ ε−2dist(p0,A) ≤ ε−2dist(p,A) are fine. In the case where
dist(p, s) > ε−2dist(p0,A), then we can argue that dist(s, s̃) is tiny compared to dist(p, s): indeed,
since s̃ has the same distances to landmarks than s, it must be that d(p0, s̃) ≈ d(p0, s). Hence,
dist(s, s̃) ≤ dist(s, p0)+dist(s̃, p0) / 2ε−2dist(p0,A) ≤ 2εdist(p, s) and finally |d(p, s̃)−dist(p, s)| ≤
2εdist(p, s).

This argument works for all p separated from s by the same path. To ensure consistency over all
p, we pick one p0 for every possible such path, and choose s̃ to have the same distances as s to all
those p0.

We make now the proof formal, and work for all powers z.

Proof of Lemma 20. Consider a recursive decomposition R of the graph, i.e. a tree where each tree
node is a subset of V , and where a node is equal to the union of its children. In our case, R is
constructed as follows. The root node is the whole vertex set. Then, inductively, apply Lemma
21, with weights 1 on vertices of X and 0 otherwise, on a region R represented by a node (simply
called region in the following): the children of R are

• the connected components of R \ S,

• let S = P1 ∪P2 ∪ .... Each path in Pi is broken into maximal subpath each containing a point
of X, and each subpath is added as a children of R.

Stop this induction when a region has weight at most 2 (i.e., there are less than 2 nodes from X in
it). Since the weight is divided by two at every level, the depth of that decomposition is O(log |X|).

We define sets of landmarks as follows. Consider a root-to-leaf path of the decompositionR1, ..., Rlog |X|.
Let P i1, P

i
2... be the paths given by Lemma 21 on Ri. For each of those paths, choose a vertex

pij ∈ Ri and let Li,j,pij be an ε
zdist(pij ,A)-net of P ∩B

Rj
i
(pij ,

90z3

ε3
dist(pij ,A)), where B

Rj
i
(y, r) is the

ball centered at y of radius r in the graph Rji , which is the graph induced by Ri \
⋃
j′≤j P

i
j′ .

We let p be any such sequence p1
1, p

1
2, ..., p

2
1, p

2
2, ..., where pij ∈ Ri for all path P ij dividing Ri. A set

of landmarks Lp is defined as:

Lp :=
(
X ∩Rlog |X|

)⋃
i,j

Li,j,pij .

We now describe how we round distances to landmarks, and argue that for each possible distance
tuple, C contains a point having that distance tuple. Formally, given a point p and its distance
tuple d(p) = (dist(p, x) | ∀ x ∈ X ∩ Rlog |X|) + (dist(p, y) | y ∈ Li,j,pij ,∀i, j), the rounded distance

tuple d̃(p) is defined as follows :
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• For x ∈ X ∩ A, d̃(p, x) is the multiple of ε
zdist(x,A) smaller than 8z

ε dist(x,A) closest to
dist(p, x).

• For y ∈ Li,j,pij , d̃(p, y) is the multiple of ε
z · cost(pij ,A) smaller than 90z3

ε3
cost(pij ,A) closest to

dist(p, y).

The set C is constructed as follows: for every root-to-leaf path and every sequence p, for every
rounded distance tuple {d̃(p)}, add to C a point that realizes this rounded distance tuple.

It remains to show both that C has size exp(poly(log(|X|)/ε)), and that C contains good approxi-
mation of each center of any given solution.

Size analysis. C contains one point per rounded distance tuple. For a given set of landmarks

Lp, there are
(

90z4

ε4

)|Lp|
possible rounded distances. Since the decomposition has depth log |X| and

there is O(1) paths for each region as prescribed by Lemma 21, there are O(log |X|) paths P ij ; for

each of them, there are O(1/ε4) landmarks (the size of the net). Hence, |Lp| = O(log(|X|)/ε4).

The number of possible p is bounded by the same argument by |X|O(log |X|), since there are
O(log |X|) points of X in p.

Hence, the total size of C is at most exp
(
O(log2 |X|+ z4ε−4 log ε−1 log |X|)

)
.

Error analysis. We now show that for all solution S, every center can be approximated by a
point of C. Let S be some cluster of S, with center s. We show how to find s̃ ∈ C such that, for
every y ∈ X ∩ S of type tiny or interesting, |cost(y, s)− cost(y, s̃)| ≤ 3ε (cost(y, s) + cost(y,A)).

For this, let R1, ..., Rlog |X| be the path in R from the root to the leaf containing s, and {P ij} be

the paths given by Lemma 21. For a point p ∈ Ri, y /∈ Ri+1, we say that the path P ij separates p

and s if the path p s is fully contained in Rij and intersect P ij .

For every region Ri and path P ij , let pij ∈ Ri be the point separated from s by the path P ij with

smallest cost(pij ,A) value. Let p be the tuple (p1
1, p

1
2, ..., p

2
1, p

2
2, ...), and s̃ be the point of C that

has the same rounded distance tuple to Lp than s. Let S̃ be the solution constructed from S that
way. We show now that S̃ has the required properties. As in Lemma 17 and 18, we first show that
points close to S are close to S̃, and the converse can be shown exactly the same way, by switching
roles of s and s̃.

For this, let p ∈ X such that cost(p,S) ≤
(

10z
ε

)z
cost(p,A). We show that cost(p, S̃) ≤ (1 +

ε)cost(p,S) + εcost(p,A). Let s be the closest center of S to p.

Let Ri be the smallest region containing the entire shortest-path between p and s. If Ri is a leaf,
then p ∈ Lp and since dist(p, s) ≤ 4z

ε dist(p,A), the rounding of distances ensures that dist(s, s̃) ≤
ε
zdist(p,A) and so the cost satisfies cost(p, s̃) ≤ (1 + ε)cost(p, s) + εcost(p,A). Otherwise, there
exists a path P ij separating p and s. Note that, by choice of P ij , dist(p, s) = distRi

j
(p, s). As

explained in the sketch of proof, we need to distinguish two cases.

• If distRi
j
(p, s) > 8z2

ε2
· distRi

j
(pij , s). Then we argue that d(s, s̃) is negligible. By choice of s̃, s

and s̃ have the same rounded distance to pij , i.e. distRi
j
(s̃, pij) ≤ distRi

j
(s, pij) + ε

z · dist(p,A)
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and so:

dist(s, s̃) ≤ distRi
j
(s, s̃) ≤ 2distRi

j
(s, pij) +

ε

z
· dist(p,A)

≤ ε2

4z2
dist(p, s) +

ε

z
· dist(p,A) ≤ (1 + ε)ε

z
· dist(p,A)

Hence, using the modified triangle inequality as above, we have :

cost(p, s̃) ≤ (1 + ε(1 + ε))cost(p, s) + (1 + z/ε(1+ε))z−1cost(s, s̃)

≤ (1 + ε(1 + ε))cost(p, s) + (1 + ε)2(ε/z)cost(p,A)

≤ (1 + 2ε)cost(p, s) + 2εcost(p,A).

• Otherwise, distRi
j
(p, s) ≤ 8z2

ε2
· distRi

j
(pij , s) and we can make use of the landmarks. By

definition of j, the path y  s is entirely in Rij , and it crosses P ij at some vertex x.

First, it holds that distRi
j
(x, pij) ≤ distRi

j
(x, s) + distRi

j
(s, pij) ≤ distRi

j
(p, s) + distRi

j
(s, pij) ≤

(1+ 8z2

ε2
)distRi

j
(pij , s) ≤ 9z2

ε2
· 10z
ε ·dist(pij ,A), hence x is in P∩B

Rj
i
(pij ,

90z3

ε3
dist(pij ,A)). By choice

of landmarks, this implies that there is l ∈ Lp, with dist(x, l) ≤ ε
zdist(pij ,A) ≤ εdist(p,A).

Furthermore,

distRi
j
(s, l) ≤ distRi

j
(s, x) +

ε

z
· dist(pij ,A) ≤ distRi

j
(p, s) +

ε

z
dist(pij ,A)

≤ 8z2

ε2
· distRi

j
(pij , s) +

ε

z
· dist(pij ,A)

≤ (
8z2

ε2
· 10z

ε
+ ε/z)dist(pij ,A).

Hence, s is close enough to l to ensure that s̃ has the same rounded distance to l as s, and
we get:

dist(p, s̃) ≤ distRi
j
(p, l) + distRi

j
(l, s̃)

≤ distRi
j
(p, l) + distRi

j
(l, s) +

ε

z
· dist(p,A)

≤ distRi
j
(p, x) + distRi

j
(x, s) +

3ε

z
· dist(p,A)

= distRi
j
(p, s) +

3ε

z
· dist(p,A)

= dist(p, s) +
3ε

z
· dist(p,A)

We can therefore conclude : cost(p, S̃) ≤ (1 + 3ε)cost(p,S) + 3εcost(p,A).

Showing the converse, i.e., that for points p ∈ X such that cost(p, S̃) ≤
(

10z
ε

)z
cost(p,A) it holds

thatcost(p,S) ≤ (1+ε)cost(p, S̃)+εcost(p,A) is similar. As in Lemma 17, this concludes the proof.
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9 A Note on Euclidean Spaces

Lastly, we briefly want to survey the state of the art results for eliminating the dependency on the
dimension in Euclidean spaces.

In a nutshell, the frameworks by both Feldman and Langberg [FL11] and us only yield coresets of
size O(kdpoly(log k, ε−1)). To eliminate the dependency on the dimension, we typically have to use
some form of dimension reduction.

In a landmark paper, [FSS20] showed that one can replace the dependency on d with a depen-
dency on k/ε2 for the k-means problem, see also [CEM+15] for further improvements on this idea.
Subsequently, Sohler and Woodruff [SW18] gave a construction for arbitrary k-clustering objectives
which lead to the first existence proof of dimension independent coresets for these problems. Unfor-
tunately, there were a few caveats; most notably a running time exponential in both k. Huang and
Vishnoi [HV20] showed that the mere existence of the Sohler-Woodruff construction was enough to
compute coresets of size poly(k/ε). Recently, the Sohler-Woodruff result was made constructive in
the work of Feng, Kacham and Woodruff [FKW19].

Having obtained a poly(k/ε)-sized coreset, one can now use a terminal embedding to replace the
dependency on d by a dependency ε−2 log k/ε. Terminal embeddings are defined as follows:

Definition 6 (Terminal Embeddings). Let ε ∈ (0, 1) and let A ⊂ Rd be arbitrary with |A| having

size n > 1. Define the Euclidean norm of a d-dimensional vector ‖x‖ =
√∑d

i=1 x
2
i . Then a

mapping f : Rd → Rm is a terminal embedding if

∀x ∈ A, ∀y ∈ Rd, (1− ε) · ‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ (1 + ε) · ‖x− y‖.

Terminal embeddings were studied by [EFN17, MMMR18, NN19], with Narayanan and Nelson
[NN19] achieving an optimal target dimension of O(ε−2 log n), where n is the number of points6.

It was first observed by Becchetti et al. [BBC+19] how terminal embeddings can be combined with
the Feldman-Langberg [FL11] (or indeed our) framework. Specifically, given the existence of a
poly(k/ε)-sized coreset, applying a terminal embedding with n being the number of distinct points
in the coreset now allows us to further reduce the dimension. At the time, the only problem with
such a coreset bound was k-means. The generalization to arbitrary k-clustering objectives is now
immediate following the results by Huang and Vishnoi [HV20] and Feng et al. [FKW19].

It should be noted that more conventional Johnson-Lindenstrauss type embeddings proposed in
[BBC+19, CEM+15, MMR19] do not (obviously) imply the same guarantee as terminal embeddings.
We appended a short proof showing that terminal embeddings are sufficient at the end of this
section. For a more in-depth discussion as to why normal Johnson-Lindenstrauss transforms may
not be sufficient, we refer to Huang and Vishnoi [HV20].

Combining our O(k(d + log k) · ε−max(2,z)) bound for general Euclidean spaces with either the
Huang and Vishnoi [HJV19] or the Feng et al. [FKW19] constructions and terminal embeddings
now immediately imply the following corollary.

6See the paper by Larsen and Nelson for a matching lower bound [LN17]
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Corollary 7. There exists a coreset of size

O
(
k log k ·

(
ε−2−max(2,z)

)
· 2O(z log z) · polylog(ε−1)

)
for (k, z)-clustering in Euclidean spaces.

Huang and Vishnoi further considered clustering in `p metrics for p ∈ [1, 2), i.e. non-Euclidean
spaces. For this they reduced constructing a coreset for (k, z) clustering in an `p space to construct-
ing a constructing a coreset for (k, 2z) clustering in Euclidean space. Plugging in our framework
into their reduction then yields the following corollary:

Corollary 8. There exists a coreset of size

O
(
k log k ·

(
ε−2−2z

)
· 2O(z log z) · polylog(ε−1)

)
for (k, z)-clustering in any `p space for p ∈ [1, 2).

Proposition 9. Suppose we have a (possibly weighted) point set A in Rd. Let f : Rd → Rm with
m ∈ O(ε−2 · z2 log n) be a terminal embedding for A and let f(A) be the projected point set. Then
if f(P ) ⊂ f(A) is an ε-coreset for f(A), P ⊂ A is an O(ε)-coreset for A. Conversely, if P ⊂ A is
an ε-coreset for A, then f(P ) ⊂ f(A) is an O(ε)-coreset for f(A)

Proof. We prove the result for the first direction, the other direction is analogous. Consider an
arbitrary solution S in Rd. We first notice that for any point p ∈ A, we have

(1− ε/2z)z · cost(f(p), f(S)) ≤ (1− ε) · cost(f(p), f(S))

and
(1 + ε/2z)z · cost(f(p), f(S)) ≥ (1 + ε) · cost(f(p), f(S))

Therefore,
(1− ε) · cost(f(p), f(S)) ≤ cost(p,S) ≤ (1 + ε) · cost(f(p), f(S)). (28)

Now suppose f(P ) is a coreset for f(A), which means for any set of k points f(S) ⊂ Rm∣∣∣∣∣∣
∑

p∈f(A)

wp · cost(p, f(S))−
∑

q∈f(P )

w′q · cost(q, f(S))

∣∣∣∣∣∣ ≤ ε ·
∑

p∈f(A)

wp · cost(p, f(S)), (29)

where w and w′ are the weights assigned to points in f(A) and f(P ), respectively. Let us now
consider a solution S in the original d-dimensional space. Since P is a subset of A, we have by
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combining Equations 28 and 29∣∣∣∣∣∣
∑
p∈A

wp · cost(p,S)−
∑
q∈P

w′q · cost(p,S)

∣∣∣∣∣∣
≤ ε ·

∑
p∈A

wp · cost(f(p), f(S)) + ε ·
∑
q∈P

w′q · cost(f(q), f(S))

+

∣∣∣∣∣∣
∑
p∈A

wp · cost(f(p), f(S))−
∑
q∈P

w′q · cost(f(q), f(S))

∣∣∣∣∣∣
≤ 2ε ·

∑
p∈A

wp · cost(f(p), f(S)) + ε ·
∑
q∈P

w′q · cost(f(q), f(S))

≤ (3 + ε)ε ·
∑
p∈A

wp · cost(f(p), f(S))

≤ (3 + 3ε)ε ·
∑
p∈A

wp · cost(p,S),

where the second inequality uses Equation 29 and the triangle inequality and the last inequality
uses Equation 28.
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[Mat00] Jiŕı Matousek. On approximate geometric k-clustering. Discrete & Computational Geometry,
24(1):61–84, 2000.

[MJF19] Alaa Maalouf, Ibrahim Jubran, and Dan Feldman. Fast and accurate least-mean-squares solvers.
In Advances in Neural Information Processing Systems, pages 8307–8318, 2019.

[MMK18] Alejandro Molina, Alexander Munteanu, and Kristian Kersting. Core dependency networks. In
Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 3820–3827.
AAAI Press, 2018.

[MMMR18] Sepideh Mahabadi, Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Non-
linear dimension reduction via outer bi-lipschitz extensions. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pages 1088–1101, 2018.

[MMR19] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of johnson-
lindenstrauss transform for k -means and k -medians clustering. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-
26, 2019, pages 1027–1038, 2019.

[MP04] Ramgopal R. Mettu and C. Greg Plaxton. Optimal time bounds for approximate clustering.
Mach. Learn., 56(1-3):35–60, 2004.

[MS18] Alexander Munteanu and Chris Schwiegelshohn. Coresets-methods and history: A theoreticians
design pattern for approximation and streaming algorithms. Künstliche Intell., 32(1):37–53,
2018.

51



[MSSW18] Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David P. Woodruff. On
coresets for logistic regression. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
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A Missing Proof

Lemma 1 (Triangle Inequality for Powers). Let a, b, c be an arbitrary set of points in a metric
space with distance function d and let z be a positive integer. Then for any ε > 0

d(a, b)z ≤ (1 + ε)z−1d(a, c)z +

(
1 + ε

ε

)z−1

d(b, c)z

|d(a, S)z − d(b, S)z| ≤ ε · d(a, S)z +

(
2z + ε

ε

)z−1

d(a, b)z.

Proof. The proof of the first inequality is appears in [MMR19], Corollary A.2.

For the second part, let S(a), S(b) be the closest point to a and b from S, and assume that
d(b, S) ≤ d(a, S). Then:

d(a, S)z ≤ d(a, S(b))z

≤
(

1 +
ε

2z

)z−1
· d(b, S(b))z +

(
1 +

2z

ε

)z−1

· d(a, b)z

≤ (1 + ε) · d(b, S(b))z +

(
1 +

2z

ε

)z−1

· d(a, b)z

≤ d(b, S)z + ε · d(a, S(a))z +

(
1 +

2z

ε

)z−1

· d(a, b)z,
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and so

|d(a, S)z − d(b, S)z| = d(a, S)z − d(b, S)z ≤ ε · d(a, S)z +

(
2z + ε

ε

)z−1

d(a, b)z.

In the other case, when d(a, S) ≤ d(b, S):

d(b, S)z ≤ d(b, S(a))z

≤
(

1 +
ε

2z

)z−1
· d(a, S(a))z +

(
1 +

2z

ε

)z−1

· d(a, b)z

≤ (1 + ε) · d(a, S)z +

(
1 +

2z

ε

)z−1

· d(a, b)z,

and so

|d(a, S)z − d(b, S)z| = d(b, S)z − d(a, S)z ≤ ε · d(a, S)z +

(
2z + ε

ε

)z−1

d(a, b)z.

B A Coreset of Size k2ε−2

In this section, we show how to trade a factor ε−z for a factor k in the coreset size.

Lemma 22. Let (X, dist) be a metric space, P be a set of points, k, z two positive integers and A
a set of O(k) centers such that each for each cluster with center c induced by A, all points of the

cluster are at distance between
(
ε
z

)2
∆C and

(
z
ε

)2
∆C , for some ∆C .

Suppose there exists an A-approximate centroid set C for P .

Then, there exists an algorithm running in time O(|P |) that constructs a set Ω of size O(k ·
2O(z) log3(1/ε)

ε2
(k log k + k log |C|+ log(1/π)) such that, with probability 1 − 1/π, for any set S of

k centers,
|cost(S)− cost(Ω,S)| = O(ε)cost(S).

Suppose we initially computed a set of k′ centers A. Our aim is to define a sampling distribution
that approximates the cost of any solution S with high probability. While the basic idea is related
to importance sampling (i.e. sampling proportionate to cost(p,A)), we add a few modifications
that are crucial.

Compared to the framework described in the main body, we change slightly the definition of ring.
For every cluster Ci of A, we partition the points of Ci into rings Ri,j from between distances

[
(
ε
z

)2
∆C · 2j ,

(
ε
z

)2
∆C · 2j+1], for j ∈ {1, . . . 4z log(z/ε)}.

The algorithm is as follows: from every Ri,j , sample δ points uniformly at random (if |Ri,j | ≤ δ,
simply add the whole Ri,j).
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The analysis of this algorithm follows the same line as the main one. Rings are divided into tiny,
interesting and huge types; tiny and huge are dealt with as in Lemmas 5 and 7, and interesting
points slightly differently.

From the definition of Ri,j , we immediately get the following observation.

Fact 6. For every cluster we have at most O(z · log z/ε) non-empty rings in total.

Given a solution S, we consider the groups Ii,j,` ⊂ Ci consisting of the points of Ri,j served in S
by a center at distance [ε · 2`, ε · 2`+1]. As before, we let cost(Ii,j,`,S) =

∑
p∈Ii,j,` cost(p,S) and

cost(Ij,`,S) =
∑k′

i=1 cost(Ii,j,`,S).

Our analysis will distinguish between three cases:

1. ` ≤ j · log ε, in which case we say that Ii,j,` is tiny.

2. j · log ε ≤ ` ≤ j + log(4z/ε), in which case we say Ii,j,` is interesting.

3. ` ≥ j + log(16z/ε), in which case we say Ii,j,` is huge.

We first consider the huge case. For this, we show that the weight of every ring is preserved with
high probability, which implies that the huge groups are well approximated.

Lemma 23. It holds that, for any Ri,j and for all solutions S with at least one non-empty huge
group Ii,j,` ∣∣∣∣∣∣cost(Ri,j ,S)−

∑
p∈Ω∩Ri,j

|Ri,j |
δ
· cost(p,S)

∣∣∣∣∣∣ ≤ 3ε · cost(Ri,j ,S).

Proof. Fix a ring Ri,j and let Ii,j,` be a huge group. First, the weight of Ri,j is preserved in Ω:
since δ points are sampled from Ri,j , it holds that

∑
p∈Ω∩Ri,j

|Ri,j |
δ

= |Ri,j |

Now, let S be a solution, and p ∈ Ii,j,` with Ii,j,` being huge. This implies, for any q ∈ Ri,j :
cost(p, q) ≤ (2 · ε · 2j+1)z ≤ 4z · εz · 2(`−log(16z/ε))z ≤

(
ε
4z

)z · cost(p,S). By Lemma 1, we have
therefore for any point q ∈ Ri,j

cost(p,S) ≤ (1 + ε/2z)z−1 cost(q,S) + (1 + 2z/ε)z−1 cost(p, q)

≤ (1 + ε) cost(q,S) + ε · cost(p,S)

⇒ cost(q,S) ≥ 1− ε
1 + ε

cost(p, S) ≥ (1− 2ε)cost(p,S)

Moreover, by a similar calculation, we can also derive an upper bound of cost(q,S) ≤ cost(p,S)·(1+

2ε). Hence, combined with
∑

p∈Ω∩Ri,j

|Ri,j |
δ = |Ri,j |, this is sufficient to approximate cost(Ri,j ,S).

Therefore, the cost of Ri,j is well approximated for any solution S such that there is a non-empty
huge group Ii,j,`.
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Next, we consider the interesting cases. The main observation here is that there are only O(log 1/ε)
many rings per cluster, hence a coarser estimation using Bernstein’s inequality is actually sufficient
to bound the cost.

Lemma 24. Consider an Ri,j and any solution S such that all huge Ii,j,` are empty. It holds with

probability at least 1− log(z/ε) exp(− ε2

2·16z log2 z/ε
· δ) that, for all interesting Ii,j,`:∣∣∣∣∣∣cost(Ii,j,`,S)−

∑
p∈Ii,j,`∩Ω

cost(p,S) · |Ri,j |
δ

∣∣∣∣∣∣ ≤ ε

log(z/ε)
· (cost(Ri,j ,A) + cost(Ri,j ,S)) .

Proof. We start by bounding |Ri,j | · (ε · 2`)z in terms of cost(Ri,j ,S) + cost(Ri,j ,A).

If Ii,j,` for some ` ≥ j + 3 is non-empty, then ε · 2` − ε · 2j+2 ≤ d(q,S), for any point q. Hence,
|Ri,j |·(ε·2`)z ≤ cost(Ri,j ,S)·2z. If ` ≤ j+2, then |Ri,j |·(ε·2`)z ≤ |Ri,j |·(ε·2j+2)z ≤ cost(Ri,j ,A)·4z.
Putting both bounds together, we have

|Ri,j | · (ε · 2`)z ≤ 4z(cost(Ri,j ,S) + cost(Ri,j ,A)) (30)

Since we aim to apply Bernstein’s inequality, we now require a bound on the second moment of our
cost estimator. We have for a single randomly chosen point P :

E

 ∑
p∈Ii,j,`∩P

cost(p,S) · |Ri,j |

 = cost(Ii,j,`,S)

and

E

 ∑
p∈Ii,j,`∩P

cost(p,S) · |Ri,j |

2 = E

 ∑
p∈Ii,j,`∩P

cost(p,S)2 · |Ri,j |2
 since |P | = 1

=
∑

p∈Ii,j,`∩P
cost(p,S)2 · |Ri,j | ≤ |Ri,j | · |Ii,j,`| · (ε2`)2z4z

≤ cost(Ii,j,`,S) · (cost(Ri,j ,S) + cost(Ri,j ,A)) · 16z (31)

where the final equation follows from by lower bounding the cost in S of any point in Ii,j,` with
(ε · 2`)z and using Equation 30.

Furthermore, by the same reasoning and again using Equation 30, we have the upper bound M on
the (weighted) cost in S of every sampled point in every ring:

M ≤ (ε · 2`+1)z · |Ri,j | ≤ (cost(Ri,j ,S) + cost(Ri,j ,A)) · 8z (32)

Applying Bernstein’s inequality and Equations 31 and 32, we now have
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P

∣∣∣∣∣∣δ · cost(Ii,j,`,S)−
∑

p∈Ii,j,`∩Ω

cost(p,S) · |Ri,j |

∣∣∣∣∣∣ > ε · δ
r
· (cost(Ri,j ,S) + cost(Ri,j ,A))


≤ exp

(
−

ε2·δ
r2
· (cost(Ri,j ,S) + cost(Ri,j ,A))

cost(Ii,j,`,S) · 16z + 4ε
3r · (cost(Ri,j ,S) + cost(Ri,j,`)) · 8z

)
≤ exp

(
− ε2 · δ

2r216z

)
,

where the last line uses cost(Ii,j,`,S) ≤ cost(Ri,j ,S). Applying a union bound over all r interesting
sets Ii,j,`, we obtain the above guarantee for all Ii,j,` simultaneously with probability

1− r · exp

(
− ε2 · δ

2r216z

)
.

Finally, we conclude:

Proof of Lemma 22. As in the proof of Lemma 2, we decompose |cost(S) − cost(Ω,S)| into terms
corresponding to points of tiny, interesting or huge groups. We only sketch the proof here, the
details are the same as for Lemma 2. We condition on event E happening. Let S be a set of k
points, and S̃ ∈ Ck that approximates best S, as given by the definition of C (see Definition 1).
This ensures that for all points p with dist(p,S) ≤ 8z

ε · dist(p,A) or dist(p, S̃) ≤ 8z
ε · dist(p,A) , we

have |cost(p,S)− cost(p, S̃)| ≤ ε(cost(p,S) + cost(p,A)).

Our first step is to deal with points that have dist(p,S) > 8z
ε ·dist(p,A), using Lemma 23. All other

points have distance well approximated by S̃. Then, we can apply Lemma 5 and Lemma 24 to LS̃ ,

since all points in LS̃ have dist(p, S̃) ≤ 4z
ε ·dist(p,A), and so dist(p,S) ≤ 8z

ε ·dist(p,A) and were not

removed by the previous step. Remaining points are those which have dist(p, S̃) > 4z
ε · dist(p,A)

and dist(p,S) ≤ 8z
ε · dist(p,A), i.e., their distance is preserved in S̃ and they are huge with respect

to S̃. We apply Lemma 7 to them as well.

Combining this lemma and Lemma 4 gives an analogous to Theorem 1. Now, using this lemma
instead of Theorem 1 in all proofs of section Section 8 gives bound with a factor k instead of a
ε−z.
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